Hydrogen production from pine and poplar bio-oils by catalytic steam reforming. Influence of the bio-oil composition on the process
Resumen: The catalytic steam reforming of four different aqueous fractions of bio-oil has been carried out in a fixed bed reactor at 650 °C and atmospheric pressure using a Ni–Co/Al–Mg catalyst, employing a spatial time of 4 g catalyst min/g organics. The chemical analysis of the aqueous fractions revealed that the source of biomass (pine or poplar sawdust) and the pyrolysis unit significantly influenced the chemical composition of these liquids. Depending on their chemical composition, the initial H2 yield varied from 0.101 to 0.182 g H2/g organics and the initial CO2 yield from 0.814 to 1.28 g CO2/g organics during their catalytic reforming. Regarding catalytic stability, higher catalyst deactivation took place during the reforming of the two pine bio-oil aqueous fractions. The reforming results of the four aqueous fractions have been correlated to their chemical compositions using statistical empirical additive models developed using the Bayesian Information Criterion (BIC). This strategy enabled the identification of the chemical compounds responsible for the most significant variations observed during the reforming of the liquids. The different proportions of acetic acid and furfural in the liquids had the greatest impact on the reforming results. Acetic acid was identified as a compound with low reactivity and low coke formation. In contrast, furfural was found to have high reactivity and a high tendency to produce coke in the reforming process. Additional reforming experiments conducted with acetic acid, phenol, furfural, levoglucosan and guaiacol helped to confirm and explain the results obtained during the catalytic steam reforming of the aqueous fractions.
Idioma: Inglés
DOI: 10.1016/j.ijhydene.2015.02.117
Año: 2015
Publicado en: International journal of hydrogen energy 40, 16 (2015), 5593-5608
ISSN: 0360-3199

Factor impacto JCR: 3.205 (2015)
Categ. JCR: CHEMISTRY, PHYSICAL rank: 47 / 144 = 0.326 (2015) - Q2 - T1
Categ. JCR: ELECTROCHEMISTRY rank: 8 / 27 = 0.296 (2015) - Q2 - T1
Categ. JCR: ENERGY & FUELS rank: 28 / 88 = 0.318 (2015) - Q2 - T1

Factor impacto SCIMAGO:

Financiación: info:eu-repo/grantAgreement/ES/DGA/CTPP02-09
Financiación: info:eu-repo/grantAgreement/ES/MINECO/ENE2010-18985
Financiación: info:eu-repo/grantAgreement/ES/MINECO/ENE2012-39114
Tipo y forma: Article (PostPrint)
Área (Departamento): Ingeniería Química (Departamento de Ingeniería Química y Tecnologías del Medio Ambiente)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.

Exportado de SIDERAL (2016-09-20-17:01:07)

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ingeniería Química

 Record created 2016-09-20, last modified 2017-03-27

Rate this document:

Rate this document:
(Not yet reviewed)