000057899 001__ 57899
000057899 005__ 20180117090614.0
000057899 0247_ $$2doi$$a10.1155/2014/793269
000057899 0248_ $$2sideral$$a89454
000057899 037__ $$aART-2014-89454
000057899 041__ $$aeng
000057899 100__ $$aElduque, Daniel
000057899 245__ $$aAnalysis of the Influence of Microcellular Injection Molding on the Environmental Impact of an Industrial Component
000057899 260__ $$c2014
000057899 5060_ $$aAccess copy available to the general public$$fUnrestricted
000057899 5203_ $$aMicrocellular injection molding is a process that offers numerous benefits due to the internal structure generated; thus, many applications are currently being developed in different fields, especially home appliances. In spite of the advantages, when changing the manufacturing process from conventional to microcellular injection molding, it is necessary to analyze its new mechanical properties and the environmental impact of the component. This paper presents a deep study of the environmental behavior of a manufactured component by both conventional and microcellular injection molding. Environmental impact will be evaluated performing a life cycle assessment. Functionality of the component will be also evaluated with samples obtained from manufactured components, to make sure that the mechanical requirements are fulfilled when using microcellular injection molding. For this purpose a special device has been developed to measure the flexural modulus. With a 16% weight reduction, the variation of flexural properties in the microcellular injected components is only 6.8%. Although the energy consumption of the microcellular injection process slightly increases, there is an overall reduction of the environmental burden of 14.9% in ReCiPe and 15% in carbon footprint. Therefore, MuCell technology can be considered as a green manufacturing technology for components working mainly under flexural load.
000057899 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000057899 590__ $$a0.575$$b2014
000057899 591__ $$aENGINEERING, MECHANICAL$$b96 / 128 = 0.75$$c2014$$dQ3$$eT3
000057899 591__ $$aTHERMODYNAMICS$$b44 / 55 = 0.8$$c2014$$dQ4$$eT3
000057899 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000057899 700__ $$aClavería, Isabel
000057899 700__ $$aFernández, Ángel
000057899 700__ $$aJavierre, Carlos
000057899 700__ $$0(orcid)0000-0002-9277-1309$$aPina, Carmelo$$uUniversidad de Zaragoza
000057899 700__ $$aSantolaria, Jorge
000057899 7102_ $$15002$$2305$$aUniversidad de Zaragoza$$bDepartamento de Ingeniería de Diseño y Fabricación$$cExpresión Gráfica de la Ingeniería
000057899 773__ $$g2014 (2014), 793269 [7 pp]$$pAdv. Mech. Eng.$$tAdvances in Mechanical Engineering$$x1687-8132
000057899 8564_ $$s1118440$$uhttp://zaguan.unizar.es/record/57899/files/texto_completo.pdf$$yVersión publicada
000057899 8564_ $$s8227$$uhttp://zaguan.unizar.es/record/57899/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000057899 909CO $$ooai:zaguan.unizar.es:57899$$particulos$$pdriver
000057899 951__ $$a2018-01-17-08:58:45
000057899 980__ $$aARTICLE