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1. RESUMEN 

Las biopelículas, más conocidas por el término inglés biofilms, son 

organizaciones microbianas compuestas por microorganismos que se adhieren a las 

superficies gracias a la secreción de un exopolímero. La estructura de estas 

comunidades microbianas incrementa la resistencia a los desinfectantes y 

antimicrobianos, lo que les convierte en complejos difíciles de erradicar de los 

ambientes donde se establecen. 

Las biopelículas son un problema en la industria alimentaria, ya que, además de 

causar el deterioro de la maquinaria, en muchas ocasiones son responsables de la 

contaminación de los alimentos destinados al consumo humano, pudiendo suponer un 

riesgo para la salud pública. 

En los últimos años, se ha demostrado la eficacia antimicrobiana de los aceites 

esenciales obtenidos de plantas aromáticas y medicinales, y se ha propuesto su uso 

como alternativa natural al empleo de compuestos químicos desinfectantes en la 

industria alimentaria. 

De tal forma, el objetivo de este trabajo es evaluar la eficacia del carvacrol y el 

citral (constituyentes habituales de los aceites esenciales), empleados por separado o en 

combinación, como agentes de destrucción de las biopelículas formadas por Listeria 

monocytogenes EGD-e y Escherichia coli MG1655. Así, se pretende determinar si estos 

compuestos empleados simultáneamente actúan de modo sinérgico en función de las 

condiciones de tratamiento, tales como la temperatura y el pH del medio de tratamiento. 

Para llevar a cabo la formación de la biopelícula se requirió la incubación de los 

cultivos en placas de 24 pocillos (con 2 mL de TSB por pocillo) en estufas de aire 

estático, durante 72 horas a 37ºC o 45ºC. 

Los 2 antimicrobianos ensayados (carvacrol y citral) fueron efectivos frente a 

las biopelículas de L. monocytogenes EGD-e y E. coli; en ambos casos, el efecto 

antimicrobiano fue mayor al aumentar la concentración, y su aplicación simultánea 

mostró cierto sinergismo a 37ºC.  
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El aumento de la temperatura de tratamiento hasta 45°C permitió aumentar la 

eficacia de los tratamientos realizados. Tratamientos a 45°C durante 60 min con 1000 

ppm de carvacrol o citral lograron reducir la población de células viables de 

biopelículas de L. monocytogenes EGD-e o E. coli MG1655 en más de 5 ciclos 

logarítmicos. Estos resultados apoyan la posibilidad de utilizar compuestos presentes 

en aceites esenciales como desinfectantes o coadyuvantes con el objetivo de controlar 

la diseminación de células infectantes provenientes de biopelículas en las industrias 

agroalimentarias. 

Por último, el estudio de la resistencia de las células sésiles disgregadas 

permitió comprobar su mayor resistencia frente a las células plantónicas, lo que 

confirma el papel protector de la matriz de EPS y la propia agregación celular en la 

resistencia de las biopelículas frente a la acción de compuestos antimicrobianos.  
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ABSTRACT  

Biofilms are microbial organizations composed of microorganisms that adhere to 

the surfaces by secreting an exopolymer. The structure of these microbial communities 

increases resistance to disinfectants and antimicrobials, which makes them difficult to 

eradicate from environments where they established. 

Biofilms are a problem in the food industry, since they cause the deterioration of 

machinery and, in several occasions, are responsible for the contamination of food 

alimed for human consumption, which may pose a risk to public health. 

In recent years, it has been demonstrated the efficacy of antimicrobial of the 

essential oils obtained from aromatic and medicinal plants, and has been proposed as a 

natural alternative to the use of disinfectants with chemical compounds in the food 

industry. 

Therefore, the purpose of this study is to evaluate the effectiveness of carvacrol 

and citral (common constituents of essential oils), used separately or in combination, as 

agents of destruction of Biofilms formed by L. monocytogenes EGD-e and E. coli 

MG1655. This is intented to determine whether these compounds used simultaneously 

act synergistically according to the treatment conditions, such as temperature and pH of 

the treatment medium. 

To implement the creation of the Biofilm, crop incubation in plates was required 

in 24 well plates ( TSB with 2 mL per well ) in static air stove, during 72 hours at 37°C 

or 45ºC. 

The 2 antimicrobials tested (carvacrol and citral) were effective against biofilms 

of L. monocytogenes EGD-e and E. coli, in both cases, the antimicrobial effect was 

higher as the concentration increased, and simultaneous application showed some 

synergism at 37ºC. 

A slight increase of the temperature to 45 ° C allowed more effective treatments 

performed. Treatments at 45 ° C for 60 min with 1000 ppm carvacrol and citral were 

able to reduce the population of viable cells of L. monocytogenes biofilms EGD -e or E. 

coli MG1655 by more than 5 log cycles. These results support the possibility of using



 

6 

 compounds present in essential oils as disinfectants or adjuvants in order to control the 

spread of infectious cells from biofilms in food processing industries. 

Finally, the study of the resistance of disrupted sessile cells allowed check their 

greater resistance to planktonic cells , confirming the protective role of matrix EPS and 

cell aggregation in the resistance of biofilms itself against the action antimicrobial 

compounds. 
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2. INTRODUCCIÓN 

La Agencia Española de Consumo, Seguridad Alimentaria y Nutrición 

(AECOSAN) afirma que son numerosos los factores y situaciones que pueden 

contribuir a la pérdida o disminución de la seguridad en la alimentación, dando lugar a 

la aparición de reacciones adversas en los consumidores. Un ejemplo es la acción o 

presencia de sustancias y agentes externos que se encuentran en el alimento, bien de 

forma accidental o añadidos intencionadamente, y que pueden causar, entre otros, 

alergias, intoxicaciones e infecciones afectando gravemente a la salud de los 

consumidores (AECOSAN, 2010). 

Según la Organización Mundial de la Salud (OMS), «la inocuidad de los 

alimentos es una cuestión prioritaria para los consumidores, productores y gobiernos» y 

señala que «invertir en salubridad de los alimentos significa invertir en la próxima 

generación» (OMS, 1999). 

La OMS insta, pues, a reforzar la seguridad alimentaria «desde el principio hasta 

el final de la cadena alimentaria» y a dar una respuesta integrada y global para asegurar 

la inocuidad de los alimentos. 

La inocuidad, según la Real Academia de la Lengua Española, se define como el 

carácter de ser inocuo, es decir que no cause daño, aunque para algunos autores 

(Martínez et al., 2005) podría ser evaluada en términos de un aceptable nivel de riesgo. 

Así mismo, cada persona ha de tener el derecho a acceder a alimentos nutricionales 

adecuados e inocuos, es decir, con garantía de que los mismos no le causen daño a la 

salud cuando se preparen y/o se consuman de acuerdo con el uso al que se destinen. De 

este modo, la obtención y garantía de la inocuidad es y debe ser un objetivo no 

negociable. 

A pesar de que en los países industrializados, gracias a la aplicación rigurosa de 

los procesos tecnológicos más adecuados y altos estándares de higiene, las 

enfermedades vehiculadas por alimentos han disminuido drásticamente, se estima que 

un 25% (OMS, 2015) de la población sufre, al menos, un episodio de enfermedad de 

transmisión alimentaria anualmente. En este sentido, la globalización de la distribución 

de alimentos significa también una globalización de los problemas de salud pública.
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Entre los factores que contribuyen a los posibles riesgos de los alimentos se 

incluyen las prácticas agrícolas inadecuadas, la falta de higiene en todas las fases de la 

cadena alimentaria, la ausencia de controles preventivos en las operaciones de 

elaboración y preparación de los alimentos, la utilización inadecuada de productos 

químicos, la contaminación de las materias primas, los ingredientes y el agua, el 

almacenamiento inadecuado, etc. (FAO, 2003). 

Las infecciones e intoxicaciones transmitidas por los alimentos figuran en un 

lugar destacado entre las nuevas enfermedades e infecciones descubiertas en las últimas 

décadas; comprenden en particular la campilobacteriosis, las infecciones por 

Cyclosporidium, Cyclospora, Escherichia coli y Listeria monocytogenes(OMS, 1999). 

El género Listeria agrupa bastones Gram positivos, no esporulados, aerobios-

anaerobios facultativos. Son capaces de desarrollarse entre 4 y 45ºC; es decir, pueden 

crecer a temperatura de refrigeración. Son psicrótrofos, catalasa positiva, oxidasa 

negativa. Pueden llegar a toleran concentraciones elevadas (10%) de cloruro de sodio y 

son móviles a 25ºC pero no a 35ºC (Michanie, 2004). 

L. monocytogenes es un patógeno humano que se transmite a través de los 

alimentos y que causa infecciones graves, con una alta tasa de mortalidad. A pesar de la 

ubicuidad del microorganismo, la tasa real de la enfermedad es bastante baja y se asocia 

casi siempre a condiciones predisponentes. Tradicionalmente se considera que los 

aislamientos de alimentos y del ambiente tienen la misma capacidad patogénica que los 

aislamientos de origen clínico (López et al., 2010). 

E. coli es un bacilo Gram negativo, anaerobio facultativo de la 

familia Enterobacteriaceae, que se encuentra en el tracto gastrointestinal de humanos y 

animales de sangre caliente. 

E. coli es la bacteria anaerobia facultativa comensal más abundante de la flora 

intestinal; y es uno de los organismos patógenos más relevantes en el hombre, ya que 

incluye cepas patógenas que producen tanto infecciones gastrointestinales como de 

otros sistemas (urinario, sanguíneo, nervioso).  

https://es.wikipedia.org/wiki/Bacteria_facultativa
https://es.wikipedia.org/wiki/Comensalismo
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En las últimas décadas, se ha puesto de manifiesto que las bacterias no se 

encuentran en el medio ambiente exclusivamente de forma libre, comportándose como 

seres unicelulares, sino que, en muchas ocasiones, pueden encontrarse formando parte 

de comunidades microbianas con un sistema de organización más típico de los 

organismos coloniales, creciendo adheridas a superficies y embebidas en matrices 

extracelulares que ellas mismas sintetizan (Dolan, 2002). A estas estructuras biológicas 

se las denomina biopelículas (biofilms en inglés). Hoy en día se sabe que las 

biopelículas no son una rareza, sino que representan una forma habitual de crecimiento 

de las bacterias en la naturaleza y su presencia ejerce un enorme impacto en diversos 

aspectos de la vida humana, con múltiples implicaciones tanto sanitarias como 

tecnológicas. 

En la actualidad, el primer plano que ocupaban las bacterias patógenas con 

mecanismos específicos de patogenicidad, ha sido usurpado por bacterias ubicuas, 

capaces de producir infecciones de tipo crónico, y capaces de formar biopelículas, entre 

las que se encuentran principalmente las siguientes especies: Staphylococcus aureus, 

Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, Salmonella 

Typhimurium y Listeria monocytogenes (Lasa, 2004). 

 

2.1 Introducción a las biopelículas 

La capacidad de formar biopelículas es un atributo universal de las bacterias. Las 

biopelículas son comunidades multicelulares, que se mantienen unidas por una matriz  

de exopolisacáridos de producción propia. Todos los microorganismos son capaces de 

formar biopelículas bajo condiciones ambientales adecuadas (Lasa et al., 2005). Los 

mecanismos que las diferentes bacterias emplean para formar biopelículas varían 

dependiendo de las condiciones ambientales, así como de los atributos de las cepas 

específicas (López et al., 2010). En este sentido, los mecanismos moleculares que 

regulan la formación de biopelículas también varían entre las diferentes especies, e 

incluso entre las diferentes cepas de la misma especie. Sin embargo, algunas 

características son comunes y se reconocen como atributos generales de la formación de 

biopelículas. Por ejemplo, todas las biopelículas contienen una matriz extracelular que 

mantiene las células juntas. Esta matriz está muy hidratada debido a que incorpora 

grandes cantidades de agua dentro de su estructura, llegando este elemento a representar 
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hasta el 97% de la biopelícula. Además de agua la matriz se compone de 

exopolisacáridos (EPS), siendo éste el componente fundamental, producido por los 

propios microorganismos integrantes. Junto a los EPS se encuentran otros componentes 

tales como proteínas o DNA (Branda et al., 2005). La naturaleza de la matriz de EPS 

varía en gran medida dependiendo de las condiciones de crecimiento, medio y sustratos 

(Nazar., 2007). 

Las biopelículas se forman de manera espontánea en presencia de humedad y 

son capaces de sobrevivir con mínimas trazas de nutrientes. Las biopelículas llevan a 

cabo la adaptación en un medio adverso mientras cambian, lo que se basa en la 

activación de diversos grupos de genes (Serra, 2003). 

Los factores que determinan en mayor medida la formación y desarrollo de una 

biopelícula son, entre otros, (Fuster i Valls., 2006; Srey et al., 2013; García-Gonzalo y 

Pagán., 2015): 

a) Propiedades de la superficie de contacto 

b) Tiempo de contacto 

c) Características de la superficie bacteriana 

d) Disponibilidad de nutrientes. 

e) Composición de la comunidad bacteriana 

f) Disponibilidad de agua 

g) Temperatura 

h) Concentración de oxígeno 

i) Composición de la matriz alimentaria 

j) Cepa microbiana 

k) pH del medio
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2.2 Etapas del proceso de formación de las biopelículas 

Vale la pena recordar que las bacterias pueden existir en la naturaleza bajo dos 

formas o estados: 

- Bacterias planctónicas, de libre flotación y suspendidas en el fluido, 

- Bacterias sésiles (como es el caso de las biopelículas), creciendo en colonias de 

microorganismos adheridas a superficies sólidas. 

La formación de una biopelícula no es un proceso aleatorio sino que sigue una 

sistemática que permite su predicción. Se han identificado cinco fases: fase de unión 

inicial, fase irreversible, fase de desarrollo de la arquitectura de la futura biopelícula,  

fase de maduración y fase de dispersión de las células. 

Las biopelículas bacterianas empiezan a formarse cuando alguna célula 

individual se une inicialmente a una superficie (Figura 1). En esta etapa inicial de 

formación de la biopelícula se produce la adherencia sobre la superficie. La capacidad 

de la célula para realizar este ataque inicial depende de factores ambientales como la 

temperatura, pH, factores genéticos que codifican las funciones motrices, la 

sensibilidad ambiental y las proteínas. La motilidad parece que ayuda a la bacteria a 

alcanzar la superficie y contrarrestar las repulsiones hidrofóbicas. Sin embargo, 

aunque la motilidad ayuda al proceso no parece ser un requisito esencial, pues muchas 

bacterias Gram positivas inmóviles como estafilococos, estreptococos y micobacterias 

son capaces de formar biopelículas. En el caso de las bacterias Gram positivas se ha 

descrito la participación de proteínas de superficie en esta primera etapa de adherencia 

primaria.  

La unión pasa de ser reversible a irreversible como consecuencia del cambio en 

la interacción entre las bacterias con la superficie de contacto, que pasa de ser débil a 

ser permanente debido a la presencia de una elevada cantidad de EPS, que une a las 

células entre sí y a estas con la superficie (Augustin y Ali-Vehmas., 2004). Una vez 

que la bacteria se ha adherido a la superficie, las células comienzan a crecer y a 

dividirse sobre la superficie en una monocapa, y las células hijas se extienden 

alrededor del sitio de unión, formando una microcolonia (Lasa et al., 2005), dando 

lugar al desarrollo de la arquitectura de la futura biopelícula.
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En una etapa posterior, las bacterias cambian su comportamiento y dan lugar a la 

compleja arquitectura de la biopelícula madura. Comienza a secretar un EPS que 

constituye la matriz de la biopelícula formando unas estructuras entre las cuales se 

observa la presencia de canales. La composición del EPS es diferente en cada bacteria. 

Además, estudios recientes han puesto de manifiesto que incluso una misma bacteria, 

dependiendo de las condiciones ambientales en las que se encuentre, puede producir 

distintos EPS como componentes de la matriz del biopelículas (López et al., 2010). 

Finalmente, algunas bacterias de la matriz de la biopelícula se liberan de la 

misma para poder colonizar nuevas superficies cerrando el proceso de desarrollo de 

formación de la biopelícula. La liberación de las bacterias desde la biopelícula es el 

proceso que menos se conoce (Lasa et al., 2005) (Figura 1). 

 

 

 

 

 

 

 

Figura 1. Etapas de formación de una biopelícula: 1-Unión inicial, 2-Unión irreversible,         

3-Desarrollo de la arquitectura de la futura biopelícula,  4-Maduración, 5-Dispersión. 

 

Por otra parte, cabe señalar que, además de la resistencia intrínseca propia de la 

biopelículas, las bacterias que conforma las biopelículas pueden sufrir mutaciones 

genéticas y/o adquirir elementos genéticos foráneos que le confieran mayor resistencia a 

las bacterias, como así se ha descrito en aquellos genes que codifican betalactamasas y 

enzimas modificantes de aminoglucósidos (Ramirez y Tolmasky., 2010). 
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2.3 Presencia de biopelículas en la industria alimentaria  

En la industria alimentaria es muy común la presencia de biopelículas en las 

superficies de conducciones, equipos y materiales. Los materiales que conforman las 

superficies de contacto con alimentos tienden a tener un gran efecto en el nivel de la 

unión y la formación de las biopelículas. Los materiales utilizados para las superficies 

de contacto con los alimentos son conocidos por ser de acero inoxidable, vidrio, caucho, 

poliuretano, teflón y madera en los países en desarrollo. Junto al propio material, el 

diseño higiénico, tal como la soldadura, juntas, esquinas, y el diseño del equipo podría 

también ser un factor determinante en la formación de biopelículas.    

El tratamiento habitual de eliminación de las biopelículas comprende un 

tratamiento físico, que incorpora una limpieza mecánica y el uso de agua caliente, y un 

tratamiento químico mediante el empleo de biocidas, con objeto de inactivar los 

microorganismos presentes (Srey et al., 2013).  

 

Los biocidas más empleados para la eliminación de biopelículas son (Edstrom., 

2003): 

 Biocidas oxidantes: cloro, dióxido de cloro, ozono, peróxido de hidrógeno. 

 Biocidas no oxidantes: compuesto de amonio cuaternario, formaldehído, 

hipoclorito sódico. 

Actualmente, las estrategias de control microbiano no son lo suficientemente 

eficientes para proporcionar una completa erradicación de microorganismos peligrosos 

sin afectar a las cualidades del producto. En las medidas de saneamiento se sabe que la 

eficacia de los desinfectantes en superficies, equipos, etc. puede reducir en más de 2 

unidades logarítmicas las bacterias contaminantes. Se considera que, las células de las 

bacterias localizadas formando las biopelículas, se encuentran protegidas de los 

desinfectantes, lo que podría explicar la ineficacia de las soluciones desinfectantes 

(Srey et al., 2013). 

La eficacia de los desinfectantes se ve limitada debido a la presencia de materia 

orgánica, a esto se le debe de sumar la influencia del pH, la temperatura, la 

concentración y el tiempo (Bremer et al., 2006; Kuda et al., 2008; Srey et al., 2013). 

Por otro lado, la toxicidad de algunos de estos desinfectantes desaconseja su uso en la 

industria alimentaria. Los residuos vertidos y emisiones que tienen lugar en las 
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industrias alimentarias en particular, y de cualquier otra actividad en general, son 

descargados al suelo, aire y agua. Todo ello genera importantes cambios en el medio, 

como el efecto invernadero, calentamiento global, contaminación atmosférica, de las 

aguas y del suelo y generación de residuos, que terminan repercutiendo en nuestra 

calidad de vida. De este modo, las industrias agroalimentarias deberán pues considerar 

la depuración de las aguas como una parte integrante del proceso productivo, con unos 

costes de inversión y mantenimiento, pues cada vez será mayor la presión legislativa 

es esa materia. 

En la actualidad, como alternativa al uso de desinfectantes químicos 

tradicionales, se está estudiando la eficacia de antimicrobianos de origen natural. Ello 

responde además a la demanda de los consumidores por productos alimenticios más 

seguros, naturales y saludables.  

Entre los antimicrobianos naturales más estudiados destacan los aceites 

esenciales (AEs) de especias y hierbas aromáticas, reconocidos algunos como 

sustancias GRAS (Generalmente Reconocidos como Seguros).Numerosos estudios 

han demostrado la eficacia de los componentes de los AEs en la eliminación de las 

biopelículas.  

Burt et al. (2014) estudiaron el efecto del carvacrol como componente principal 

del AE de orégano sobre la formación de biopelículas y su actividad en biopelículas ya 

existentes. El carvacrol, aplicado en concentraciones subletales, fue capaz de inhibir la 

formación de biopelículas de diversos microorganismos (Chromobacterium, 

Salmonella y Staphylococcus). Por el contrario, el carvacrol no mostró efecto frente a 

las biopelículas formadas previamente durante 16 horas, y tratadas posteriormente con 

concentraciones de 0-8 Mm durante 24 horas a 20ºC. 

Szczepanski y Lipski (2014) analizaron los efectos de inhibición del AE de 

tomillo, orégano y canela en concentraciones subletales sobre la formación de las 

biopelículas de tres cepas bacterianas (Acinetobacter, Sphingomonas y 

Stenotrophomonas). En este análisis, el AE de tomillo fue capaz de inhibir la 

formación de las biopelículas en concentraciones subletales, siendo el más eficaz.
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 Por otra parte, Ait-Ouazzou et al. (2011) evaluaron la actividad antimicrobiana 

de los componentes hidrófobos generales de los AEs. En este estudio, se muestra que 

la mayoría de los compuestos ensayados, incluyendo algunos hidrocarburos, eran muy 

eficaces contra L. Monocytogenes y E. coli.  

En resumen, la mayor parte de los autores muestran que las bacterias, cuando 

se encuentran formando biopelículas, son más resistentes frente a los agentes 

antimicrobianos que cuando se encuentran como células planctónicas. Por ello, se 

propone la utilización de nuevos antimicrobianos de origen natural actuando 

individualmente o en combinación, que sean eficaces y seguros, y además, 

económicos y respetuosos con el alimento y el medio ambiente, como alternativa a las 

estrategias convencionales de limpieza y desinfección para la eliminación de las 

biopelículas microbianas en la industria alimentaria. Además, este Trabajo Fin de 

Máster pretende abordar por primera vez en nuestro grupo de investigación el estudio 

de los mecanismos de resistencia de microorganismos formadores de biopelículas, lo 

que contribuirá al diseño y optimización de las condiciones de tratamiento.  
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3. OBJETIVOS 

Este Trabajo Fin de Máster aborda el estudio in vitro de la eliminación  de 

microorganismos de biopelículas formadas por los microorganismos de E. coli MG1655 

y L. monocytogenes EGD-e para alcanzar los siguientes objetivos: 

 Evaluar la eficacia del carvacrol y el citral, como agentes de destrucción de 

biopelículas de L. monocytogenes EGD-e y E. coli MG1655 

 

o en función de las condiciones de tratamiento, tales como la temperatura y el pH 

del medio de tratamiento, y 

 

o determinar si estos compuestos empleados simultáneamente actúan de modo 

sinérgico en función de las condiciones de tratamiento. 

 

 Estudiar los mecanismos de resistencia de las biopelículas de L. monocytogenes 

EGD-e y E. coli MG1655, frente a estos agentes, mediante la resistencia de las 

células sésiles. 
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4. MATERIAL Y MÉTODOS 

4.1 Material y reactivos 

Material 

 Agitador vórtex.  

 Asas de siembra. 

 Centrífuga (Eppendorf AG, Hamburgo, Alemania). 

 Contador automático de colonias (Protos, Analytical Measuring Systems, 

Cambridge, Reino Unido). 

 Eppendorf 1,5 mL. 

 Estufa de aire estático (J.P. Selecta, Bilbao, España). 

 Estufa de aire forzado (modelo 207, J.P. Selecta). 

 Frascos de vidrio de 50, 100 y 250mL. 

 GraphPad Software (Inc, San Diego, Estados Unidos). 

 Micropipetas de 20, 100 y 1000 µL. 

 pH metro (modelo BASIC 20+, Crison, Barcelona, España). 

 Pipetas graduadas estériles de 10 y 50mL. 

 Placas de microtitulación de 24 pocillos (Nunclon
TM 

Delta, ICT S.L., Lardero, La 

Rioja, España). 

 Placas de cultivo. 

 Tubos de 1,5mL. 

 Tubos de ensayo. 

 Tubos falcon.
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 Ultrasonidos (Allendale-ultrasonics.co.uk, cavitek professional series, Hertfordsire, 

Reino Unido). 

 

Reactivos 

 Ácido cítrico 1-hidratado PA-ACS-ISO (C6H8O7 H2O) (Panreac, 

Barcelona, España). 

 Agar tripticasa de soja (TSA) (Oxoid, Hampsire, Reino Unido). 

 Agua de peptona tamponada (AES Laboratorie, Combourg, Reino Unido). 

 Caldo tripticasa de soja (TSB) (Oxoid). 

 Carvacrol ≥ 98%, FCC, FG (SigmaAldrich, San Luis, Estados Unidos). 

 Citral (mezcla cis y trans) 95% (SigmaAldrich). 

 Extracto de levadura (YE)(Oxoid). 

 Fosfato disódico (Reag.Ph.Eur) PA-ACS (Na2HPO4)(Panreac). 

 Tween20(SigmaAldrich). 

 

4.2 Preparación de las biopelículas 

 

Para llevar a cabo la formación de las biopelículas se emplearon dos cepas 

bacterianas diferentes L. monocytogenes EGD-e y E. coli MG1655. En primer lugar, 

se realizó la preparación del precultivo microbiano; para ello, se inoculó una colonia, 

previamente aislada, en un tubo de ensayo con caldo de cultivo tripticasa de soja 

(TSB). Este tubo con TSB se dejó incubando en agitación a 37ºC durante 12 horas. A 

continuación se inoculó, en una proporción 1:100, el precultivo en caldo de cultivo 

TSB, previamente preparado. Seguidamente, se añadió 2 mL del cultivo en una placa 

de microtitulación de 24 pocillos (Figura 2). La placa con el cultivo se incubó a 37ºC 

durante 72 horas en una estufa de aire estático. Tras las 72 horas se eliminó el 

sobrenadante de los pocillos y se procedió al lavado de la placa cuidadosamente con 

agua destilada, para eliminar los restos medio de cultivo. 
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Figura 2.Placa de 24 pocillos 

 

4.3 Recuento del número de microorganismos presentes en las biopelículas 

Una vez realizado el lavado, en cada pocillo de la placa se añadieron 1,5 ml de 

agua de peptona (0,1%) con Tween 20 (dilución 1:100), a los cuales se les aplicó 

ultrasonidos durante diez minutos para lograr la disgregación de la biopelícula formada 

en la placa. Posteriormente, se llevaron a cabo diluciones seriadas en agua de peptona 

(0,1%) y se procedió a la siembra de 100 µL en placas de cultivo por homogeneización 

en masa en medio de cultivo tripticasa de soja (TSA). Las placas sembradas con 

colonias de L. monocytogenes EGD-e se incubaron durante 48 horas a 35ºC, mientras 

que las placas sembradas con colonias de E. coli MG1655 se incubaron durante 24 

horas a 35ºC. Transcurrido el tiempo de incubación de las placas de cultivo, se realizó el 

recuento de colonias mediante el contador automático de colonias. 

 

4.4 Tratamiento de destrucción de las biopelículas con carvacrol y citral 

Tras el lavado, para realizar el tratamiento con los diferentes compuestos 

individuales (CIs) (citral y carvacrol) de AEs en los pocillos con formación de 

biopelículas, se añadió a cada uno de los pocillos 2 mL de tampón McIlvaine a pH 4,0 y 

pH 7,0 con los CIs disueltos. Los CIs se aplicaron a una concentración de 500 ppm para 

evaluar su acción individual, la cantidad aplicada en el tratamiento fue seleccionada en 

base a estudios previos, de este modo se seleccionó una cantidad no muy elevada para 

comprobar la capacidad de inactivación frente a las biopelículas. Otra cantidad usada 

fue, 250 ppm (de cada CI) para evaluar el sinergismo entre ellos. Se dejó actuar al 
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Microorgansimos

L. 
monocytogenes 

EGD-e 

E. coli MG1655 

Antimicrobiano

Citral

Carvacrol

pH

4,0

7,0

Concentración

500 
ppm

250 
ppm

Temperatura

37ºC

45ºC

Tiempo

72 
horas

antimicrobiano, en contacto con la biopelícula, durante 60 minutos a una temperatura de 

37 y 45ºC. Transcurrido este tiempo, se realizó el lavado de los pocillos como se 

describe en el apartado 4.2, para realizar el posterior recuento en placa con el fin de 

determinar la cantidad de microorganismos eliminados de la biopelícula (Figura 3). 

 

 

 

 

 

 

Figura 3. Esquema de las condiciones del tratamiento de destrucción de biopelículas 

ensayadas. 

 

4.5 Tratamiento con carvacrol y citral de las células sésiles 

Una vez lavados todos los pocillos de la placa como se describe en el apartado 

4.2,  se llevó a cabo el tratamiento con los CIs de los AEs de las células sésiles según se 

describe a continuación. Con la ayuda de un asa de siembra se desprendió la biopelícula 

del pocillo, y se procedió a su resuspensión mediante la adición de 1,5 mL de agua de 

peptona (0,1%) con Tween20 (dilución 1:100) en cada pocillo. Una vez separada la 

biopelícula de la superficie y disgregada, se traspasó el total del volumen de cada 

pocillo a tubos eppendorfs, los cuales se sometieron a sonicación durante 10 minutos 

con el fin de lograr la disgregación total de las células. 

El siguiente paso, fue la centrifugación de los eppendorfs durante 10 minutos a 

5000 rpm. Transcurridos 5 minutos, se retiró el sobrenadante y se realizó la 

resuspensión del pellet añadiendo a cada uno de los eppendorfs 1,5 mL de tampón 

McIlvaine a pH 4 y pH 7, sin adición de CIs de Aes (control) y con los diferentes CIs 

(citral y carvacrol) disueltos. La figura 4 describe la matriz experimental ensayada. La 

duración del tratamiento fue de 60 minutos a una temperatura de 45ºC. Posteriormente, 

se llevaron a cabo diluciones seriadas en agua de peptona (0.1%) y se sembraron 100 

µL en placas de cultivo por homogeneización en masa en medio TSA. Las placas 
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Microorganismos

L. 
monocytogenes 

EGD-e 

E. coli MG1655 

Antimicrobiano

Citral

Carvacrol

pH

4,0

7,0

Concentraciones

500 
ppm

Temperatura

45ºC

Tiempo

72 
horas

sembradas con colonias de L. monocytogenes EGD-e se incubaron durante 48 horas a 

35ºC, mientras que las placas sembradas con colonias de E. coli MG1655 se incubaron 

durante 24 horas a 35ºC. 

 

 

 

 

 

 

Figura 4. Esquema de las condiciones del tratamiento de destrucción de células sésiles 

ensayadas. 

 

4.6 Análisis estadístico de datos 

 Los datos para la cuantificación de las biopelículas se obtuvieron por triplicado. 

Se calculó la media y la desviación estándar (sd). En algunos casos fue necesario 

conocer el coeficiente de variación (%), calculado mediante la siguiente ecuación: 

𝐶𝑉 (%) =  
𝑆𝐷

𝑚𝑒𝑑𝑖𝑎
 𝑋 100 

 Por otro lado, se empleó el t-test o análisis ANOVA para detectar diferencias 

estadísticamente significativas entre los resultados, mediante la herramienta 

GraphPadPRISM®. La significancia estadística de cada uno de ellos se consideró a 

p=0,05.
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5. RESULTADOS Y DISCUSIÓN 

5.1 Eliminación de biopelículas de L. monocytogenes EGD-e  y E. coliMG1655 

mediante la acción de antimicrobianos de origen natural en función de las 

condiciones de tratamiento 

 

5.1.1. Influencia del antimicrobiano y del pH del medio de tratamiento sobre la 

eliminación de biopelículas de L. monocytogenes EGD-e y E. coliMG1655 y 

evaluación de la existencia de sinergismos entre ambos antimicrobianos 

En primer lugar se evaluó la eficacia de 2 CIs que poseen propiedades 

antimicrobianas (carvacrol y citral) (Ait-Ouazzou et al., 2011) con objeto de eliminar 

las biopelículas formadas por L. monocytogenes EGD-e y E. coli MG1655. Los 

parámetros de tratamiento empleados en la destrucción de estas biopelículas se 

establecieron en base a estudios previos, que utilizaron concentraciones de al menos 

2000 ppm de cada antimicrobiano (Villamayor, 2015).  

De esta manera, se decidió reducir la concentración de cada antimicrobiano a 

500 ppm, con el fin de evaluar su eficacia para destruir ambas biopelículas mediante 

la técnica de recuento en placa. Dada la influencia del pH del medio de tratamiento 

en la eficacia antimicrobiana de los AEs y sus principales CIs (Burt, 2014; Ait-

Ouazzou et al., 2011), la eliminación de las biopelículas se ensayó tanto a pH neutro 

(pH 7,0) como a pH ácido (pH 4,0). 

La figura 5 muestra el efecto de la adición de 500 ppm de los antimicrobianos 

durante 60 minutos a una temperatura de 37ºC sobre una biopelícula de L. 

monocytogenes EGD-e y otra de E. coli MG1655, formadas tras 72 horas de 

incubación en una estufa de aire estático a 37ºC. En primer lugar, se determinó que la 

concentración celular inicial en las biopelículas era de: 10
7 

UFC/pocillo en el caso de 

L. monocytogenes EGD-e y de 10
6 

UFC/pocillo en el caso de E. coli MG1655, 

aproximadamente. A modo de control, se verificó que el tratamiento durante 60 

minutos en ausencia de antimicrobianos, únicamente en presencia del tampón, 

eliminaba entre 1 y 2 ciclos logarítmicos de la población microbiana inicial, 

existiendo diferencias significativas (p <0,05) entre el tampón de pH 4,0 y el de pH 

7,0. Esta reducción en las células viables pudo deberse en gran parte a cierta labilidad



RESULTADOS Y DISCUSIÓN 

  28 

A

0

50
0 

ca
r

50
0 

ci
t

25
0 

ci
t/ 

25
0 

ca
r

0

1

2

3

4

5

6

7

8

L
o

g
1

0
 N

t

B

0

50
0 

ca
r

50
0 

ci
t

25
0 

ci
t/ 

25
0 

ca
r

0

1

2

3

4

5

6

7

8

L
o

g
1

0
 N

t

 de las biopelículas y al “efecto lavado” (o de arrastre). A pesar de eliminar gran parte 

de la biopelícula inicial, esta seguía estando constituida por células viables que son 

fuente de posible contaminación desde un punto de vista práctico, por lo que seguía 

siendo igualmente importante lograr un método efectivo que permitiera lograr el 

mayor grado de destrucción posible. 

 

 

 

 

 

 

 

 

Figura 5. Recuentos microbianos (UFC/pocillo) de las biopelículas de Listeria monocytogenes EGD-e (A) 

y Escherichia coli MG1655 (B) tras incubación a 37°C durante 60 min en McIlvaine pH 4,0 (barras 

rayadas) o pH 7,0 (barras grises) en ausencia de antimicrobianos (0), y en presencia de 500 ppm de 

carvacrol (500 car), 500 ppm de citral (500 cit) y  de 250 ppm de carvacrol y 250 ppm de citral, 

aplicados simultáneamente (250 cit/250 car). La barra negra indica el recuento previo al tratamiento. 

Se muestra la media y la desviación estándar (barras de error) de tres réplicas independientes. La línea 

de puntos indica el límite de detección de la técnica de recuento utilizada. 

 

En el caso de L. monocytogenes EGD-e, la aplicación de 500 ppm de carvacrol 

permitió reducir la población viable de la biopelícula en 1,5 ciclos logarítmicos (a pH 

4,0) o 1 ciclo logarítmico (a pH 7,0) en comparación con el tratamiento en los 

tampones de respectivos pHs sin antimicrobiano (Figura 5A). Por otro lado, el 

tratamiento con citral con una concentración de 500 ppm permitió reducir la población 

de la biopelícula inicial de L. monocytogenes en aproximadamente 1 ciclo logarítmico 

(a pH 4,0) o medio ciclo logarítmico (a pH 7,0) en comparación con el tampón sin 

antimicrobiano. De este modo, en todos los casos se alcanzó una reducción de más de 

2 ciclos logarítmicos con respecto a la biopelícula inicial. 
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En el caso de E. coli MG1655, el antimicrobiano más efectivo en este estudio 

también fue el carvacrol, logrando reducir la población viable de las biopelículas en 2 

ciclos logarítmicos (a pH 4,0) o 1,5 ciclos logarítmicos (a pH 7,0) en comparación con 

cada tampón sin antimicrobiano. El tratamiento con una concentración de 500 ppm de 

citral redujo 2 ciclos logarítmicos de la población a pH 4,0 y alrededor de medio ciclo 

logarítmico a pH 7,0. La mayor eficacia del carvacrol respecto al citral en ambas 

especies microbianas coincide con resultados anteriores obtenidos en células 

planctónicas expuestas a 200 ppm de uno u otro CI durante 10 minutos (Ait-Ouazzou 

et al., 2013). 

Respecto a la influencia del pH, se observó que en ambos microorganismos y 

para ambos CIs la proporción de células inactivadas de las biopelículas fue mayor 

cuando el antimicrobiano se encontraba en un medio de tratamiento ácido que cuando 

estaba en un medio neutro. Además, al comparar la reducción de la población viable 

respecto a la biopelícula inicial, en el caso de E. coli MG1655 la acción de 500 ppm de 

carvacrol fue significativamente mayor a pH ácido en comparación con la obtenida a 

pH neutro (p <0,05). Teniendo en cuenta la reducida concentración que se añadió de 

cada antimicrobiano, esta ligera mayor eficacia a pH ácido parece constatar la 

consideración previa de que el pH  del medio de tratamiento es un factor  decisivo 

sobre la eficacia de los antimicrobianos en la destrucción de biopelículas bacterianas 

(Saá., 2011; Fernández., 2015), aunque serían necesarios experimentos adicionales 

para confirmar esta hipótesis.  

Con el objetivo de evaluar una posible acción sinérgica entre el carvacrol y el 

citral y de este modo potenciar su efecto como antimicrobianos, se disminuyó la 

concentración de cada antimicrobiano (250 ppm) y ambos compuestos se aplicaron 

simultáneamente sobre las biopelículas de L. monocytogenes EGD-e o de E. coli 

MG1655. Como se puede observar en la Figura 5A, se consiguió una mayor reducción 

de la biopelícula de L. monocytogenes, superior a 3 ciclos logarítmicos a pH 4,0, y a 2 

ciclos logarítmicos a pH 7,0, en comparación con la aplicación de los tratamientos con 

500 ppm de los CIs aplicados por separado, señalando la existencia de cierto 

sinergismo entre ambos CIs. En E. coli MG1655 (Figura 5B), a pH 4,0 se consiguió 

una reducción logarítmica con respecto a la biopelícula inicial de 4 ciclos logarítmicos, 

y una reducción de 2,5 ciclos a pH 7,0 con respecto la concentración inicial, 

observándose por tanto en E. coli la existencia de un pequeño efecto sinérgico
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entre ambos compuestos solamente a pH 4,0. En cualquier caso, y en base a la 

experiencia previa del grupo de investigación no se consideró un efecto combinado 

relevante por la aplicación de ambos CIs, ya que se consiguió únicamente un ciclo más 

de inactivación en comparación con los tratamientos por separado. 

Los datos obtenidos a 37ºC muestran que el efecto antimicrobiano de la 

aplicación de 500 ppm de citral y carvacrol es escasa y no permite lograr la completa 

destrucción de las biopelículas de L. monocytogenes EGD-e y E. coli MG1655, por lo 

que se decidió modificar las condiciones de tratamiento, incrementando la temperatura y 

la concentración de los antimicrobianos.  

 

5.1.2 Influencia de la temperatura y la concentración del antimicrobiano en la 

eliminación de biopelículas de L. monocytogenes EGD-e  y E. coli MG1655 

 

Con el fin de potenciar el efecto obtenido con los diferentes antimicrobianos, se 

incrementó la temperatura de tratamiento hasta 45ºC, temperatura no letal para L. 

monocytogenes y E. coli (datos no mostrados), tratando de emular condiciones más 

próximas a las que se puedan aplicar durante, por ejemplo, una etapa de lavado en 

caliente en la industria alimentaria. Al mismo tiempo, y con objeto de determinar el 

efecto de la concentración de los CIs, se evaluó la eficacia antimicrobiana de 500 y 

1000 ppm de citral y carvacrol para cada una de las dos especies bacterianas 

seleccionadas.
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Figura 6. Recuentos microbianos (UFC/pocillo) de las biopelículas de Listeria monocytogenes EGD-e (A) 

y Escherichia coli MG1655 (B) tras su incubación 45°C durante 60 min en McIlvaine pH 4,0 (barras 

rayadas) o pH 7,0 (barras grises) en ausencia de antimicrobianos (0), y en presencia de 500 o 1000 

ppm  de carvacrol (500 car o 1000 car) y 500 o 1000 ppm  de citral (500 cit o 1000 cit). La barra negra 

indica el recuento previo al tratamiento. Se muestra la media y la desviación estándar (barras de error) 

de tres réplicas independientes. La línea de puntos indica el límite de detección de la técnica de 

recuento utilizada. 

 

Como se muestra en la Figura 6A, el tratamiento sobre L. monocytogenes 

durante 60 minutos en ausencia de antimicrobianos, únicamente en presencia del 

tampón a 45ºC y pH 4,0, eliminó más de 2 ciclos logarítmicos de la población 

microbiana inicial, mientras que con el tampón a 45ºC y pH 7,0 se eliminó más de 1 

ciclo logarítmico de la población microbiana inicial. La comparación de estos resultados 

con los obtenidos a 37ºC permite determinar que el efecto de lavado o arrastre a 45ºC 

fue levemente superior. No obstante, a pesar de eliminar gran parte de la biopelícula 

inicial únicamente con el tampón, esta  continuaba estando constituida por células 

viables que podrían ser fuente de contaminación, por lo que seguía siendo necesario 

determinar las condiciones de tratamiento que permitieran maximizar el grado de 

destrucción de las biopelículas. 
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Cuando las biopelículas se trataron con una concentración de 500 ppm de citral 

se observó una reducción logarítmica de 3,5 ciclos con respecto a la concentración 

inicial en ambos pHs. Al aumentar la concentración de citral a 1000 ppm, se observó 

una reducción de 5 ciclos logarítmicos con respecto a la población microbiana inicial. 

Cuando el antimicrobiano empleado en la destrucción de las biopelículas de L. 

monocytogenes fue el carvacrol, a pH 4,0 su aplicación a 500 ppm produjo una 

reducción de 3,5 unidades logarítmicas con respecto a la población microbiana inicial, 

mientras que a pH 7,0 bajo las mismas condiciones se produjo una reducción de 4,5 

unidades logarítmicas de esta población. En este caso se muestra que la inactivación a 

pH neutro es mayor que a pH ácido, pese a que en otros estudios se ha demostrado que 

la destrucción de biopelículas de L. monocytogenes a pHs ácidos se realiza de manera 

más efectiva que a pH neutros (Saá, 2011). Esto puede deberse a que la concentración 

de CI no es lo suficientemente elevada para observar estas diferencias. 

El aumento de la temperatura de 37 a 45ºC provocó una mayor efectividad de los 

CIs para conseguir la destrucción de las biopelículas de L. monocytogenes (Figuras 5A y 

6A). A 37ºC se consigue una máxima reducción de 2 ciclos logarítmicos; en cambio, 

cuando se aumenta la temperatura de tratamiento se produce como mínimo una 

reducción de 3,5 ciclos logarítmicos. 

Cuando se aumentó la concentración de carvacrol hasta 1000 ppm a una 

temperatura de 45ºC, la inactivación a pH ácido fue mayor que a pH neutro, a diferencia 

de lo observado cuando la concentración fue de 500 ppm.  De este modo se consiguió 

reducir 5,5 ciclos logarítmicos con respecto a la población microbiana inicial a pH 4,0 

(1000 ppm carvacrol), frente a los 4,5 ciclos logarítmicos que se logran reducir a pH 

7,0.  

Con respecto a las biopelículas de E. coli, como se observa en la figura 6B, la 

reducción que causa el tratamiento durante 60 minutos sobre E. coli MG1655 en 

ausencia de antimicrobianos, únicamente con el tampón a 45ºC y pH 4,0 es de 2 

unidades logarítmicas. Mientras que la reducción a pH 7,0 es mucho menor, ya que no 

alcanza apenas una reducción logarítmica. En este caso si comparamos los datos con los 

de 37ºC (figura 5B y 6B), se observa que a pH ácido, la inactivación a 45 ºC es 1 ciclo 

logarítmico mayor con respecto a la concentración microbiana inicial. Sin embargo a 

pH básico no se muestran diferencias relevantes entre ambas temperaturas.
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Por otro lado, cuando la biopelícula de E. coli MG1655 fue tratada con una 

concentración de 500 ppm de citral a pH 4,0 a 45ºC, se observó una reducción 

logarítmica de 3 ciclos con respecto a la población microbiana inicial. Del mismo modo, 

cuando las biopelículas fueron tratadas con 500 ppm de citral a pH 7,0 a la misma 

temperatura, se produjo una reducción logarítmica de 2,5 ciclos sobre la población 

microbiana inicial. El presente estudio ha demostrado que cuando el tratamiento se 

realiza con citral, es más efectiva la destrucción de la biopelícula a pH ácido, tal y como 

se había evidenciado en células planctónicas Gram-negativas (Somolinos et al., 2010). 

La comparación de los resultados del tratamiento con 500 ppm de citral sobre la 

biopelícula de E. coli a las diferentes temperaturas evidenció que la eficacia de este CI 

frente a la biopelícula es mucho mayor cuando se lleva a cabo un aumento de la 

temperatura de tratamiento, ya que se consigue 1 ciclo logarítmico adicional de 

reducción de la población inicial. Los datos obtenidos al aplicar una concentración de 

citral de 1000 ppm a 45ºC muestran la práctica destrucción de la biopelícula, ya que se 

obtuvieron reducciones superiores al límite de detección tanto a pH neutro (7,0) como 

ácido (4,0). 

El uso de carvacrol a 500 ppm como antimicrobiano para la destrucción de las 

biopelículas produjo más de 4 unidades logarítmicas de reducción microbiana con 

respecto la concentración inicial a pH 4,0, mientras que a pH 7,0 bajo las mismas 

condiciones se observó una reducción de 3 unidades logarítmicas con respecto a la 

inicial. Estudios previos evidenciaron resultados similares acerca del mayor efecto del 

carvacrol a pHs bajos sobre células planctónicas (Ait-Ouazzou et al., 2011). 

El tratamiento con ambos CIs (500 ppm) a 45ºC fue más efectivo que a 37ºC 

probablemente debido a la menor resistencia de la matriz y la mayor solubilidad de los 

antimicrobianos, de modo que el aumento de la temperatura podría estar ligado a un 

aumento en la sensibilidad microbiana como consecuencia de una mayor fluidez de la 

bicapa lipídica que compone la membrana citoplasmática, y que determina un 

incremento en su la permeabilidad a moléculas pequeñas (Núñez y D’ Aquino, 2012), 

como es el caso de los constituyentes de aceites esenciales empleados en este estudio
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A una concentración de 1000 ppm de carvacrol sobre E. coli, se lograron 

reducciones superiores a los 5 ciclos logarítmicos de la población inicial tanto a pH 

neutro (7,0) como ácido (4,0), al igual que ocurría en el citral. Si esto se compara con 

los datos de carvacrol 500 ppm la destrucción es mucho más efectiva ya que se aumenta 

el doble la concentración del CI. 

 

5.2 Aproximación al estudio de los mecanismos de resistencia de las biopelículas 

de L. monocytogenes EGD-e y E. coli MG1655 respecto a los mecanismos de 

resistencia de células planctónicas  

Una de las características más distintivas de las biopelículas bacterianas es su 

mayor resistencia frente a la acción de sustancias antibióticas en comparación con 

poblaciones bacterianas de células libres planctónicas de similar densidad poblacional 

(Mah y O’Toole, 2001). Aunque cada sustancia antimicrobiana presenta su particular 

mecanismo de inactivación, en general se postulan dos mecanismos diferenciados para 

explicar esta disminución de sensibilidad en las biopelículas. Por una parte, se ha 

sugerido que durante el crecimiento de las biopelículas se induce un fenotipo 

específico en las subpoblaciones de nuevas células bacterianas como consecuencia de 

su entorno particular de crecimiento, caracterizado por un reducido acceso a nutrientes 

y una elevada densidad poblacional. Entre otras características, este fenotipo-

biopelícula presentaría una mayor resistencia a la acción de antimicrobianos (Mah y 

O’Toole, 2001). 

La segunda teoría que se maneja actualmente para explicar la mayor resistencia 

de las biopelículas a la inactivación por antimicrobianos se basa en la reducción o el 

enlentecimiento de la difusión de las sustancias antimicrobianas a través de las 

biopelículas (Mah y O’Toole, 2001). En este caso, la matriz extracelular de EPS 

presente en las biopelículas actuaría como una simple barrera física que impediría el 

acceso de los antimicrobianos a las células bacterianas.  

En una aproximación al esclarecimiento sobre cuál de estas dos hipótesis es 

más probable en el caso de los dos CIs seleccionados, diseñamos un sencillo 

experimento en el cual las células sésiles de las biopelículas fueron mecánicamente 

disgregadas justo antes de someterse al tratamiento con antimicrobianos. De este 
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modo, aunque las células estarían fenotípicamente diferenciadas como células 

pertenecientes a biopelículas, no estarían rodeadas por la matriz extracelular 

protectora, por lo que la influencia de esta matriz sobre la resistencia de las células a 

los CIs podría ser fácilmente evaluada.  

La Figura 7 muestra el efecto de la adición de una concentración de 500 ppm y 

1000 ppm de los 2 antimicrobianos durante 60 minutos a una temperatura de 45ºC 

sobre células sésiles disgregadas de las biopelículas (tras 72 horas de crecimiento) 

formadas por L. monocytogenes EGD-e o por E. coli MG1655. Por tanto, la 

comparación de los resultados de esta Figura con los de la Figura 6 permite la 

evaluación del efecto protector de la matriz extracelular sobre la acción antimicrobiana 

de los CIs. 

 

 

 

 

 

 

 

 

Figura 7. Recuentos (UFC/pocillo) de células sésiles de Listeria monocytogenes EGD-e (A) y Escherichia 

coliMG1655 (B)  tras incubación a 45°C durante 60 min en McIlvaine pH 4,0 (barras rayadas) o pH 7,0 

(barras grises) en ausencia de antimicrobianos (0), y en presencia de 500 o 1000 ppm  de carvacrol (500 

car o 1000 car) y 500 o 1000 ppm  de citral (500 cit o 1000 cit). La barra negra indica el recuento antes 

del tratamiento. Se muestra la media y la desviación estándar (barras de error) de tres réplicas 

independientes. La línea de puntos indica el límite de detección de la técnica de recuento utilizada. 

En primer lugar, se determinó la concentración inicial de células sésiles en la 

biopelícula disgregada: 10
6 

UFC/pocillo en el caso de L. monocytogenes EGD-e y de 

10
5  

UFC/pocillo en el caso de E. coli MG1655. En este apartado, se mostró una 

concentración inicial menor que en el apartado anterior (Figura 6) en ambas especies 
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bacterianas, siendo esta concentración inicial de 1 ciclo logarítmico menos. Esta 

menor concentración celular pudo deberse a que se perdiera parte de la población 

bacteriana en el proceso de disgregación mecánica de las biopelículas. En cualquier 

caso, esta observación no se considera relevante ya que en los tratamientos control sin 

antimicrobianos a ambos pHs se obtuvieron niveles similares (o incluso mayores) de 

recuentos bacterianos a los obtenidos en el tratamiento de biopelículas sin disgregar. 

Como se ha mencionado previamente, la comparación de los resultados 

obtenidos en las figuras 6 y 7 permite concluir en ambas especies bacterianas que la 

disgregación de las biopelículas conllevó una mayor actividad bactericida de los dos CIs 

evaluados a ambos pHs. El incremento en la inactivación al disgregar las células sésiles 

osciló entre 1 ciclo logarítmico de diferencia (en el caso de L. monocytogenes con 500 

ppm de citral a pH 4,0) y más de 3 ciclos de diferencia (en L. monocytogenes con 500 

ppm de carvacrol a pH 4,0 y en E. coli MG1655 con 500 ppm de citral a pH 7,0), 

obteniéndose en casi todos los casos recuentos por debajo del límite de detección.  

 Este incremento en el grado de inactivación de las células sésiles al ser 

disgregadas de forma previa al tratamiento se puede atribuir, por tanto, a la destrucción 

parcial de la matriz extracelular, a la separación de agregados celulares y la consiguiente 

facilitación del acceso de los CIs a las bacterias que formaban parte de las biopelículas. 

Esta acción protectora de la matriz extracelular frente a la acción bactericida del 

carvacrol y el citral apoya, en estos antimicrobianos, la segunda de las hipótesis 

planteadas al comienzo de esta sección.  

No obstante, adicionalmente, en el presente estudio también se aplicaron las 

mismas condiciones de tratamiento sobre células planctónicas (y por tanto no 

diferenciadas fenotípicamente como células-biopelícula) y se comparó su resistencia 

frente a carvacrol y citral con la de las células sésiles disgregadas y las células sésiles 

pertenecientes a biopelículas. Los resultados de estos ensayos preliminares mostraron 

una resistencia de las células planctónicas similar a la de las células sésiles disgregadas 

frente a cada tratamiento, y por tanto una resistencia menor que la mostrada por las 

células sésiles que forman parte de biopelículas (datos no mostrados). Estos resultados 

en conjunto parecerían descartar la primera hipótesis, es decir, el efecto de una 

diferenciación fenotípica específica capaz de incrementar la resistencia de las células 

sésiles frente al carvacrol y al citral. No obstante, para confirmar estos resultados, sería
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necesaria la identificación de genes activados o reprimidos en las células de fenotipo-

biopelícula con respecto a las células planctónicas. 

Desde un punto de vista práctico, la formación de biopelículas supone un gran 

problema en la industria alimentaria debido no solo a su resistencia física sino también a 

su elevada capacidad para sobrevivir frente a tratamientos con desinfectantes, ya sean 

naturales a químicos. En este sentido, el aumento de la eficacia del carvacrol y el citral 

al aumentar la temperatura de tratamiento constituye una importante ventaja a tener en 

cuenta en el diseño de nuevos procedimientos de limpieza y desinfección encaminados a 

sustituir los desinfectantes tradicionales por antimicrobianos presentes en aceites 

esenciales. 
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6. CONCLUISONES 

A continuación se describen las principales conclusiones obtenidas tras la 

realización de este Trabajo de Fin de Máster: 

 

 Al evaluar la inactivación de células de biopelículas maduras de L. 

monocytogenes EGD-e y de E. coli MG1655 a 37ºC durante 60 min, se logró 

reducir la población de células viables en 0,5 – 2 ciclos logarítmicos debido a la 

acción de 500 ppm de carvacrol o citral en tratamientos tamponados a pH 4,0 o 

7,0. En ambos microorganismos y para ambos CIs la proporción de células 

inactivadas de las biopelículas fue ligeramente superior a pH ácido. 

 

 Al aumentar la temperatura de tratamiento a 45°C, se consiguió aumentar la 

eficacia de los tratamientos realizados a 37 ºC en 1,5 – 2 ciclos logarítmicos 

adicionales (en L. monocytogenes EGD-e) o 0,5 – 1,5 ciclos logarítmicos 

adicionales (en E. coli MG1655), observando una potenciación de la capacidad 

del carvacrol y del citral para inactivar células sésiles al aumentar solamente en 

8°C la temperatura de tratamiento. 

 

 En todos los tratamientos aplicados, las biopelículas de L. monocytogenes EGD-e 

fueron más resistentes que las de E. coli MG1655 a la inactivación por CIs. 

 

 En todos los tratamientos aplicados el carvacrol fue más efectivo que el citral, y se 

observó un ligero efecto sinérgico entre ambos compuestos al combinar 250 ppm 

de cada uno de ellos en los tratamientos a 37°C. 

 

 Las células sésiles de las biopelículas presentan una mayor resistencia a la 

inactivación por carvacrol y citral que las células planctónicas debido, al menos 

parcialmente, a la protección física que les confiere la matriz de EPS y la propia 

agregación celular. Esto se deduce de la mayor inactivación obtenida en las 

células sésiles cuando se disgregan justo antes de los tratamientos con CIs, y 

similar a la mostrada por células planctónicas frente a los mismos tratamientos.
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 Tratamientos a 45°C durante 60 min con 500 ppm de carvacrol o citral lograron 

reducir la población de células viables de biopelículas de L. monocytogenes  

EGD-e o E. coli MG1655 en un rango de 3 – 5 ciclos logarítmicos. Además, al 

aumentar la concentración de estos CIs a 1000 ppm, se alcanzaron o superaron los 

5 ciclos de inactivación de las células sésiles de las biopelículas. Estos resultados 

apoyan la posibilidad de utilizar compuestos presentes en aceites esenciales como 

desinfectantes o coadyuvantes con el objetivo de controlar la diseminación de 

células infectantes provenientes de biopelículas en las industrias agroalimentarias. 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BIBLIOGRAFÍA



BIBLIOGRAFÍA 

  41 

 

7. BIBLIOGRAFÍA 

 

 Agencia Española de Consumo, Seguridad Alimentaria y Nutrición 

(AECOSAN) (2010). “Riesgos microbiológicos asociados al consumo de 

determinados alimentos por la población.” 

 Ait-Ouazzou, A., Cherrat, L., Espina, L., Lorán. S., Rota. C., Pagán, R. (2011). 

"The antimicrobial activity of hydrophobic essential oil constituents acting 

alone or in combined processes of food preservation." Innovative Food Science 

and Emerging Technologies 12:320–329. 

 Ait-Ouazzou, A., Espina, L., Gelaw, T. K., Lamo-Castellví, S., Pagán, R., 

García-Gonzalo, D. (2013). “New insights in mechanisms of bacterial 

inactivation by carvacrol.” Journal of applied microbiology 114: 173-185. 

 Augustin, M., Ali-Vehmas, T., Atroshi, F. (2004). "Assessment of enzymatic 

cleaning agents and disinfectants against bacterial biofilms." Journal of 

Pharmaceutical Sciences7:55-64. 

 Branda, S.S., Vik, S., Friedman, L., Kolter, R. (2005). "Biofilms: the matrix 

revisited." Trends in Microbiology 13:20-26. 

 Bremer, P. J., Fillery, S., Mc Quillan, A.J. (2006). "Laboratory scale Clean-In-

Place (CIP) studies on the effectiveness of different caustic and acid wash steps 

on the removal of dairy biofilms." International Journal of Food 

Microbiology106: 254 – 262. 

 Burt, S.A. (2014). "Essential oils: their antibacterial properties and potential 

applications in foods. A review." International Journal of Food Microbiology94: 

223–253. 

 Davey, M. E., O´Toole, G. A. (2000). “Microbial biofilms: from ecology to 

molecular genetics.” Microbiology and Molecular Biology Reviews64(4): 847-

867.



BIBLIOGRAFÍA 

  42 

 Donlan, R. M. (2002). "Biofilms: Microbial Life on Surfaces.” 

EmergingInfectiousDiseases8(9):881-890. 

 Edstrom (2003). "The key to understanding and controlling bacterial growth in 

automated drinking water systems." SecondEditionby Paula H.Dreeszen. 

 FAO (2003). "Garantía de la inocuidad y calidad de los alimentos: directrices 

para el fortalecimiento de los sistemas nacionales de control de los alimentos." 

Estudio FAO alimentación y nutrición76. 

 Fernández, A. (2015). "Eliminación de biopelículas microbianas mediante el 

uso de compuestos antimicrobianos de origen natural." Trabajo de Fin de 

Máster, Universidad de Zaragoza. 

 Fuster i Valls, N. (2006). "Importancia del control higiénico de las superficies 

alimentarias mediante técnicas rápidas y tradicionales para evitar y/o minimizar 

las contaminaciones cruzadas." Tesis de la Universidad Autonoma de 

Barcelona. 

 García-Gonzalo, D., Pagán, R. (2015). "Influence of Environmental Factors on 

Bacterial Biofilm Formation in the Food Industry: A Review." Journal of 

Postdoctoral Research3(6):3–13. 

 Kadam, S. R., den Besten, H.M., van der Veen, S., Zwietering, M.H, 

Moezelaar, R., Abee, T. (2013). “Diversity assessment of Listeria 

monocytogenes biofilm formation: impact of growth condition, serotype and 

strain origin.” International Journal of Food Microbiology165(3): 259-264. 

 Kuda, T., Yano, T., Kuda, M.T. (2008). "Resistances to benzalkonium chloride 

of bacteria dried with food elements on stainless steel surface." LWT41:988–

993. 

 Lasa, I. (2004). "Biofilms bacterianos." Actualidad: SEM37:14-18. 

 Lasa, I., Pozo, J.L., Penadés, J.R., Leiva, J. (2005). "Biofilms bacterianos e 

infección." Anales del sistema sanitario de navarra28(2):163-175.



BIBLIOGRAFÍA 

  43 

 López, D., Vlamakis, H., Kolter, R. (2010).” Biofilms”. Cold Spring Harbor 

perspectives in biology 2(7). 

 Mackey, B.M., (2000). Injured bacteria. In: Lund, B.M., Baird-Parker, T.C., 

Gould, G.W. (Eds.), “The Microbiological Safety and Quality of Food.”Aspen 

Publisher, Inc., Gaithersburg 315–341. 

 Mah, T.F.C., O'Toole, G.A., (2001). “Mechanisms of biofilm resistance to 

antimicrobial agents.” Trends in microbiology9: 34-39. 

 Martínez, A., Ferrer, C., Piña, M.C. (2005). “Tecnologías emergentes e 

inocuidad alimentaria.” Revista de Tecnología e Higiene de los Alimentos364: 

37-41. 

 Michanie, S. (2004). “Listeria monocytogenes: La bacteria emergente de los 

80.” Ganados & Carne. Buenos Aires, Argentina 1-8. 

 Nazar, J. (2007). “Biofilms bacterianos.” Revista de otorrinolaringología y 

cirugía de cabeza y cuello 67(1): 161-172. 

 Nilsson, R. E., Ross, T., Bowman, J. P. (2011). “Variability in biofilm 

production by Listeria monocytogenes correlated to strain origin and growth 

conditions.” International Journal of  Food Microbiology 49-79. 

 Nuñez, L., D’ Aquino, M. (2012). "Microbicide activity of clove essential oil 

(Eugenia caryophyllata)." Brazilian Journal of Microbiology1255-1260. 

 OMS (1999). "La inocuidad de los alimentos en el siglo XXI." Boletín de la 

Organización Mundial de la Salud 77(4):347-351. 

 OMS. (2015). World health day 2015. Food Safety. 

 Ramirez, M. S., Tolmasky, M. E. (2010). “Aminoglycoside modifying 

enzymes.” Drug Resistance Updates 13(6):  151-171. 



BIBLIOGRAFÍA 

  44 

 Saá, P. (2011). "Biofilm formation by Listeria monocytogenes. Resistance to 

industrial biocides and cross‐response caused by adaptation to benzalkonium 

chloride." Tesis doctoral. Doutoreuropeus. Universidad deVigo. 

 Serra, G. P. (2003). "Estudio del Biofilm: Formación y Consecuencias." Escola 

de Prevenció i Seguretat Integral. 

 Somolinos, M., García, D., Condón, S., Mackey, B., Pagán, R. (2010). 

“Inactivation of Escherichia coli by citral.” Journal of Applied Microbiology 

108(6): 1928-1939. 

 Srey, S., Jahid, I.K., Ha, S. (2013). "Biofilm formation in food industries: A 

food safety concern." Food Control31:572-585. 

 Szczepanski, S., Lipski, A. (2014). “Essential oils show specific inhibiting 

effects on bacterial biofilm formation.” Food Control 36(1): 224-229. 

 Villamayor, A. (2015). “Eliminación de biopelículas mediante el uso de 

antimicrobianos naturals.” Trabajo de Fin de Máster, Universidad de Zaragoza.



 

   

 

 

 

 

 

 

 

 

 

 

 

 

 


