000057935 001__ 57935
000057935 005__ 20161219124310.0
000057935 0247_ $$2doi$$a10.1016/j.jmaa.2014.11.033
000057935 0248_ $$2sideral$$a97163
000057935 037__ $$aART-2015-97163
000057935 041__ $$aeng
000057935 100__ $$0(orcid)0000-0003-1256-3671$$aAlonso Gutiérrez, David$$uUniversidad de Zaragoza
000057935 245__ $$aVolume inequalitites for the i-th convolution bodies
000057935 260__ $$c2015
000057935 5060_ $$aAccess copy available to the general public$$fUnrestricted
000057935 5203_ $$aWe obtain a new extension of Rogers–Shephard inequality providing an upper bound for the volume of the sum of two convex bodies K and L. We also give lower bounds for the volume of the k-th limiting convolution body of two convex bodies K and L. Special attention is paid to the (n - 1)-th limiting convolution body, for which a sharp inequality, which is equality only when K = -L is a simplex, is given. Since the n-th limiting convolution body of K and -K is the polar projection body of K, these inequalities can be viewed as an extension of Zhang’s inequality.
000057935 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/MTM2009-10418$$9info:eu-repo/grantAgreement/ES/MICINN/MTM2010-16679
000057935 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000057935 590__ $$a1.014$$b2015
000057935 591__ $$aMATHEMATICS$$b56 / 311 = 0.18$$c2015$$dQ1$$eT1
000057935 591__ $$aMATHEMATICS, APPLIED$$b88 / 254 = 0.346$$c2015$$dQ2$$eT2
000057935 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/submittedVersion
000057935 700__ $$aGonzález, Bernardo
000057935 700__ $$aJiménez, Carlos Hugo
000057935 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDepartamento de Matemáticas$$cAnálisis Matemático
000057935 773__ $$g424 (2015), 385-401$$pJ. math. anal. appl.$$tJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS$$x0022-247X
000057935 8564_ $$s211107$$uhttp://zaguan.unizar.es/record/57935/files/texto_completo.pdf$$yPreprint
000057935 8564_ $$s62332$$uhttp://zaguan.unizar.es/record/57935/files/texto_completo.jpg?subformat=icon$$xicon$$yPreprint
000057935 909CO $$ooai:zaguan.unizar.es:57935$$particulos$$pdriver
000057935 951__ $$a2016-12-19-10:09:34
000057935 980__ $$aARTICLE