Resumen: Let X 1 , . . . , X N be independent random vectors uniformly distributed on an isotropic convex body K ¿ Rn , and let KN be the symmetric convex hull of Xi’s. We show that with high probability LKN = C log(2N/n), where C is an absolute constant. This result closes the gap in known estimates in the range Cn = N = n1+d. Furthermore, we extend our estimates to the symmetric convex hulls of vectors y1 X1, . . . , yN X N , where y = (y1, . . . , yN ) is a vector in RN . Finally, we discuss the case of a random vector y. Idioma: Inglés DOI: 10.1007/s12220-015-9567-9 Año: 2016 Publicado en: JOURNAL OF GEOMETRIC ANALYSIS 26 (2016), 645-662 ISSN: 1050-6926 Factor impacto JCR: 0.87 (2016) Categ. JCR: MATHEMATICS rank: 81 / 310 = 0.261 (2016) - Q2 - T1 Factor impacto SCIMAGO: 1.647 - Geometry and Topology (Q1)