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Prólogo

El Trabajo de Fin de Grado presentado a continuación lleva el título de “Ecuaciones para el Movi-
miento Orbital de Tipo Hiperbólico". Este trabajo surgió del interés que despertaron en mí la Mecánica
Celeste y la Astrodinámica después de haber cursado la asignatura optativa Mecánica Celeste, impartida
por el profesor Luís Floría Gimeno, que ha dirigido este TFG.

Esta Memoria contiene algunas de las ecuaciones que permiten abordar el estudio de órbitas elíp-
ticas e hiperbólicas perturbadas. Se ha procedido a realizar la deducción en el caso hiperbólico de las
variables de Delaunay, así como de las ecuaciones planetarias en la forma de Lagrange y en la de Gauss.
Dicha deducción, ha sido laboriosa en cuanto a la realización de los cálculos y su posterior organización
para encontrarles acomodo en esta Memoria. Con la intención de poner en contexto estas ecuaciones, se
ha procedido a hacer una descripción verbal detallada de algunos conceptos básicos de Mecánica Celeste
y Astrodinámica. Además, se ha introducido en un Apéndice algunos de los contenidos de este Capítulo.

Para la documentación de este Trabajo, me he basado fundamentalmente en el libro de Abad [1] y
el artículo de Floría [13], entre otros que se detallan en la Bibliografía.

Me gustaría, por último, dar las gracias a mi director por su excelente orientación y por su capaci-
dad para transmitir conocimientos de Mecánica Analítica y Celeste que han resultado necesarios para la
elaboración de esta memoria, así como, por su paciencia y entrega.

Espero que disfruten de la lectura.

Edurne Navascués
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Resumen

Once fixed an inertial reference frame in space, the motion of a mechanical system consisting of
two bodies (idealized as material particles or point masses), moving in space under the effects of their
mutual interactions (internal forces satisfying Newton’s Third Law of Motion) is described by a set of
two second–order ordinary differential equations for the position vectors as the unknown functions. The
total differential order of this system is 12.

An appropriate coordinate transformation allows the original problem to be converted into two de-
coupled (say, independent) one–body problems, governed by their respective, independent equations of
motion:

centre–of–mass–motion problem, a sixth-order differential problem immediately solvable, the
solution being a uniform rectilinear motion of the centre of mass with respect to the inertial
reference frame previously chosen;

relative–motion problem, another sixth–order differential problem which is brought into the form
of a central–force-motion problem; this problem possesses the first integral of the angular mo-
mentum vector and, for this reason, its differential order can be reduced from order six to order
three. Accordingly, the plane of motion (or orbital plane) is a fixed, invariant plane, to which the
motion is confined.

If the central force field in the relative motion problem is conservative, that vector field admits a scalar
field as its scalar potential function (or potential energy), and the systems possesses the scalar first
integral of the mechanical energy, which allows the differential order of the problem to be reduced from
order three to order two. Then, at least from a purely theoretical and formal point of view, the resulting
system can be completely solved by two quadratures, which also introduce the two arbitrary constants
already required to have the general solution of the problem available.

In the special case in which the mutual interactions between the two bodies of the mechanical system
obey the well—known Universal Gravitational Law established by Newton, the original problem is
called the gravitational two–body problem, and the corresponding problem of relative motion is named
the Kepler problem, and is a special instance of problem of motion under the effect of a conservative
central force field.

The Kepler problem can be solved analytically in different ways: by two quadratures (as already
pointed out above), by means of the so–called Binet’s method, or with the help of a new first integral,
of a vector nature, known as the Laplace–Runge–Lenz–Hamilton integral, or integral of the eccentricity
vector.

This new first integral contributes three new scalar constants of motion, but only one of them is
functionally independent of the four scalar constants of motion already mentioned (say, the three com-
ponents of the angular momentum vector and the energy constant). To sum up: there are five functionally
independent first integrals for a differential problem of order 6, and so the complete solution can be ob-
tained by quadrature.

Irrespective of the approach that one might take, the solution to the Kepler problem is a conic–
section orbit (with the centre of the force field coinciding with the principal focus) which is fixed in space
and can be completely characterized by means of a set of six independent constants; and five amongst
these six constants can be expressed as functions of the above first integrals. In Celestial Mechanics and
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VI Capítulo 0. Resumen

Astrodynamics the constants involved in the solution to the Kepler problem are usually called orbital
elements, elements of the orbit, orbital parameters or parameters of the orbit. Accordingly, a complete
solution to the Kepler problem can be expressed in terms of orbital elements.

For a given Keplerian system, any set of six functionally independent constants related to the ge-
neral solution can be adopted as a set of orbital element. But astronomers have traditionally given their
preference to certain constants that have a useful geometrical and physical interpretation.

In this respect, the shape (or kind) of the orbit is specified by its eccentricity e . Its size (geometric
dimensions) is determined by one amongst the different metric elements of the conic–sections, such as:
semi–major axis a (for ellipses), semi–transverse axis a (for hyperbolas), distance q of the pericentre
(say, distance of the point of closest approach to the focus occupied by the centre of attraction; this
point is also called the periastron, or the periapsis) for any non–degenerate conic–section, distance Q
of the apocentre (i. e., distance of the furthest point in an ellipse to its centre of attraction; this point is
also known as the apoastron, or the apoapsis) for ellipses, semi–latus rectum (or parameter) p for any
non–degenerate conic–section. Its orientation in space is specified by three angles defined with respect
to a space–fixed coordinate system M x1 x2 x3 : the right ascension Ω of the ascending node of the orbit
on the fundamental reference plane x1 x2 , and the inclination i of the orbital plane to the fundamental
plane x1 x2 account for the spatial orientation of the plane of motion; and the argument ω of pericentre,
reckoned in the orbital plane from the ascending node, gives the orientation of the conic–section within
the orbital plane, since it defines the direction of the straight line joining the principal focus and the
pericentre. All these elements can be expressed in terms of the aforementioned first integrals.

Once the pericentre has been determined, the position of the moving particle in the orbit relative
to the pericentre can be located by means of certain angle–type parameters called “anomalies” (the
classical anomaly angles in Keplerian motion are the true anomaly, the eccentric anomaly, and the
mean anomaly). The concepts of the true and the mean anomaly are defined for any non–degenerate
conic sections; as for the eccentric anomaly, it has different definitions and geometrical interpretations,
depending on the type of conic–section.

The true anomaly and the eccentric anomaly allow the position of the moving particle within its
orbit to be specified geometrically, but it is still necessary to specify this position in time. This can be
accomplished thanks to the time (or epoch) of pericentre passage, denoted with symbols such as t p , T
or τ , a quantity which is also related to the mean anomaly (and, consequently, to the other anomalies).
The mean anomaly varies linearly with time, whereas the time rate of change of the other anomalies is,
in general, non–linear and complicated.

Consequently, and after excluding rectilinear orbits (for which the angular momentum vanishes), a
Keplerian motion takes place along a solution to the Kepler problem, that is, a non–degenerate Keplerian
conic–section which is completely determined by a set of six orbital elements that, as a general rule, can
be taken as the constants

(a , or p , or q , or Q ; e ; i ; Ω ; ω ; T ) ,

although, in certain cases, replacing one or several quantities amongst these elements with other ones
(better adapted to certain peculiar features of motion, or more suitable for reckoning work) might turn
out to be quite advisable.

For unperturbed Keplerian motion, the preceding quantities are constants, and only the anomalies
are considered to be time–dependent. Due to the effects of other forces which perturb the motion, the
actual orbit departs from the ideal Keplerian solution; the disturbing forces produce variations, or chan-
ges (the so–called “orbital perturbations”) in the parameters characterizing the orbit, and the equations
of perturbed motion can be reformulated under the form of an equivalent system of six first–order diffe-
rential equations describing how the orbital elements at hand change under the effects of the perturbing
forces.

Such equations are usually known as planetary equations or equations of planetary motion, since
they were originally established within the framework of investigations concerning motion of planets
around the Sun, when their mutual gravitational perturbations were also included in the force model.
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These equations are found in the literature under two main forms, due to Lagrange (when the perturbing
forces derive from a potential) and Gauss (when the disturbing forces do not admit any scalar poten-
tial), and were proposed for PERTURBED ELLIPTIC MOTION. In either case, the derivation of planetary
equations requires a considerable amount of reckoning work.

Solving these equations would yield expression for the varying “constants” occurring in the Keple-
rian orbit subject to perturbations; then, introducing such expressions so as to replace the corresponding
constants occurring in the Keplerian reference solution would lead to the solution to the perturbed Ke-
plerian system in question.

Accordingly, the “true” orbit is represented in two parts: an auxiliary, reference orbit (provided by
the unperturbed problem), and perturbations superimposed upon the reference orbit.

In the present Memoir, Lagrange and Gauss systems of perturbation equations are derived for the
case of hyperbolic orbital motion.

The set of planetary equations in the Lagrange form, obtained with the help of the hyperbolic Delau-
nay variables, is constructed following the approach taken by Abad [1, Chapter 12, §12.2, p. 192–195],
Kovalevsky [20, Chapter III, §32, p. 40–42], and Vinti [28, Chapter 9, p. 109–114]. More specifically,
notations and style of presentation are borrowed from Abad.

As for the equations for the variations of the elements in the Gauss form, we adhere to the elegant
and conceptually rigorous treatment of Abad [1, Chapter 12, §12.3, p. 195–197] for the decomposition
of the perturbing forces and position vector in the orbital (or Gaussian) reference frame.

The Memoir is organized into three chapters and two appendices.
Chapter 1 is devoted to an introduction to the subject and a general review of some ideas pertaining

to CelestialMechanics and Astrodynamics. After a review of the two–body problem with internal forces,
the gravitational two–body problem and the Kepler problem, and the corresponding solution process
are described in detail. The basic ideas underlying the Method of Variation of Arbitrary Constants are
presented, and its application to perturbed Keplerian systems is considered. The contents are presented
in words, avoiding mathematical notations and formulae. Some contents in this Chapter are presented
in mathematical formulation in other parts of the Memoir.

The contents presented in Chapter 2 are intended to provide the reader with a basic general unders-
tanding of some concepts and results that are applied and/or modified in Chapter 3.

Chapter 3 deals with the derivation of the Lagrange and Gauss systems of differential equations
governing the time rates of change of hyperbolic orbital elements due to the acting disturbing forces. As
a preliminary step, a canonical set of Delaunay variables that are applicable to hyperbolic–tipe orbits is
derived according to Floría [13].

Some notions related to foundations of Physics and Mechanics are reviewed in Appendix A.
Finally, Appendix B collects some general background and mathematical expressions concerning

the two–body problem, in its most general form and in the gravitational case.





Capítulo 1

Introducción

En este Capítulo, y con la intención de poner en contexto el trabajo que se presenta en esta Memoria,
se ofrece una detallada descripción verbal, evitando en lo posible el uso de notación matemática y de
fórmulas, de algunas cuestiones de Mecánica Celeste y Astrodinámica: el problema de dos cuerpos (en
general) y el caso gravitatorio (en particular), el movimiento kepleriano puro y los sistemas keplerianos
perturbados, su tratamiento por medio del Método de Variación de las Constantes Arbitrarias y las
ecuaciones de las perturbaciones de los elementos orbitales en las formas de Lagrange y de Gauss,
consideraciones sobre el movimiento a lo largo de órbitas de tipo hiperbólico, etc.

Algunos de los contenidos de este Capítulo aparecen posteriormente presentados matemáticamente
en los otros capítulos y en el Apéndice (B).

La mayor parte de las ideas recogidas en este Capítulo pueden encontrarse en muchos libros de Fí-
sica General, Mecánica Clásica, Mecánica Celeste y Astrodinámica. Mencionaremos aquí algunos con
los que hemos trabajado durante la elaboración de esta Memoria: Abad [1, Parte I, Capítulo 1, §1.2,
pág. 4; Parte II, Capítulos 6–9, pág. 95–162; Parte III, Capítulo 12, §12.1–§12.3, pág. 191–197]; Arya
[3, Capítulo 7, pág. 220–269]; Battin [4, Capítulo 3, pág. 107–140; Capítulo 4, pág. 141–190; Capítulo
10, pág. 471–514]; Boccaletti y Pucacco [5, Capítulo 2, §2.1, pág. 126–136; §2.4, pág. 147–156; §2.5,
pág. 156–162]; Bond y Allman [6, Capítulos 2–4, pág. 12–57; Apéndices A–C, pág. 217–232; Apéndice
F, pág. 239–242]; Cid y Camarena [8, Capítulo II, §1–§6, pág. 41–49; Capítulo V, §6–§8, pág. 123–
128]; Goldstein [15, Capítulo 1, §1.1, pág. 1–5; Capítulo 3, §3.1– S 3.9, pág. 70–105]; Meirovitch [21,
Capítulo 1, pág. 1–44; Capítulo11, §11.1, pág. 408–413; §11.9–11.10, pág. 442–450]; Scheck [24, Ca-
pítulo 1, §1.1–§1.7, pág. 1–20; §1.15, pág. 29–31; §1.22, pág. 42–44; §1.24, pág. 47–54; Apéndice del
Capítulo 1, pág. 81–86].

♣ El objetivo de este Trabajo es presentar la modificación y adaptación al movimiento orbital
hiperbólico de la deducción de las ecuaciones del movimiento planetario de Lagrange y de Gauss que
Abad ofrece en [1, Capítulo 12, §12.2 y §12.3].

1.1. El problema de dos cuerpos con fuerzas internas

Fijado en el espacio tridimensional un sistema de referencia inercial (véase Anexo I), el estudio del
movimiento de un sistema de dos cuerpos (idealizados como partículas materiales o masas puntuales)
únicamente sometidos a las fuerzas debidas a sus interacciones mutuas (es decir, bajo fuerzas internas
del sistema, que verifican la Tercera Ley de Newton de la Dinámica, o Principio de Acción y Reacción),
y por lo tanto en ausencia de cualquier influencia de otros cuerpos o de otras partes el Universo, se for-
mula matemáticamente por medio de un sistema de dos ecuaciones diferenciales ordinarias de segundo
orden, de carácter vectorial, para dos funciones incógnita vectoriales (los vectores de posición de dichas
partículas respecto del sistema de referencia elegido). En general se trata de un sistema de ecuaciones no
lineales y acopladas (que, además, pueden presentar singularidades), por lo que su resolución analítica
puede ser difícil o, incluso, imposible.

1



2 Capítulo 1. Introducción

Su solución general depende de dos constantes vectoriales arbitrarias, para cuya determinación pue-
de suplementarse el sistema diferencial con condiciones iniciales y/o de contorno.

Descomponiendo los vectores en sus componentes escalares, dichas ecuaciones diferenciales vec-
toriales son equivalentes a un sistema de seis ecuaciones diferenciales ordinarias escalares de segundo
orden para las componentes de los vectores de posición de las partículas como funciones incógnita, por
lo que en definitiva se trata de un problema diferencial de orden 12, y su solución general dependerá de
cuatro constantes vectoriales arbitrarias, o de doce constantes escalares arbitrarias.

Efectuando un cambio de variables dependientes, el sistema diferencial de partida se convierte en un
sistema equivalente de dos ecuaciones diferenciales vectoriales desacopladas (es decir, independientes,
pues cada ecuación sólo involucra a una de las nuevas funciones vectoriales incógnita y a sus derivadas):
una de las ecuaciones describirá el movimiento del centro de masas de las dos partículas, mientras que
la otra gobernará el movimiento relativo de una partícula respecto de la otra. Así el problema diferencial
de partida, que gobernaba el movimiento de dos cuerpos puntuales bajo fuerzas internas y era de orden
doce, se descompone en dos subproblemas independientes de orden seis para las nuevas funciones
incógnita, o –lo que es lo mismo– dos problemas desacoplados, equivalente cada uno a un problema de
un solo cuerpo.

Debido al carácter de fuerzas internas que se considera en este problema, la ecuación diferencial
del movimiento del centro de masas corresponde al movimiento 1 libre (es decir, en ausencia de
fuerzas) de una partícula auxiliar de masa igual a la masa total del sistema de dos partículas (o
sea, la suma de las masas de las mismas), situada en cada instante en la posición del centro de
masas de las dos partículas originales. En virtud de la Primera Ley de Newton de la Dinámica,
o Principio de Inercia, y dependiendo de las condiciones iniciales, dicha partícula ficticia (y, por
lo tanto, el centro de masas del sistema) permanece en reposo (relativo al origen del sistema de
referencia considerado) o se desplaza en el espacio con un movimiento rectilíneo y uniforme.

Por lo tanto, el problema del movimiento del centro de masas está completamente resuelto, y
su resolución introduce seis constantes escalares arbitrarias funcionalmente independientes (las
“integrales primeras del centro de masas” del sistema). En consecuencia, el orden diferencial del
problema de partida se reduce de orden 12 a orden 6.

A continuación se estudia el segundo subproblema: el movimiento relativo de una partícula res-
pecto de la otra; en virtud del cambio de variables dependientes efectuado, este problema se
reformula como el estudio del movimiento 2 de otra partícula ficticia, cuya masa se llama masa
reducida 3 del sistema de dos partículas de partida.

Como por hipótesis las partículas originales sólo están sometidas a fuerzas que satisfacen la Ley
de Acción y Reacción, en el sistema diferencial transformado la ecuación del movimiento relativo
caracteriza el movimiento de una masa puntual (de valor igual a la masa reducida) bajo la acción
de una fuerza central 4, por lo que dicha ecuación diferencial vectorial de segundo orden posee
la integral primera (vectorial) del momento angular de la partícula. Como consecuencia de esta
conservación del momento angular, el movimiento relativo transcurre siempre en un mismo plano;
se tratará de un plano fijo que admite al vector constante “momento angular” como un vector
normal o vector característico, y el estudio del movimiento relativo puede reducirse al estudio del
movimiento de una partícula (bajo el efecto de una fuerza central) en dicho plano.

Más aún, gracias a las tres integrales primeras escalares funcionalmente independientes aportadas
por las tres componentes escalares constantes del vector momento angular, el problema diferencial

1Léase “movimiento respecto de la referencia inercial previamente elegida”.
2Léase “movimiento respecto de un sistema de referencia con origen en una de las partículas del sistema original y ejes

paralelos en cada instante a los ejes del sistema de referencia inercial anteriormente elegido al principio”.
3 Cociente entre el producto y la suma de las masas de las dos partículas del sistema mecánico original.
4 La recta soporte del vector “fuerza” pasa en todo instante por un punto, llamado centro de fuerzas. En este caso concreto,

la fuerza es colineal con el vector de posición; expresado con más precisión, la fuerza lleva en cada instante la misma dirección
que el vector de la posición relativa de una de las partículas del sistema respecto de la otra.
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correspondiente al estudio del movimiento relativo puede reducirse de orden 6 a orden 3.

Otra consecuencia de la conservación del momento angular en el caso del movimiento en campos
de fuerzas centrales es la LEY DE LA ÁREAS, generalización del resultado originalmente estable-
cido por Kepler para el movimiento de los planetas en el seno del Sistema Solar bajo la forma de
la SEGUNDA LEY DE KEPLER (“el radio vector barre áreas iguales en tiempos iguales”, “las
áreas barridas por el vector de posición son proporcionales a los tiempos empleados para ha-
cerlo”, o cualquier enunciado equivalente), pero cuya validez puede justificarse para cualquier
fuerza central. Por este motivo, en muchas ocasiones se habla de la integral primera del momento
angular como de LA INTEGRAL DE LAS AREAS o LA CONSTANTE DE LAS ÁREAS.

Si además el campo de fuerzas central que gobierna el movimiento relativo es conservativo, la
fuerza puede expresarse mediante el gradiente de un campo escalar (llamado potencial, función
potencial o energía potencial), la ecuación diferencial del movimiento relativo posee la integral
(escalar) de la energía, el problema del movimiento relativo puede reducirse de orden 3 a orden
2, y dicho problema puede resolverse completamente (al menos, formalmente) por medio de dos
cuadraturas (es decir, por cálculo de primitivas), lo cual introduce las dos constantes arbitrarias de
integración que -junto con las tres constantes del momento angular y la constante de la energía–
completan el número de seis constantes independientes que requiere la solución general de un
problema diferencial de orden 6.

♣ Incluso cuando el campo central anterior no es conservativo, siempre que sea posible resolver los
dos problemas del movimiento del centro de masas y del movimiento relativo, y una vez obtenidas sus
soluciones, invirtiendo el cambio de variables dependientes y usando las soluciones de ambos subpro-
blemas sería posible (al menos formalmente) resolver el problema del movimiento de cada partícula del
sistema original respecto del sistema de referencia elegido al principio.

1.2. El problema gravitatorio de dos cuerpos y el problema de Kepler

♠ En el caso de que las fuerzas con las que interactúan las dos partículas son las de su mutua
atracción gravitatoria según la Ley de Gravitación Universal de Newton, y en ausencia de cualquier
otra fuerza, lo que da lugar al problema gravitatorio de dos cuerpos (o problema newtoniano de dos
cuerpos), el problema de un cuerpo correspondiente al movimiento relativo se denomina problema de
Kepler (al que se asocian conceptos y locuciones como sistema kepleriano, o movimiento kepleriano),
y puede tratarse como un problema de movimiento de una masa puntual en un campo de fuerzas central
conservativo. Además, se puede resolver analíticamente el problema del movimiento relativo por medio
de funciones circulares, pues –entre otros métodos de resolución– es posible efectuar explícitamente
las cuadraturas necesarias para obtener la solución general del problema del movimiento relativo en
términos de funciones trigonométricas, y se concluye que las curvas solución del problema de Kepler son
cónicas fijas en el espacio con el centro de fuerzas 5 coincidente con un foco (resultado que constituye
una generalización del enunciado original de la PRIMERA LEY DE KEPLER del movimiento planetario
tal y como fue formulada por el propio Kepler).

Aunque el problema pueda considerarse formalmente resuelto, en la práctica, el problema de Kepler
no puede resolverse de manera elemental en forma cerrada por medio de funciones explícitas del tiempo,
ya que para órbitas elípticas e hiperbólicas la relación entre el tiempo y la posición se establece a
través de expresiones trascendentes (la ecuación de Kepler correspondiente a cada tipo de órbita) que
no pueden invertirse de forma explícita por métodos elementales ni permiten encontrar en términos
finitos soluciones en forma cerrada por medio de funciones del tiempo explícitas y conocidas; para
órbitas parabólicas la relación entre el tiempo y la posición depende de una relación (la ecuación de

5Recuérdese que, para el estudio general del movimiento relativo, una de las partículas del sistema de partida ha servido
como origen de coordenadas y ha actuado como centro de fuerzas del campo de fuerzas central; en el contexto del problema
gravitatorio de dos cuerpos, esa misma partícula será además un foco de las órbitas solución del problema de Kepler.
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Barker) que puede transformase en una ecuación algebraica (de hecho, en una ecuación polinómica de
tercer grado, una cúbica) que es resoluble por radicales.

Por otra parte, la ecuación diferencial vectorial de segundo orden del problema de Kepler admite
una nueva integral primera (distinta de la integral del momento angular y de la de la energía), de ca-
rácter vectorial, llamada integral del vector de Laplace–Runge–Lenz–Hamilton o vector excentricidad.
Esta constante del movimiento aporta información con un significado geométrico y físico fácilmente
interpretable y muy útil para tratamiento matemático del problema de Kepler, y a partir de su expresión
se obtiene fácilmente (y sin recurrir a la conservación de la energía) una ecuación paramétrica de las
curvas solución del problema de Kepler (las órbitas keplerianas son cónicas con un foco ocupado por el
centro de fuerzas, y cuya excentricidad numérica está relacionada con la norma de este vector).

Se observa, además, que la variable independiente (el tiempo) no figura explícitamente en la forma
funcional de ninguna de las expresiones de estas siete constantes del movimiento, por lo que sólo con
ellas no basta para la descripción completa de las soluciones del problema: no es posible utilizar dichas
expresiones para relacionar ninguna de las variables de posición y velocidad con la variable indepen-
diente (en este caso, el parámetro temporal “tiempo”).

Así que para un sistema kepleriano se dispone de dos integrales primeras vectoriales (momento
angular y vector de Laplace) y una integral primera escalar. Separando las constantes vectoriales en
sus componentes, son siete integrales primeras escalares para un problema de orden seis, por lo que
no todas ellas pueden ser funcionalmente independientes entre sí: deberá existir al menos una relación
funcional entre ellas. En realidad existen entre estas siete integrales primeras dos relaciones, por lo que
sólo cinco de entre las siete son funcionalmente independientes.

En suma, para el problema de Kepler (formulado por un sistema diferencial de orden 6) las integrales
del momento angular, del vector de Laplace y de la energía sólo aportan cinco constantes (escalares)
del movimiento funcionalmente independientes; esto permite reducir el orden del problema de orden 6
hasta orden 1, por lo que la resolución completa del problema de partida se reduce a una cuadratura,
mediante la cual se establece la relación entre el tiempo y la posición a lo largo de la órbita en cada
instante y se introduce la sexta y última constante (funcionalmente independiente de las anteriores,
pues ahora la variable independiente “tiempo” sí que interviene explícitamente en la fórmula obtenida)
imprescindible para obtener la solución general de la ecuación (o sistema) diferencial que gobierna el
movimiento kepleriano, y de este modo poder considerar –al menos desde un punto de vista puramente
formal y teórico– completamente resuelto el problema de Kepler.

1.3. Elementos orbitales de una cónica kepleriana

Los principales conceptos y elementos métricos (o geométricos) de las cónicas solución del proble-
ma de Kepler (excentricidad, semilado recto, semieje mayor y semieje menor en las elipses, semieje real
y semieje imaginario en las hipérbolas, distancia focal) pueden considerarse como elementos dinámicos
de la órbita, una vez que –por medio de las relaciones entre los elementos geométricos notables que se
verifican para cada tipo de cónica– dichos elementos métricos se expresan en función de las constantes
del movimiento del momento angular, de la energía y del vector de Laplace. Por ejemplo, la clasifica-
ción geométrica de las cónicas según el valor de su excentricidad se traduce en su clasificación según
el valor y el signo de la energía de la órbita.

El significado y el papel de cada una de las integrales primeras en relación con la resolución del
problema de Kepler puede resumirse de la siguiente manera:

El vector MOMENTO ANGULAR informa acerca de la orientación (posición) del plano orbital
en el espacio; se trata del plano que pasa por el origen de coordenadas relativas (que, a su vez,
coincide con el centro de atracción y con un foco de la cónica) y admite a dicho vector como un
vector normal; si este vector es nulo, se trata de un movimiento rectilíneo sobre una recta que pasa
por el origen. Además, la norma del momento angular está relacionada con un elemento métrico
bien definido en todo tipo de cónicas no degeneradas: el semilado recto o parámetro.
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La ENERGÍA indica el tipo de cónica; elipse, si la energía es negativa; parábola, si su valor es
cero; hipérbola, cuando toma valores positivos. En los casos de órbitas con energía no nula, esta
cantidad está relacionada con el “TAMAÑO” de la órbita (con el semieje mayor si es una elipse,
o con el semieje real si se trata de una hipérbola).

El VECTOR DE LAPLACE marca la orientación de la cónica en el plano del movimiento: según
el tipo de órbita, como este vector lleva la dirección Foco-Pericentro , informa acerca de
la dirección del eje mayor de la elipse, del eje real (o transverso) de la hipérbola, o del eje de la
parábola. Además, el valor de su norma está relacionado con el valor de la excentricidad de la
cónica (lo cual proporciona otro criterio para la clasificación del tipo de cónica).

La solución general del problema de Kepler depende de seis constantes arbitrarias independientes.
En Mecánica Celeste y Astrodinámica es habitual utilizar las locuciones “elementos orbitales” o “pa-
rámetros orbitales” para referirse a las constantes necesarias para determinar una órbita kepleriana.
Para su uso práctico, se prefiere considerar conjuntos de elementos orbitales que aporten información
fácilmente interpretable acerca de las propiedades y las características de una cónica kepleriana.

Para fijar la orientación en el espacio del plano del movimiento se utilizan el argumento de longi-
tud del nodo ascendente, Ω , y el ángulo i , inclinación del plano orbital.

El tipo de órbita queda determinado por el valor de e , la excentricidsd numérica de la cónica en
cuestión, por lo que este elemento caracteriza la forma de la órbita.

Según el tipo de cónica, el tamaño (o las dimensiones) de la órbita queda determinado por el
semieje mayor, a , de las elipses, por el semieje real (o transverso), a , de las hipérbolas, o por
el semilado recto, p , en las parábolas, aunque también a veces se utiliza el semilado recto o
parámetro para dar cuenta de las dimensiones de la órbita independientemente de su tipo (ya
que p está bien definido en toda cónica no degenerada). En ocasiones, se utiliza la distancia
del periastro (distancia entre el foco ocupado por el centro de fuerzas y el periastro o pericentro
de la órbita), q , concepto que también está bien definido para cualquier cónica no degenerada.
En órbitas elípticas también puede utilizarse la distancia del apoastro (distancia entre el foco
ocupado por el centro de fuerzas y el apoastro o apocentro de la elipse), Q , concepto que sólo
tiene sentido al considerar órbitas acotadas (elipses).

La orientación de la cónica en el plano orbital queda fijada por el argumento del periastro, ω ,
que determina la dirección del eje mayor para las órbitas elípticas, del eje real (o transverso) para
las hiperbólicas, y del eje (único) en el caso de las parábolas.

En suma, la geometrı́a de la órbita queda determinada por los CINCO ELEMENTOS “ESTÁ-
TICOS” (a , o p , o q , o Q ; e ; i ; Ω ; ω ) . Aún hace falta un sexto ELEMENTO “CINEMÁTICO” que
permita localizar a la partícula en su posición concreta en un punto de la órbita. Para eso suele utilizarse
el instante en el que la partícula efectúa su paso por el periastro de su órbita, instante que se repre-
senta t p , T o τ , y se denomina época de paso por el periastro. En órbitas no acotadas (parábolas e
hipérbolas), dicho paso sólo ocurre una vez; para órbitas elípticas, se considera el valor de este elemen-
to “módulo el periodo orbital”. También es habitual utilizar otros elementos para este mismo fin; en
particular, si se adopta la definición generalizada de “elemento” de Stiefel y Scheifele [26, Capítulo V,
§18, pág. 83–84]), la anomalía media ` (que es una función afín de la variable independiente “tiempo”)
puede desempeñar el papel de sexto elemento orbital.

En definitiva, y salvo en el caso de trayectorias rectilíneas, un movimiento kepleriano tendrá lugar a
lo largo de una cónica no degenerada perfectamente determinada por un conjunto de seis elementos or-
bitales, que –en general– pueden tomarse como las constantes (a , o p , o q , o Q ; e ; i ; Ω ; ω ; T ) ,
aunque en ciertos casos pueda ser más conveniente reemplazar alguno o algunos de estos elementos
por otros mejor adaptados a las peculiaridades del movimiento o que faciliten la realización de algunos
cálculos.
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En cualquier caso, los elementos “estáticos”, y sus posibles variantes pueden relacionarse con las
integrales primeras del momento angular, de Laplace y de la energía.

Para el movimiento de tipo elíptico, tradicionalmente se ha utilizado como conjunto de elementos
“estáticos” el conjunto de constantes (a ; e ; i ; Ω ; ω ) .

1.4. Sistemas keplerianos perturbados. Variación de las constantes

Si se desea estudiar el movimiento de un sistema de dos partículas que, aparte de experimentar
sus interacciones mutuas formalizadas por medio de fuerzas internas del propio sistema de partículas,
están sometidas a otras fuerzas, que se pueden considerar como “fuerzas externas” al sistema de dos
partículas (y debidas a otras partículas y otros cuerpos), se puede pensar que esas fuerzas perturban
(alteran, modifican) el movimiento del sistema estudiado hasta ahora.

A menudo ocurre que en un sistema físico hay unas fuerzas “dominantes” y otras de magnitud
considerablemente menor (en la práctica, uno o varios órdenes de magnitud inferiores a las otras fuer-
zas). Una manera de tratar matemáticaṁente estas situaciones consiste en establecer y estudiar en primer
lugar un modelo simplificado “razonable” (que da lugar al problema no perturbado, o sistema no pertur-
bado) que pueda considerarse como una “PRIMERA APROXIMACIÓN” al problema completo (problema
perturbado o sistema perturbado); si el modelo simplificado es resoluble, se puede intentar analizar
el efecto de las fuerzas de menor magnitud (consideradas como “fuerzas perturbadoras”, o “perturba-
ciones”) sobre la solución del problema simplificado, es decir, en qué medida esas fuerzas perturban
(modifican, alteran, deforman distorsionan) la solución de referencia del modelo simplificado. Ésta es,
en esencia, la idea que inspira los métodos de perturbaciones o teorías de perturbaciones. Su propósito
es llegar a determinar las “desviaciones”, diferencias o discrepancias (perturbaciones) entre el movi-
miento “verdadero” gobernado por el modelo completo y el movimiento de referencia obtenido como
solución del modelo simplificado.

Una manera de abordar esta cuestión se basa en postular para el problema perturbado una solución
con la misma estructura y forma funcional que la solución general del problema no perturbado, pero con
la salvedad de que se supone que las constantes arbitrarias de la solución del problema no perturbado
son cantidades variables (funciones todavía desconocidas) que se intentará determinar analíticamente.
Éste es el fundamento del MÉTODO DE VARIACIÓN DE LAS CONSTATES o MÉTODO DE VARIACIÓN

DE LOS PARÁMETROS que suele atribuirse a Lagrange y llevar su nombre, y a través del cual se establece
un sistema de ecuaciones diferenciales para las variaciones de las “constantes” por efecto de la fuerzas
perturbadoras; una vez integradas dichas ecuaciones, e introducidas las expresiones obtenidas en lugar
de las constantes que aparecen en la solución general del problema no perturbado, se dispondría de la
solución del problema perturbado.

En el problema gravitatorio de dos cuerpos, cuando en el modelo se incluyen otras fuerzas pertur-
badoras (de diversa magnitud, naturaleza y origen), el problema del movimiento relativo se denomina
problema de Kepler perturbado (al que se asocian nociones y expresiones como sistema kepleriano
perturbado, o movimiento kepleriano perturbado), y, debido al efecto de las fuerzas perturbadoras, el
movimiento real diferirá del movimiento kepleriano puro representado por una cónica fija en el espacio.
En lo sucesivo se adoptará la terminología de Abad [1, Capíıtulo 12, §12.1, pág. 191–192], y se usará la
locución “MOVIMIENTO ORBITAL” con el significado de “movimiento kepleriano perturbado”.

Conforme a lo anterior, se puede abordar la resolución de los sistemas keplerianos perturbados a
partir de las ecuaciones de la variación de las constantes (y, en particular, de los elementos orbitales) de
una órbita kepleriana pura –tomada como órbita de referencia– cuando se le superponen perturbaciones.

Por su importancia para el estudio del movimiento de muchos cuerpos celestes naturales (la Luna en
torno a la Tierra, los planetas en torno al Sol, etc.) y –más recientemente– artificiales (satélites artificiales
de la Tierra, algunas sondas espaciales, etc.), tradicionalmente las órbitas (keplerianas o perturbadas)
de tipo elíptico han atraído la atención de los investigadores, por lo que existe un gran repertorio de
formulaciones y métodos para su tratamiento. Las órbitas no acotadas (parábolas e hiperbólas), aparte de
su interés teórico, encuentran aplicación –por ejemplo– en el estudio del movimiento de ciertos cometas
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y –posteriormente– en cuestiones de navegación espacial y maniobras espaciales. En relación con el
movimiento orbital hiperbólico, véase, por ejemplo, Hori [17], [18], Sauer [23], Rappaport, Giampieri
y Anderson [22], Kamel, Soliman y Ammar [19].

Por medio del Método de Variación de las Constantes diversos autores establecieron sistemas de
ecuaciones para las variaciones de los elementos de una órbita elíptica bajo perturbaciones (es decir,
relaciones entre las fuerzas perturbadoras y las variaciones de los elementos elípticos), siendo las más
conocidas las ecuaciones del movimiento planetario o ecuaciones planetarias de LAGRANGE (cuando
las fuerzas perturbadoras derivan de un potencial 6 , llamado potencial perturbador) y de GAUSS (para
el caso de fuerzas que no admitan potencial 7, como por ejemplo las fuerzas disipativas).

La deducción tradicional de las ecuaciones planetarias en la forma de Lagrange, tal y como suele
presentarse en muchos libros, requiere un proceso de cálculo muy largo y laborioso. Numerosos autores
efectúan muchos de los cálculos intermedios recurriendo a paréntesis de Lagrange.

Abad [1, Capítulo 12, §12.2, págs. 192–195], Kovalevsky [20, Capítulo III, §32, pág. 40–41], y Vin-
ti [28, Capítulo 10, pág. 109–114] deducen las ecuaciones planetarias de Lagrange para las variaciones
del conjunto de elementos orbitales keplerianos elípticos“clásicos” 8 (a ; e ; i ; Ω ; ω ; ` ) utilizando
las relaciones entre dichos elementos y las variables de Delaunay del movimiento elíptico y evitando el
uso de paréntesis de Lagrange. EN ESTA MEMORIA SE PROCEDERÁ DE ESTE MODO A LA HORA DE

DEDUCIR UNA VERSIÓN “HIPERBÓLICA” DE LAS ECUACIONES PLANETARIAS DE LAGRANGE.

La deducción de las ecuaciones de las perturbaciones en la forma de Gauss también entraña un lar-
go trabajo de cálculo. Para proceder a dicha deducción se expresan las derivadas parciales del potencial
perturbador respecto a los elementos orbitales en función de las componentes de la fuerza perturbadora
en las direcciones del vector de posición (componente en la dirección radial), en la dirección perpendi-
cular al vector de posición en el plano del movimiento (componente en la dirección transversal) y en la
dirección perpendicular al plano orbital (componente en la dirección normal) en cada punto de la órbita;
a continuación se introducen las expresiones así obtenidas en las ecuaciones planetarias de Lagrange,
quedando reemplazadas las derivadas parciales del potencial perturbador por las componentes radial,
transversal y normal de la fuerza perturbadora. EN ESTE TRABAJO SE OBTENDRÁN LAS ECUACIONES

PLANETARIAS DE GAUSS PARA EL MOVIMIENTO HIPERBÓLICO SIGUIENDO EL ESQUEMA DE (Abad
[1, pág. 195–197]).

1.5. Acerca del movimiento orbital de tipo hiperbólico

En comparación con el movimiento orbital de tipo elíptico, la posibilidad de establecer teorías de
perturbaciones para órbitas de tipo hiperbólico ha merecido menos atención.

En principio, y al menos desde el punto de vista teórico y conceptual, el tratamiento analítico del
movimiento orbital de tipo hiperbólico tiene la misma importancia que el del caso de órbitas acota-
das. Además, conviene recordar que en algunas aplicaciones prácticas la naturaleza de la órbita puede
cambiar debido al efecto de fuerzas perturbadoras que actúen durante un intervalo finito de tiempo. Por

6Las ecuaciones de las perturbaciones en la forma de LAGRANGE expresan las variaciones de los elementos orbitales en
función de las derivadas parciales del potencial perturbador respecto de dichos elementos. Por este motivo resulta necesario
disponer del potencial de las perturbaciones expresado en función de los elementos orbitales.

7La forma de GAUSS de las ecuaciones de las perturbaciones da las fórmulas de las variaciones de los elementos orbitales en
función de las componentes radial, transversal y normal de las fuerzas perturbadoras en cada punto de la órbita; las direcciones
de estas componentes son perpendiculares entre sí, forman en cada punto un triedro dextrógiro, y es habitual llamar a este
sistema de coordenadas sistema de referencia orbital (Abad [1, Capítulo 6, §6.4, pág. 101–103; Capítulo 9, §9.4, §§9.4.5,
pág. 149–150]) o sistema de coordenadas de Gauss. La forma de Gauss de las ecuaciones planetarias permite analizar por
separado la influencia de cada componente de las fuerzas perturbadoras sobre la evolución de cada elemento orbital.

8Si se desea, la variación del elemento T , época de paso por el periastro, puede obtenerse a partir de la ecuación de la
variación de la anomalía media ` (Abad [1, pág. 194–195]). Este autor da preferencia a la opción en favor de ` , debido a
la sencilla relación funcional entre el tiempo físico y la anomalía media, y las relaciones de ésta con las otras anomalías del
movimiento kepleriano, en función de las cuales suelen expresarse las fuerzas perturbadoras que intervienen en numerosas
situaciones de interés en Mecánica Celeste y Astrodinámica.
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estos motivos puede parecer interesante tratar de generalizar y adaptar al caso hiperbólico conceptos,
métodos y resultados que han resultado fecundos para el estudio del movimiento acotado.

Ya en los primeros años de la Era Espacial, tras el lanzamiento de los primeros satélites artificiales
de la Tierra en la segunda mitad de la década de 1950, diversos autores (Hori [17], [18]; Sauer [23];
Cid, Lahulla y Calvo [9]) formularon y analizaron el problema del movimiento de un satélite artificial
a lo largo de una órbita de tipo hiperbólico, sometida a perturbaciones gravitatorias debidas a la no
esfericidad del cuerpo central, truncando el desarrollo del geopotencial en el segundo armónico zonal
(lo que da lugar al Problema Fundamental de la Teoría de Satélites Artificiales).

Con posterioridad, otros autores han abordado este mismo problema (Álvarez y Floría [2]), u otros
relacionados con ciertas operaciones y maniobras espaciales en las que se recurre a órbitas hiperbólicas
perturbadas (Rappaport, Giampieri y Anderson [22] ; Kamel, Soliman y Ammar [19]).

Como se acaba de mencionar, algunos precedentes notables de esta clase de estudios pueden encon-
trarse en el campo de la Teoría del Satélites Artificiales de la Tierra. Hori [17], [18], en su análisis del
movimiento hiperbólico de un satélite artificial en el Problema Fundamental (o Problema Principal,
“Main Problem”) de dicha Teoría, introdujo una variante adecuada del conjunto canónico de variables
de Delaunay adaptando al caso hiperbólico la construcción de Brouwer y Clemence [7, Capítulo XI, §4,
pág. 279–283, y §9, pág. 289–291] en el movimiento elíptico. Una vez definidas sus variables hiperbó-
licas de tipo Delaunay, Hori modifica las consideraciones de Brouwer (recogidas en [7, Capítulo XVII,
§12, pág. 562–573]; y “Notes and References” de este mismo capítulo, pág. 591–593); por analogía con
los desarrollos de Brouwer, para establecer las perturbaciones de los elementos de Delaunay Hori utili-
za el método canónico de perturbaciones de Poincaré–von Zeipel, haciéndolo aplicable al movimiento
hiperbólico,

Sauer [23] también aborda el estudio de las variaciones, debidas a los efectos del potencial pertur-
bador del Problema Fundamental, de los elementos hiperbólicos de una nave espacial, con el propósito
de aplicar los resultados a una misión de escape de una sonda lunar o interplanetaria.

Cid, Lahulla y Calvo [9] estudian el mismo caso hiperbólico del Problema Fundamental de mo-
vimiento de un satélite artificial, formulándolo en variables polares nodales y, como Hori, recurren al
método de Poincaré–von Zeipel para efectuar el cálculo de perturbaciones.

Rappaport, Giampieri y Anderson [22, §3, pág. 169–170] obtienen unas ecuaciones de Lagran-
ge para elementos hiperbólicos adaptando a dicho caso la deducción de Battin [4, Capítulo10, §10.2,
pág. 476–484] de las ecuaciones de Lagrange del movimiento elíptico.

Kamel, Soliman y Ammar [19] modifican el procedimiento de Smart [25, Capítulo 5, §5.01–§5.10,
pág. 55–71; Capítulo 14, §14.01–§14.4, pág. 218–222] y obtienen unas ecuaciones planetarias de La-
grange y de Gauss para elementos hiperbólicos.

En este trabajo, a partir de una variante de las variables de Delaunay, apta para su aplicación al
movimiento kepleriano hiperbólico, y siguiendo el esquema de Abad [1], Kovalevsky [20] y Vinti [28],
se obtienen en primer lugar unas ecuaciones de tipo Lagrange para movimiento orbital de tipo hiperbó-
lico. A continuación, aprovechando las ventajas de la notación matricial y del cálculo con matrices, se
construyen las ecuaciones planetarias de Gauss para el movimiento orbital de tipo hiperbólico según el
elegante y riguroso esquema seguido por Abad [1, Capítulo 12, §12.3, pág. 195–197] para la deducción
de las ecuaciones de Gauss para órbitas perturbadas de tipo elíptico.



Capítulo 2

Algunos conceptos de Dinámica Orbital

En este capítulo se recogen de manera abreviada algunos conceptos y resultados de Mecánica Orbital
que son de interés para su aplicación en esta Memoria. Para su selección y presentación nos hemos
basado en Abad [1]. Véase también el Apéndice (B) de esta Memoria.

2.1. Elementos orbitales

Una órbita kepleriana (que será una cónica no degenerada) es una solución de las ecuaciones del
problema de Kepler (B.21) con unas condiciones iniciales dadas. En la práctica, necesitamos definir

Figura 2.1: Órbita kepleriana en el espacio

unos parámetros que determinan la geometría y la cinemática de la órbita, [1, Capítulo 9, §9.2, pág. 143–
145]. Comenzaremos con la forma y tamaño de la cónica, y para ello definiremos la excentricidad e
para cualquier cónica, el semieje mayor a para la elipse, el semieje real a en el caso de la hipérbola
o el semilado recto p para cualquier cónica no degenerada. La distancia en el periastro viene dada por
q = a(1− e) para órbitas elípticas , q = a(e−1) para hiperbólicas y q = p/2 para parabólicas.
La distancia en el apoastro, Q = a(1+ e), solo tiene sentido en las elipses.

El plano de la órbita y el plano fundamental del sistema espacial Oxy no son en general paralelos,
y por lo tanto se cortan en una recta que llamaremos linea de nodos. La linea de nodos forma con el
eje Ox un ángulo Ω ∈ [0,2π], ángulo del nodo. El ángulo formado entre el plano Oxy y el plano de la
órbita se llama inclinación, i ∈ [0,π]. Estos dos parámetros definen la posición del plano de la órbita en
el espacio.

Podemos determinar la orientación de la cónica en el plano conociendo la dirección del eje de la
órbita (dirección foco-pericentro), que forma con la línea de nodos un ángulo ω llamado argumento

9
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del periastro, y que tomará valores entre 0 y 2 π .
Finalmente, para caracterizar su cinemática, definimos la constante T que indica la época de paso

por el periastro.
Estos parámetros constituyen un conjunto de elementos orbitales (a , o p , o q , o Q ; e ; i ; Ω ; ω ).

2.2. Sistema orbital

El sistema orbital [1, Capítulo 9, §9.4, §§9.4.5, pág. 149–150] , U = {u,v,n}, o sistema de
coordenadas de Gauss, es un sistema de referencia móvil cuyo primer eje lleva la dirección radial.
Por ello, llamaremos u al vector unitario en dicha dirección, de forma que r = r u, y v al definido por
v = n×u, siendo n el vector unitario normal al plano de movimiento (que lleva la dirección del vector
momento angular), de modo que estos tres vectores definen un sistema dextrógiro.

El paso del sistema espacial, S = {e1,e2,e3}, al sistema orbital, U = {u,v,n}, se efectúa mediante
la composición de tres rotaciones elementales sucesivas, siendo la matriz de giro resultante [1, pág. 150]

GS U = R3(Ω) R1(i) R3(ω + f ).

2.3. Algunos sistemas de variables en Mecánica Orbital

Aparte de los sistemas de coordenadas de uso más habitual en Matemáticas y Física, en Mecánica
Celeste y en Astrodinámica también se utilizan algunos sistemas de variables especialmente adaptados
para la formulación y el tratamiento de ciertos problemas. Así, en la Mecánica Orbital se emplean –
entre otros– conjuntos de variables como las de Jacobi, las polares nodales de Hill y Whittaker, las de
Delaunay, las de Poincaré, etc. De entre ellos, las variables polares nodales (o de Hill y Whittaker) y las
variables de Delaunay son de especial interés para la realización de este Trabajo.

2.3.1. Variables polares nodales de Hill y Whittaker

Originalmente propuestas por Hill [16, pág. 173–174] en una investigación sobre el problema de n
cuerpos, aparecen expresadas por medio de unas ecuaciones [16, pág. 173] que las relacionan con las
variables cartesianas y que definen una transformación cuya canonicidad comprueba a continuación por
medio de cálculos largos y muy laboriosos. El conjunto canónico de variables polares nodales de Hill
y Whittaker, ( r , θ , ν ; pr, pθ , pν), tiene el siguiente signficado:

r ≥ 0 denota la distancia radial del móvil,

θ es el argumento de latitud del móvil, y está definido módulo 2 π ,

ν representa al argumento de longitud del nodo ascendente, Ω,

pr = ṙ es la componente radial de la velocidad de la masa en movimiento,

pθ = G denota a la norma del vector momento angular,

pν = G cos i designa a la componente polar del vector momento angular,

Es decir, r = ‖ r ‖, θ = ω + f , ν = Ω, pr = ṙ, pθ = G, pν = G cos i.
El hamiltoniano del problema de Kepler se expresará en estas variables en la forma

H k (t, r , θ , ν , pr, pθ , pν) =
1
2

(
p 2

r +
p 2

θ

r 2

)
− µ

r
, siendo µ = G (m1 + m2). (2.1)
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2.3.2. Variables de Delaunay en el movimiento elíptico

Delaunay [10, Capítulo I, págs. 1–14] construyó el conjunto canónico de variables que llevan su
nombre a partir de una formulación newtoniana de las ecuaciones del movimiento del problema de
Kepler en coordenadas cartesianas y de las integrales primeras del momento angular y de la energía,
resolviendo el problema del movimiento elíptico por medio de dos cuadraturas. Estas variables pueden
obtenerse a partir de las polares nodales por medio de una transformación canónica definida por una
función generatriz (Deprit y Rom [12, §2, pág. 172–174], Deprit [11, §2, pág. 115–118]). Este enfoque
se seguirá en esta Memoria para construir unas variables de Delaunay para el movimiento hiperbólico.

Las variables de Delaunay ( l ,g , h , L , G , H ) en el movimiento elíptico son :

` = E − e sinE, L =
√

µ a,

g = θ − f = ω, G =
√

µ a ( 1 − e 2 ) = p θ ,

h = ν = Ω, H = G cos i = p ν ,

donde ( a , e , i , ω , Ω ) son elementos keplerianos clásicos de la órbita elíptica y E es la anomalía
excéntrica. En función de estas variables el hamiltoniano del problema de Kepler tiene la expresión

KE = H k (t, ` ,g , h , L , G , H ) = − µ
2 /
(
2 L 2) , (2.2)

de donde se deduce que excepto ` (que dependerá linealmente del tiempo), las otras cinco variables de
Delaunay se mantiene constantes a lo largo del movimiento kepleriano. Eligiendo adecuadamente las
condiciones iniciales se puede concluir que ` = (t − T ).

2.4. Ecuaciones diferenciales del movimiento orbital

La ecuación del movimiento kepleriano (B.21) gobierna el movimiento relativo de un punto material
respecto de otro, cuando ambos se atraen según la Ley de Gravitación de Newton. Este modelo es
una aproximación a la realidad, pues no existen cuerpos aislados, y éstos en general no son puntos
infinitesimales sino distribuciones extensas de masa. Ademas, existen otros efectos, gravitatorios y no
gravitatorios, que modifican el movimiento kepleriano y que dan lugar al movimiento orbital.

Formularemos los problemas de movimiento orbital a partir de la ecuación diferencial

r̈ + µ
r
r3 =

−→
P, (2.3)

donde
−→
P representa la perturbación o aceleración que produce la perturbación. Cuando se verifique que

‖
−→
P ‖ � µ /r2, es decir, cuando la aceleración que produce la perturbación sea mucho menor que la

kepleriana, la solución de la ecuación (2.3) se llamará movimiento kepleriano perturbado o movimiento
orbital. Si existe una función escalar Vp tal que

−→
P = −∇r Vp , podemos definir un hamiltoniano

H (t,r, ṙ) = Hk + Vp =
1
2

ṙ · ṙ − µ

‖ r ‖
+ Vp,

como suma del hamiltoniano kepleriano Hk y la función Vp que se llama potencial perturbador.

Tradicionalmente se han tratado los problemas de movimiento orbital por el Método de Variación de
las Constantes, con el propósito de establecer unas ecuaciones que describan cómo varían los elementos
de una órbita kepleriana cuando en el modelo dinámico se incluyen otras fuerzas que perturban el
movimiento kepleriano puro. De entre los sistemas de ecuaciones que se han propuesto, las ecuaciones
planetarias de Lagrange y de Gauss han gozado de gran aceptación y han sido ampliamente utilizadas.
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2.5. Ecuaciones planetarias de Lagrange para el movimiento elíptico

Las ecuaciones para las perturbaciones de los elementos orbitales de un movimiento elíptico en la
forma de Lagrange, aplicables cuando las fuerzas perturbadoras derivan de un potencial Vp, son

d a
d t

= − 2
n a

∂ V p

∂ `
,

d e
d t

=

√
1 − e 2

n a 2 e
∂ V p

∂ ω
− 1 − e 2

e n a 2
∂ V p

∂ `
,

d i
d t

=
1

n a 2
√

1 − e 2 sin i

∂ V p

∂ Ω
− cos i

n a 2
√

1 − e 2 sin i

∂ V p

∂ω
,

d Ω

d t
=

∂ V p

∂ H
= − 1

n a 2 sen i
√

1 − e 2

∂ V p

∂ i
,

d ω

d t
= −

√
1 − e 2

e n a 2
∂ V p

∂ e
+

cos i

n a 2
√

1 − e 2 sin i

∂ V p

∂ i
,

d `

d t
= n +

2
n a

∂ V p

∂ a
+

1 − e 2

n a 2 e
∂ V p

∂ e
.

Estas ecuaciones expresan las variaciones de los elementos orbitales en función de las derivadas parcia-
les del potencial perturbador respecto de dichos elementos.

2.6. Ecuaciones planetarias de Gauss para el movimiento elíptico

Estas ecuaciones constituyen una alternativa a las ecuaciones de Lagrange en el caso de que las
fuerzas perturbadoras no admitan un potencial. Expresando la fuerza perturbadora

−→
P en el sistema

orbital U se tiene que
−→
P = (Pu, Pv, Pn), [1, Capítulo 12, §12.3, pág. 195–197], y llamando

η =
√

1− e2 se tienen las ecuaciones planetarias de Gauss para el movimiento elíptico,

d a
d t

=
2 e sin f

n η
P u +

2 a η

n r
P v,

d e
d t

=
η sin f

a n
P u +

(
η 3

e r n
− r η

a 2 e n

)
P v,

d i
d t

=
r cos(ω + f )

a 2 n η
P n,

d Ω

d t
=

r sin(ω + f
a 2 n sin i η

Pn,

d ω

d t
=

η cos f
a e n

P u +
r (2 + e cos f ) sin f

a 2 n e η
P v +

r sin(ω + f ) cos i
a 2 n sin i η

P n,

d `

d t
= n +

(
− 2 r
a 2 n

+
η 2 cos f

a e n

)
P u −

r (2 + e cos f ) sin f
a 2 e n

P v.

En esta última fórmula se ha corregido un error tipográfico que hemos detectado en el último término
de la correspondiente ecuación de [1, Capítulo 12, §12.3, Ec.(12.21), pág. 196]. Estas ecuaciones indican
cómo varían los elementos orbitales en función de las componentes de la fuerza perturbadora respecto
del sistema orbital o sistema de Gauss, y permiten analizar por separado el efecto de cada componente
de la fuerza perturbadora sobre las variaciones de cada uno de los elementos orbitales.



Capítulo 3

Ecuaciones para el movimiento orbital
hiperbólico

En este capítulo se presenta la construcción de un conjunto de variables canónica de tipo Delaunay
aplicables al movimiento hiperbólico [13], así como una deducción de la versión hiperbólica de las
ecuaciones de Lagrange y de Gauss según el procedimiento seguido por Abad [1, Capítulo 12, §12.2-
§12.3, pág.192-197].

3.1. Variables de Delaunay para el movimiento hiperbólico

Algunos autores han considerado la definición de sistemas de variables orbitales que resulten ade-
cuados para su aplicación a movimientos hiperbólicos. Hori [17, §1, pág. 258–259]) introdujo unas
variables de Delaunay para estudio del movimiento orbital hiperbólico adaptando Brouwer y Clemence
[7, Capítulo XI, §4, pág. 279–283 y §9, pág. 289–291]. Propuso [17, §10, pág. 262–263] también otro
sistema de variables canónicas para el movimiento de tipo hiperbólico por efecto de una fuerza repulsiva
(problema de dispersión, o “scattering”). Floría [13], a partir de las variables polares nodales obtuvo las
variables introducidas por Hori [17], [18], modificando la “aplicación de Delaunay” (o “transformación
de Delaunay”) considerada por Deprit [11, §2, pág. 115–118]) para el movimiento elíptico. Posteriores
reelaboraciones del concepto de “aplicación de Delaunay” permiten obtener tanto las variables clásicas
de Delaunay del movimiento elíptico como su versión hiperbólica como casos particulares de las trans-
formaciones consideradas en Floría [14, §2, pág. 77–81].
A partir del sistema canónico de variables polares nodales de Hill y Whittaker, aplicable para cualquier
tipo de órbita, se efectúa una transformación ( r , θ , ν ; pr , pθ , pν )

S−→ ( ` , g , h ; L , G , H ),
completamenta canónica, para obtener unas variables de Delaunay para el movimiento hiperbólico.

La transformación se define implícitamente por medio de la función generatriz de segundo tipo

S ≡ S( r , θ , ν ; L , G , H ) = θ G + ν H +
∫ r

r0

√
Q d r,

que depende de las coordenadas del sistema antiguo y de los momentos del sistema nuevo, y donde r0
es una raíz de la ecuación Q( r − , − L , G , − ) = 0, siendo

Q ≡ Q ( r − , − L , G , − ) =
2 µ

r
+

µ 2

L 2 −
G 2

r 2 .

13
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Las ecuaciones implícitas de la transformación canónica definida por S son

pr =
∂S
∂ r

=
√

Q , ` =
∂S
∂L

= −µ 2

L3 I1,

pθ =
∂S
∂θ

= G , g =
∂S
∂G

= θ + G I1,

pν =
∂S
∂ν

= H , h =
∂S
∂H

= ν ,

donde

I 1 =
∫ r

r 0

d r√
Q

, I 2 =
∫ r

r 0

d (1/r )√
Q

.

Introduciendo unas cantidades auxiliares a = a(L), e = e(L , G), p = p(G), por medio de

L = −
√

µ a , G 2 = µ a ( e 2 − 1 ),

e 2 = 1 +
G 2

L 2 , p = a ( e 2 − 1 ) ,

obtenemos

Q =
2 µ

r
+

µ 2

µ a
− µ a ( e 2 − 1 )

r 2 =
µ

a r 2

(
2 a r + r 2 − a ( e 2 − 1 )

)
= (3.1)

=
a e 2 µ

r 2

((
r + a

a e

) 2

− 1

)
.

Por lo tanto Q (r,L,G) = 0 =⇒ r0 = a(e−1).
Para calcular I 1 se define una variable auxiliar F = F (r, L, G), anomalía excéntrica hiperbólica

a + r
a e

= coshF , r = a ( e coshF − 1 ) , d r = a ( sinhF ) d F,

y así,

Q =
µ a 2 e 2

a r 2 sinh 2 F =
µ

a
e 2

( e coshF − 1 ) 2 sinh 2 F.

Efectuando este cambio de variable de integración, r −→ F,

I 1 =
∫ F

F0

√
a ( e coshF − 1 )
√

µ e sinhF
a ( e sinhF ) d F =

a 3/2

µ 1/2

∫ F

F0

( e coshF − 1 ) d F =

=

√
a 3

µ
[ e sinhF − F ] F

F0
.

Como r 0 = a ( e coshF0 − 1 ) = a ( e − 1 ) = 0 =⇒ F0 = 0 =⇒ I 1 =

√
a 3

µ
[ e sinhF − F ],

lo que convierte a la ecuación de Delaunay para ` en la ecuación de Kepler hiperbólica

` = −µ 2

L 3 I 1 = −µ 2

L 3

√
a 3

µ
[ e sinhF − F ] = e sinhF − F.

Para obtener I 2 , introduciendo análogamente otra variable auxiliar f , anomalía verdadera, tal que

r =
p

1 + e cos f
d
(

1
r

)
= −e sin f

p
d f ,
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y sustituyendo en (3.1), tenemos

Q =
µ

a r 2

[
2 a r + r 2 − ( a e ) 2 + a 2] =

e 2µ

a ( e 2 − 1 )
sin2 f =

e 2µ

p
sin 2 f ,

y así podemos obtener

I 2 =
∫ f

f 0

d (1/r )√
Q

=
∫ f

f 0

−
√

p e sin f
√

µ e sin f p
d f = − 1

√
µ p

∫ f

f 0

d f =

[
− 1
√

µ p
f
] f

f 0

,

y como r 0 = p/(1 + e cos f0 ) = a ( e − 1 ) =⇒ f0 = 0, tenemos finalmente que,

I 2 = [− f /(
√

µ p) ] f
f 0

= − f /G =⇒ g = θ + G I 2 = θ +G ( f /G) = θ − f .

En resumen, las ecuaciones de la trasformación son

` = e sinhF − F, L = −
√

µ a, (3.2)

g = θ − f = ω, G =
√

µ a ( e 2 − 1 ) = p θ , (3.3)

h = ν = Ω H, = G cos i = p ν , (3.4)

donde ( a , e , i , ω , Ω ) son elementos keplerianos clásicos de la órbita hiperbólica.
El hamiltoniano (2.1) del problema de Kepler en variables de Hill es, en variables de Delaunay,

K ( ` , g , h , L , G , H ) =
1
2

[
2 µ

r
+

µ 2

L 2 −
G 2

r 2 +
G 2

r 2

]
− µ

r
=

2 µ 2

L2 .

Como `, g, h, G, H son cíclicas, sus variables conjugadas son constantes en el problema de Kepler:
g = cte = ω, h = cte = ν = Ω, L = cte = −√µ a, G = cte = ‖ G ‖, H = cte = G cos i .
Finalmente, resolviendo el problema de Kepler en variables de Delaunay obtenemos

d `

d t
=

∂ K

∂ L
= −µ 2

L 3 =⇒ ` = −µ 2

L 3 t + cte = n t + cte.

3.2. Ecuaciones de Lagrange para el movimiento hiperbólico

Para resolver un problema de movimiento orbital hiperbólico, estableceremos las ecuaciones que
rigen la variación de los elementos orbitales. En el caso de que las fuerzas perturbadoras deriven de un
potencial Vp, se deducirán dichas ecuaciones con ayuda de las variables de Delaunay hiperbólicas.

Diferenciando la expresión que define el movimiento medio n 2 a 3 = µ , tenemos 2 n a 3 d n +
3 n 2 a 2 d a = 0 , por lo que

d n = − 3 n
2 a

d a. (3.5)

Diferenciando la anomalía media del movimiento, ` = n t − T , y sustituyendo d n por (3.5),

d ` = n d t − n d T − 3n
2a

(t − T )d a. (3.6)

Recordando las relaciones g = ω , h = Ω, y diferenciando , obtenemos que

d g = d ω , d h = d Ω. (3.7)

Diferenciando en (3.2),
d L = − µ

2
√

µ a
d a =

µ

2 L
d a. (3.8)
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Diferenciando en (3.3), 2 G d G = 2 L d L ( e 2 − 1 ) + L 2 ( 2 e d a ), y sustituyendo d L por
lo obtenido en (3.8), tenemos

d G =
µ e 2

2 G
d a − µ

2 G
d a +

L 2 e
G

d e.

Como e 2 = 1 + G 2 /L 2 , sustituyendo obtenemos finalmente

d G =
µ
(

1 + G 2 /L 2
)

2 G
d a − µ

2 G
d a +

L 2 e
G

d e =
µ G
2 L 2 d a +

L 2 e
G

d e. (3.9)

Diferenciando (3.4) se tiene

d H = d G cos i − G sin i d i (3.10)

Sustituyendo por (3.10) en (3.9) se tiene

d H =

(
µ G
2 L 2 d a +

L 2 e
G

d e
)

cos i − G sin i d i. (3.11)

Reuniendo las expresiones (3.5), (3.10), (3.11) y despejando las derivadas de los elementos orbitales
respecto al tiempo,

d a
d t

=
2 L
µ

d L
d t

,

d e
d t

=

d G
d t
− µ G

2 L 2
d a
d t

L 2 e
G

=
G

L 2 e
d G
d t
− µ G 2

2 L 4 e
2 L
µ

d L
d t

=
G

L 2 e
d G
d t
− G 2

e L 3
d L
d t

,

d i
d t

=

d H
d t
−
(

µ G
2 L 2

d a
d t

+
L 2 e

G
d e
d t

)
cos i

− G sin i
=

=

d H
d t
−
(

µ G
2 L 2

2 L
µ

d L
d t

+
L 2 e

G

(
G

L 2 e
d G
d t
− G 2

e L 3
d L
d t

))
cos i

− G sin i
= − 1

G sin i
d H
d t

+
cos i

G sin i
d G
d t

.

A partir de (3.6),

d T
d t

=
d ` − n

d t
d t

+
3 n
2 a

( t − T )
d a
d t

− n
= − d `

n
+ 1 − 3 L

a µ
( t − T )

d L
d t

.

En resumen, reuniendo las cuatro expresiones anteriores junto con (3.7), se concluye

d a
d t

=
2 L
µ

d L
d t

, (3.12)

d e
d t

=
G

L 2 e
d G
d t
− G 2

e L 3
d L
d t

,

d i
d t

= − 1
G sin i

d H
d t

+
cos i

G sin i
d G
d t

,

d Ω

d t
=

d h
d t

,

d ω

d t
=

d g
d t

,

d T
d t

= − d `

n
+1 − 3 L

a µ
( t − T )

d L
d t

.
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Expresando ahora el hamiltoniano del movimiento orbital en variables de Delaunay tenemos

Kp (`, g, h, L, G, H) =
µ 2

2 L 2 + V p,

siendo V p el potencial perturbador. Las ecuaciones de Hamilton en estas variables serán:

d `

d t
=

∂ Kp

∂ L
= − µ 2

L 3 +
∂ V p

∂ L
,

d L
d t

=
∂ Kp

∂ `
= −

∂ V p

∂ `
, (3.13)

d g
d t

=
∂ Kp

∂ G
=

∂ V p

∂ G
,

d G
d t

=
∂ Kp

∂ g
= −

∂ V p

∂ g
,

d h
d t

=
∂ Kp

∂ H
=

∂ V p

∂ H
,

d H
d t

=
∂ Kp

∂ h
= −

∂ V p

∂ h
.

Aplicando la regla de la cadena para expresar las derivadas del potencial perturbador V P respecto
a las variables de Delaunay en función de las derivadas de V P respecto de los elementos orbitales,

∂ V p

∂ σ
=

∂ V p

∂ a
∂ a
∂ σ

+
∂ V p

∂ e
∂ e
∂ σ

+
∂ V p

∂ i
∂ i
∂ σ

+
∂ V p

∂ Ω

∂ Ω

∂ σ
+

∂ V p

∂ ω

∂ ω

∂ σ
+

∂ V p

∂ T
∂ T
∂ σ

, (3.14)

con σ cualquiera de las variables de Delaunay.

Sustituyendo (3.14) en las ecuaciones de Hamilton (3.13), expresando las variables de Delaunay en
función de los elementos orbitales y sustituyendo en (3.12), tendremos que

d a
d t

=
2 (−√µ a )

µ

(
−

∂ V p

∂ `

)
=

2
√

n 2 a 4

n 2 a 3
∂V p

∂ `
=

2
n a

∂V p

∂ `
,

d e
d t

=

√
µ p

µ a e

(
−

∂ V p

∂ g

)
− µ p

e (−√µ a) 3

(
−

∂ V p

∂ `

)
=

=

√
n 2 a 3 a ( e 2 − 1 )

n 2 a 3 a e

(
−

∂ V p

∂ g

)
+

n 2 a 3 a ( e 2 − 1 )

e
(
−
√

n 2 a 3 a
) ∂ V p

∂ `
=

= −
√

e 2 − 1
n a 2 e

∂ V p

∂ ω
− e 2 − 1

e n a 2
∂ V p

∂ `
,

d i
d t

= − 1
√

µ p sin i

(
−

∂V p

∂ h

)
+

cos i
√

µ p sin i

(
−

∂V p

∂ g

)
=

=
1√

n 2 a 3 a ( e 2 − 1 ) sin i

∂ V p

∂ h
− cos i

n a 2
√

e 2 − 1 sin i

∂V p

∂ g
=

=
1

n a 2
√

e 2 − 1 sin i

∂ V p

∂ Ω
− cos i

n a 2
√

e 2 − 1 sin i

∂ V p

∂ ω
.

Como

∂ i
∂ H

= − 1

G

√
1 −

(
H
G

) 2
= − 1

√
µ p

√
1 −

(
G cos i

G

) 2
= − 1

n a 2 sin i
√

e 2 − 1
,

entonces
d Ω

d t
=

d h
d t

=
∂ V p

∂ H
=

∂ Vp

∂ i
∂ i

∂ H
=− 1

n a 2 sin i
√

e 2 − 1

∂ V p

∂ i
.
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Para calcular

d ω

d t
=

d g
d t

=
∂ V p

∂ G
=

∂ V p

∂ e
∂ e
∂ G

+
∂ V p

∂ i
∂ i
∂ G

, (3.15)

es necesario conocer

∂ e
∂ G

=

2 G
L 2

2

√
1 +

G 2

L 2

=

2
√

µ p
µ a

2
√

1 +
µ p
µ a

=

2
√

n 2 a 3 a ( e 2 − 1 )

n 2 a 3 a

2

√
1 +

a ( e 2 − 1 )

a

=

√
e 2 − 1
e n a 2 ,

∂ i
∂ G

=
H

G 2
1√

1 − H 2

G 2

=
G cos i

G 2

√
1 −

(
G cos i

G

) 2
=

cos i
√

µ p
√

sin 2 i
=

=
cos i√

n 2 a 3 a ( e 2 − 1 ) sin i
=

cos i

n a 2
√

e 2 − 1 sin i
.

Así pues,

d ω

d t
=

√
e 2 − 1
e n a 2

∂ V p

∂ e
+

cos i

n a 2
√

e 2 − 1 sin i

∂ V p

∂ i
.

Finalmente para calcular

d `

d t
=

∂ Kp

∂ L
=
−µ 2

L 3 +
∂ V p

∂ L
= − (n 2 a 3) 2(

−
√

n 2 a 3 a
) 3 +

∂ V p

∂ L
= n +

∂ V p

∂ a
∂ a
∂ L

+
∂ V p

∂ e
∂ e
∂ L

,

se requiere el cálculo de

∂ e
∂ L

=
− 2

G 2

L 3

2

√
1 +

G 2

L 2

=

− µ p
(−√µ a) 3√

1 +
µ p
µ a

=

− n 2 a 3 a ( e 2 − 1 )

(−
√

n 2 a 4) 3√
1 +

a (e 2 − 1 )

a

=

e 2 − 1
n a 2

e
=

e 2 − 1
n a 2 e

,

∂ a
∂ L

=
2 L
µ

=
− 2
√

µ a
n 2 a 3 =

− 2
n a

.

De modo que

d `

d t
= n − 2

n a
∂ V p

∂ a
+

e 2 − 1
n a 2 e

∂ V p

∂ e
.

Podemos presentar las ecuaciones de Lagrange del movimiento planetario para la variación de los
elementos orbitales de una órbita hiperbólica perturbada en función del potencial V p como:
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d a
d t

=
2

n a
∂ V p

∂ `
, (3.16)

d e
d t

= −
√

e 2 − 1
n a 2 e

∂ V p

∂ ω
− e 2 − 1

e n a 2
∂ V p

∂ `
,

d i
d t

=
1

n a 2
√

e 2 − 1 sin i

∂ V p

∂ Ω
− cos i

n a 2
√

e 2 − 1 sin i

∂ V p

∂ ω
,

d Ω

d t
=

∂ V p

∂ H
= − 1

n a 2 sen i
√

e 2 − 1

∂ V p

∂ i
,

d ω

d t
=

√
e 2 − 1
e n a 2

∂ V p

∂ e
+

cos i

n a 2
√

e 2 − 1 sin i

∂ V p

∂ i
,

d `

d t
= n − 2

n a
∂ V p

∂ a
+

e 2 − 1
n a 2 e

∂ V p

∂ e
.

3.3. Ecuaciones de Gauss para el movimiento hiperbólico

Para determinado tipo de perturbaciones y de análisis es preferible la formulación de las ecuaciones
usando la fuerza perturbadora en lugar del potencial. La relación entre ambos viene dada por

∇ r V p = −
−→
P ,

donde
−→
P =

−→
P S representa perturbadora la fuerza expresada en el sistema de referencia espacial.

La relación entre la fuerza expresada en el sistema de referencia espacial
−→
P S y en el sistema orbital−→

P U = (Pu, Pv, Pn) viene dada por

−→
P =

−→
P S = R 3 (Ω) R 1 ( i) R 3 (ω + f )

−→
P U = R

−→
P U ,

es decir, se obtiene mediante el giro de matriz R que pasa del sistema espacial al orbital.
Las expresiones de las derivadas ∂ V p /∂ σ , con σ cualquier elemento orbital, se obtienen aplicando

la regla de la cadena
∂ V p

∂ σ
=

∂ V p

∂ r
∂ r
∂ σ

=−R
−→
P U ·

∂rU

∂σ
,

donde

∂ r
∂ σ

=

(
∂ x1

∂ σ
,

∂ x2

∂ σ
,

∂ x3

∂ σ

)
(3.17)

se obtiene derivando las componentes del vector r respecto a cada variable orbital σ , siendo

r = R 3 (Ω) R 1 ( i) R 3 (ω + f ) rU siendo rU = ( r , 0 , 0 ). (3.18)

Recordando la expresión de las matrices de rotación elemental [1, Capítulo 2, §2.5, pág. 31] y
efectuando los cálculos correspondientes , se llega a

∇rV p =−R
−→
P U =−

 l1 l2 l3
m1 m2 m3
n1 n2 n3

Pu

Pv

Pn


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con

l 1 = cos Ω cos(ω + f ) − sin Ω cos i sin(ω + f ),

l 2 = − sin(ω + f ) cos Ω − sin Ω cos i cos(ω + f ),

l 3 = sin Ω sin i,

m 1 = sin Ω cos(ω + f ) + cos Ω cos i sin(ω + f ),

m 2 = − sin(ω + f ) sin Ω + cos Ω cos i cos(ω + f ),

m 3 = − sin i cos Ω,

n 1 = sin i sin(ω + f ),

n 2 = sin i cos(ω + f ),

n 3 = cos i,

Efectuando las operaciones indicadas en (3.18), se comprueba que

r = r

 l1
m1
n1

= r

cosΩ cos(ω + f ) − sinΩ cos i sin(ω + f )
cos(ω + f ) sinΩ + cosΩ cos i sin(ω + f )

sin(ω + f ) sin i

 .

Por analogía con [25, Capítulo 5, §5.06, pág. 64], se construye la tabla de derivadas parciales (3.1).

l 1 m 1 n 1

Ω −m1 l1 0
ω, f ,θ l2 m2 n2

i l3 sin(ω + f ) m3 sin(ω + f ) n3 sin(ω + f )

Cuadro 3.1: Parciales de l1,m1,n1 respecto a Ω, ω, f , θ = ω + f , i.

Calculemos las parciales de Vp respecto de cada elemento según (3.17). Empezamos por

∂ V p

∂ a
=

∂ V p

∂ r
· ∂ r

∂ a
= −R

−→
P U ·

∂rU

∂a
.

Las derivadas parciales de cada componente del vector r respecto al elemento a son

∂x1

∂a
=

∂x1

∂ r
∂ r
∂a

=
r
a

l 1,

∂x2

∂a
=

∂x2

∂ r
∂ r
∂a

=
r
a

m 1,

∂x3

∂a
=

∂x3

∂ r
∂ r
∂a

=
r
a

n 1,

con lo que

∂ V p

∂ a
= − r

a
(l1 (l1 Pu + l2 Pv + l3 Pn) + l2 (m1 Pu + m2 Pv + m3 Pn) + l3 (n1 Pu + n2 Pv + n3 Pn))

= − r
a

Pu.

Se calcula a continuación
∂ V p

∂ i
=

∂ V p

∂ r
· ∂ r

∂ i
= −R

−→
P U ·

∂rU

∂ i
, resultando

∂x 1

∂ i
=

∂x1

∂ r
∂ r
∂ i

= r l 3 sin(ω + f ),

∂x 2

∂ i
=

∂x2

∂ r
∂ r
∂ i

= r m 3 sin(ω + f ),

∂x 3

∂ i
=

∂x3

∂ r
∂ r
∂ i

= r n 3 sin(ω + f ),
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por lo que

∂ V p

∂ i
=−r (l3 sin(ω + f ) (l1 Pu + l2 Pv + l3 Pn) + m3 sin(ω + f )(m1 Pu + m2 Pv + m3 Pn) +

+ n3 sin(ω + f ) (n1 Pu + n2 Pv + n3 Pn)) = −r sin(ω + f ) Pn.

Las derivadas parciales de cada componente del vector r respecto a Ω son

∂x1

∂Ω
=

∂x1

∂ r
∂ r
∂Ω

= − r m 1,

∂x2

∂Ω
=

∂x2

∂ r
∂ r
∂Ω

= r l 1,

∂x3

∂Ω
=

∂x3

∂ r
∂ r
∂Ω

= r 0 = 0,

y obtenemos que

∂ V p

∂ Ω
=−r (−m1 (l1 Pu + l2 Pv + l3 Pn) + l1 (m1 Pu + m2 Pv + m3 Pn)+0 (n1 Pu + n2 Pv + n3 Pn)) =

= −r cos i Pv + r cos(ω + f ) sin i Pn.

Las derivadas parciales de las componente de r respecto a ω son

∂x1

∂ω
=

∂x1

∂ r
∂ r
∂ω

= r l 2,

∂x2

∂ω
=

∂x2

∂ r
∂ r
∂ω

= r m 2,

∂x3

∂ω
=

∂x3

∂ r
∂ r
∂ω

= r n 2,

y

∂ V p

∂ ω
=−r (l2 (l1Pu + l2Pv + l3Pn)+m2 (m1Pu +m2Pv +m3Pn)+n2 (n1Pu +n2Pv +n3Pn)) =

= −rPv.

Las derivadas parciales de las componentes del vector r respecto a e son

∂x1

∂e
=

∂x1

∂ r
∂ r
∂e

= a cos f l 1 − r
(

a
r
+

1
e2 − 1

)
sin f l 2,

∂x2

∂e
=

∂x2

∂ r
∂ r
∂ω

= a cos f m 1 − r
(

a
r
+

1
e2 − 1

)
sin f m 2,

∂x3

∂e
=

∂x3

∂ r
∂ r
∂ω

= a cos f n 1 − r
(

a
r
+

1
e2 − 1

)
sin f n 2,

y obtenemos

∂V p

∂e
=−

((
a cos f l 1 − r

(
a
r
+

1
e2 − 1

)
sin f l 2,

)
(l1 Pu + l2 Pv + l3 Pn) +

+

(
a cos f m 1 − r

(
a
r
+

1
e2 − 1

)
sin f m 2

)
(m1 Pu + m2 Pv + m3 Pn) +

+

(
a cos f n 1 − r

(
a
r
+

1
e2 − 1

)
sin f n 2

)
(n1 Pu + n2 Pv + n3 Pn)

)
=

= a cos f Pu −
r (2+ e cos f ) sin f

e2−1
Pv.



22 Capítulo 3. Ecuaciones para el movimiento orbital hiperbólico

Las derivadas parciales de cada componente del vector r respecto a ` serán

∂x1

∂`
=

∂x1

∂ r
∂ r
∂ l

=
e
n

√
µ

a (e2−1)
sin f l1 + r l2

a2
√

e2−1
r2 ,

∂x2

∂`
=

∂x2

∂ r
∂ r
∂ω

=
e
n

√
µ

a (e2−1)
sin f m1 + r m2

a2
√

e2−1
r2 ,

∂x3

∂`
=

∂x3

∂ r
∂ r
∂ω

=
e
n

√
µ

a (e2−1)
sin f n1 + r n2

a2
√

e2−1
r2 ,

y así

∂ V p

∂ `
= −r

((
e
n

√
µ

a (e2−1)
sin f l1 + r l2

a2
√

e2−1
r2

)
(l1 Pu + l2 Pv + l3 Pn)+

+

(
e
n

√
µ

a (e2−1)
sin f m1 + r m2

a2
√

e2−1
r2

)
(m1 Pu +m2 Pv +m3 Pn)+

+

(
e
n

√
µ

a (e2−1)
sin f n1 + r n2

a2
√

e2−1
r2

)
(n1 Pu +n2 Pv +n3 Pn)

)
=

= − e a√
e2−1

sin f Pu−
a2
√

e2−1
r

Pv.

En resumen, tenemos el conjunto de expresiones

∂ V p

∂ a
= − r

a
Pu, (3.19)

∂ V p

∂ i
= −r sin(ω + f ) Pn,

∂ V p

∂ Ω
= −r cos i Pv + r cos(ω + f ) sin i Pn.

∂ V p

∂ ω
= −r Pv,

∂ V p

∂ e
= a cos f Pu −

r (2+ e cos f ) sin f
e2−1

Pv,

∂ V p

∂ `
= − e a√

e2−1
sin f Pu −

a2
√

e2−1
r

Pv.

Por último, sustituyendo las expresiones (3.19) en las ecuaciones de Lagrange (3.16), y llamando
η =

√
e2−1, obtendremos las ecuaciones:

d a
d t

= − 2 e sin f
n η

P u −
2 a η

n r
P v,

d e
d t

=
η sin f

a n
P u +

(
η 3

e r n
+

r η

a 2 e n

)
P v,

d i
d t

=
r cos(ω + f )

a 2 n η
P n,

d Ω

d t
=

r sin(ω + f
a 2 n sin i η

Pn,

d ω

d t
=

η cos f
a e n

P u −
r (2 + e cos f ) sin f

a 2 n e η
P v−

r sin(ω + f ) cos i
a 2 n sin i η

P n,

d `

d t
= n +

(
2 r

a 2 n
+

η 2 cos f
a e n

)
P u −

r (2 + e cos f ) sin f
a 2 e n

P v.

que son las ecuaciones de Gauss para las variaciones de los elementos orbitales por efecto de la fuerza
perturbadora

−→
P .
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Apéndice A

Algunos conceptos fundamentales de la
Mecánica

Algunos conceptos fundamentales de la Mecánica

En este ApÃ c©ndice se presentan, sin ánimo de exhaustividad ni de rigor lógico absoluto, algunas
ideas que tienen que ver con los fundamentos de la Física en general, y de la Mecánica en particular.

Casi todos los libros que tratan sobre estas materias dedican algún apartado a estas cuestiones. A
título de ejemplo, algunas de las consideraciones de este Anexo pueden encontrarse en Cid y Camarena
[8, Capítulo I , §2, pág. 2–4; Capítulo III, §1–§2, pág. 75–83] y en Meirovitch [21, Capítulo 1, §1.1–
§1.2, pág. 1–12].

El MOVIMIENTO es el cambio de posición en el espacio a lo largo del tiempo. No se trata de un
concepto absoluto, que tenga sentido por sí mismo; es un concepto RELATIVO: movimiento con respecto
a algo. Se entiende que la posición cambia en el espacio con relación a algo que se considera fijo y que
sirve como referencia. El estudio del movimiento de los cuerpos requiere la elección de un SISTEMA

DE REFERENCIA para precisar la posición (respecto de un sistema de coordenadas 1 bien definido) y el
tiempo (determinado con un aparato de medida adecuado).

EL ESPACIO. Se considerará el conjunto R3 como espacio vectorial real, espacio afín y espacio
euclídeo, y se le atribuirán (entre otras) las propiedades de linealidad, homogeneidad e isotropía.

? Lineal significa que son válidos los axiomas y operaciones de la estructura algebraica de espacio
vectorial.

? Homogéneo significa que sus puntos no presentan propiedades intrínsecas que permitan singu-
larizarlos; es decir, todos los puntos son equivalentes, indistinguibles unos de otros, no hay puntos
privilegiados.

? Isótropo significa que todas las direcciones son equivalentes, no hay direcciones privilegiadas.

Así pues, el ESPACIO FÍSICO puede ser idealizado haciéndolo coincidir con un espacio de puntos
dotado de una cierta estructura geométrica. El ESPACIO que se considerará en lo sucesivo es
el espacio afı́n tridimensional ordinario, formado por puntos. Si en este espacio se
fija un punto O como origen, dicho espacio puede identificarse con el espacio vectorial

euclı́deo tridimensional R3 ; de manera que la notación R3 designará indistintamente el
espacio vectorial real euclídeo tridimensional o el espacio afín tridimensional con un punto fijo.

Un sistema de referencia espacial, o sistema de coordenadas, en este espacio será todo agre-
gado (O , a1 , a2 , a3 ) formado por un punto O (que será el “origen de referencia”, y al que se

1Más adelante se introducirá este concepto de “sistema de coordenadas” con mayor detalle.

1
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asignan las coordenadas nulas) y una base (a1 , a2 , a3 ) del espacio vectorial euclídeo tridimen-
sional R3; se supondrá que el concepto de “base” se entiende como “base ordenada” y, en general,
se usarán bases ordenadas con orientación positiva (o dextrógira, con lo que se hablará de “sistema
de referencia dextrógiro” o “positivamente orientado”) formadas por tres vectores ortonormales
(respecto del producto escalar ordinario en R3 ), ya que el uso de bases ortonormales facilita la
“aritmética” y la interpretación geométrica a la hora de descomponer las magnitudes vectoriales.
Se tiene entonces un sistema de referencia espacial rectangular o cartesiano. En estas condi-
ciones, un sistema de referencia espacial puede representarse por medio de notaciones el tipo
(O , a1 , a2 , a3 ) , O a1 a2 a3 , O x1 x2 x3 , O xyz , donde se entiende que los ejes coordenados, o
ejes fundamentales del sistema, O x1 , O x2 , O x3 , o bien O x , O y , O z , son las rectas que pasan
por el punto O y llevan la dirección de los respectivos vectores de la base (a1 , a2 , a3 ) ; los pla-
nos coordenados, o planos fundamentales del sistema, O x1 x2 , O x1 x3 , O x2 x3 , o O xy , O xz ,
O yz , son los planos que pasan por O y están engendrados por las parejas (a1 , a2 ) , (a1 , a3 ) ,
(a2 , a3 ) de vectors de la base (a1 , a2 , a3 ) .

De acuerdo con , se asignan a cada punto P ∈ R3 como coordenadas las componentes del vector
r ≡
−−→
OP (llamado vector de posición del punto P, que puede variar con respecto a una variable

independiente o parámetro t que –en Física– se identifica con el “tiempo”) respecto de la base
(a1 , a2 , a3 ) :

r( t ) =
−−→
OP ( t ) =

3

∑
i = 1

x i ( t ) a i ≡ (x1 ( t ) , x2 ( t ) , x3 ( t ))(a1 ,a2 ,a3 )
≡

≡ (x1 ( t ) , x2 ( t ) , x3 ( t )) .

En la práctica, y por conveniencia de escritura, se suele omitir la mención explícita a la base
(a1 , a2 , a3 ) , si dicha omisión no da lugar a confusión o ambigüedad.

De manera análoga se definirían los sistemas de referencia en el plano R2 por medio de un
punto O y una base (a1 , a2 ) .

? Como consecuencia de la homogeneidad e isotropía del espacio (no hay en principio ni po-
siciones ni orientaciones privilegiadas o preferidas), no existe ningún sistema de coordenadas
privilegiado o especial que deba ser preferido a otros.

EL TIEMPO. Se considerará uniforme y absoluto (y universal: transcurre uniformemente, sin verse
afectado ni influido por los acontecimientos físicos, no depende de la posición de los cuerpos en
el espacio ni de las fuerzas que se apliquen sobre ellos).

Las dificultades lógicas que plantea el concepto o la definición de “tiempo” son evidentes, tenien-
do en cuenta que se concibe su existencia por el movimiento de los cuerpos: si
todo estuviese inmóvil en la Naturaleza, no se advertiría el paso del tiempo.

Dicho de otro modo, las medidas del tiempo se materializan por un movimiento que sirve de re-
ferencia 2 y que se denomina reloj (rotación de la Tierra, vibración luminosa, movimiento de un
péndulo, vibración de un diapasón, etc.), estableciendo una correspondencia entre ese movimien-
to y una magnitud escalar que se define como TIEMPO. Esquemáticamente, esta correspon-
dencia consiste en asignar al movimiento de referencia un intervalo en el conjunto (totalmente
ordenado) R de los números reales, de manera que a cada estado de movimiento corresponda un
número real, y recíprocamente.

Por ser el tiempo una consecuencia del movimiento, cabe preguntarse si será percibido y medido
de la misma forma por dos observadores que se encuentren en estados de movimiento distintos
(problema de la sincronización de los relojes de observadores situados en otros puntos del es-
pacio). La Mecánica Clásica admite la existencia de un TIEMPO ABSOLUTO, independiente de

2Para medir el tiempo en un cierto punto se puede elegir cualquier fenómeno que parezca que se repite con regularidad o
periódicamente.
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los observadores (es decir, independiente del estado cinemático –estado de movimiento– y de las
condiciones o circunstancias dinámicas de los observadores).

En otras palabras, se supone que dos observadores distintos en su movimiento recíproco pue-
den establecer una medida común de tiempo al observar un mismo fenómeno, ya sea para la de-
terminación de un instante o de la duración del mismo, como si un mismo reloj pudiera verse
simultáneamente desde todos los puntos del Universo. En resumen:

? El tiempo es una magnitud escalar real, uniforme y monótona creciente (por lo tanto, irrever-
sible), medible con un reloj, que verifica las siguientes propiedades:

• Entre los posibles estados del Universo se puede establecer una relación de equivalencia
llamada “simultaneidad”, de manera que los estados simultáneos o contemporáneos corres-
pondan a una misma fecha t .

• El conjunto T de todas las fechas t admite una relación de orden total en correspondencia
con el conjunto R de los números reales.

? En la descripción del movimiento la variable temporal desempeña el papel de un parámetro (en
el sentido que se atribuye a este término en la Geometría Diferencial Clásica de Curvas).

EL MOVIMIENTO. Puede definirse en cada instante la posición de un punto P con respecto a
un sistema de referencia por medio de sus coordenadas, siendo éstas unas ciertas funciones del
tiempo, lo cual puede formalizarse estableciendo una correspondencia unívoca entre los instantes
de tiempo de un intervalo I de la recta real y los valores de las coordenadas, en la forma

r : I ⊆ R −→ R3 (espacio afín)

t 7−→ r( t ) =
−−→
OP ( t ) = (x1 ( t ) , x2 ( t ) , x3 ( t )) ,

t (variable escalar o parámetro): tiempo.

Si, en particular, las tres coordenadas (x1 ( t ) , x2 ( t ) , x3 ( t )) se mantienen constantes, se dice
que el punto P está en REPOSO RELATIVO (o en EQUILIBRIO RELATIVO) al sistema de referen-
cia considerado. Su posición (respecto del sistema de referencia en cuestión) no cambia con el
tiempo: la curva se reduce a un punto.

? Nótese, pues, que “reposo” y “movimiento” son conceptos relativos.

Estas ideas se extienden sin dificultad a sistemas de puntos o de partículas. Así, un sistema mate-
rial está en reposo respecto de un sistema de referencia dado si y sólo si todas sus partículas están
en reposo respecto a dicho sistema de referencia; si al menos una partícula está en movimiento,
se dirá que el sistema de puntos materiales está en movimiento respecto del sistema de referencia
considerado.

? Excluido el caso de reposo o equilibrio, al variar t en un intervalo I = [ t0 , t1 ]⊆ R el punto P
describe un arco de curva llamado trayectoria. La ecuación r = r( t ), o su expresión en compo-
nentes x i = x i ( t ) con i = 1 , 2 , 3, proporciona una representación paramétrica de la trayectoria,
con el tiempo t como parámetro de la representación. Así, la trayectoria es el lugar geométrico
de las sucesivas posiciones ocupadas por el punto P en el transcurso de los sucesivos instantes de
tiempo.

? Si la trayectoria es una curva rectificable, y s es la longitud del arco de curva descrito por P
en un subintervalo de tiempo ( t0 , t ) ⊆ ( t0 , t1 ) , se tiene

s =
∫ t

t0

|| ṙ( t̂ ) || d t̂ =
∫ t

t0

√[
ẋ1( t̂ )

]2
+
[

ẋ2( t̂ )
]2

+
[

ẋ 3( t̂ )
]2 d t̂ = F ( t ) ,

ecuación que se suele denominar ley horaria del movimiento (expresa el parámetro longitud de
arco s en función del tiempo t ), y que sirve para determinar en cada instante la posición de P en
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dicha trayectoria. La ley horaria indica la forma en la que el punto móvil recorre su trayectoria
(esto es, si lo hace despacio o deprisa, si oscila o no, etc.).

? El lugar geométrico de los extremos de los vectores velocidad ṙ( t ) ≡ v( t ) de un punto que
se mueve a lo largo de una trayectoria, trasladados en forma equipolente a un origen común (que,
por conveniencia, será el origen del sistema de referencia considerado) es una curva llamada
hodógrafa del movimiento.

? Los vectores posición r( t ) y velocidad ṙ( t ) ≡ v( t ) , si no son colineales (es decir, si son
linealmente independientes), generan en cada instante un plano (que pasa por el origen de coor-
denadas) Π( t ) = < r( t ) , v( t ) > llamado plano instantáneo del movimiento (o plano orbital
instantáneo). Se trata, pues, de un plano que en cada instante pasa por el origen de coordenadas y
contiene a los vectores r( t ) y v( t ) y, por lo tanto, admite al vector r( t )× v( t ) como un vector
normal 3.

CUERPOS: MASA, MATERIA. Se añade al “punto” (como concepto geométrico que, de una ma-
nera simplificada, idealiza la noción de “cuerpo material”) el concepto de “masa” como una cons-
tante 4 que caracteriza al punto o al cuerpo. De entrada, podría concebirse la “masa” como “una
medida de la cantidad de materia” que tiene el punto o el cuerpo considerado. Pero para ha-
cer este concepto más manejable y más fácilmente cuantificable (medible), se utilizan las ideas
de “masa interte” (o “masa inercial”) y de “masa gravitatoria”:

? “MASA INERTE” o “MASA INERCIAL” como una medida de la resistencia u oposición que
ofrece el cuerpo a modificar su estado de movimiento (según la Segunda Ley de Newton); también
puede decirse (en virtud de esa misma Segunda Ley de Newton) que la masa inerte o inercial de
una partícula o de un cuerpo es una propiedad que determina cómo cambia su velocidad cuando
interactúa con otros cuerpos o partículas.

En la Mecánica Newtoniana la masa es una propiedad de los cuerpos constante e inherente
a los mismos; es independiente del movimiento (con respecto a un sistema de coordenadas), e
independiente del transcurso del tiempo, y representa una medida de la tendencia (o “inercia”) de
los cuerpos a conservar su estado de movimiento.

? En particular la masa puede, pues, considerarse como un coeficiente característico de cada
partícula, que determina la intensidad de su interacción gravitatoria con otras partículas (“MASA

GRAVITATORIA”).

? Pero, como se acaba de mencionar, también y de manera completamente general, la masa se
interpreta como un coeficiente característico de cada cuerpo que determina su comportamiento
cuando dicho cuerpo se encuentra sometido a fuerzas (“masa inerte” o “masa inercial”). Se ha
comprobado experimentalmente, con una elevadísima precisión, que para toda clase de cuerpos
los valores de estos dos tipos de “masa” (inerte y gravitatoria) coinciden.

? Por lo tanto es habitual usar el término “MASA” para referirse a cualquiera de las masas, “iner-
cial” o “gravitatoria”, ya que se consideran indistinguibles (dentro de la precisión de los resultados
de las medidas efectuadas) y equivalentes.

? Se suele iniciar el estudio del movimiento de los CUERPOS sin considerar atributos como su
forma, tamaño, dimensiones, estructura interna, composición, etc., sino contemplándolos como
meros PUNTOS (masas puntuales, partículas materiales, partículas puntuales, puntos materiales,
puntos masivos). En consecuencia, y a los efectos oportunos, es habitual utilizar los términos
“cuerpo” y “partícula” como prácticamente sinónimos.

3Nótese que el vector r( t ) × v( t ) será, precisamente, el vector momento angular (respecto del origen de coordenadas)
de una partícula de masa unidad, o el momento angular por unidad de masa de una partícula de masa arbitraria.

4Para el tratamiento de ciertos problemas físicos se consideran también cuerpos y sistemas de cuerpos de masa variable.
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Un PUNTO MATERIAL es un cuerpo cuyas dimensiones se consideran despreciables dentro de la
escala en la que se realiza la observación de dicho cuerpo, pudiendo ser concebido –en cuanto a
su posición en el espacio– como un punto geométrico (por lo tanto, carente de dimensiones, de
extensión espacial, de volumen, de estructura interna, . . . ).

Un conjunto (finito o infinito, discreto o continuo) de puntos materiales recibe el nombre de SIS-
TEMA DE PUNTOS MATERIALES, SISTEMA MATERIAL, o SISTEMAS DE PARTÍCULAS, y presenta
algún tipo de estructura interna.

De este modo, todo cuerpo aparece siempre como un sistema de puntos.

RELACIÓN ENTRE “ESPACIO”, “TIEMPO” Y “MATERIA”. Los fenómenos físicos 5 se presentan
en el espacio 6 y en un cierto tiempo 7. Los fenómenos ocurren en un lugar concreto del espacio,
en un tiempo concreto o durante un intervalo de tiempo, y en ellos la materia 8 interviene de una
forma u otra.

Tradicionalmente, “espacio”, “tiempo” y “materia” se han considerado y tratado como conceptos
independientes. Esta suposición, que es consecuencia de la forma en que se perciben los fenó-
menos, resulta satisfactoria para el estudio de la mayoría de los mismos. Sin embargo, como
consecuencia de algunas observaciones y experimentos, se ha visto que en realidad el tiempo y
el espacio no son independientes, sino que están acoplados, y resulta más apropiado hablar de
“espacio-tiempo” o “continuo espacio–temporal”. En la vida cotidiana, en lo que a fines prácticos
atañe, se puede prescindir de ese acoplamiento espacio–tiempo. Por otra parte, otros experimen-
tos y observaciones indican que el espacio–tiempo se ve afectado por la presencia de materia; en
otras palabras, las propiedades locales del espacio–tiempo están determinadas por la cantidad de
materia que hay en el entorno, y sus efectos se manifiestan en lo que se denomina GRAVITACIÓN.
El efecto de la materia sobre el espacio–tiempo es más notorio cerca de las grandes concentra-
ciones de materia (como el Sol, una estrella o un agujero negro). Sin embargo, en la práctica,
cerca de la superficie de la Tierra el acoplamiento entre materia y espacio–tiempo sólo se pone de
manifiesto mediante delicados experimentos y mediciones muy precisas.

El acoplamiento entre espacio, tiempo y materia es objeto de estudio de las Teorías de la Relati-
vidad General y Especial de Einstein. Cabe destacar que estas Teorías también vinculan masa y
energía.

? Para las cuestiones que se tratarán en esta Memoria, espacio, tiempo y materia se contempla-
rán como si fueran entidades independientes.

FUERZA. En la Mecánica (en particular) y en la Física (más en general) se intenta explicar los di-
versos fenómenos que se observan en la Naturaleza por medio de “INTERACCIONES” ENTRE LOS

CUERPOS MATERIALES, idealizando dichas interacciones por medio de FUERZAS. Los cuerpos
se distinguen entre sí por sus propiedades físicas, formalizadas por medio de magnitudes como la
masa, la carga eléctrica, etc. Las cuatro principales interacciones básicas o fundamentales que se
consideran en la Física se describen mediante las fuerzas gravitatoria (relacionada con la propie-
dad de la materia llamada “masa”), electromagnética (relacionada con la propiedad de la materia
denominada “carga eléctrica”), nuclear fuerte y nuclear débil.

Se considera que las fuerzas son las causas físicas que producen el movimiento o el cambio de es-
tado de movimiento o de otras propiedades (por ejemlo, la forma, el tamaño, etc.) de los cuerpos.
De este modo, el movimiento de los cuerpos materiales se produce o se modifica por la influencia
debida a la posible presencia de otros cuerpos en el espacio circundante. Dicho de otro modo, el
movimiento de un cuerpo dado es consecuencia de sus interacciones con otros cuerpos (más o

5Es decir, los hechos, sucesos, procesos y cambios observados en la Naturaleza o inducidos en un laboratorio.
6 Dónde ocurren los fenómenos.
7 Cuándo ocurren y cuánto duran.
8La materia se expresará cuantitativamente por medio del concepto de “masa”.
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menos cercanos o alejados). Es habitual que las interacciones entre los cuerpos se expresen de
manera cuantitativa por medio del concepto “FUERZA”. Pero, para que este concepto resulte útil,
será necesario poder formalizarlo de manera precisa en términos de variables y parámetros que
describan el sistema físico en cuestión (p. e., distancias entre sus partículas, sus masas, sus cargas
eléctricas, etc.). Por el momento se supondrá que se dispone de recursos teóricos y experimenta-
les que permitan medir fuerzas y determinar en cada instante la forma en la que dependen de las
posiciones y velocidades relativas de las partículas en interacción.

? Una PARTÍCULA LIBRE es la que no está sometida a ninguna interacción. En sentido estricto,
no existen partículas libres, porque toda partícula está sometida a interacciones con todas las
demás partículas del Universo. Sin embargo, en la práctica, hay situaciones en las que se puede
contemplar a una partícula como si fuese una partícula libre; por ejemplo, si dicha partícula está
lo suficientemente alejada de las demás como para poder considerar que sus interacciones con ella
son despreciables; o cuando el efecto conjunto de las restantes partículas sobre ella se cancela, de
modo que su interacción neta (o resultante) con la partícula en cuestión es nula.

En definitiva, se dice que sobre una partícula libre no actúa ninguna fuerza.

? SISTEMA AISLADO es un sistema formado por un número cualquiera de partículas que única-
mente están sometidas a sus propias interacciones mutuas, y no a otras de fuera del sistema (es
decir, debidas a otros cuerpos u otras partes del Universo).

? En Mecánica el concepto de FUERZA aparece indisolublemente unido a las tres LEYES DE

NEWTON. En particular, en la Segunda Ley del Movimiento de Newton se establece (bajo dife-
rentes posibles enunciados) que la fuerza F que actúa sobre una partícula de masa m se define
por la igualdad F = ma = m r̈ .

Las consideraciones anteriores conducen a una formalización del concepto de “FUERZA” por
medio del concepto matemático de “campo vectorial”, una función vectorial de variable(s) vec-
torial(es). Así, un CAMPO DE FUERZAS es un campo vectorial

F : R × R3 × R3 −→ R3

( t , r , ṙ) 7−→ F = F( t , r , ṙ) ,

cuya forma funcional en cada caso concreto puede también depender de constantes y parámetros
característicos del sistema mecánico o físico considerado.

SISTEMAS DE REFERENCIA INERCIALES. En la Mecánica (Newtoniana) Clásica, un sistema
de referencia inercial o galileano es un sistema de referencia en el que se cumplen las leyes del
movimiento de Newton y, en particular, la Segunda Ley de Newton, que establece que la variación
de la cantidad de movimiento (o momento lineal) de una partícula es igual a la resultante de todas
las fuerzas reales que actúan sobre la misma.

También se dice que respecto de un sistema inercial una partícula libre (es decir, sobre la que no
actúa ninguna fuerza externa) permanece en reposo o se desplaza con un movimiento rectilíneo
uniforme. Esto equivale a afirmar que todos los sistemas inerciales se encuentran en estado de
reposo o de movimiento rectilíneo uniforme unos respecto de otros

SISTEMA MECÁNICO. (Cid y Camarena [8, Capítulo VII, §1, pág. 180]) Es un conjunto de N
puntos Pk , de masas respectivas mk (con k = 1 , 2 , . . . , N ) cuyas posiciones y velocidades
vienen determinadas en cada instante por los vectores rk ( t ) =

−−→
OPk , vk ( t ) = d rk ( t )/d t ,

con respecto a un sistema de referencia inercial O xyz , siendo sus componentes respectivas
(xk ( t ) , yk ( t ) , zk ( t )) y ( ẋk ( t ) , ẏk ( t ) , żk ( t )).



Apéndice B

Sistema de dos cuerpos con fuerzas
internas

B.1. Planteamiento del Problema

Para un sistema de n partículas, con masas m1 , m2 ,...,mn , se denotará como F i j la fuerza que
la i-ésima partícula ejerce sobre la j-ésima. Consideraremos que las fuerzas F i j que actúan entre di-
chas masas puntuales son fuerzas internas del sistema de n partículas si dichas fuerzas verifican que
F i j = − F ji , o sea que cumplen la Tercera Ley de Newton de la Dinámica; por ello, decimos que son
fuerzas de acción y reacción.

Se considera un sistema de referencia inercial rectangular cartesiano O x1 x2 x3 , con origen en el
punto O del espacio R 3 y ejes orientados según la base ortonormal (e1, e2, e3). El problema de dos
cuerpos trata de estudiar el movimiento de dos partículas de masas m1 y m2 bajo la influencia de su
mutua interacción a través de fuerzas internas.

El vector de posición de cada partícula mk respecto de dicho sistema de referencia O x1 x2 x3 es
rk =

−−→
Omk (k = 1,2). Por la Segunda Ley de Newton de la Dinámica, el problema del movimiento

de estas dos masas puntuales queda formulado mediante un sistema de dos ecuaciones diferenciales
vectoriales de segundo orden para los vectores de posición r1 = r1(t) y r2 = r2(t) como las
funciones incógnita de la variable independiente t,

m1 r̈1 = F21 ( t , r1 , r2 , ṙ1 , ṙ2 ), m2 r̈2 = F 12 ( t , r1 , r2 , ṙ1 , ṙ2 ). (B.1)

Para el estudio de este problema se pueden considerar problemas de valor inicial, dando como
condiciones iniciales en un instante t0 los vectores posición y velocidad de ambas partículas,

rk (t0) = r(0)
k , ṙk (t0) = ṙ(0)

k = v(0)
k , ( k = 1 , 2 ).

Estas ecuaciones serán, en general, no lineales, y además estarán acopladas a través de la presencia
de las funciones r k y ṙk en sus segundos miembros (o sea, que el movimiento de cada una de las
partículas dependerá en cada instante del movimiento de la otra). Por esto, la resolución analítica, de
estas ecuaciones será complicada.

B.2. Movimiento del centro de masas y movimiento relativo.

En vez de abordar directamente su resolución, se procederá a transformarlo. Por medio de un cambio
de funciones incógnita. Para ello utilizaremos un cambio lineal de coordenadas

r1 , r2 −→ rc ( r1 , r2 ) , r ( r1 , r2 ), (B.2)

7
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donde

rc ( t ) :=
m1 r1 ( t ) + m2 r2 ( t )

M
, r ( t ) := r1 ( t ) − r2 ( t ) , M := m1 + m2. (B.3)

y cuya transformación inversa, rc , r −→ r1 ( rc , r ) , r2 ( rc , r ), es

r1 ( t ) = rc ( t ) +
m2

M
r ( t ) , r2 ( t ) = rc ( t ) − m1

M
r ( t ) (B.4)

Formando las derivadas de primer y segundo orden en estas ecuaciones se obtienen las relacio-
nes para las velocidad y aceleraciones. Podemos expresar las condiciones iniciales en nuestras nuevas
coordenadas:

rc ( t0 ) = r(0)
c , ṙc ( t0 ) = ṙ(0)

c = v(0)
c ,

r ( t0 ) = r(0), ṙ( t0 ) = ṙ(0) = v(0).

El punto C del espacio cuya posición queda caracterizada en cada instante por el vector rc ( t ) ≡
−−→
O C se denomina Centro de Masas del sistema de partículas de masas m1 y m2 .

Por otra parte, el vector r ( t ) ≡ −−−→m2 m1 caracteriza en cada instante la posición relativa de la
partícula m1 respecto de m2 . Denotaremos con r la distancia euclídea entre las partículas m1 y
m2 , con la definición habitual por medio del producto escalar usual,

r 2 = r · r = ‖ r ‖ 2 = r 2.

Para obtener alguna información adicional acerca del movimiento de este sistema de dos partículas,
sumando miembro a miembro las ecuaciones (B.1), y teniendo en cuanta que por hipótesis F21 =
− F12 , se tiene que

m1 r̈1 + m2 r̈2 = F21 ( t , r1 , r 2 , ṙ1 , ṙ2 ) + F12 ( t , r1 , r2 , ṙ1 , ṙ2 ) = 0, (B.5)

mientras que a partir de la definición (B.3) del vector rc , obtenemos

M rc(t) = m1 r1(t) + m1 r1(t) =⇒ M r̈c(t) = m1 r̈1(t) + m1 r̈1(t),

pero, en virtud de (B.5), será

M r̈c ( t ) = 0 ⇐⇒ r̈c ( t ) = 0, (B.6)

que reconocemos como ecuación diferencial del movimiento libre (sin fuerzas externas) de una partícula
auxiliar de masa M situada en cada instante en la posición del centro de masas del sistema original de
dos partículas, por lo que esta partícula tendrá un movimiento rectilíneo y uniforme o permanecerá en
reposo. En efecto, la integración de (B.6) nos lleva a

ṙc ( t ; A) = A, rc ( t ; A , B ) = A t + B, (B.7)

siendo A y B dos constantes vectoriales de integración que aportan seis constantes escalares arbi-
trarias.

Haciendo uso de esta solución (B.3), de las expresiones de ṙc,rc que figuran en la solución general
(B.7) pueden reescribirse en la forma

m1 ṙ1 ( t ) + m2 ṙ2 ( t ) = M A, m1 ṙ1 ( t ) + m2 ṙ2 ( t ) − M A t = M B, (B.8)
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fórmulas que se pueden reinterpretar como dos relaciones funcionales vectoriales

−→
Φ 1 (− , − , − , ṙ1 , ṙ2 ) =

−→
A ,

−→
Φ 2 ( t , r1 , r2 , − , − ) =

−→
B , (B.9)

que son dos integrales primeras funcionalmente independientes del sistema diferencial (B.1) de partida.
Bajo cualquiera de las formas anteriores, (B.7), (B.8), (B.9), estas integrales primeras de (B.1) se

conocen como LAS INTEGRALES DEL CENTRO DE MASAS del sistema de dos cuerpos considerado.
Con ello se dispone hasta ahora de seis constantes escalares funcionalmente independientes. Así

pues, el orden diferencial del problema original planteado por el sistema de ecuaciones (B.1) ha pasado
de 12 a 6.

Como consecuencia del cambio de variable (B.4), (B.3), el sistema (B.1) se ha transformado en un
sistema equivalente

M r̈c = 0, µ r̈ = F(t,r, ṙ), (B.10)

Así pues, el problema (B.1), que era de orden 12, ha quedado, pues, descompuesto en dos subpro-
blemas independientes de orden 6, para las funciones incógnita rc y r .

En componentes respecto del sistema de coordenadas m2 x1 x2 x3 , con r = x1 e1 + x2 e2 +
x3 e3 ≡ ( x1 , x2 , x3 ) y F = F1 e1 + F2 e2 + F3 e3 ≡ ( F1 , F2 , F3 ) , la segunda de las
ecuaciones vectoriales de (B.10) da lugar a ,

µ ẍ i = Fi ( t , x1 , x2 , x3 , ẋ1 , ẋ2 , ẋ3 ), i = 1 , 2 , 3 , µ =
m1 m2

m1 + m2
. (B.11)

siendo µ la masa reducida del sistema.
Recordando el enunciado de la Tercera Ley de Newton, las fuerzas F21 y F12 actúan en cada

instante según la dirección de la recta que en dicho instante pasa por ambas partículas, pero en sentidos
opuestos. Es decir, son colinales con el vector r (t) , por lo que F ( t , r , ṙ ) es colineal con r(t),

F ( t , r , ṙ) = f ( t , r , ṙ ) r̂ , donde r̂ =
1
r

r (B.12)

es el vector unitario en la dirección del vector de la posición relativa de una de las masas respecto de la
otra. Por lo tanto la fuerza que actúa sobre la partícula auxiliar de masa µ pasa siempre por un punto
fijo. Esto significa que la función vectorial F es una fuerza central.

La fuerza central será atractiva cuando f ( t , r , ṙ ) < 0 y repulsiva si f ( t , r , ṙ ) > 0.

B.3. Movimiento de una partícula en un campo de fuerzas central

Para poder abordar el tema de campos de fuerzas centrales, introduciremos el vector momento angular
G de m (respecto del origen de coordenadas) como el momento (respecto del origen elegido) de su
momento lineal p = m ṙ , es decir

G := G ( t , r , ṙ ) = r × p = r × m ṙ = m ( r × ṙ ). (B.13)

La variación temporal de este vector viene descrita por la derivada

d G
d t

= r × F,

donde se ha supuesto masa constante y se ha utilizado la Segunda Ley de Newton. En el caso de las
fuerzas centrales como r y F son colineales, dicho momento es nulo, por lo tanto,

d G
d t

= r × f ( t , r , ṙ ) r̂ = 0 =⇒ G ( t ) =
−→cte. (B.14)
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Esto significa que el vector momento angular es una integral primera de las ecuaciones diferenciales
que gobiernan el movimiento. Por tanto, el problema se reduce de orden 6 a orden 3, gracias a las tres
integrales primeras escalares funcionalmente independientes aportadas por las tres componentes de G.
Una consecuencia importante de esta conservación (B.14) del momento angular es que el movimiento
transcurre siempre en un mismo plano. Por ello, pasaremos a estudiar el movimiento por medio de unas
variables elegidas dentro del propio plano orbital.
Consideraremos entonces un sistema rectangular cartesiano O x y con origen en el centro del campo de
fuerzas y ejes orientados según las direcciones de unos vectores unitarios y ortogonales i, j. Este sistema
se puede completar hasta una base de R 3 , adjuntando cualquier vector de R 3 que no pertenezca
al plano. Para obtener una base ortonormal, basta que el nuevo vector sea unitario y ortogonal al plano
del movimiento. Ya sabemos que G es perpendicular al plano, por tanto normalizarlo obtendremos el
tercer vector.

k =
1

‖ G ‖
G =

1
G

G, tal que i × j = k,

de manera que ( i , j , k ) constituye ahora una base ortonormal directa del espacio ordinario. Por lo
tanto los vectores del plano tendrán su tercera componente nula.
Para el vector momento angular tendremos que

G = ( 0 , 0 , Gz ) , con Gz = m (x ẏ − y ẋ ), y ‖ G ‖ = G = | Gz | .

Como es un vector constante, sus tres componentes tienen que ser constantes. Las dos primeras,
obviamente lo son; para la tercera se tiene Gz = m (x ẏ − y ẋ ) = cte .

Formulando el problema (B.11), (B.12) siendo µ = m en las coordenadas cartesianas xy
tomadas en el plano orbital, la ecuación de movimiento queda

m ẍ = Fx ( t , x , y , ẋ , ẏ ), m ÿ = Fy ( t , x , y , ẋ , ẏ ),

un sistema de dos ecuaciones diferencia de segundo orden para las funciones incógnita x e y . Pro-
blema diferencial de orden 3 ya que se verifica la relación x ẏ − y ẋ = cte. En resumen, la integral
del momento angular permite llevar el problema del movimiento en cuestión a un problema diferencial
de orden 3.

Formulemos ahora el mismo problema en coordenadas polares planas tomadas en el plano del mo-
vimiento para alcanzar mejor conocimiento del mismo.
Sean las ecuaciones del cambio de variables dependientes

x = r cosφ , y = r sinφ .

Estas coordenadas tienen asociadas en cada punto del plano las direcciones radial , según el vector
unitario er, y transversal, según la dirección del vector unitario eφ obtenido al hacer rotar el vector
er un ángulo de π/2 radianes en sentido positivo.
El vector momento angular quedará como,

G = Gz k, con Gz = m r 2
φ̇ , y ‖ G ‖ = G = | Gz | .

Y, las ecuaciones de Newton (en coordenadas polares planas) quedarán como

m r̈radial = Fradial =⇒ m ( r̈ − r φ̇
2 ) = f ( t , r , ṙ) = f polares ( t , r , φ , ṙ , φ̇ ),

m r̈ transversal = F transversal =⇒ m (2 ṙ φ̇ + rφ̈) = 0.

En apariencia sistema de dos ecuaciones diferenciales de segundo orden para (r, φ) , y tendría orden
cuatro. Pero multiplicando por r ambos miembros de la última ecuación, obtenemos

m ( 2 r ṙ φ̇ + r 2
φ̈ ) = 0 =⇒ d

d t
( m r 2

φ̇ ) = 0 =⇒ m r 2
φ̇ = cte,

relación que representa una integral primera del sistema diferencial anterior, por lo que se ha llevado el
problema a orden tres.
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B.4. Campos Centrales Conservativos

El caso de fuerza central que con más frecuencia aparece en los libros de Mecánica es el de, Fuerzas
Centrales Conservativas, que es aquel en el que la dependencia funcional del campo vectorial se reduce
a una forma particularmente sencilla:

F(−, r,−) = f (−, ‖ r ‖,−) r̂ = f (r) r̂ = f (r) er. (B.15)

Se demuestra que entonces
∇ × F = ∇ × ( f (r) r̂) = 0,

con lo que, en efecto, el campo vectorial F es CONSERVATIVO y existe un campo escalar V de la
variable escalar r tal que

F(r) = −∇V (r) = −∂V (‖ r ‖)
∂r

= −∂V (r)
∂ r

r̂.

A partir de esta última expresión, y teniendo en cuenta (B.15) se deduce que el POTENCIAL V es,
salvo una constante aditiva

V (r) = −
∫

f (r) d r

Destacar un tratamiento alternativo para el problema del movimiento de una masa puntual en el seno
de un campo de fuerzas central conservativo. En esta ocasión se procederá a dar pasos intermedios de
la resolución del problema por medio de la CONSERVACIÓN DE ENERGÍA mecánica del sistema.

La ecuación diferencial del movimiento se puede escribir como

m r̈ = −∇ V (r) = −∂V (r)
∂ r

r̂.

Multiplicando escalarmente ambos miembros por ṙ se tiene que

m r̈ · ṙ = −dV (r)
d t

. (B.16)

Pero

2 r̈ · ṙ =
1
2

d (‖ ṙ ‖)2

d t
,

llevando esto a la ecuación (B.16) anterior se obtiene

d
d t

(
1
2

m ‖ ṙ ‖2 +V (r)
)

= 0, (B.17)

por lo que la expresión entre paréntesis deberá ser una constante escalar.
Se define la ENERGÍA CINÉTICA T de la partícula de masa m mediante la fórmula

T =
1
2

m ‖ ṙ ‖2,

mientras que V (r) se interpretará como su ENERGÍA POTENCIAL. Así pues, se define su ENERGÍA
MECÁNICA O ENERGÍA TOTAL , E como la suma de ambas magnitudes,

E = T + V (r) =
1
2

m ‖ ṙ ‖2 +V (r),

con lo que la conclusión establecida en (B.17) se expresa ahora como

E = T + V (r) =
1
2

m ‖ ṙ ‖2 +V (r) = constante

que constituye una integral primera escalar del sistema, conocida como INTEGRAL DE LA ENERGÍA,
y permitirá reducir en una unidad el orden diferencial en el problema del movimiento de la partícula de
masa m bajo la influencia de la fuerza central conservativa (B.15).
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B.5. Problema gravitatorio de dos cuerpos

Como caso particular de sistema de dos cuerpos , podemos considerar un sistema de dos partículas
que se atraen gravitatoriamente según la Ley de Gravitación Universal de Newton.
La fuerza gravitatoria de atracción que la partícula de masa m j ejerce sobre la partícula de masa mi

obedece a la fórmula

F ji ( r i , r j) = − G
m i m j

‖ r i − r j ‖ 3 ( r i − r j ) = (B.18)

= − G
m i m j

‖ r i − r j ‖ 2
r i − r j

‖ r i − r j ‖
,

siendo G la constante de gravitación universal. A su vez, la atracción gravitatoria de la partícula de masa
mi sobre la partícula de masa m j es

F i j ( r j , r i ) = − G
m j m i

‖ r j − r i ‖
3 ( r j − r i ) = − F ji( r j , r i ).

La fuerza dada en (B.18) puede expresarse en la forma F ji ( r i , r j) = −∇r i V , por lo que deriva
del potencial escalar

V ( ‖ r i − r j ‖ ) = − G
m i m j

‖ r i − r j ‖
= − K

‖ r i − r j ‖
,

con
K = G m1 m2.

En estas condiciones, las ecuaciones diferenciales del movimiento (B.1) son

m1 r̈1 = − K
‖ r1− r2 ‖ 3 (r1− r2), (B.19)

m2 r̈2 =
K

‖ r1− r2 ‖ 3 (r1− r2),

que constituyen un sistema diferencial de orden 12 formado por ecuaciones acopladas.
Sometiendo a las ecuaciones (B.19) al cambio de variables dependientes (B.4), teniendo en cuenta

(B.3) se llega a

m1 r̈c +
m1 m2

M
r̈ = −K

r2
¨̂r (B.20)

m2 r̈c −
m1 m2

M
r̈ = −K

r3 r̈

A la vista de (B.6), estas dos últimas ecuaciones, dan lugar a la nueva ecuación

µ r̈ = F∗21 (− , − , r , − , − ) = − G
m1 m2

‖ r ‖ 3 r = − K
r 3 r̂,

la cual obedece una expresión general de la forma

F21
∗ (− , − , r , − , − ) = f (r) r̂ , con f (r ) = − K

r 2 ,

por lo que se trata de una fuerza central conservativa. En conclusión el movimiento relativo es ahora
idéntico al movimiento de una única partícula ficticia de masa µ bajo la acción de la fuerza

F ( r ) = − G
m1 m2

‖ r ‖ 2 r̂ = − K
r 2 r̂.
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Como es una fuerza central conservativa puede derivarse de un potencial

V (r ) = − G
m1 m2

r
= − K

r
.

El estudio de este caso particular de problema de movimiento relativo da lugar al llamado problema de
Kepler.

B.6. Problema de Kepler

El problema de Kepler se puede formular como

m r̈ =
− K
r 3 r, (B.21)

para la cual el vector momento angular de la partícula, G = r × ( m ṙ ) , proporciona una integral
primera que permite reducir el orden diferencial del sistema de 6 a 3. Para plantear la resolución de este
problema, necesitamos otra u otras nuevas integrales primeras. Así pues, utilizando la ecuaciones del
movimiento (B.21), la definición (B.13) del vector momento angular, formando el producto vectorial y
utilizando que G es constante obtenemos

ṙ × G = K
r
r
+
−→cte = K

(r
r
+ e
)
, (B.22)

donde introduciremos el vector de Laplace-Runge-Lenz-Hamilton o vector excentricidad, el cual pro-
porciona tres constantes escalares,

e = e (− , r , ṙ ) =
1
K

( ṙ × G ) − r
r
.

En realidad las integrales del vector momento angular, del vector de Laplace-Runge-Lenz-Hamilton y
de la energía, siete cantidades escalares en total, sólo aportan cinco constantes del movimiento funcio-
nalmente independientes, ya que se verifica que

e ·G = 0 2 E G 2 = m K 2 ( e 2 − 1 ) =⇒ e 2 = e 2 ( G , E ) = 1 +
2 E G 2

m K 2 ,

donde se observan dos relaciones entre G , e y E .
Para continuar con la resolución de este problema utilizando el vector e hasta llegar a determinar

las órbitas del problema de Kepler, multiplicando los dos miembros de (B.22) por el vector de posición
r,

r ( ṙ × G ) = K
(
‖ r ‖ 2

r
+ e · r

)
= K ( r + e r cos f ),

donde se supone que e · r = e r cos f , siendo f el ángulo entre el vector de Laplace y el vector
de posición r , llamado anomalía verdadera. Utilizando la propiedad sobre el comportamiento del
producto mixto bajo permutaciones circulares podremos escribir finalmente que

G 2

m
= K r ( 1 + e cos f ) =⇒ r ( f ) =

G 2 / m K
1 + e cos f

=
p

1 + e cos f
.

Esta expresión admite una interpretación geométrica: ecuación focal de una cónica en coordenadas
polares planas, con f como parámetro de la representación, y p como semilado recto.

Finalmente, se ha demostrado que las soluciones del problema de Kepler son cónicas. Los elementos
geométricos p y e de la cónica, son funciones de las integrales primeras G y E a través de las
relaciones

p ≡ p(G) =
G2

m K
, e ≡ e(G,E ) =

√
1+

2 E G2

m K2 . (B.23)
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Nótese que p tiene dimensiones de longitud, mientras que e es adimensional. Observando la fórmula
(B.23) de e, la clasificación geométrica de las cónicas según los valores de la excentricidad numérica e
se traduce en su clasificación según el valor y signo de la energía E .

Para órbitas elípticas, 0 ≤ e < 1 =⇒ E < 0 , y a partir de las relaciones p = a ( 1 − e 2 ) =
b 2 / a y de la definición de e , Obtenemos las fórmulas para los semiejes mayor a y menor b

a ≡ a ( E ) =
K
− 2 E

= − K
2 E

, b ≡ b ( G , E ) =
G√
− 2 m E

.

La distancia desde el foco hasta el pericentro y el apocentro (respectivamente) , se expresan como

rmin = a ( 1 − e ) , rmax = a ( 1 + e ).

Destacaremos que la ley de las áreas, para estas soluciones elípticas permite establecer la Tercera
Ley de Kepler,

a 3

P 2 =
1

( 2π ) 2
K
m
.

Podemos despejar el periodo orbital P en función del semieje mayor a como:

P 2 = ( 2 π ) 2 m
K

a 3 ,

por tanto, el periodo orbital de una órbita elíptica depende de la energía P = P(E ), pero es
independiente de la excentricidad de la misma. Introduciremos ahora el término de movimiento
medio, que llamaremos a la velocidad angular media con la que la masa móvil recorrerá la órbita
con un movimiento uniforme. Lo denotaremos como n , y será:

n =
2 π

P
=

√
K
m

a−3/2 ⇐⇒ n 2 a 3 =
K
m
,

que, debido a su relación con a y P, también depende de la energía, n = n( E ).

Para órbitas parabólicas, e = 1 =⇒ E = 0 . El elemento geométrico fundamental es el
semilado recto p . La mínima distancia entre el foco y la masa móvil será rmin = p / 2 . El
movimiento medio para este tipo de órbitas se define como

n 2 p 3 =
K
m
,

donde ahora el movimiento medio dependerá de la norma G del vector momento angular n =
n (G) .

Para órbitas hiperbólicas, e > 1 , =⇒ E > 0 ; a partir de las relaciones p = a ( e 2 − 1 ) =
b 2 / a , y de la definición de e, obtenemos las fórmulas para el semieje real a y transverso b ,

a ≡ a ( E ) =
K

2 E
, b ≡ b ( G , E ) =

G√
2 m E

.

El mínimo valor que toma r es
rmin = a ( e − 1 ).

Consideramos ahora una generalización del concepto de movimiento medio

n 2 a 3 =
K
m
,

donde a es el semieje real de la hipérbola.
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Finalmente para considerar resuelto el problema de Kepler, solo falta poder dar, en cada instante, la
posición concreta de la masa móvil a lo largo de su órbita, pues como ya hemos visto:

El momento angular G informa acerca de la orientación del plano orbital en el espacio tridi-
mensional.

La energía E indica el tipo de cónica (elipse, parábola, hipérbola) solución del problema en
cuestión.

El vector e de Laplace-Runge-Lenz-Hamilton marca la orientación de la cónica en el plano del
movimiento según el tipo de órbita.

Por tanto, para finalizar con la resolución , necesitamos establecer una relación tiempo-posición en
cada instante. Para ello utilizaremos la Ley Horaria del Movimiento que distinguiremos en función del
tipo de cónica.

ÓRBITAS ELÍPTICAS: n ( t − t p ) = E − e sinE = `, llamada Ecuación de Kepler del
movimiento elíptico, donde ` es la anomalía media y E la anomalía excéntrica

ÓRBITAS PARABÓLICAS: n ( t − t p ) = 1
6

(
tan 3 f

2
+ 3 tan

f
2

)
= `, expresión

conocida como ecuación de Barker, donde ` es la anomalía media del movimiento parabólica.

ÓRBITAS HIPERBÓLICAS: n ( t − t p ) = e sinhF − F = `, llamada ecuación de Kepler
del movimiento hiperbólico, donde ` es la anomalía media hiperbólica.
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