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Prologo

El Trabajo de Fin de Grado presentado a continuacion lleva el titulo de “Ecuaciones para el Movi-
miento Orbital de Tipo Hiperbdlico". Este trabajo surgi6 del interés que despertaron en mi la Mecéanica
Celeste y la Astrodinamica después de haber cursado la asignatura optativa Mecénica Celeste, impartida
por el profesor Luis Florfa Gimeno, que ha dirigido este TFG.

Esta Memoria contiene algunas de las ecuaciones que permiten abordar el estudio de érbitas elip-
ticas e hiperbdlicas perturbadas. Se ha procedido a realizar la deduccidén en el caso hiperbélico de las
variables de Delaunay, asi como de las ecuaciones planetarias en la forma de Lagrange y en la de Gauss.
Dicha deduccién, ha sido laboriosa en cuanto a la realizacién de los cdlculos y su posterior organizacién
para encontrarles acomodo en esta Memoria. Con la intencién de poner en contexto estas ecuaciones, se
ha procedido a hacer una descripcién verbal detallada de algunos conceptos basicos de Mecanica Celeste
y Astrodindmica. Ademds, se ha introducido en un Apéndice algunos de los contenidos de este Capitulo.

Para la documentacion de este Trabajo, me he basado fundamentalmente en el libro de Abad [1] y
el articulo de Floria [13], entre otros que se detallan en la Bibliografia.

Me gustaria, por dltimo, dar las gracias a mi director por su excelente orientacién y por su capaci-
dad para transmitir conocimientos de Mecdanica Analitica y Celeste que han resultado necesarios para la
elaboracion de esta memoria, asi como, por su paciencia y entrega.

Espero que disfruten de la lectura.

Edurne Navascués

II1






Resumen

Once fixed an inertial reference frame in space, the motion of a mechanical system consisting of
two bodies (idealized as material particles or point masses), moving in space under the effects of their
mutual interactions (internal forces satisfying Newton’s Third Law of Motion) is described by a set of
two second—order ordinary differential equations for the position vectors as the unknown functions. The
total differential order of this system is 12.

An appropriate coordinate transformation allows the original problem to be converted into two de-
coupled (say, independent) one—body problems, governed by their respective, independent equations of
motion:

= centre—of—mass—motion problem, a sixth-order differential problem immediately solvable, the
solution being a uniform rectilinear motion of the centre of mass with respect to the inertial
reference frame previously chosen;

= relative-motion problem, another sixth—order differential problem which is brought into the form
of a central-force-motion problem; this problem possesses the first integral of the angular mo-
mentum vector and, for this reason, its differential order can be reduced from order six to order
three. Accordingly, the plane of motion (or orbital plane) is a fixed, invariant plane, to which the
motion is confined.

If the central force field in the relative motion problem is conservative, that vector field admits a scalar
field as its scalar potential function (or potential energy), and the systems possesses the scalar first
integral of the mechanical energy, which allows the differential order of the problem to be reduced from
order three to order two. Then, at least from a purely theoretical and formal point of view, the resulting
system can be completely solved by two quadratures, which also introduce the two arbitrary constants
already required to have the general solution of the problem available.

In the special case in which the mutual interactions between the two bodies of the mechanical system
obey the well—known Universal Gravitational Law established by Newton, the original problem is
called the gravitational two—body problem, and the corresponding problem of relative motion is named
the Kepler problem, and is a special instance of problem of motion under the effect of a conservative
central force field.

The Kepler problem can be solved analytically in different ways: by two quadratures (as already
pointed out above), by means of the so—called Binet’s method, or with the help of a new first integral,
of a vector nature, known as the Laplace-Runge-Lenz—Hamilton integral, or integral of the eccentricity
vector.

This new first integral contributes three new scalar constants of motion, but only one of them is
functionally independent of the four scalar constants of motion already mentioned (say, the three com-
ponents of the angular momentum vector and the energy constant). To sum up: there are five functionally
independent first integrals for a differential problem of order 6, and so the complete solution can be ob-
tained by quadrature.

Irrespective of the approach that one might take, the solution to the Kepler problem is a conic—
section orbit (with the centre of the force field coinciding with the principal focus) which is fixed in space
and can be completely characterized by means of a set of six independent constants; and five amongst
these six constants can be expressed as functions of the above first integrals. In Celestial Mechanics and
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VI Capitulo 0. Resumen

Astrodynamics the constants involved in the solution to the Kepler problem are usually called orbital
elements, elements of the orbit, orbital parameters or parameters of the orbit. Accordingly, a complete
solution to the Kepler problem can be expressed in terms of orbital elements.

For a given Keplerian system, any set of six functionally independent constants related to the ge-
neral solution can be adopted as a set of orbital element. But astronomers have traditionally given their
preference to certain constants that have a useful geometrical and physical interpretation.

In this respect, the shape (or kind) of the orbit is specified by its eccentricity e. Its size (geometric
dimensions) is determined by one amongst the different metric elements of the conic—sections, such as:
semi—major axis a (for ellipses), semi—transverse axis a (for hyperbolas), distance g of the pericentre
(say, distance of the point of closest approach to the focus occupied by the centre of attraction; this
point is also called the periastron, or the periapsis) for any non—degenerate conic—section, distance Q
of the apocentre (i. e., distance of the furthest point in an ellipse to its centre of attraction; this point is
also known as the apoastron, or the apoapsis) for ellipses, semi—latus rectum (or parameter) p for any
non—degenerate conic—section. Its orientation in space is specified by three angles defined with respect
to a space—fixed coordinate system .# x| x,x3: the right ascension Q of the ascending node of the orbit
on the fundamental reference plane x; x,, and the inclination i of the orbital plane to the fundamental
plane x| x, account for the spatial orientation of the plane of motion; and the argument @ of pericentre,
reckoned in the orbital plane from the ascending node, gives the orientation of the conic—section within
the orbital plane, since it defines the direction of the straight line joining the principal focus and the
pericentre. All these elements can be expressed in terms of the aforementioned first integrals.

Once the pericentre has been determined, the position of the moving particle in the orbit relative
to the pericentre can be located by means of certain angle-type parameters called “anomalies” (the
classical anomaly angles in Keplerian motion are the true anomaly, the eccentric anomaly, and the
mean anomaly). The concepts of the true and the mean anomaly are defined for any non—degenerate
conic sections; as for the eccentric anomaly, it has different definitions and geometrical interpretations,
depending on the type of conic—section.

The true anomaly and the eccentric anomaly allow the position of the moving particle within its
orbit to be specified geometrically, but it is still necessary to specify this position in time. This can be
accomplished thanks to the time (or epoch) of pericentre passage, denoted with symbols such as 7, , T
or T, aquantity which is also related to the mean anomaly (and, consequently, to the other anomalies).
The mean anomaly varies linearly with time, whereas the time rate of change of the other anomalies is,
in general, non-linear and complicated.

Consequently, and after excluding rectilinear orbits (for which the angular momentum vanishes), a
Keplerian motion takes place along a solution to the Kepler problem, that is, a non—degenerate Keplerian
conic—section which is completely determined by a set of six orbital elements that, as a general rule, can
be taken as the constants

(a,or p,or g,or Q;e;i; Q;0;T),

although, in certain cases, replacing one or several quantities amongst these elements with other ones
(better adapted to certain peculiar features of motion, or more suitable for reckoning work) might turn
out to be quite advisable.

For unperturbed Keplerian motion, the preceding quantities are constants, and only the anomalies
are considered to be time—dependent. Due to the effects of other forces which perturb the motion, the
actual orbit departs from the ideal Keplerian solution; the disturbing forces produce variations, or chan-
ges (the so—called “orbital perturbations”) in the parameters characterizing the orbit, and the equations
of perturbed motion can be reformulated under the form of an equivalent system of six first—order diffe-
rential equations describing how the orbital elements at hand change under the effects of the perturbing
forces.

Such equations are usually known as planetary equations or equations of planetary motion, since
they were originally established within the framework of investigations concerning motion of planets
around the Sun, when their mutual gravitational perturbations were also included in the force model.
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These equations are found in the literature under two main forms, due to Lagrange (when the perturbing
forces derive from a potential) and Gauss (when the disturbing forces do not admit any scalar poten-
tial), and were proposed for PERTURBED ELLIPTIC MOTION. In either case, the derivation of planetary
equations requires a considerable amount of reckoning work.

Solving these equations would yield expression for the varying “constants” occurring in the Keple-
rian orbit subject to perturbations; then, introducing such expressions so as to replace the corresponding
constants occurring in the Keplerian reference solution would lead to the solution to the perturbed Ke-
plerian system in question.

Accordingly, the “true” orbit is represented in two parts: an auxiliary, reference orbit (provided by
the unperturbed problem), and perturbations superimposed upon the reference orbit.

In the present Memoir, Lagrange and Gauss systems of perturbation equations are derived for the
case of hyperbolic orbital motion.

The set of planetary equations in the Lagrange form, obtained with the help of the hyperbolic Delau-
nay variables, is constructed following the approach taken by Abad [1, Chapter 12, §12.2, p. 192-195],
Kovalevsky [20, Chapter III, §32, p. 40-42], and Vinti [28, Chapter 9, p. 109-114]. More specifically,
notations and style of presentation are borrowed from Abad.

As for the equations for the variations of the elements in the Gauss form, we adhere to the elegant
and conceptually rigorous treatment of Abad [1, Chapter 12, §12.3, p. 195-197] for the decomposition
of the perturbing forces and position vector in the orbital (or Gaussian) reference frame.

The Memoir is organized into three chapters and two appendices.

Chapter 1 is devoted to an introduction to the subject and a general review of some ideas pertaining
to CelestialMechanics and Astrodynamics. After a review of the two—body problem with internal forces,
the gravitational two—body problem and the Kepler problem, and the corresponding solution process
are described in detail. The basic ideas underlying the Method of Variation of Arbitrary Constants are
presented, and its application to perturbed Keplerian systems is considered. The contents are presented
in words, avoiding mathematical notations and formulae. Some contents in this Chapter are presented
in mathematical formulation in other parts of the Memoir.

The contents presented in Chapter 2 are intended to provide the reader with a basic general unders-
tanding of some concepts and results that are applied and/or modified in Chapter 3.

Chapter 3 deals with the derivation of the Lagrange and Gauss systems of differential equations
governing the time rates of change of hyperbolic orbital elements due to the acting disturbing forces. As
a preliminary step, a canonical set of Delaunay variables that are applicable to hyperbolic—tipe orbits is
derived according to Floria [13].

Some notions related to foundations of Physics and Mechanics are reviewed in Appendix A.

Finally, Appendix B collects some general background and mathematical expressions concerning
the two—body problem, in its most general form and in the gravitational case.






Capitulo 1

Introduccion

En este Capitulo, y con la intencién de poner en contexto el trabajo que se presenta en esta Memoria,
se ofrece una detallada descripcion verbal, evitando en lo posible el uso de notacién matematica y de
férmulas, de algunas cuestiones de Mecdnica Celeste y Astrodindmica: el problema de dos cuerpos (en
general) y el caso gravitatorio (en particular), el movimiento kepleriano puro y los sistemas keplerianos
perturbados, su tratamiento por medio del Método de Variacién de las Constantes Arbitrarias y las
ecuaciones de las perturbaciones de los elementos orbitales en las formas de Lagrange y de Gauss,
consideraciones sobre el movimiento a lo largo de érbitas de tipo hiperbdlico, etc.

Algunos de los contenidos de este Capitulo aparecen posteriormente presentados matematicamente
en los otros capitulos y en el Apéndice (B).

La mayor parte de las ideas recogidas en este Capitulo pueden encontrarse en muchos libros de Fi-
sica General, Mecdnica Clasica, Mecdnica Celeste y Astrodindmica. Mencionaremos aqui algunos con
los que hemos trabajado durante la elaboracién de esta Memoria: Abad [1, Parte I, Capitulo 1, §1.2,
pag. 4; Parte II, Capitulos 6-9, pdg. 95-162; Parte III, Capitulo 12, §12.1-§12.3, pag. 191-197]; Arya
[3, Capitulo 7, pag. 220-269]; Battin [4, Capitulo 3, pdg. 107-140; Capitulo 4, pag. 141-190; Capitulo
10, pag. 471-514]; Boccaletti y Pucacco [5, Capitulo 2, §2.1, pag. 126-136; §2.4, pdg. 147-156; §2.5,
pag. 156-162]; Bond y Allman [6, Capitulos 2—4, pag. 12-57; Apéndices A—C, pag. 217-232; Apéndice
F, pag. 239-242]; Cid y Camarena [8, Capitulo II, §1-§6, pag. 41-49; Capitulo V, §6-§8, pag. 123—
128]; Goldstein [15, Capitulo 1, §1.1, pag. 1-5; Capitulo 3, §3.1- S 3.9, pag. 70-105]; Meirovitch [21,
Capitulo 1, pag. 1-44; Capitulo11, §11.1, pag. 408-413; §11.9-11.10, pag. 442-450]; Scheck [24, Ca-
pitulo 1, §1.1-§1.7, pag. 1-20; §1.15, pag. 29-31; §1.22, pag. 42-44; §1.24, pag. 47-54; Apéndice del
Capitulo 1, pag. 81-86].

& El objetivo de este Trabajo es presentar la modificacion y adaptacion al movimiento orbital
hiperbolico de la deduccion de las ecuaciones del movimiento planetario de Lagrange y de Gauss que
Abad ofrece en [1, Capitulo 12, §12.2 'y §12.3].

1.1. El problema de dos cuerpos con fuerzas internas

Fijado en el espacio tridimensional un sistema de referencia inercial (véase Anexo I), el estudio del
movimiento de un sistema de dos cuerpos (idealizados como particulas materiales 0 masas puntuales)
unicamente sometidos a las fuerzas debidas a sus interacciones mutuas (es decir, bajo fuerzas internas
del sistema, que verifican la Tercera Ley de Newton de la Dindmica, o Principio de Accién y Reaccién),
y por lo tanto en ausencia de cualquier influencia de otros cuerpos o de otras partes el Universo, se for-
mula matemdticamente por medio de un sistema de dos ecuaciones diferenciales ordinarias de segundo
orden, de carécter vectorial, para dos funciones incégnita vectoriales (los vectores de posicién de dichas
particulas respecto del sistema de referencia elegido). En general se trata de un sistema de ecuaciones no
lineales y acopladas (que, ademds, pueden presentar singularidades), por lo que su resolucién analitica
puede ser dificil o, incluso, imposible.
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Su solucién general depende de dos constantes vectoriales arbitrarias, para cuya determinacion pue-
de suplementarse el sistema diferencial con condiciones iniciales y/o de contorno.

Descomponiendo los vectores en sus componentes escalares, dichas ecuaciones diferenciales vec-
toriales son equivalentes a un sistema de seis ecuaciones diferenciales ordinarias escalares de segundo
orden para las componentes de los vectores de posicién de las particulas como funciones incégnita, por
lo que en definitiva se trata de un problema diferencial de orden 12,y su solucién general dependerd de
cuatro constantes vectoriales arbitrarias, o de doce constantes escalares arbitrarias.

Efectuando un cambio de variables dependientes, el sistema diferencial de partida se convierte en un
sistema equivalente de dos ecuaciones diferenciales vectoriales desacopladas (es decir, independientes,
pues cada ecuacion s6lo involucra a una de las nuevas funciones vectoriales incégnita y a sus derivadas):
una de las ecuaciones describird el movimiento del centro de masas de las dos particulas, mientras que
la otra gobernard el movimiento relativo de una particula respecto de la otra. Asf el problema diferencial
de partida, que gobernaba el movimiento de dos cuerpos puntuales bajo fuerzas internas y era de orden
doce, se descompone en dos subproblemas independientes de orden seis para las nuevas funciones
incégnita, o —lo que es lo mismo— dos problemas desacoplados, equivalente cada uno a un problema de
un solo cuerpo.

= Debido al cardcter de fuerzas internas que se considera en este problema, la ecuacién diferencial
del movimiento del centro de masas corresponde al movimiento ! libre (es decir, en ausencia de
fuerzas) de una particula auxiliar de masa igual a la masa total del sistema de dos particulas (o
sea, la suma de las masas de las mismas), situada en cada instante en la posicidn del centro de
masas de las dos particulas originales. En virtud de la Primera Ley de Newton de la Dindmica,
o Principio de Inercia, y dependiendo de las condiciones iniciales, dicha particula ficticia (y, por
lo tanto, el centro de masas del sistema) permanece en reposo (relativo al origen del sistema de
referencia considerado) o se desplaza en el espacio con un movimiento rectilineo y uniforme.

Por lo tanto, el problema del movimiento del centro de masas estd completamente resuelto, y
su resolucion introduce seis constantes escalares arbitrarias funcionalmente independientes (las
“integrales primeras del centro de masas” del sistema). En consecuencia, el orden diferencial del
problema de partida se reduce de orden 12 a orden 6.

= A continuacidn se estudia el segundo subproblema: el movimiento relativo de una particula res-
pecto de la otra; en virtud del cambio de variables dependientes efectuado, este problema se
reformula como el estudio del movimiento 2 de otra particula ficticia, cuya masa se llama masa
reducida > del sistema de dos particulas de partida.

Como por hipétesis las particulas originales sélo estdn sometidas a fuerzas que satisfacen la Ley
de Accion y Reaccion, en el sistema diferencial transformado la ecuacion del movimiento relativo
caracteriza el movimiento de una masa puntual (de valor igual a la masa reducida) bajo la accién
de una fuerza central *, por lo que dicha ecuacién diferencial vectorial de segundo orden posee
la integral primera (vectorial) del momento angular de la particula. Como consecuencia de esta
conservacién del momento angular, el movimiento relativo transcurre siempre en un mismo plano;
se tratard de un plano fijo que admite al vector constante “momento angular” como un vector
normal o vector caracteristico, y el estudio del movimiento relativo puede reducirse al estudio del
movimiento de una particula (bajo el efecto de una fuerza central) en dicho plano.

Mas atin, gracias a las tres integrales primeras escalares funcionalmente independientes aportadas
por las tres componentes escalares constantes del vector momento angular, el problema diferencial

ILéase “movimiento respecto de la referencia inercial previamente elegida”.

2 éase “movimiento respecto de un sistema de referencia con origen en una de las particulas del sistema original y ejes
paralelos en cada instante a los ejes del sistema de referencia inercial anteriormente elegido al principio”.

3 Cociente entre el producto y la suma de las masas de las dos particulas del sistema mecénico original.

4 La recta soporte del vector “fuerza” pasa en todo instante por un punto, llamado centro de fuerzas. En este caso concreto,
la fuerza es colineal con el vector de posicion; expresado con més precision, la fuerza lleva en cada instante la misma direccion
que el vector de la posicion relativa de una de las particulas del sistema respecto de la otra.
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correspondiente al estudio del movimiento relativo puede reducirse de orden 6 a orden 3.

Otra consecuencia de la conservacion del momento angular en el caso del movimiento en campos
de fuerzas centrales es la LEY DE LA AREAS, generalizacion del resultado originalmente estable-
cido por Kepler para el movimiento de los planetas en el seno del Sistema Solar bajo la forma de
la SEGUNDA LEY DE KEPLER (“el radio vector barre dreas iguales en tiempos iguales”, “las
dreas barridas por el vector de posicion son proporcionales a los tiempos empleados para ha-
cerlo”, o cualquier enunciado equivalente), pero cuya validez puede justificarse para cualquier
fuerza central. Por este motivo, en muchas ocasiones se habla de la integral primera del momento
angular como de LA INTEGRAL DE LAS AREAS 0 LA CONSTANTE DE LAS AREAS.

Si ademads el campo de fuerzas central que gobierna el movimiento relativo es conservativo, la
fuerza puede expresarse mediante el gradiente de un campo escalar (llamado potencial, funcion
potencial o energia potencial), la ecuacion diferencial del movimiento relativo posee la integral
(escalar) de la energia, el problema del movimiento relativo puede reducirse de orden 3 a orden
2, y dicho problema puede resolverse completamente (al menos, formalmente) por medio de dos
cuadraturas (es decir, por cdlculo de primitivas), lo cual introduce las dos constantes arbitrarias de
integracion que -junto con las tres constantes del momento angular y la constante de la energia—
completan el nimero de seis constantes independientes que requiere la solucién general de un
problema diferencial de orden 6.

& Incluso cuando el campo central anterior no es conservativo, siempre que sea posible resolver los
dos problemas del movimiento del centro de masas y del movimiento relativo, y una vez obtenidas sus
soluciones, invirtiendo el cambio de variables dependientes y usando las soluciones de ambos subpro-
blemas serfa posible (al menos formalmente) resolver el problema del movimiento de cada particula del
sistema original respecto del sistema de referencia elegido al principio.

1.2. El problema gravitatorio de dos cuerpos y el problema de Kepler

& En el caso de que las fuerzas con las que interactian las dos particulas son las de su mutua
atraccién gravitatoria segin la Ley de Gravitacion Universal de Newton, y en ausencia de cualquier
otra fuerza, lo que da lugar al problema gravitatorio de dos cuerpos (0 problema newtoniano de dos
cuerpos), el problema de un cuerpo correspondiente al movimiento relativo se denomina problema de
Kepler (al que se asocian conceptos y locuciones como sistema kepleriano, o movimiento kepleriano),
y puede tratarse como un problema de movimiento de una masa puntual en un campo de fuerzas central
conservativo. Ademds, se puede resolver analiticamente el problema del movimiento relativo por medio
de funciones circulares, pues —entre otros métodos de resolucién— es posible efectuar explicitamente
las cuadraturas necesarias para obtener la solucién general del problema del movimiento relativo en
términos de funciones trigonométricas, y se concluye que las curvas solucién del problema de Kepler son
conicas fijas en el espacio con el centro de fuerzas > coincidente con un foco (resultado que constituye
una generalizacién del enunciado original de la PRIMERA LEY DE KEPLER del movimiento planetario
tal y como fue formulada por el propio Kepler).

Aunque el problema pueda considerarse formalmente resuelto, en la prictica, el problema de Kepler
no puede resolverse de manera elemental en forma cerrada por medio de funciones explicitas del tiempo,
ya que para Orbitas elipticas e hiperbdlicas la relacion entre el tiempo y la posicién se establece a
través de expresiones trascendentes (la ecuacion de Kepler correspondiente a cada tipo de 6rbita) que
no pueden invertirse de forma explicita por métodos elementales ni permiten encontrar en términos
finitos soluciones en forma cerrada por medio de funciones del tiempo explicitas y conocidas; para
Orbitas parabdlicas la relacion entre el tiempo y la posicién depende de una relacion (la ecuacién de

SRecuérdese que, para el estudio general del movimiento relativo, una de las particulas del sistema de partida ha servido
como origen de coordenadas y ha actuado como centro de fuerzas del campo de fuerzas central; en el contexto del problema
gravitatorio de dos cuerpos, esa misma particula serd ademds un foco de las drbitas solucién del problema de Kepler.
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Barker) que puede transformase en una ecuacién algebraica (de hecho, en una ecuacién polinémica de
tercer grado, una ctibica) que es resoluble por radicales.

Por otra parte, la ecuacion diferencial vectorial de segundo orden del problema de Kepler admite
una nueva integral primera (distinta de la integral del momento angular y de la de la energia), de ca-
racter vectorial, llamada integral del vector de Laplace—Runge—Lenz—Hamilton o vector excentricidad.
Esta constante del movimiento aporta informacién con un significado geométrico y fisico facilmente
interpretable y muy ttil para tratamiento matemadtico del problema de Kepler, y a partir de su expresion
se obtiene facilmente (y sin recurrir a la conservacién de la energia) una ecuacién paramétrica de las
curvas solucion del problema de Kepler (las érbitas keplerianas son cénicas con un foco ocupado por el
centro de fuerzas, y cuya excentricidad numérica estd relacionada con la norma de este vector).

Se observa, ademds, que la variable independiente (el tiempo) no figura explicitamente en la forma
funcional de ninguna de las expresiones de estas siete constantes del movimiento, por lo que sélo con
ellas no basta para la descripcion completa de las soluciones del problema: no es posible utilizar dichas
expresiones para relacionar ninguna de las variables de posicién y velocidad con la variable indepen-
diente (en este caso, el parametro temporal “tiempo”).

Asi que para un sistema kepleriano se dispone de dos integrales primeras vectoriales (momento
angular y vector de Laplace) y una integral primera escalar. Separando las constantes vectoriales en
sus componentes, son siete integrales primeras escalares para un problema de orden seis, por lo que
no todas ellas pueden ser funcionalmente independientes entre si: deberd existir al menos una relacién
funcional entre ellas. En realidad existen entre estas siete integrales primeras dos relaciones, por lo que
solo cinco de entre las siete son funcionalmente independientes.

En suma, para el problema de Kepler (formulado por un sistema diferencial de orden 6) las integrales
del momento angular, del vector de Laplace y de la energia s6lo aportan cinco constantes (escalares)
del movimiento funcionalmente independientes; esto permite reducir el orden del problema de orden 6
hasta orden 1, por lo que la resolucién completa del problema de partida se reduce a una cuadratura,
mediante la cual se establece la relacidn entre el tiempo y la posicion a lo largo de la 6rbita en cada
instante y se introduce la sexta y ultima constante (funcionalmente independiente de las anteriores,
pues ahora la variable independiente “tiempo” si que interviene explicitamente en la férmula obtenida)
imprescindible para obtener la solucién general de la ecuacion (o sistema) diferencial que gobierna el
movimiento kepleriano, y de este modo poder considerar —al menos desde un punto de vista puramente
formal y teérico— completamente resuelto el problema de Kepler.

1.3. Elementos orbitales de una conica kepleriana

Los principales conceptos y elementos métricos (o geométricos) de las conicas solucion del proble-
ma de Kepler (excentricidad, semilado recto, semieje mayor y semieje menor en las elipses, semieje real
y semieje imaginario en las hipérbolas, distancia focal) pueden considerarse como elementos dindmicos
de la 6rbita, una vez que —por medio de las relaciones entre los elementos geométricos notables que se
verifican para cada tipo de cénica— dichos elementos métricos se expresan en funcién de las constantes
del movimiento del momento angular, de la energia y del vector de Laplace. Por ejemplo, la clasifica-
cion geométrica de las conicas segiin el valor de su excentricidad se traduce en su clasificacion segiin
el valory el signo de la energia de la 6rbita.

El significado y el papel de cada una de las integrales primeras en relacion con la resolucién del
problema de Kepler puede resumirse de la siguiente manera:

= El vector MOMENTO ANGULAR informa acerca de la orientacion (posicion) del plano orbital
en el espacio; se trata del plano que pasa por el origen de coordenadas relativas (que, a su vez,
coincide con el centro de atraccién y con un foco de la cénica) y admite a dicho vector como un
vector normal; si este vector es nulo, se trata de un movimiento rectilineo sobre una recta que pasa
por el origen. Ademds, la norma del momento angular esté relacionada con un elemento métrico
bien definido en todo tipo de cénicas no degeneradas: el semilado recto o pardmetro.
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= La ENERGIA indica el tipo de conica; elipse, si la energia es negativa; pardbola, si su valor es
cero; hipérbola, cuando toma valores positivos. En los casos de érbitas con energia no nula, esta
cantidad estd relacionada con el “TAMANO” de la 6rbita (con el semieje mayor sies una elipse,
oconel semieje real si se trata de una hipérbola).

= El VECTOR DE LAPLACE marca la orientacion de la cénica en el plano del movimiento: segiin
el tipo de 6rbita, como este vector lleva la direccién Foco-Pericentro , informa acerca de
la direccién del eje mayor de la elipse, del eje real (o transverso) de la hipérbola, o del eje de la
pardbola. Ademas, el valor de su norma esta relacionado con el valor de la excentricidad de la
coénica (lo cual proporciona otro criterio para la clasificacidn del tipo de conica).

La solucién general del problema de Kepler depende de seis constantes arbitrarias independientes.
En Mecidnica Celeste y Astrodindmica es habitual utilizar las locuciones “elementos orbitales” o “pa-
rdmetros orbitales” para referirse a las constantes necesarias para determinar una 6rbita kepleriana.
Para su uso préctico, se prefiere considerar conjuntos de elementos orbitales que aporten informacién
facilmente interpretable acerca de las propiedades y las caracteristicas de una cénica kepleriana.

= Para fijar la orientacion en el espacio del plano del movimiento se utilizan el argumento de longi-
tud del nodo ascendente, Q,y el angulo i, inclinacion del plano orbital.

= El tipo de 6rbita queda determinado por el valor de e, la excentricidsd numérica de la conica en
cuestion, por lo que este elemento caracteriza la forma de la 6rbita.

= Segin el tipo de conica, el tamaiio (o las dimensiones) de la 6rbita queda determinado por el
semieje mayor, a, de las elipses, por el semieje real (o transverso), a, de las hipérbolas, o por
el semilado recto, p, en las pardbolas, aunque también a veces se utiliza el semilado recto o
parametro para dar cuenta de las dimensiones de la érbita independientemente de su tipo (ya
que p estd bien definido en toda cénica no degenerada). En ocasiones, se utiliza la distancia
del periastro (distancia entre el foco ocupado por el centro de fuerzas y el periastro o pericentro
de la 6rbita), g, concepto que también estd bien definido para cualquier cénica no degenerada.
En 6rbitas elipticas también puede utilizarse la distancia del apoastro (distancia entre el foco
ocupado por el centro de fuerzas y el apoastro o apocentro de la elipse), Q, concepto que sélo
tiene sentido al considerar 6rbitas acotadas (elipses).

= La orientacién de la cénica en el plano orbital queda fijada por el argumento del periastro, ®,
que determina la direccién del eje mayor para las orbitas elipticas, del eje real (o transverso) para
las hiperbdlicas, y del eje (Gnico) en el caso de las pardbolas.

En suma, la geometria de la 6rbita queda determinada por los CINCO ELEMENTOS “ESTA-
TICOS” (a, 0 p,0 q,0 Q;e;i; Q; ®). Ain hace falta un sexto ELEMENTO “CINEMATICO” que
permita localizar a la particula en su posicién concreta en un punto de la érbita. Para eso suele utilizarse
el instante en el que la particula efectda su paso por el periastro de su Orbita, instante que se repre-
senta t,,T o T,y se denomina época de paso por el periastro. En Orbitas no acotadas (pardbolas e
hipérbolas), dicho paso s6lo ocurre una vez; para Orbitas elipticas, se considera el valor de este elemen-
to “mddulo el periodo orbital”. También es habitual utilizar otros elementos para este mismo fin; en
particular, si se adopta la definicion generalizada de “elemento” de Stiefel y Scheifele [26, Capitulo V,
§18, pag. 83—84]), la anomalia media ¢ (que es una funcién afin de la variable independiente “tiempo’)
puede desempeiiar el papel de sexto elemento orbital.

En definitiva, y salvo en el caso de trayectorias rectilineas, un movimiento kepleriano tendra lugar a
lo largo de una cénica no degenerada perfectamente determinada por un conjunto de seis elementos or-
bitales, que —en general— pueden tomarse como las constantes (a, 0 p,0 g,0 Q;e;i;Q;0;T),
aunque en ciertos casos pueda ser mds conveniente reemplazar alguno o algunos de estos elementos
por otros mejor adaptados a las peculiaridades del movimiento o que faciliten la realizacién de algunos
célculos.
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En cualquier caso, los elementos “estiticos”, y sus posibles variantes pueden relacionarse con las
integrales primeras del momento angular, de Laplace y de la energia.

Para el movimiento de tipo eliptico, tradicionalmente se ha utilizado como conjunto de elementos
“estdticos” el conjunto de constantes (a; e;i; Q; ®).

1.4. Sistemas keplerianos perturbados. Variacion de las constantes

Si se desea estudiar el movimiento de un sistema de dos particulas que, aparte de experimentar
sus interacciones mutuas formalizadas por medio de fuerzas internas del propio sistema de particulas,
estdn sometidas a otras fuerzas, que se pueden considerar como “fuerzas externas” al sistema de dos
particulas (y debidas a otras particulas y otros cuerpos), se puede pensar que esas fuerzas perturban
(alteran, modifican) el movimiento del sistema estudiado hasta ahora.

A menudo ocurre que en un sistema fisico hay unas fuerzas “dominantes” y otras de magnitud
considerablemente menor (en la préctica, uno o varios 6érdenes de magnitud inferiores a las otras fuer-
zas). Una manera de tratar matemdticarnente estas situaciones consiste en establecer y estudiar en primer
lugar un modelo simplificado “razonable” (que da lugar al problema no perturbado, o sistema no pertur-
bado) que pueda considerarse como una “PRIMERA APROXIMACION” al problema completo (problema
perturbado o sistema perturbado); si el modelo simplificado es resoluble, se puede intentar analizar
el efecto de las fuerzas de menor magnitud (consideradas como “fuerzas perturbadoras”, o “perturba-
ciones”) sobre la solucién del problema simplificado, es decir, en qué medida esas fuerzas perturban
(modifican, alteran, deforman distorsionan) la solucién de referencia del modelo simplificado. Esta es,
en esencia, la idea que inspira los métodos de perturbaciones o teorias de perturbaciones. Su proposito
es llegar a determinar las “desviaciones”, diferencias o discrepancias (perturbaciones) entre el movi-
miento “verdadero” gobernado por el modelo completo y el movimiento de referencia obtenido como
solucién del modelo simplificado.

Una manera de abordar esta cuestion se basa en postular para el problema perturbado una solucién
con la misma estructura y forma funcional que la solucién general del problema no perturbado, pero con
la salvedad de que se supone que las constantes arbitrarias de la solucion del problema no perturbado
son cantidades variables (funciones todavia desconocidas) que se intentard determinar analiticamente.
Este es el fundamento del METODO DE VARIACION DE LAS CONSTATES 0 METODO DE VARIACION
DE LOS PARAMETROS que suele atribuirse a Lagrange y llevar su nombre, y a través del cual se establece
un sistema de ecuaciones diferenciales para las variaciones de las “constantes” por efecto de la fuerzas
perturbadoras; una vez integradas dichas ecuaciones, e introducidas las expresiones obtenidas en lugar
de las constantes que aparecen en la solucién general del problema no perturbado, se dispondria de la
solucién del problema perturbado.

En el problema gravitatorio de dos cuerpos, cuando en el modelo se incluyen otras fuerzas pertur-
badoras (de diversa magnitud, naturaleza y origen), el problema del movimiento relativo se denomina
problema de Kepler perturbado (al que se asocian nociones y expresiones como sistema kepleriano
perturbado, o movimiento kepleriano perturbado), y, debido al efecto de las fuerzas perturbadoras, el
movimiento real diferird del movimiento kepleriano puro representado por una cénica fija en el espacio.
En lo sucesivo se adoptara la terminologia de Abad [1, Capiitulo 12, §12.1, pag. 191-192], y se usard la
locucién “MOVIMIENTO ORBITAL” con el significado de “movimiento kepleriano perturbado”.

Conforme a lo anterior, se puede abordar la resolucién de los sistemas keplerianos perturbados a
partir de las ecuaciones de la variacion de las constantes (y, en particular, de los elementos orbitales) de
una 6rbita kepleriana pura —tomada como 6rbita de referencia— cuando se le superponen perturbaciones.

Por su importancia para el estudio del movimiento de muchos cuerpos celestes naturales (la Luna en
torno a la Tierra, los planetas en torno al Sol, etc.) y —mds recientemente— artificiales (satélites artificiales
de la Tierra, algunas sondas espaciales, etc.), tradicionalmente las 6rbitas (keplerianas o perturbadas)
de tipo eliptico han atraido la atencién de los investigadores, por lo que existe un gran repertorio de
formulaciones y métodos para su tratamiento. Las érbitas no acotadas (pardbolas e hiperbdlas), aparte de
su interés tedrico, encuentran aplicacién —por ejemplo— en el estudio del movimiento de ciertos cometas
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y —posteriormente— en cuestiones de navegacion espacial y maniobras espaciales. En relacién con el
movimiento orbital hiperbdlico, véase, por ejemplo, Hori [17], [18], Sauer [23], Rappaport, Giampieri
y Anderson [22], Kamel, Soliman y Ammar [19].

Por medio del Método de Variacion de las Constantes diversos autores establecieron sistemas de
ecuaciones para las variaciones de los elementos de una orbita eliptica bajo perturbaciones (es decir,
relaciones entre las fuerzas perturbadoras y las variaciones de los elementos elipticos), siendo las mas
conocidas las ecuaciones del movimiento planetario o ecuaciones planetarias de LAGRANGE (cuando
las fuerzas perturbadoras derivan de un potencial ® , llamado potencial perturbador) y de GAUSS (para
el caso de fuerzas que no admitan potencial , como por ejemplo las fuerzas disipativas).

La deduccién tradicional de las ecuaciones planetarias en la forma de Lagrange, tal y como suele
presentarse en muchos libros, requiere un proceso de cdlculo muy largo y laborioso. Numerosos autores
efectiian muchos de los célculos intermedios recurriendo a paréntesis de Lagrange.

Abad [1, Capitulo 12, §12.2, pags. 192—-195], Kovalevsky [20, Capitulo III, §32, pag. 40—41],y Vin-
ti [28, Capitulo 10, pdg. 109-114] deducen las ecuaciones planetarias de Lagrange para las variaciones
del conjunto de elementos orbitales keplerianos elipticos“cldsicos” ® (a;e;i; Q; w; ¢) utilizando
las relaciones entre dichos elementos y las variables de Delaunay del movimiento eliptico y evitando el
uso de paréntesis de Lagrange. EN ESTA MEMORIA SE PROCEDERA DE ESTE MODO A LA HORA DE
DEDUCIR UNA VERSION “HIPERBOLICA” DE LAS ECUACIONES PLANETARIAS DE LAGRANGE.

La deduccidn de las ecuaciones de las perturbaciones en la forma de Gauss también entrafia un lar-
go trabajo de cdlculo. Para proceder a dicha deduccién se expresan las derivadas parciales del potencial
perturbador respecto a los elementos orbitales en funcidn de las componentes de la fuerza perturbadora
en las direcciones del vector de posicién (componente en la direccién radial), en la direccién perpendi-
cular al vector de posicién en el plano del movimiento (componente en la direccidn transversal) y en la
direccién perpendicular al plano orbital (componente en la direccién normal) en cada punto de la 6rbita;
a continuacion se introducen las expresiones asi obtenidas en las ecuaciones planetarias de Lagrange,
quedando reemplazadas las derivadas parciales del potencial perturbador por las componentes radial,
transversal y normal de la fuerza perturbadora. EN ESTE TRABAJO SE OBTENDRAN LAS ECUACIONES
PLANETARIAS DE GAUSS PARA EL MOVIMIENTO HIPERBOLICO SIGUIENDO EL ESQUEMA DE (Abad
[1, pag. 195-197])).

1.5. Acerca del movimiento orbital de tipo hiperbdlico

En comparacién con el movimiento orbital de tipo eliptico, la posibilidad de establecer teorias de
perturbaciones para 6rbitas de tipo hiperbdlico ha merecido menos atencidn.

En principio, y al menos desde el punto de vista tedrico y conceptual, el tratamiento analitico del
movimiento orbital de tipo hiperbdlico tiene la misma importancia que el del caso de drbitas acota-
das. Ademds, conviene recordar que en algunas aplicaciones précticas la naturaleza de la érbita puede
cambiar debido al efecto de fuerzas perturbadoras que actien durante un intervalo finito de tiempo. Por

SLas ecuaciones de las perturbaciones en la forma de LAGRANGE expresan las variaciones de los elementos orbitales en
funcién de las derivadas parciales del potencial perturbador respecto de dichos elementos. Por este motivo resulta necesario
disponer del potencial de las perturbaciones expresado en funcién de los elementos orbitales.

7La forma de GAUSS de las ecuaciones de las perturbaciones da las férmulas de las variaciones de los elementos orbitales en
funcién de las componentes radial, transversal y normal de las fuerzas perturbadoras en cada punto de la érbita; las direcciones
de estas componentes son perpendiculares entre si, forman en cada punto un triedro dextrégiro, y es habitual llamar a este
sistema de coordenadas sistema de referencia orbital (Abad [1, Capitulo 6, §6.4, pag. 101-103; Capitulo 9, §9.4, §§9.4.5,
pag. 149-150]) o sistema de coordenadas de Gauss. La forma de Gauss de las ecuaciones planetarias permite analizar por
separado la influencia de cada componente de las fuerzas perturbadoras sobre la evolucién de cada elemento orbital.

8Si se desea, la variacién del elemento T, época de paso por el periastro, puede obtenerse a partir de la ecuacién de la
variacién de la anomalia media ¢ (Abad [1, pag. 194-195]). Este autor da preferencia a la opcién en favor de ¢, debido a
la sencilla relacién funcional entre el tiempo fisico y la anomalia media, y las relaciones de ésta con las otras anomalias del
movimiento kepleriano, en funcién de las cuales suelen expresarse las fuerzas perturbadoras que intervienen en numerosas
situaciones de interés en Mecdnica Celeste y Astrodindmica.



8 Capitulo 1. Introduccion

estos motivos puede parecer interesante tratar de generalizar y adaptar al caso hiperbdlico conceptos,
métodos y resultados que han resultado fecundos para el estudio del movimiento acotado.

Ya en los primeros afios de la Era Espacial, tras el lanzamiento de los primeros satélites artificiales
de la Tierra en la segunda mitad de la década de 1950, diversos autores (Hori [17], [18]; Sauer [23];
Cid, Lahulla y Calvo [9]) formularon y analizaron el problema del movimiento de un satélite artificial
a lo largo de una orbita de tipo hiperbdlico, sometida a perturbaciones gravitatorias debidas a la no
esfericidad del cuerpo central, truncando el desarrollo del geopotencial en el segundo arménico zonal
(lo que da lugar al Problema Fundamental de la Teoria de Satélites Artificiales).

Con posterioridad, otros autores han abordado este mismo problema (Alvarez y Floria [2]), u otros
relacionados con ciertas operaciones y maniobras espaciales en las que se recurre a 6rbitas hiperbdlicas
perturbadas (Rappaport, Giampieri y Anderson [22] ; Kamel, Soliman y Ammar [19]).

Como se acaba de mencionar, algunos precedentes notables de esta clase de estudios pueden encon-
trarse en el campo de la Teoria del Satélites Artificiales de la Tierra. Hori [17], [18], en su anélisis del
movimiento hiperbdlico de un satélite artificial en el Problema Fundamental (o Problema Principal,
“Main Problem”) de dicha Teoria, introdujo una variante adecuada del conjunto canénico de variables
de Delaunay adaptando al caso hiperbdlico la construccién de Brouwer y Clemence [7, Capitulo XI, §4,
pag. 279-283, y §9, pag. 289-291] en el movimiento eliptico. Una vez definidas sus variables hiperb6-
licas de tipo Delaunay, Hori modifica las consideraciones de Brouwer (recogidas en [7, Capitulo XVII,
§12, pag. 562-573]; y “Notes and References” de este mismo capitulo, pag. 591-593); por analogia con
los desarrollos de Brouwer, para establecer las perturbaciones de los elementos de Delaunay Hori utili-
za el método candnico de perturbaciones de Poincaré—von Zeipel, haciéndolo aplicable al movimiento
hiperbdlico,

Sauer [23] también aborda el estudio de las variaciones, debidas a los efectos del potencial pertur-
bador del Problema Fundamental, de los elementos hiperbdlicos de una nave espacial, con el propdsito
de aplicar los resultados a una misién de escape de una sonda lunar o interplanetaria.

Cid, Lahulla y Calvo [9] estudian el mismo caso hiperbélico del Problema Fundamental de mo-
vimiento de un satélite artificial, formuldndolo en variables polares nodales y, como Hori, recurren al
método de Poincaré—von Zeipel para efectuar el calculo de perturbaciones.

Rappaport, Giampieri y Anderson [22, §3, pdg. 169—-170] obtienen unas ecuaciones de Lagran-
ge para elementos hiperbdlicos adaptando a dicho caso la deduccién de Battin [4, Capitulo10, §10.2,
pag. 476-484] de las ecuaciones de Lagrange del movimiento eliptico.

Kamel, Soliman y Ammar [19] modifican el procedimiento de Smart [25, Capitulo 5, §5.01-§5.10,
pag. 55-71; Capitulo 14, §14.01-§14.4, pag. 218-222] y obtienen unas ecuaciones planetarias de La-
grange y de Gauss para elementos hiperbdlicos.

En este trabajo, a partir de una variante de las variables de Delaunay, apta para su aplicacion al
movimiento kepleriano hiperbdlico, y siguiendo el esquema de Abad [1], Kovalevsky [20] y Vinti [28],
se obtienen en primer lugar unas ecuaciones de tipo Lagrange para movimiento orbital de tipo hiperbo-
lico. A continuacion, aprovechando las ventajas de la notacion matricial y del cdlculo con matrices, se
construyen las ecuaciones planetarias de Gauss para el movimiento orbital de tipo hiperbdlico segtin el
elegante y riguroso esquema seguido por Abad [1, Capitulo 12, §12.3, pag. 195—197] para la deduccion
de las ecuaciones de Gauss para orbitas perturbadas de tipo eliptico.



Capitulo 2

Algunos conceptos de Dinamica Orbital

En este capitulo se recogen de manera abreviada algunos conceptos y resultados de Mecdanica Orbital
que son de interés para su aplicacién en esta Memoria. Para su seleccion y presentacién nos hemos
basado en Abad [1]. Véase también el Apéndice (B) de esta Memoria.

2.1. Elementos orbitales

Una 6rbita kepleriana (que serd una cénica no degenerada) es una solucién de las ecuaciones del
problema de Kepler (B.21) con unas condiciones iniciales dadas. En la préctica, necesitamos definir

Figura 2.1: Orbita kepleriana en el espacio

unos pardmetros que determinan la geometria y la cinemdtica de la 6rbita, [ 1, Capitulo 9, §9.2, pag. 143—
145]. Comenzaremos con la forma y tamafio de la cénica, y para ello definiremos la excentricidad e
para cualquier cénica, el semieje mayor a para la elipse, el semieje real a en el caso de la hipérbola
o el semilado recto p para cualquier cénica no degenerada. La distancia en el periastro viene dada por
g = a(l —e) para 6rbitas elipticas, g = a(e—1) para hiperbdlicasy g = p/2 para parabdlicas.
La distancia en el apoastro, Q = a(1+e), solo tiene sentido en las elipses.

El plano de la 6rbita y el plano fundamental del sistema espacial &'xy no son en general paralelos,
y por lo tanto se cortan en una recta que llamaremos linea de nodos. La linea de nodos forma con el
eje Ox un dngulo Q € [0,27], dngulo del nodo. El dngulo formado entre el plano &xy y el plano de la
orbita se llama inclinacion, i € [0, t]. Estos dos pardmetros definen la posicion del plano de la érbita en
el espacio.

Podemos determinar la orientacién de la cénica en el plano conociendo la direccion del eje de la
orbita (direccidn foco-pericentro), que forma con la linea de nodos un dngulo ® llamado argumento

9
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del periastro, y que tomard valores entre 0y 2 7 .

Finalmente, para caracterizar su cinemdtica, definimos la constante 7 que indica la época de paso
por el periastro.

Estos pardmetros constituyen un conjunto de elementos orbitales (a, 0 p,0 g, 0 Q;e;i; Q; o).

2.2. Sistema orbital

El sistema orbital [1, Capitulo 9, §9.4, §§9.4.5, pag. 149-150] , % = {u,v,n}, o sistema de
coordenadas de Gauss, es un sistema de referencia mévil cuyo primer eje lleva la direccién radial.
Por ello, llamaremos u al vector unitario en dicha direccién, de forma que r = r u, y v al definido por
v = n X u, siendo n el vector unitario normal al plano de movimiento (que lleva la direccién del vector
momento angular), de modo que estos tres vectores definen un sistema dextrégiro.

El paso del sistema espacial, .7 = {e;, e, e3}, al sistema orbital, %7 = {u,v,n}, se efectia mediante
la composicién de tres rotaciones elementales sucesivas, siendo la matriz de giro resultante [1, pag. 150]

Gyw = R3(Q) Ri(i) R3(0+f).

2.3. Algunos sistemas de variables en Mecanica Orbital

Aparte de los sistemas de coordenadas de uso mas habitual en Matemaéticas y Fisica, en Mecanica
Celeste y en Astrodindmica también se utilizan algunos sistemas de variables especialmente adaptados
para la formulacién y el tratamiento de ciertos problemas. Asi, en la Mecdanica Orbital se emplean —
entre otros— conjuntos de variables como las de Jacobi, las polares nodales de Hill y Whittaker, las de
Delaunay, las de Poincaré, etc. De entre ellos, las variables polares nodales (o de Hill y Whittaker) y las
variables de Delaunay son de especial interés para la realizacion de este Trabajo.

2.3.1. Variables polares nodales de Hill y Whittaker

Originalmente propuestas por Hill [16, pdg. 173—174] en una investigacién sobre el problema de n
cuerpos, aparecen expresadas por medio de unas ecuaciones [16, pdg. 173] que las relacionan con las
variables cartesianas y que definen una transformacién cuya canonicidad comprueba a continuacién por
medio de cdlculos largos y muy laboriosos. El conjunto candnico de variables polares nodales de Hill
y Whittaker, (r, 0, V; p,, pg, pv), tiene el siguiente signficado:

= 7 > 0 denota la distancia radial del mévil,
= 0 esel argumento de latitud del mévil, y estd definido médulo 2 7,
= v representa al argumento de longitud del nodo ascendente, €,
= p, = 7 eslacomponente radial de la velocidad de la masa en movimiento,
= pg = G denota ala norma del vector momento angular,
= p, = G cosi designa a la componente polar del vector momento angular,
Esdecir, r = |[|r], 6 = o+ f, v =9Q, p, =7F pe = G, py = Gcosi.

El hamiltoniano del problema de Kepler se expresard en estas variables en la forma

1 5 :
%k(tvraeavaprapeapv) = 2<p3+€(29> _%? siendo H :g(ml"f’mZ)- (21)
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2.3.2. Variables de Delaunay en el movimiento eliptico

Delaunay [10, Capitulo I, pdgs. 1-14] construy6 el conjunto canénico de variables que llevan su
nombre a partir de una formulacién newtoniana de las ecuaciones del movimiento del problema de
Kepler en coordenadas cartesianas y de las integrales primeras del momento angular y de la energia,
resolviendo el problema del movimiento eliptico por medio de dos cuadraturas. Estas variables pueden
obtenerse a partir de las polares nodales por medio de una transformacién canénica definida por una
funcién generatriz (Deprit y Rom [12, §2, pag. 172-174], Deprit [11, §2, pag. 115-118]). Este enfoque
se seguird en esta Memoria para construir unas variables de Delaunay para el movimiento hiperbdlico.

Las variables de Delaunay (1,g,h,L,G, H) en el movimiento eliptico son :

{ = E — esinE, L = Jua,
g =6 —f = o, G = \Jpa(l —e?) = py,
h =v = Q, H = Gcosi = py,

donde (a, e, i, o, Q) son elementos keplerianos clédsicos de la 6rbita elipticay E es la anomalia
excéntrica. En funcion de estas variables el hamiltoniano del problema de Kepler tiene la expresion

Hp = A (1,0,8,h,L,G,H) = —p*/(2L%), (2.2)

de donde se deduce que excepto ¢ (que dependera linealmente del tiempo), las otras cinco variables de
Delaunay se mantiene constantes a lo largo del movimiento kepleriano. Eligiendo adecuadamente las
condiciones iniciales se puede concluir que ¢ = (r — T).

2.4. Ecuaciones diferenciales del movimiento orbital

La ecuacion del movimiento kepleriano (B.21) gobierna el movimiento relativo de un punto material
respecto de otro, cuando ambos se atraen segin la Ley de Gravitacion de Newton. Este modelo es
una aproximacién a la realidad, pues no existen cuerpos aislados, y éstos en general no son puntos
infinitesimales sino distribuciones extensas de masa. Ademas, existen otros efectos, gravitatorios y no
gravitatorios, que modifican el movimiento kepleriano y que dan lugar al movimiento orbital.

Formularemos los problemas de movimiento orbital a partir de la ecuacién diferencial

r+u%=ﬁ, 2.3)

donde ﬁ representa la perturbacion o aceleracién que produce la perturbacién. Cuando se verifique que
| 2 || < u /r?, es decir, cuando la aceleracién que produce la perturbacién sea mucho menor que la
kepleriana, la solucién de la ecuacién (2.3) se llamara movimiento kepleriano perturbado o movimiento
orbital. Si existe una funcion escalar V), tal que = —V,V,, podemos definir un hamiltoniano

1
AUrE) = A+ V, = 2f~-r—||“r||+vp,

como suma del hamiltoniano kepleriano .77 y la funcién V,, que se llama potencial perturbador.

Tradicionalmente se han tratado los problemas de movimiento orbital por el Método de Variacion de
las Constantes, con el propdsito de establecer unas ecuaciones que describan cémo varian los elementos
de una o6rbita kepleriana cuando en el modelo dindmico se incluyen otras fuerzas que perturban el
movimiento kepleriano puro. De entre los sistemas de ecuaciones que se han propuesto, las ecuaciones
planetarias de Lagrange y de Gauss han gozado de gran aceptacién y han sido ampliamente utilizadas.
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2.5. Ecuaciones planetarias de Lagrange para el movimiento eliptico

Las ecuaciones para las perturbaciones de los elementos orbitales de un movimiento eliptico en la
forma de Lagrange, aplicables cuando las fuerzas perturbadoras derivan de un potencial V,, son

da 2 9V,

dr " na 90

de  V1—€e2dV, 1—e2dV,

dt  nale Jdw  ena? ol

di 1 v, cosi aV,
dt  na?V1 —eZsini 0Q  na?2y/1 — e2sini 00’
iQ v, 1 IV,

dt  0H  npaZsenivl—e2 0i’

do V1 —-e2dV, cosi av,

dt ~ ena? de na2+1 — eZsini di’

dl 29V, 1-¢20V,

a2 + )

dt na da nate de

Estas ecuaciones expresan las variaciones de los elementos orbitales en funcion de las derivadas parcia-
les del potencial perturbador respecto de dichos elementos.

2.6. Ecuaciones planetarias de Gauss para el movimiento eliptico

Estas ecuaciones constituyen una alternativa a las ecuaciones de Lagrange en el caso de que las
fuerzas perturbadoras no admitan un potencial. Expresando la fuerza perturbadora ﬁ en el sistema

orbital % se tiene que ? = (Pu, Py, Py), [1, Capitulo 12, §12.3, pag. 195-197], y llamando
N = V1 —e¢? setienen las ecuaciones planetarias de Gauss para el movimiento eliptico,

d 2 e si 2

aa _ megzu_i_ an P,

dt nn nr

@ = nSinfyu“‘ n3 - il yw

dt an ern a’en

di _ reos(o + f)

dt - aznn ns

a0 _ rsin +f

dt  a?nsinin ~ "

do _ n cos f (@u+r(2 +ecosf) sinf gﬁ_rsin(a)—k.f.) cosi .
dt aen a’nen a?n sinin
dt = n+ —2r+nzcosf e@u_r(2+ecosf)sinf(@v.
dt a’n aen alen

En esta dltima férmula se ha corregido un error tipografico que hemos detectado en el dltimo término
de la correspondiente ecuacién de [ 1, Capitulo 12, §12.3, Ec.(12.21), pag. 196]. Estas ecuaciones indican
como varian los elementos orbitales en funcién de las componentes de la fuerza perturbadora respecto
del sistema orbital o sistema de Gauss, y permiten analizar por separado el efecto de cada componente
de la fuerza perturbadora sobre las variaciones de cada uno de los elementos orbitales.



Capitulo 3

Ecuaciones para el movimiento orbital
hiperboalico

En este capitulo se presenta la construccién de un conjunto de variables candnica de tipo Delaunay
aplicables al movimiento hiperbdlico [13], asi como una deduccién de la versién hiperbdlica de las
ecuaciones de Lagrange y de Gauss segun el procedimiento seguido por Abad [1, Capitulo 12, §12.2-
§12.3, pag.192-197].

3.1. Variables de Delaunay para el movimiento hiperbdlico

Algunos autores han considerado la definicidn de sistemas de variables orbitales que resulten ade-
cuados para su aplicacién a movimientos hiperbdlicos. Hori [17, §1, pdg. 258-259]) introdujo unas
variables de Delaunay para estudio del movimiento orbital hiperbdlico adaptando Brouwer y Clemence
[7, Capitulo XI, §4, pag. 279-283 y §9, pag. 289-291]. Propuso [17, §10, pag. 262-263] también otro
sistema de variables canénicas para el movimiento de tipo hiperbdlico por efecto de una fuerza repulsiva
(problema de dispersion, o “scattering”). Floria [13], a partir de las variables polares nodales obtuvo las
variables introducidas por Hori [17], [18], modificando la “aplicacién de Delaunay” (o “transformacién
de Delaunay”) considerada por Deprit [11, §2, pag. 115-118]) para el movimiento eliptico. Posteriores
reelaboraciones del concepto de “aplicaciéon de Delaunay” permiten obtener tanto las variables cldsicas
de Delaunay del movimiento eliptico como su version hiperbdlica como casos particulares de las trans-
formaciones consideradas en Floria [14, §2, pdg. 77-81].

A partir del sistema candnico de variables polares nodales de Hill y Whittaker, aplicable para cualquier

. o . . S
tipo de 6rbita, se efectda una transformacién (r, 6, v; p,, pe,pv) — (£, g,h; L, G, H),
completamenta candnica, para obtener unas variables de Delaunay para el movimiento hiperbdlico.

La transformacién se define implicitamente por medio de la funcién generatriz de segundo tipo

S =8r,0,v;L,G,H) = 9G—|—VH—|—/ \/édr,
0

que depende de las coordenadas del sistema antiguo y de los momentos del sistema nuevo, y donde rg
es una raiz de la ecuacion Q(r —, — L, G, —) = 0, siendo
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Las ecuaciones implicitas de la transformacion candnica definida por S son

dS N u?
pPr = E = \/>7 = oL = 7ﬁ11’
as as
pGZEZGv 8:9G26+G11’
as as
pV = % = H, h = aH = \/7
donde
rdr rd(1/r)
L= ==, I,= / .
ro VO ro V0O
Introduciendo unas cantidades auxiliares a = a(L), e = ¢(L,G), p = p(G), por medio de
L =—-\ua, G? = pa(e®—1),
2 G? 2
e = 1+ﬁ, p = a(e _1)7
obtenemos
2p | p* pa(e* —1) u > >
="ty = = 5 (2ar+r?—a(e?-1)) = G

ae’u ((r + a) 2 )
= 5 —-1].
r ae
Porlotanto Q (r,L,G) = 0 = ro = a(e—1).
Para calcular 7 se define una variable auxiliar F = F (r, L, G), anomalia excéntrica hiperbélica

atr = coshF, r = a(ecoshF — 1), dr = a(sinhF )dF,
ae
y asi,
2,2 2
‘LLa e . 2 ‘Ll e . 2
© arz 0 a (ecoshF—l)2S1n

Efectuando este cambio de variable de integraciéon, r — F,

[P alecoshF — 1) "3/2/F<ecoshF—1>dF -

Iy = inhF )dF =——
: Fo /M esinhF a (e sinhF) uirz

a3 . F
= I[e sinhF' — Fp, .
3

Como ro = a(ecoshFp—1) =a(e—1)=0=F =0 =1, = %[esinhF—F],

Fo

lo que convierte a la ecuacién de Delaunay para ¢ en la ecuacion de Kepler hiperbdlica

2 2 3
¢ = —%11 - —%M%[esinhF—F] — esinhF — F.

Para obtener I, , introduciendo andlogamente otra variable auxiliar f, anomalia verdadera, tal que

p 1 esinf
- P () = &y
' 1 + ecosf <r> p f
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y sustituyendo en (3.1), tenemos

0 :%[Zar—i-rz— (ae)? +a? = (eezli 0 sin’ f = %sinzf7
y asi podemos obtener
A B o S ML {‘1f]f,
fo VO fo Hesinfp VEP J 5 VEP ],
ycomo ro =p/(1+ecosfp) = a(e—1) = fy = 0, tenemos finalmente que,
I, =[—f/(Jup)l}, = —f/G = g = 06+Gl, = 6+G(f/G) = 6 — f.
En resumen, las ecuaciones de la trasformacion son
{ = esinhF — F, L = —\/lua, 3.2)
g =060—-f = o, G = \Jpa(e?—1) = py, (3.3)
h=v = Q H, = Gcosi = py, (3.4)

donde (a, e, i, , Q) son elementos keplerianos cldsicos de la 6rbita hiperbdlica.

El hamiltoniano (2.1) del problema de Kepler en variables de Hill es, en variables de Delaunay,

1 [ 2u  wu* G* G? ] U 2u?
r

‘%/(Evg7haLaG7H) = E

r L? r2 7?2

Como /¢, g, h, G, H son ciclicas, sus variables conjugadas son constantes en el problema de Kepler:
g=cte=0, h=cte=v=Q, L=cte=—,/ta, G= cte =|| G|, H=cte =G cosi.
Finalmente, resolviendo el problema de Kepler en variables de Delaunay obtenemos

dr oKX u? w2

E:(?T:_ﬁ — f:—ﬁt—kcte:nt—l—cte.

3.2. Ecuaciones de Lagrange para el movimiento hiperbdlico

Para resolver un problema de movimiento orbital hiperbdlico, estableceremos las ecuaciones que
rigen la variacion de los elementos orbitales. En el caso de que las fuerzas perturbadoras deriven de un
potencial V,, se deducirdn dichas ecuaciones con ayuda de las variables de Delaunay hiperbdlicas.

Diferenciando la expresién que define el movimiento medio n”a® = u ,tenemos 2na’dn +
3n%a%>da = 0 , porlo que

dn = —3—nda. (3.5
2a
Diferenciando la anomalia media del movimiento, ¢ = nt — T,y sustituyendo dn por (3.5),
3n
dl = ndt—ndT—z—(t—T)da. (3.6)
a
Recordando las relaciones ¢ = w, h = Q, y diferenciando , obtenemos que
dg = do, dh = dQ. (3.7
Diferenciando en (3.2),
dL = — bt _ga = Laa (3.8)
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Diferenciando en (3.3), 2GdG = 2LdL(e?> — 1) + L*(2eda),y sustituyendo d L por
lo obtenido en (3.8), tenemos

2 2
e _u L
dG = 2Gd —2Ga’a—i—7G de
Como e¢? = 1+ G?/L?, sustituyendo obtenemos finalmente
p(1l+G?/L?) u L%e uG L?e
dG = da — —d ——de = d ——de. 3.9
2G a-sgdat g de = gppdat g de (9
Diferenciando (3.4) se tiene
dH = dGcosi — Gsinidi (3.10)

Sustituyendo por (3.10) en (3.9) se tiene

uG L?e . L
dH = (2L2da+ G de | cosi — G sinidi. 3.11)

Reuniendo las expresiones (3.5), (3.10), (3.11) y despejando las derivadas de los elementos orbitales
respecto al tiempo,

da 2LdL
dr — w dt’
dG uG da
de  4¢r 2124t _ G dG uG?*2LdL G dG G? dL
dr L%e ~ L’edt 2L%e p dt  L?e dt eL3dt’
G
dH uG da L’ede
di  di _<22t+Gt>COSl -
dt — G sini N
dH uG2LdL L%*e ( G dG G?*dL ,
T ‘(zzuﬁc(mm‘emm))“’“_ I dH  cosi dG
B — G sini B _Gsiniﬁ—i_ Gsini dr’
A partir de (3.6),
dt n da
dT_‘”—”dpLia(f—T)d,_ at 3L ..dL
i n IR TS
En resumen, reuniendo las cuatro expresiones anteriores junto con (3.7), se concluye
da 2L dL
ar T owodr (3.12)
de G dG G? dL
dt ~ L%e dt eL3dt’
di 1 dH cosi dG
T _GsiniW—FGsiniE7
dQ  dh
dr  dt’
do dg
dt — dt’
dT d/t 3L 7 dL

— = —— 41 - —(t - —_—.
dt n+ a,u( )dt
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Expresando ahora el hamiltoniano del movimiento orbital en variables de Delaunay tenemos

u?

2L2
siendo V, el potencial perturbador. Las ecuaciones de Hamilton en estas variables seran:

%(£7g7h7L7G7H) = +Vp7

d/ 0 X, uz ov dL d X, oV
@i oL - Tt ar i C el - et ©-13)
dg 9K, _dV, dG 94, _ 9V,
dt  9dG  9G’ dt  dg  dg’
dh 9K, IV, dH 9%, _ dV,
dt  0H  0H’ dt ~ dh  Oh’

Aplicando la regla de la cadena para expresar las derivadas del potencial perturbador Vp respecto
a las variables de Delaunay en funcién de las derivadas de Vp respecto de los elementos orbitales,

oV, 9V, da dV,de IV, di IV,9Q dV,dw IV, dT

96 ~ da do ! de do ! i do 90 doc  dwadc  oT 9o Y

con o cualquiera de las variables de Delaunay.

Sustituyendo (3.14) en las ecuaciones de Hamilton (3.13), expresando las variables de Delaunay en
funcién de los elementos orbitales y sustituyendo en (3.12), tendremos que

n2a3 90  na 90’
de _ VBP( _9dVy\ _ Kup 9V
dt Uae dg e(—+/pHa)’ d/l
\/n2a3a(62—1)< 8\/1,) nta’a(e?—-1)9V,
- 2,3 ErY
Jg e<—~/n2a3a> o/l

da 2(=yma) ( dV,\ _2vn?a*dvV, 2 9V,
dt U or )

n-a-ae

Ve =19V, e*-109V,

nale Jd ena? 00’

di 1 _8Vp N cosi _8V,, B
dt /I psini oh VI p sini dg N

B 1 AL cosi v,
Vn2ada(e? —1)sini dh " na?Ve? — Isini 9¢g
B 1 IV, cosi aV,
T na?Ve? —1sini 9Q  na’vel _ lsini 00
Como
Ji I B I B I
oH H\ 2 - G cosi \ 2 B _nazsinim’
o= (8) - (52)
entonces
dQ  dh _ JV, AV, di 1 IV,

dt ~ dt  0H  di dH  jnalsinive:_—120i
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Para calcular

hidhad - S = — , 3.15
it~ di T 9G ~ de aG ' ai G G-15)
es necesario conocer
2G 2/up 2y/nta3a(e? - 1)
de 12 B Ka B n2a3a Vet -1
aG G: . [, EP \/ a(e? 1)  ena’
hdil 2. /1 +—
2 1+L2 1L a 24/1 4+ p
di H 1 G cosi cosi
_— = 72 = g = - —
JG G l_iz 2.1 G cosi \ * VEp Vsin® i
G? - G
_ cosi _ cosi
Vntada(e? — 1) sini na®+e? — 1sini
Asi pues,
do  Ve?—-19V, N cosi av,
dt  ena’ Jde na?+e? — 1sini di
Finalmente para calcular
dt 9%, —u? 9V, (n%a3)? N aV, n dV, da N dV, de
_— = g 3 = — 3 = n _—_ = S
dt JL L JL (_\/}m) JL da JL de JdL
se requiere el cdlculo de
G2 —up —n?ala(e? - 1) e? — 1
de _2L3 (= yEa)? (—+vVn%a*)3 . Tpaz et —1
JL / z up 2 N e "~ nale’
2 1+i I+ — \/1_,_‘1(6)
L? Ha a
da 2L  -2\pga -2
oL u  n%a®  na
De modo que
dt 2av,,+e2—1av,,
dt na da nate de

Podemos presentar las ecuaciones de Lagrange del movimiento planetario para la variacion de los
elementos orbitales de una orbita hiperbdlica perturbada en funcion del potencial V), como:
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da 2 0V,

17 = P (3.16)
de  VeX—10V, e*—-109V,

dt  nale Jdw  ena? dl°

di 1 AL cosi a2V,
dt  na?ve? — Isini 0Q  na2ve? — lsini 00’
iQ  av, 1 v,

dt  dH  na2senive? —1 di’

do  Ver—-10V, N cosi adV,

dt ena? Jde na2+ve? — 1sini 0i

dl 2 0V, e*—-10V,

di " nd da na’e de

3.3. Ecuaciones de Gauss para el movimiento hiperbdlico

Para determinado tipo de perturbaciones y de analisis es preferible la formulacién de las ecuaciones
usando la fuerza perturbadora en lugar del potencial. La relacion entre ambos viene dada por

donde ﬁ = ﬁy representa perturbadora la fuerza expresada en el sistema de referencia espacial.
La relacion entre la fuerza expresada en el sistema de referencia espacial ﬁy y en el sistema orbital
ﬁog/ = (Py, P,, P,) viene dada por

P = TPy = R Q)R ()Rs (0 +) Py = %P,

es decir, se obtiene mediante el giro de matriz # que pasa del sistema espacial al orbital.
Las expresiones de las derivadas d V, / d ¢, con o cualquier elemento orbital, se obtienen aplicando
la regla de la cadena

oVp _ 9Vp or __ L5 Ot

do  dr do do’
donde
or dx; dxo Jdx3
-— = 3.17
Jdo ( do’  do’ do G-17)
se obtiene derivando las componentes del vector r respecto a cada variable orbital o, siendo
r = R3(Q)R 1 (i)R3 (@0 +f)ry siendo ry = (r,0,0). (3.18)

Recordando la expresion de las matrices de rotacion elemental [1, Capitulo 2, §2.5, pag. 31] y
efectuando los célculos correspondientes , se llega a

L L Is P,
ViV, = 74 ﬁ% =—|m m m3 P,
ni n» nj3 @n
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con

Iy = cosQcos(@+ f) —sinQ cosisin(w+ f),

I, = —sin(@+ f)cos Q — sinQ cosicos(® + f),
[3 = sinQ sini,

mip = sinQ cos(®+ f) + cosQ cosi sin(® + f),
my; = —sin(@+ f) sinQ + cos Q cosi cos(@ + f),
m3 = —sini cos ),

ny = sinisin(®+ f),

ny, = sinicos(®+ f),

n3 = cosli,

Efectuando las operaciones indicadas en (3.18), se comprueba que

I cosQ cos(w+ f) — sinQ cosi sin(@+ f)
r =r |m | =r |cos(w+f) sinQ + cosQ cosi sin(w+ f)
n sin(@+ f) sini

Por analogia con [25, Capitulo 5, §5.06, pag. 64], se construye la tabla de derivadas parciales (3.1).

| | o [ om [ om
Q —mj l] 0
, f,@ Iy my np
i I3sin(w + f) | masin(@+ f) | n3sin(o + f)

Cuadro 3.1: Parciales de [;,m,n; respectoa Q, ®, f, 6 =0+ f, i.

Calculemos las parciales de V), respecto de cada elemento segtin (3.17). Empezamos por

ov, dV, dr ory
da _ or da R P da

Las derivadas parciales de cada componente del vector r respecto al elemento a son

8)61 . 8X1 al’ r

9%~ 9rda ah
on _odxmor _r
da _ or da _a "
9x3 _9x or _ 1
da _ or da _ a'V
con lo que
A%
Tap = —2 (l] (l] @u-i-lz y\, + l3 @n) + lz(ml gbu + nyp @v + ms (@n) + l3 (n1 gbu + ny @v + ns3 @n))
= Lo,
a
Se calcula a continuacion av.p = 8Vp ﬂ = % ﬁog/-ar—?{,resultando
di or Jdi di
d ox; 0 .
%2%5’; = rl3sin(ow+f),
0 0xy 0 .
%:%8—: = rmj3 sin(@+ f),
dx3 dxz dr

= =9, 9 — "s sin(@+ f),
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por lo que
av, , .
5. =7 (sin(@+f) (h Pu + b Py + 13 Py) + mysin(@+ f) (my Py + my Py + mz Py) +
+nysin(@+f) (m1 Py + np Py +n3 &) = —rsin(@+f) Py

Las derivadas parciales de cada componente del vector r respecto a { son

on _ox or _
00 oroa MY
90 _oxn or _
20 Jroq "
dx3 dxz dr B
0 araa 0 =0
y obtenemos que
A%
8(5 =—r(-m (L Pu+ P +13P) + 1L (m Py+m Py+m3 P,)+0 (m Py+n2 Py +n3 Py)) =

= —rcosi P, + rcos(®w+f) sini &,.

Las derivadas parciales de las componente de r respecto a @ son

dx;  dx; or
d0  ardw
dx, dxy Or
0 9r do ' M¥
dx3 dxz dr
0 or do ¥
y
v,
o =—r(b (W Zu+LPy+1P,) +my (| Py +my Py +m3 Py) + 12 (1 Py + 1Py +nm3%7,)) =

= —r2,.

Las derivadas parciales de las componentes del vector r respecto a e son

dx; dx; dr a 1 .
ae_arae_acosfll—r(r—i-ez_1>smflb
dxa  dxy dr a 1 )

e " ar 90 “"Sf’"l‘r(r*eZ—l) n/ma
dx3  dxz dr a

1
% = 9 9@ — acosfn —r<r+62_1> sinf nj,

y obtenemos

WV _ acosfly —r %+ ! sinfla, | (b Pu + b Py + 1P +
de rooe?—1

+ (acosfml —r(a—i-ezl 1) sinfmz)(ml Py +m P, + m3 Py) +
, _

+<acosfn1 - r(crl—l—e21_1> sinfnz) (m Py + np P, + n3 ,@,J) =

r(2+e cosf) sinf

= acosf P, — o

P,.
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Las derivadas parciales de cada componente del vector r respecto a ¢ seran

dxi  dxi d 2?1
Y N A T 4 T sy
r

9l 9r dl n\ a(?-1)

I _dm or e [TH oo Ve
o0 dr do  n\a(e—1) = " r? ’
dx3 dx3 dr e u a*ve?—1

9" 9r do ~ n\ageroq SSm A —G—,

A% e u ) a’*ve?—1
Tgp = —r ((n mSlﬂfll‘i’VlQT (llf@u+l2f@11+l3'@n)+

2/e2 -1
e . a e
+< % Slnfml+rm2 r2> (ml ‘@u—i_mz t@V+m3 9")—1_

2./ 2_1
+ ¢ Lsinfnl—i—rnzL (m Py+n Py+n3 P,) | =
n\ a?—1 r?

ea a*ve?—1
= — i P, —— D,
= 1smf u p v

En resumen, tenemos el conjunto de expresiones

oVp _ r 2, (3.19)
da a
Qavp = —rsin(0+f) Z,,
i
IVy = —rcosi P, + rcos(®w+ f) sini Py.
0Q
AL
B N
oo r <y,
88Vp — acosf P, — r(2+ezcos{) sin f @,
e es —
2 /2
an - _ ea sinf@u—we@v.
o0/ e2 —1 r

Por ultimo, sustituyendo las expresiones (3.19) en las ecuaciones de Lagrange (3.16), y llamando
N = ve?—1, obtendremos las ecuaciones:

da _ _2esinf@u_2an@v,

dt nmn nr

ﬁ = nSinfyu‘f‘ ni"‘ Al .,

dt an ern alen

di

di _reoslo+f) g

dt a’nn

49 _ rsinw +f

dt  a?’nsinin ~ "

do _ ncosfyu_ r(2 +ecosf) sinf t@v_rsin(a)—i—'f.) cosiyn,
di aen a*nen a’nsinin
até _ n+ 2r +772008f (@M_r(2—|—ecosf)sinfl@v'
dt a’n aen alen

que son las ecuaciones de Gauss para las variaciones de los elementos orbitales por efecto de la fuerza
perturbadora &.
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Apéndice A

Algunos conceptos fundamentales de la
Mecanica

Algunos conceptos fundamentales de la Mecanica

En este ApA(©ndice se presentan, sin 4nimo de exhaustividad ni de rigor 16gico absoluto, algunas
ideas que tienen que ver con los fundamentos de la Fisica en general, y de la Mecdnica en particular.

Casi todos los libros que tratan sobre estas materias dedican algtn apartado a estas cuestiones. A
titulo de ejemplo, algunas de las consideraciones de este Anexo pueden encontrarse en Cid y Camarena
[8, Capitulo I, §2, pag. 2—4; Capitulo III, §1-§2, pag. 75-83] y en Meirovitch [21, Capitulo 1, §1.1-
§1.2, pag. 1-12].

El MOVIMIENTO es el cambio de posicién en el espacio a lo largo del tiempo. No se trata de un
concepto absoluto, que tenga sentido por si mismo; es un concepto RELATIVO: movimiento con respecto
a algo. Se entiende que la posicién cambia en el espacio con relacion a algo que se considera fijo y que
sirve como referencia. El estudio del movimiento de los cuerpos requiere la eleccion de un SISTEMA
DE REFERENCIA para precisar la posicién (respecto de un sistema de coordenadas ! bien definido) y el
tiempo (determinado con un aparato de medida adecuado).

» EL ESPACIO. Se considerard el conjunto R*® como espacio vectorial real, espacio afin y espacio
euclideo, y se le atribuirdn (entre otras) las propiedades de linealidad, homogeneidad e isotropia.

* Lineal significa que son validos los axiomas y operaciones de la estructura algebraica de espacio
vectorial.

* Homogéneo significa que sus puntos no presentan propiedades intrinsecas que permitan singu-
larizarlos; es decir, todos los puntos son equivalentes, indistinguibles unos de otros, no hay puntos
privilegiados.

* Isotropo significa que todas las direcciones son equivalentes, no hay direcciones privilegiadas.
Asi pues, el ESPACIO FiSICO puede ser idealizado haciéndolo coincidir con un espacio de puntos
dotado de una cierta estructura geométrica. El ESPACIO que se considerard en lo sucesivo es

el espacio afin tridimensional ordinario, formado por puntos. Si en este espacio se
fija un punto & como origen, dicho espacio puede identificarse con el espacio vectorial

euclideo tridimensional R?; de manera que la notacién R3 designard indistintamente el
espacio vectorial real euclideo tridimensional o el espacio afin tridimensional con un punto fijo.

Un sistema de referencia espacial, o sistema de coordenadas, en este espacio serd todo agre-
gado (0 ,aj,ay,as) formado por un punto & (que serd el “origen de referencia”, y al que se

IM4s adelante se introducira este concepto de “sistema de coordenadas” con mayor detalle.
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asignan las coordenadas nulas) y una base (a;,a;,a3) del espacio vectorial euclideo tridimen-
sional R3; se supondrd que el concepto de “base” se entiende como “base ordenada” y, en general,
se usardn bases ordenadas con orientacion positiva (o dextrdgira, con lo que se hablard de “sistema
de referencia dextrégiro” o “positivamente orientado”) formadas por tres vectores ortonormales
(respecto del producto escalar ordinario en R?), ya que el uso de bases ortonormales facilita la
“aritmética” y la interpretacion geométrica a la hora de descomponer las magnitudes vectoriales.
Se tiene entonces un sistema de referencia espacial rectangular o cartesiano. En estas condi-
ciones, un sistema de referencia espacial puede representarse por medio de notaciones el tipo
(O,a;,ay,a3), Cajazas, Ox x2x3, Oxyz, donde se entiende que los ejes coordenados, o
ejes fundamentales del sistema, x|, Ox,, Ox3,0bien Ox, Oy, O z, son las rectas que pasan
por el punto &'y llevan la direccién de los respectivos vectores de la base (a;,a,, as3); los pla-
nos coordenados, o planos fundamentales del sistema, &'xx,, Ox1x3, Ox2x3,0 Oxy, Oxz,
O'yz, son los planos que pasan por ¢ y estdn engendrados por las parejas (aj,az), (a;,a3),
(ay,a3) de vectors de labase (aj,az,a3).

De acuerdo con , se asignan a cada punto P € R3 como coordenadas las componentes del vector

= . .
r = OP (llamado vector de posicion del punto P, que puede variar con respecto a una variable
independiente o pardmetro ¢ que —en Fisica— se identifica con el “tiempo”) respecto de la base
(ar,az,a3):

(1) = OGP (1) = Y xi(0)ar = (x1(1),02() ,x3(1)) ay g

= (x(2),x2(1),x3(1)).

En la préctica, y por conveniencia de escritura, se suele omitir la mencién explicita a la base
(a;,ay,as3), si dicha omisién no da lugar a confusién o ambigiiedad.

De manera andloga se definirfan los sistemas de referencia en el plano R? por medio de un
punto ¢ y unabase (aj,az).

* Como consecuencia de la homogeneidad e isotropia del espacio (no hay en principio ni po-
siciones ni orientaciones privilegiadas o preferidas), no existe ningiin sistema de coordenadas
privilegiado o especial que deba ser preferido a otros.

= EL TIEMPO. Se considerara uniforme y absoluto (y universal: transcurre uniformemente, sin verse
afectado ni influido por los acontecimientos fisicos, no depende de la posicién de los cuerpos en
el espacio ni de las fuerzas que se apliquen sobre ellos).

Las dificultades 16gicas que plantea el concepto o la definicién de “tiempo” son evidentes, tenien-
do en cuenta que se concibe su existencia por el movimiento de los cuerpos: si
todo estuviese inmdvil en la Naturaleza, no se advertiria el paso del tiempo.

Dicho de otro modo, las medidas del tiempo se materializan por un movimiento que sirve de re-
ferencia * y que se denomina reloj (rotacién de la Tierra, vibracién luminosa, movimiento de un
péndulo, vibracién de un diapasén, etc.), estableciendo una correspondencia entre ese movimien-
to y una magnitud escalar que se define como TIEMPO. Esquemadticamente, esta correspon-
dencia consiste en asignar al movimiento de referencia un intervalo en el conjunto (totalmente
ordenado) R de los nimeros reales, de manera que a cada estado de movimiento corresponda un
nimero real, y reciprocamente.

Por ser el tiempo una consecuencia del movimiento, cabe preguntarse si serd percibido y medido
de la misma forma por dos observadores que se encuentren en estados de movimiento distintos
(problema de la sincronizacion de los relojes de observadores situados en otros puntos del es-
pacio). La Mecdnica Clésica admite la existencia de un TIEMPO ABSOLUTO, independiente de

2Para medir el tiempo en un cierto punto se puede elegir cualquier fenémeno que parezca que se repite con regularidad o
periédicamente.
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los observadores (es decir, independiente del estado cinemético —estado de movimiento—y de las
condiciones o circunstancias dinamicas de los observadores).

En otras palabras, se supone que dos observadores distintos en su movimiento reciproco pue-
den establecer una medida comiin de tiempo al observar un mismo fenémeno, ya sea para la de-
terminacion de un instante o de la duracién del mismo, como si un mismo reloj pudiera verse
simultdneamente desde todos los puntos del Universo. En resumen:

* El tiempo es una magnitud escalar real, uniforme y monotona creciente (por lo tanto, irrever-
sible), medible con un reloj, que verifica las siguientes propiedades:

e Entre los posibles estados del Universo se puede establecer una relacion de equivalencia
llamada “simultaneidad”, de manera que los estados simultdneos o contempordneos corres-
pondan a una misma fecha ¢.

e El conjunto .7 de todas las fechas ¢ admite una relacion de orden total en correspondencia
con el conjunto R de los nimeros reales.

* En la descripcion del movimiento la variable temporal desempeia el papel de un pardmetro (en
el sentido que se atribuye a este término en la Geometria Diferencial Clasica de Curvas).

= EL MOVIMIENTO. Puede definirse en cada instante la posiciéon de un punto P con respecto a
un sistema de referencia por medio de sus coordenadas, siendo éstas unas ciertas funciones del
tiempo, lo cual puede formalizarse estableciendo una correspondencia univoca entre los instantes
de tiempo de un intervalo / de la recta real y los valores de las coordenadas, en la forma

r:/ C R — R? (espacio afin)

£ x(1) = OP (1) = (x1(1) %2 (1) ,x3(1)),

t (variable escalar o pardmetro): tiempo.

Si, en particular, las tres coordenadas (x; (7),x2(#),x3(¢)) se mantienen constantes, se dice
que el punto P estd en REPOSO RELATIVO (0 en EQUILIBRIO RELATIVO) al sistema de referen-
cia considerado. Su posicion (respecto del sistema de referencia en cuestién) no cambia con el
tiempo: la curva se reduce a un punto.

* Notese, pues, que “reposo” y “movimiento” son conceptos relativos.

Estas ideas se extienden sin dificultad a sistemas de puntos o de particulas. Asi, un sistema mate-
rial estd en reposo respecto de un sistema de referencia dado si y sélo si todas sus particulas estdn
en reposo respecto a dicho sistema de referencia; si al menos una particula estd en movimiento,
se dird que el sistema de puntos materiales estd en movimiento respecto del sistema de referencia
considerado.

* Excluido el caso de reposo o equilibrio, al variar ¢ en un intervalo I = [to,¢;] C R el punto P
describe un arco de curva llamado trayectoria. La ecuacién r = r(t), o su expresién en compo-
nentes x; =x;(¢) con i = 1, 2,3, proporciona una representacion paramétrica de la trayectoria,
con el tiempo t como pardmetro de la representacion. Asi, la trayectoria es el lugar geométrico
de las sucesivas posiciones ocupadas por el punto P en el transcurso de los sucesivos instantes de
tiempo.

* Si la trayectoria es una curva rectificable, y s es la longitud del arco de curva descrito por P
en un subintervalo de tiempo (79, 1) C (to,t1), se tiene

s = /t:"i’(?)Hd?:/t:\/[xl(lA)]z—F[Xz(?)]2+[x3(?)]2d?:,9?(t),

ecuacién que se suele denominar ley horaria del movimiento (expresa el pardmetro longitud de
arco s en funcién del tiempo ¢ ), y que sirve para determinar en cada instante la posicion de P en
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dicha trayectoria. La ley horaria indica la forma en la que el punto mévil recorre su trayectoria
(esto es, si lo hace despacio o deprisa, si oscila o no, etc.).

* El lugar geométrico de los extremos de los vectores velocidad ¥(7) = v(¢) de un punto que
se mueve a lo largo de una trayectoria, trasladados en forma equipolente a un origen comun (que,
por conveniencia, serd el origen del sistema de referencia considerado) es una curva llamada
hodografa del movimiento.

* Los vectores posicion r(¢) y velocidad ¥ (z) = v(z), si no son colineales (es decir, si son
linealmente independientes), generan en cada instante un plano (que pasa por el origen de coor-
denadas) I1(7) = < r(z),v(t) > llamado plano instantdneo del movimiento (o plano orbital
instantdneo). Se trata, pues, de un plano que en cada instante pasa por el origen de coordenadas y
contiene a los vectores r(¢) y v(t) y, por lo tanto, admite al vector r(7) x v(¢) como un vector
normal 3.

= CUERPOS: MASA, MATERIA. Se afiade al “punto” (como concepto geométrico que, de una ma-
nera simplificada, idealiza la nocién de “cuerpo material”) el concepto de “masa” como una cons-
tante 4 que caracteriza al punto o al cuerpo. De entrada, podria concebirse la “masa” como “una
medida de la cantidad de materia” que tiene el punto o el cuerpo considerado. Pero para ha-
cer este concepto mds manejable y mds ficilmente cuantificable (medible), se utilizan las ideas
de “masa interte” (o “masa inercial”) y de “masa gravitatoria”:

* “MASA INERTE” 0 “MASA INERCIAL” como una medida de la resistencia u oposicién que
ofrece el cuerpo a modificar su estado de movimiento (segtin la Segunda Ley de Newton); también
puede decirse (en virtud de esa misma Segunda Ley de Newton) que la masa inerte o inercial de
una particula o de un cuerpo es una propiedad que determina cémo cambia su velocidad cuando
interactda con otros cuerpos o particulas.

En la Mecdnica Newtoniana la masa es una propiedad de los cuerpos constante e inherente
a los mismos; es independiente del movimiento (con respecto a un sistema de coordenadas), e
independiente del transcurso del tiempo, y representa una medida de la tendencia (o “inercia”) de
los cuerpos a conservar su estado de movimiento.

* En particular la masa puede, pues, considerarse como un coeficiente caracteristico de cada
particula, que determina la intensidad de su interaccion gravitatoria con otras particulas (“MASA
GRAVITATORIA”).

* Pero, como se acaba de mencionar, también y de manera completamente general, la masa se
interpreta como un coeficiente caracteristico de cada cuerpo que determina su comportamiento
cuando dicho cuerpo se encuentra sometido a fuerzas (“masa inerte” o “masa inercial”). Se ha
comprobado experimentalmente, con una elevadisima precision, que para toda clase de cuerpos
los valores de estos dos tipos de “masa” (inerte y gravitatoria) coinciden.

* Por lo tanto es habitual usar el término “MASA” para referirse a cualquiera de las masas, “iner-
cial” o “gravitatoria”, ya que se consideran indistinguibles (dentro de la precision de los resultados
de las medidas efectuadas) y equivalentes.

* Se suele iniciar el estudio del movimiento de los CUERPOS sin considerar atributos como su
forma, tamafio, dimensiones, estructura interna, composicion, etc., sino contempldndolos como
meros PUNTOS (masas puntuales, particulas materiales, particulas puntuales, puntos materiales,
puntos masivos). En consecuencia, y a los efectos oportunos, es habitual utilizar los términos
“cuerpo” y “particula” como practicamente sinénimos.

3Nétese que el vector r () x v(t) serd, precisamente, el vector momento angular (respecto del origen de coordenadas)
de una particula de masa unidad, o el momento angular por unidad de masa de una particula de masa arbitraria.
“4Para el tratamiento de ciertos problemas fisicos se consideran también cuerpos y sistemas de cuerpos de masa variable.
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Un PUNTO MATERIAL es un cuerpo cuyas dimensiones se consideran despreciables dentro de la
escala en la que se realiza la observacion de dicho cuerpo, pudiendo ser concebido —en cuanto a
su posicion en el espacio— como un punto geométrico (por lo tanto, carente de dimensiones, de
extension espacial, de volumen, de estructura interna, . . . ).

Un conjunto (finito o infinito, discreto o continuo) de puntos materiales recibe el nombre de SIS-
TEMA DE PUNTOS MATERIALES, SISTEMA MATERIAL, 0 SISTEMAS DE PARTICULAS, y presenta
algin tipo de estructura interna.

De este modo, todo cuerpo aparece siempre como un sistema de puntos.

= RELACION ENTRE “ESPACIO”, “TIEMPO” Y “MATERIA”. Los fenémenos fisicos > se presentan

en el espacio © y en un cierto tiempo ’. Los fenémenos ocurren en un lugar concreto del espacio,
en un tiempo concreto o durante un intervalo de tiempo, y en ellos la materia ® interviene de una
forma u otra.

LR IRT3

Tradicionalmente, “espacio”, “tiempo” y “materia” se han considerado y tratado como conceptos
independientes. Esta suposicion, que es consecuencia de la forma en que se perciben los fend-
menos, resulta satisfactoria para el estudio de la mayoria de los mismos. Sin embargo, como
consecuencia de algunas observaciones y experimentos, se ha visto que en realidad el tiempo y
el espacio no son independientes, sino que estan acoplados, y resulta mas apropiado hablar de
“espacio-tiempo” o “continuo espacio—temporal”. En la vida cotidiana, en lo que a fines practicos
atafie, se puede prescindir de ese acoplamiento espacio—tiempo. Por otra parte, otros experimen-
tos y observaciones indican que el espacio—tiempo se ve afectado por la presencia de materia; en
otras palabras, las propiedades locales del espacio—tiempo estdn determinadas por la cantidad de
materia que hay en el entorno, y sus efectos se manifiestan en lo que se denomina GRAVITACION.
El efecto de la materia sobre el espacio—tiempo es mds notorio cerca de las grandes concentra-
ciones de materia (como el Sol, una estrella o un agujero negro). Sin embargo, en la prictica,
cerca de la superficie de la Tierra el acoplamiento entre materia y espacio—tiempo sélo se pone de
manifiesto mediante delicados experimentos y mediciones muy precisas.

El acoplamiento entre espacio, tiempo y materia es objeto de estudio de las Teorias de la Relati-
vidad General y Especial de Einstein. Cabe destacar que estas Teorias también vinculan masa y
energia.

* Para las cuestiones que se tratardn en esta Memoria, espacio, tiempo y materia se contempla-
rdn como si fueran entidades independientes.

= FUERZA. En la Mecénica (en particular) y en la Fisica (mds en general) se intenta explicar los di-
versos fendmenos que se observan en la Naturaleza por medio de “INTERACCIONES” ENTRE LOS
CUERPOS MATERIALES, idealizando dichas interacciones por medio de FUERZAS. Los cuerpos
se distinguen entre si por sus propiedades fisicas, formalizadas por medio de magnitudes como la
masa, la carga eléctrica, etc. Las cuatro principales interacciones bdsicas o fundamentales que se
consideran en la Fisica se describen mediante las fuerzas gravitatoria (relacionada con la propie-
dad de la materia llamada “masa”), electromagnética (relacionada con la propiedad de la materia
denominada “carga eléctrica”), nuclear fuerte y nuclear débil.

Se considera que las fuerzas son las causas fisicas que producen el movimiento o el cambio de es-
tado de movimiento o de otras propiedades (por ejemlo, la forma, el tamafio, etc.) de los cuerpos.
De este modo, el movimiento de los cuerpos materiales se produce o se modifica por la influencia
debida a la posible presencia de otros cuerpos en el espacio circundante. Dicho de otro modo, el
movimiento de un cuerpo dado es consecuencia de sus interacciones con otros cuerpos (mas o

SEs decir, los hechos, sucesos, procesos y cambios observados en la Naturaleza o inducidos en un laboratorio.
6 Dénde ocurren los fenémenos.

7 Cudndo ocurren y cuénto duran.

81a materia se expresaré cuantitativamente por medio del concepto de “masa”.
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menos cercanos o alejados). Es habitual que las interacciones entre los cuerpos se expresen de
manera cuantitativa por medio del concepto “FUERZA”. Pero, para que este concepto resulte util,
serd necesario poder formalizarlo de manera precisa en términos de variables y pardmetros que
describan el sistema fisico en cuestion (p. e., distancias entre sus particulas, sus masas, sus cargas
eléctricas, etc.). Por el momento se supondrd que se dispone de recursos tedricos y experimenta-
les que permitan medir fuerzas y determinar en cada instante la forma en la que dependen de las
posiciones y velocidades relativas de las particulas en interaccion.

* Una PARTICULA LIBRE es la que no estd sometida a ninguna interaccién. En sentido estricto,
no existen particulas libres, porque toda particula estd sometida a interacciones con todas las
demds particulas del Universo. Sin embargo, en la prictica, hay situaciones en las que se puede
contemplar a una particula como si fuese una particula libre; por ejemplo, si dicha particula estd
lo suficientemente alejada de las demds como para poder considerar que sus interacciones con ella
son despreciables; o cuando el efecto conjunto de las restantes particulas sobre ella se cancela, de
modo que su interaccion neta (o resultante) con la particula en cuestion es nula.

En definitiva, se dice que sobre una particula libre no actiia ninguna fuerza.

* SISTEMA AISLADO es un sistema formado por un nimero cualquiera de particulas que Unica-
mente estdn sometidas a sus propias interacciones mutuas, y no a otras de fuera del sistema (es
decir, debidas a otros cuerpos u otras partes del Universo).

* En Mecénica el concepto de FUERZA aparece indisolublemente unido a las tres LEYES DE
NEWTON. En particular, en la Segunda Ley del Movimiento de Newton se establece (bajo dife-
rentes posibles enunciados) que la fuerza F que actia sobre una particula de masa m se define
por laigualdad F = ma = mf¥.

Las consideraciones anteriores conducen a una formalizacién del concepto de “FUERZA” por
medio del concepto matemético de “campo vectorial”, una funcién vectorial de variable(s) vec-
torial(es). Asi, un CAMPO DE FUERZAS es un campo vectorial

F:RxR*xR* — R

(t,r,¥) — F=F(t,r,r),

cuya forma funcional en cada caso concreto puede también depender de constantes y pardmetros
caracteristicos del sistema mecdnico o fisico considerado.

SISTEMAS DE REFERENCIA INERCIALES. En la Mecanica (Newtoniana) Clasica, un sistema
de referencia inercial o galileano es un sistema de referencia en el que se cumplen las leyes del
movimiento de Newton y, en particular, la Segunda Ley de Newton, que establece que la variacion
de la cantidad de movimiento (0 momento lineal) de una particula es igual a la resultante de todas
las fuerzas reales que acttian sobre la misma.

También se dice que respecto de un sistema inercial una particula libre (es decir, sobre la que no
actia ninguna fuerza externa) permanece en reposo o se desplaza con un movimiento rectilineo
uniforme. Esto equivale a afirmar que todos los sistemas inerciales se encuentran en estado de
reposo o de movimiento rectilineo uniforme unos respecto de otros

SISTEMA MECANICO. (Cid y Camarena [8, Capitulo VII, §1, pag. 180]) Es un conjunto de N
puntos Py, de masas respectivas my (con k = 1,2, ..., N) cuyas posiciones y velocidades
vienen determinadas en cada instante por los vectores ry (1) = OPy, vi(t) = dry(t)/dt,
con respecto a un sistema de referencia inercial &'xyz, siendo sus componentes respectivas

(xe (), ye(2) 2 () y (G (2) s 9 (1), 26 (2)).



Apéndice B

Sistema de dos cuerpos con fuerzas
internas

B.1. Planteamiento del Problema

Para un sistema de n particulas, con masas m; ,mo,...,m,, se denotard como F;; la fuerza que
la i-ésima particula ejerce sobre la j-ésima. Consideraremos que las fuerzas F;; que actdan entre di-
chas masas puntuales son fuerzas internas del sistema de n particulas si dichas fuerzas verifican que
F;; = — Fj;, o sea que cumplen la Tercera Ley de Newton de la Dindmica; por ello, decimos que son
fuerzas de accién y reaccion.

Se considera un sistema de referencia inercial rectangular cartesiano & xjx,x3 , con origen en el
punto & del espacio R ? y ejes orientados segiin la base ortonormal (e, €5, e3). El problema de dos
cuerpos trata de estudiar el movimiento de dos particulas de masas m; y my bajo la influencia de su
mutua interaccién a través de fuerzas internas.

El vector de posicién de cada particula my respecto de dicho sistema de referencia & x;x,x3 es
r, = Omy; (k= 1,2). Por la Segunda Ley de Newton de la Dindmica, el problema del movimiento
de estas dos masas puntuales queda formulado mediante un sistema de dos ecuaciones diferenciales
vectoriales de segundo orden para los vectores de posicién r; = ri(f) y rpy = rp(t) como las
funciones incégnita de la variable independiente 7,

mi¥y = Fy (2,071,012, 01,12), moity = Fp(t,ry,ry, 1y, ¥). (B.1)

Para el estudio de este problema se pueden considerar problemas de valor inicial, dando como
condiciones iniciales en un instante 7o los vectores posicioén y velocidad de ambas particulas,

re (1) = ry), i (r0) = i) = v, (k=1,2).

Estas ecuaciones serdn, en general, no lineales, y ademds estardn acopladas a través de la presencia
de las funciones r; y 1, en sus segundos miembros (o sea, que el movimiento de cada una de las
particulas dependerd en cada instante del movimiento de la otra). Por esto, la resolucion analitica, de
estas ecuaciones serd complicada.

B.2. Movimiento del centro de masas y movimiento relativo.

En vez de abordar directamente su resolucidn, se procederd a transformarlo. Por medio de un cambio
de funciones incdgnita. Para ello utilizaremos un cambio lineal de coordenadas

ri,rp —r.(ry,rp),r(ry,ra), (B.2)

7
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donde

miry (l) + mory (l‘)

r.(t) := i ,

r(t) ==r;(t) —ra(1), M = my +my. (B.3)

y cuya transformacién inversa, r,, r — ry (r.,r), ro(r.,r), es

r(6) =1 () + 2 (), ra(t) =re(t) — %r(r) (B.4)

Formando las derivadas de primer y segundo orden en estas ecuaciones se obtienen las relacio-
nes para las velocidad y aceleraciones. Podemos expresar las condiciones iniciales en nuestras nuevas
coordenadas:

El punto C del espacio cuya posicién queda caracterizada en cada instante por el vector r. (1) =
0C se denomina Centro de Masas del sistema de particulas de masas m; y m;.

Por otra parte, el vector r (1) = my mj caracteriza en cada instante la posicion relativa de la
particula m| respecto de m, . Denotaremos con r la distancia euclidea entre las particulas m; y
my , con la definicién habitual por medio del producto escalar usual,
r’=r-r=|r|?%=r=

Para obtener alguna informacidn adicional acerca del movimiento de este sistema de dos particulas,
sumando miembro a miembro las ecuaciones (B.1), y teniendo en cuanta que por hipétesis F,; =
— F 1y, setiene que

mit; + myt, = Fo(t,ry,ro,01,02) +Fp(t,ry,rp,k1,82) = 0, (B.5)
mientras que a partir de la definicién (B.3) del vector r. , obtenemos
Mr.(t) = miri(t) + miri(t) = M¥i (t) = mi¥(t) + m¥1(2),
pero, en virtud de (B.5), serd
My (1) = 0 < F.(t) = 0, (B.6)

que reconocemos como ecuacion diferencial del movimiento libre (sin fuerzas externas) de una particula
auxiliar de masa M situada en cada instante en la posicién del centro de masas del sistema original de
dos particulas, por lo que esta particula tendrd un movimiento rectilineo y uniforme o permanecerd en
reposo. En efecto, la integracion de (B.6) nos lleva a

e (1;A) = A, ro(t;A,B) = Ar + B, (B.7)

siendo A y B dos constantes vectoriales de integracidon que aportan seis constantes escalares arbi-
trarias.

Haciendo uso de esta solucién (B.3), de las expresiones de I, r. que figuran en la solucién general
(B.7) pueden reescribirse en la forma

mir (l‘)—i-l’)’ul"z(t) = MA, mi I (l‘)—i—n’lzl"z(t) —MAt = MB, (B.8)
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férmulas que se pueden reinterpretar como dos relaciones funcionales vectoriales
- . . -
(I)l(_y—v—arlarZ):za @2(1‘,1’1,1’2,—,—):§, (B9)

que son dos integrales primeras funcionalmente independientes del sistema diferencial (B.1) de partida.
Bajo cualquiera de las formas anteriores, (B.7), (B.8), (B.9), estas integrales primeras de (B.1) se
conocen como LAS INTEGRALES DEL CENTRO DE MASAS del sistema de dos cuerpos considerado.
Con ello se dispone hasta ahora de seis constantes escalares funcionalmente independientes. Asi
pues, el orden diferencial del problema original planteado por el sistema de ecuaciones (B.1) ha pasado
de 12 a6.

Como consecuencia del cambio de variable (B.4), (B.3), el sistema (B.1) se ha transformado en un
sistema equivalente
Mi. = 0, ui = F(t,r,r), (B.10)

Asi pues, el problema (B.1), que era de orden 12, ha quedado, pues, descompuesto en dos subpro-
blemas independientes de orden 6, para las funciones incégnitar, y r.

En componentes respecto del sistema de coordenadas myx;xox3, con r = x;e; + x2 ey +
x3e3 = (x;,x2,x3) y F=Fe + F,e, + Fie3 = (F, F», F3), la segunda de las
ecuaciones vectoriales de (B.10) da lugar a,

" . . . . nmymj
wi; = F;(t,x;,x2,x3,%1,%2,X3), i=1,2,3, u=—> (B.11)
myp + mp
siendo u la masa reducida del sistema.

Recordando el enunciado de la Tercera Ley de Newton, las fuerzas F,; y Fjp actdanen cada
instante segun la direccion de la recta que en dicho instante pasa por ambas particulas, pero en sentidos
opuestos. Es decir, son colinales con el vector r (¢),porloque F (7, r,¥)escolineal con r(z),

. e L1
F(t,r,v) = f(t,r,r)f, donde F=-r (B.12)
r
es el vector unitario en la direccion del vector de la posicion relativa de una de las masas respecto de la
otra. Por lo tanto la fuerza que actda sobre la particula auxiliar de masa p pasa siempre por un punto
fijo. Esto significa que la funcién vectorial F es una fuerza central.

La fuerza central serd atractiva cuando f (z,r,r) < O 'y repulsivasi f(7,r,¥) > 0.

B.3. Movimiento de una particula en un campo de fuerzas central

Para poder abordar el tema de campos de fuerzas centrales, introduciremos el vector momento angular
G de m (respecto del origen de coordenadas) como el momento (respecto del origen elegido) de su
momento lineal p = m ¥ , es decir

G =G(t,r,f)=rxp=r X mr=m(r xr). (B.13)

La variacién temporal de este vector viene descrita por la derivada

— =1 XxF
dt ’
donde se ha supuesto masa constante y se ha utilizado la Segunda Ley de Newton. En el caso de las
fuerzas centralescomo r y F son colineales, dicho momento es nulo, por lo tanto,
dG

=X f(t,r,F)f = 0 = G (1) = cte. (B.14)
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Esto significa que el vector momento angular es una integral primera de las ecuaciones diferenciales

que gobiernan el movimiento. Por tanto, el problema se reduce de orden 6 a orden 3, gracias a las tres
integrales primeras escalares funcionalmente independientes aportadas por las tres componentes de G.
Una consecuencia importante de esta conservacion (B.14) del momento angular es que el movimiento
transcurre siempre en un mismo plano. Por ello, pasaremos a estudiar el movimiento por medio de unas
variables elegidas dentro del propio plano orbital.
Consideraremos entonces un sistema rectangular cartesiano &' xy con origen en el centro del campo de
fuerzas y ejes orientados segiin las direcciones de unos vectores unitarios y ortogonales i, j. Este sistema
se puede completar hasta una base de R 3, adjuntando cualquier vector de¢ R 3 que no pertenezca
al plano. Para obtener una base ortonormal, basta que el nuevo vector sea unitario y ortogonal al plano
del movimiento. Ya sabemos que G es perpendicular al plano, por tanto normalizarlo obtendremos el
tercer vector.

1 1
mG: EG, talque in:k,

de manera que (i, j, k) constituye ahora una base ortonormal directa del espacio ordinario. Por lo

tanto los vectores del plano tendrdn su tercera componente nula.
Para el vector momento angular tendremos que

G =(0,0,G;), con G; = m@xy—yi), vy [G]|=G6=]GC:][.

kK =

Como es un vector constante, sus tres componentes tienen que ser constantes. Las dos primeras,
obviamente lo son; para la tercera se tiene G, = m(xy — yx) = cte.

Formulando el problema (B.11), (B.12) siendo @ = m en las coordenadas cartesianas xy
tomadas en el plano orbital, la ecuacién de movimiento queda

mjé:Fx(t7x,y,x,y), my:Fy([axyyaxvy)v

un sistema de dos ecuaciones diferencia de segundo orden para las funciones incégnita x e y . Pro-
blema diferencial de orden 3 ya que se verifica la relacion xy — yx = cte. En resumen, la integral
del momento angular permite llevar el problema del movimiento en cuestién a un problema diferencial
de orden 3.

Formulemos ahora el mismo problema en coordenadas polares planas tomadas en el plano del mo-
vimiento para alcanzar mejor conocimiento del mismo.
Sean las ecuaciones del cambio de variables dependientes

X = rcosg, y = rsing.

Estas coordenadas tienen asociadas en cada punto del plano las direcciones radial , segtin el vector
unitario e, y transversal, segun la direccion del vector unitario ey obtenido al hacer rotar el vector
e, unangulode 7/2 radianes en sentido positivo.

El vector momento angular quedard como,

G = G:k, con Gz:mr2¢v y IGll=6=|G6].
Y, las ecuaciones de Newton (en coordenadas polares planas) quedardn como
m¥agiat = F¥radial :>m(f_r¢2) :f(t,r,i‘) :fpolares(t’ru¢7i'a¢)’
MY ransversal = Ftransversal = m (2 F ¢ + r¢) =0.

En apariencia sistema de dos ecuaciones diferenciales de segundo orden para (r, ¢) , y tendria orden
cuatro. Pero multiplicando por r ambos miembros de la dltima ecuacién, obtenemos

m(2rig £ r§) = 0 = T(mrte) = 0 = mrté

relacién que representa una integral primera del sistema diferencial anterior, por lo que se ha llevado el
problema a orden tres.
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B.4. Campos Centrales Conservativos

El caso de fuerza central que con méas frecuencia aparece en los libros de Mecéanica es el de, Fuerzas
Centrales Conservativas, que es aquel en el que la dependencia funcional del campo vectorial se reduce
a una forma particularmente sencilla:

F— 1, =) = /(= el )& = fn)t = f(r)e. (B.15)

Se demuestra que entonces
VxF =Vx(f(r)t) =0,

con lo que, en efecto, el campo vectorial F es CONSERVATIVO y existe un campo escalar V de la
variable escalar r tal que
oV (I r)) oVv(r)
Fr)=-VV(ir) = ————F = — f.
*) ) or ar
A partir de esta tdltima expresion, y teniendo en cuenta (B.15) se deduce que el POTENCIAL V es,
salvo una constante aditiva

V(r) = —/f(r)dr

Destacar un tratamiento alternativo para el problema del movimiento de una masa puntual en el seno
de un campo de fuerzas central conservativo. En esta ocasién se procedera a dar pasos intermedios de
la resolucion del problema por medio de la CONSERVACION DE ENERGIA mecénica del sistema.

La ecuacioén diferencial del movimiento se puede escribir como

av(r)
P - vy _ .
mi (r) 3,
Multiplicando escalarmente ambos miembros por I se tiene que
dv(r)
P-r = — . B.16
mt -1 7 ( )
Pero
L Ld(]e])?
2% o f = — M-V
S R P
llevando esto a la ecuacién (B.16) anterior se obtiene
d (1
I <2m Hr||2 —|—V(r)> = 0, (B.17)

por lo que la expresion entre paréntesis deberd ser una constante escalar.

Se define la ENERGIA CINETICA T de la particula de masa m mediante la férmula
1
T o= S|,

mientras que V (r) se interpretard como su ENERGIA POTENCIAL. Asi pues, se define su ENERGIA
MECANICA O ENERGIA TOTAL , & como la suma de ambas magnitudes,
1
£ = T+V() = sm|E]2+V0),

con lo que la conclusion establecida en (B.17) se expresa ahora como

1
E =T+V(r) = 5 m | #||*> +V(r) = constante
que constituye una integral primera escalar del sistema, conocida como INTEGRAL DE LA ENERGIA,
y permitird reducir en una unidad el orden diferencial en el problema del movimiento de la particula de
masa m bajo la influencia de la fuerza central conservativa (B.15).
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B.S. Problema gravitatorio de dos cuerpos

Como caso particular de sistema de dos cuerpos , podemos considerar un sistema de dos particulas
que se atraen gravitatoriamente segtin la Ley de Gravitacion Universal de Newton.
La fuerza gravitatoria de atraccion que la particula de masa m; ejerce sobre la particula de masa m;
obedece a la férmula

m:m;
Fji(ri,rj) = _gHrii—r]jW(ri_rj) = (B.18)
- _a m;m; r, —r;

e —x 12 i = |

siendo ¢ la constante de gravitacion universal. A su vez, la atraccion gravitatoria de la particula de masa
m; sobre la particula de masa m; es

m; m;
Fij(rj,r) = -9 ————(r; —1;) = —Fj(r;,r;).
[ rj—ri|
La fuerza dada en (B.18) puede expresarse en laforma Fj; (r;, r;) = —V, V , porlo que deriva
del potencial escalar
Vil -r ) = -9 = -
e = e =
con
K = 9 m;ms.

En estas condiciones, las ecuaciones diferenciales del movimiento (B.1) son

K
[r1—ry |3
K
[r)—rs |3

my ¥y

(ri—ry), (B.19)

my fz (1'1 — 1'2),
que constituyen un sistema diferencial de orden 12 formado por ecuaciones acopladas.

Sometiendo a las ecuaciones (B.19) al cambio de variables dependientes (B.4), teniendo en cuenta
(B.3) sellega a

K .

m e + mﬁwmz = 5k (B.20)
. mymy K .

myte — — = F= —3F

A la vista de (B.6), estas dos ultimas ecuaciones, dan lugar a la nueva ecuacién

P P . mim B K
pt = Fy (-, —,r,—,—-) = —gwr = —3b

la cual obedece una expresion general de la forma

Fo' (=0, —, =) = fNf, con f(r) = — .

por lo que se trata de una fuerza central conservativa. En conclusién el movimiento relativo es ahora
idéntico al movimiento de una Unica particula ficticia de masa u bajo la accién de la fuerza
mpmj

F - g MM o Dy
(r) Tzt = et
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Como es una fuerza central conservativa puede derivarse de un potencial

El estudio de este caso particular de problema de movimiento relativo da lugar al llamado problema de
Kepler.

B.6. Problema de Kepler

El problema de Kepler se puede formular como
m¥ = ——r, (B.21)

para la cual el vector momento angular de la particula, G = r x (m¥ ), proporciona una integral
primera que permite reducir el orden diferencial del sistema de 6 a 3. Para plantear la resolucién de este
problema, necesitamos otra u otras nuevas integrales primeras. Asi pues, utilizando la ecuaciones del
movimiento (B.21), la definicién (B.13) del vector momento angular, formando el producto vectorial y
utilizando que G es constante obtenemos

th:K£+a>3:K<£+e>, (B.22)
r r

donde introduciremos el vector de Laplace-Runge-Lenz-Hamilton o vector excentricidad, el cual pro-
porciona tres constantes escalares,

. 1. r
e =e(—,r,r) = E(rxG)—;.
En realidad las integrales del vector momento angular, del vector de Laplace-Runge-Lenz-Hamilton y
de la energfa, siete cantidades escalares en total, s6lo aportan cinco constantes del movimiento funcio-
nalmente independientes, ya que se verifica que

28 G?

eG=0 28G*=mK*(e*?~-1) = ezzez(g,@@):prm,

donde se observan dos relaciones entre G, e y & .

Para continuar con la resolucién de este problema utilizando el vector e hasta llegar a determinar
las orbitas del problema de Kepler, multiplicando los dos miembros de (B.22) por el vector de posicién
r,

2

r(rxG) = K(|r”+e-r) = K(r+ ercosf),
r

donde se supone que e - r = ercosf ,siendo f el 4ngulo entre el vector de Laplace y el vector

de posiciéon r , llamado anomalia verdadera. Utilizando la propiedad sobre el comportamiento del

producto mixto bajo permutaciones circulares podremos escribir finalmente que

G2 Gz/mK p
Y k(1 T Ttecosf 1+ecosf
- r(l+ecosf) = r(f) 1+ ecosf 1 + ecosf

Esta expresion admite una interpretacion geométrica: ecuacion focal de una cénica en coordenadas
polares planas, con f como pardmetro de la representacién, y p como semilado recto.

Finalmente, se ha demostrado que las soluciones del problema de Kepler son cénicas. Los elementos
geométricos p y e de la cénica, son funciones de las integrales primeras G 'y & a través de las
relaciones

G? 26G?

= p(G) = — = e(G,&) = /1 )

(B.23)
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Nétese que p tiene dimensiones de longitud, mientras que e es adimensional. Observando la férmula
(B.23) de e, la clasificacion geométrica de las cénicas segtin los valores de la excentricidad numérica e
se traduce en su clasificacién segtn el valor y signo de la energia & .

= Para érbitas elipticas, 0 < ¢ < 1 = & < 0, yapartirdelasrelaciones p = a(1 —e?) =
b? / a y de la definicién de e , Obtenemos las férmulas para los semiejes mayor a y menor b

o Y S K _ _ G
a=a(&) = = b_b(G,é?)—i\/W.

—2& 287
La distancia desde el foco hasta el pericentro y el apocentro (respectivamente) , se expresan como

Fmin = a(l —e), Fmax = a(l +e).

Destacaremos que la ley de las dreas, para estas soluciones elipticas permite establecer la Tercera
Ley de Kepler,

a’ - 1 K

P2 (27m)?m
Podemos despejar el periodo orbital P en funcidn del semieje mayor a como:

P? = (271')2Ta3,
K

por tanto, el periodo orbital de una 6rbita eliptica depende de la energia P = P(&), pero es
independiente de la excentricidad de la misma. Introduciremos ahora el término de movimiento
medio, que llamaremos a la velocidad angular media con la que la masa movil recorrerd la 6rbita
con un movimiento uniforme. Lo denotaremos como n ,y seré:

2z [K K
n = — = —a 3 —= n?d’ = —,
P m m

que, debido a su relacién con a y P, también depende de la energia, n = n( & ).
= Para orbitas parabélicas, ¢ = 1 — & = 0. El elemento geométrico fundamental es el
semilado recto p . La minima distancia entre el foco y la masa mévil serd rp;, = p /2. El
movimiento medio para este tipo de érbitas se define como
K
2 3
n-p =
m

donde ahora el movimiento medio dependerd de la norma G del vector momento angular n =
n(G).

= Para érbitas hiperbélicas, ¢ > 1, => & > 0 ;apartir de lasrelaciones p = a(e?—1) =
b2 / a,y de la definicién de e, obtenemos las férmulas para el semieje real a y transverso b ,

K G
a=a(8) = —, b=b(G,&) = ——.
(€) = 35 (6.6) = ———
El minimo valor que toma r es
Fmin = a(e —1).

Consideramos ahora una generalizacién del concepto de movimiento medio

donde a es el semieje real de la hipérbola.
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Finalmente para considerar resuelto el problema de Kepler, solo falta poder dar, en cada instante, la
posicién concreta de la masa mévil a lo largo de su drbita, pues como ya hemos visto:

= El momento angular G informa acerca de la orientacion del plano orbital en el espacio tridi-
mensional.

= La energia & indica el tipo de conica (elipse, pardbola, hipérbola) solucion del problema en
cuestion.

= Elvector e de Laplace-Runge-Lenz-Hamilton marca la orientacién de la cénica en el plano del
movimiento segun el tipo de 6rbita.

Por tanto, para finalizar con la resolucién , necesitamos establecer una relacién tiempo-posicién en
cada instante. Para ello utilizaremos la Ley Horaria del Movimiento que distinguiremos en funcion del
tipo de cénica.

= ORBITAS ELIPTICAS: n(t —t,) = E — e sinE = /, llamada Ecuacién de Kepler del
movimiento eliptico, donde ¢ es la anomalia media y E la anomalia excéntrica

3 f f
2

= ORBITAS PARABOLICAS: n(t —1t,) = } (tan®Z +3tan ) = ¢, expresién

6 2

conocida como ecuacion de Barker, donde /¢ es la anomalia media del movimiento parabdlica.

= ORBITAS HIPERBOLICAS: n(t —1t,) = esinhF — F = (, llamada ecuacion de Kepler
del movimiento hiperbdlico, donde £ es la anomalia media hiperbdlica.
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