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Caṕıtulo 1

Introducción y objetivos

Dentro de la f́ısica experimental, uno de los campos que mayores impedimentos técnicos
encuentra para conseguir resultados concluyentes es aquel que se dedica a buscar pruebas de
nueva f́ısica, es decir, en las que se manifiesten comportamientos f́ısicos desconocidos respecto de
las teoŕıas actuales. Con teoŕıas actuales nos referimos principalmente a la relatividad general en
cosmoloǵıa o al modelo estándar en f́ısica de part́ıculas, que como sabemos es una teoŕıa cuántica
de campos. Los principales argumentos para la búsqueda de nueva f́ısica son principalmente dos:
que ya nos hemos topado con f́ısica fuera de estos modelos, como la oscilación de neutrinos
que implica el hecho de que la masa del neutrino sea no nula, masa que el modelo estándar no
es capaz de explicar, y la aparente incompatibilidad entre la relatividad general y la mecánica
cuántica. Esta segunda razón engloba un campo de estudio muy amplio, relacionado con la
llamada Gravitación Cuántica [1, 2], en torno al que se han ideado multitud de teoŕıas, como
las teoŕıas de cuerdas, entre muchas otras.

La confluencia de la gravedad con la f́ısica de part́ıculas se da en sistemas donde la enerǵıa
es tan grande y las distancias tan pequeñas, que la gravedad entre part́ıculas es apreciable, lo
cual se cumple en la llamada escala de Planck, λPl =

√
G~/c3 [3]. Intentando explicar la f́ısica a

la escala de Planck es cuando la incompatibilidad es apreciable, y es un buen lugar para buscar
procesos de nueva f́ısica. Sin embargo, nos topamos directamente con el principal obstáculo: la
enerǵıa de la escala de Planck es demasiado grande para procesos entre part́ıculas, inalcanzable
con nuestros medios actuales. No se pueden hacer experimentos a estas enerǵıas y las detecciones
de part́ıculas más energéticas provenientes de la radiación externa tampoco se han acercado lo
suficiente hasta la fecha. Lo que śı se puede hacer es buscar en nuestras medidas a enerǵıas más
bajas consecuencias que se deban a posibles fenómenos a la escala de Planck, lo que se podŕıan
llamar reminiscencias, resultados ponderables de procesos desconocidos.

A la hora de formular un modelo f́ısico teórico, es fundamental la posibilidad de que este pue-
da ser demostrable experimentalmente. Los posibles procesos a la escala de Planck, si existiesen,
no seŕıan detectables directamente, sino que habŕıa que encontrar sus consecuencias, con lo que
la principal dificultad es que no se vean enmascaradas por otras causas. Si se hace la búsqueda
a partir de detección de part́ıculas cósmicas, cuanto mayor sea la capacidad de interacción de
estas part́ıculas, mayor será la pérdida de información, con lo que será una buena idea intentar
detectar part́ıculas con poca posibilidad de interaccionar. Los neutrinos de altas enerǵıas son
potencialmente una herramienta muy útil para la comprobación de las implicaciones fenome-
nológicas que puedan tener aquellos modelos que busquen explicar los fundamentos de la f́ısica
a la escala planckiana, debido a su escasa probabilidad de colisión. Aunque esta reducida inte-
racción dificulta su medición y los detectores de neutrinos actuales están limitados por una cota
máxima en enerǵıas (en torno a los PeV en detectores como el IceCube), el desarrollo técnico
está en constante evolución y existen proyectos muy sofisticados.

Las teoŕıas de gravedad cuántica generalmente mezclan muy diferentes aspectos de la f́ısica
moderna, desde descripciones del espacio-tiempo diferentes a las de la relatividad general, hasta
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CAPÍTULO 1. INTRODUCCIÓN Y OBJETIVOS 5

concepciones de nuevas part́ıculas que no entran dentro del modelo estándar. Una de las posibles
modificaciones de la estructura del espacio-tiempo que predicen algunas teoŕıas a la escala de
Planck, es la idea de que la invariancia Lorentz no sea una simetŕıa exacta y que haya part́ıculas
que puedan viajar ligeramente por encima de la velocidad de la luz. Decimos ligeramente, porque
una desviación muy grande seŕıa algo demasiado evidente para que no se haya encontrado
ningún indicio de ello hasta ahora. Una de las formas en que esta violación de la invariancia
Lorentz (Lorentz invariance violation, LIV ) se describe es una extensión del modelo estandar
(standard model extension, SME ), desarrollada en el contexto de teoŕıa efectiva de campos
(effective field theory, EFT ) que hace posible dicha descripción. En ella, la relación de dispersión
E2 = p2 + m2 de una part́ıcula libre presenta un conjunto de nuevos términos, una serie de
polinomios pn+2/Mn

P l, donde MPl es la masa de Planck. La relación de dispersión modificada
queda (en unidades naturales c = ~ = 1)

E2 − p2 = m2 +

∞∑
n=0

an
p2+n

Mn
P l

(1.1)

donde los coeficientes an son adimiensionales. Las modificaciones del lagrangiano afectan a la
f́ısica del neutrino de diferentes maneras. Aparecen correcciones a los elementos de matriz de las
interacciones ya existentes, pero mucho más importante, la dinámica en el desplazamiento libre
de las part́ıculas se ve modificada, pues la nueva relación de dispersión permite desintegraciones
del tipo emisión de un par fermión-antifermión para un neutrino libre [4]. Un ejemplo es la
separación de neutrinos (neutrino splitting, NSpl), ν → ν + ν + ν, que en ausencia de LIV es
una desintegración prohibida por no cumplirse conservación de enerǵıa y momento. Ocurre lo
mismo con la emisión de pares electrón-positrón en el vaćıo 1, (vacuum electron-positron pair
emission, VPE ) ν → ν + e+ + e−. Estos seŕıan los dos procesos donde se producen part́ıculas
de menor masa, y por tanto los más probables.

El objetivo del trabajo es llegar a comprender de qué manera afectaŕıa la existencia de estos
procesos a un flujo de neutrinos teórico, de naturaleza extragaláctica y de altas enerǵıas, lo que
permitiŕıa encontrar trazas de f́ısica en la escala de Planck sin tener que alcanzarla. En presencia
de LIV, los neutrinos cosmológicos pierden enerǵıa debido a los procesos arriba indicados, VPE
y NSpl, ausentes en la cinemática usual de relatividad especial, y a la propia expansión del
universo, el llamado corrimiento al rojo (Redshift, Rsh). En el caṕıtulo 2 hallaremos una ecuación
diferencial para la evolución de la enerǵıa de un neutrino, considerando los procesos de VPE o
NSpl, mientras que en el caṕıtulo 3 haremos lo propio con el Rsh. La mayor dificiltad está en
combinar el Rsh y los procesos permitidos por la LIV. Esto fue realizado de manera numérica
en 2015 por el cient́ıfico de la NASA Floyd Stecker y colaboladores [7]. Dada una distribución
de fuentes en función de la distancia a la Tierra y una distribución de enerǵıa de emisión, simuló
la atenuación de los neutrinos a lo largo de su recorrido, obteniendo como resultado un espectro
del flujo recibido. Dedicaremos el caṕıtulo 4 de esta memoria a revisar los resultados obtenidos
en esta simulación de Monte Carlo y las medidas experimentales de neutrinos de alta enerǵıa en
que se apoya su estudio.

Nuestro principal interés, sin embargo, será resolver anaĺıticamente el problema de juntar
los procesos de violación de invariancia Lorentz con la pérdida de enerǵıa por Rsh. Esto nos
proporcionará un mayor entendimiento de los ingredientes que costituyen el flujo de neutrinos
detectado. En el caṕıtulo 5 realizamos esta labor y obtenemos una expresión anaĺıtica para
el flujo recibido. Este resultado original será la principal aportación de esta memoria. En una
posible continuación de este TFG, podŕıa emplearse dicha expresión (que necesita de integración
numérica) para comparar esta aproximación anaĺıtica con la de Monte Carlo usada por Stecker et
al. y llegar aśı a una mayor comprensión de las conclusiones obtenidas en esta y otras simulaciones
similares.

1Puesto que las cotas de LIV para e− son más estrictas que para neutrinos [5, 6], consideramos relaciones de
dispersión modificadas solo para estos últimos.



Caṕıtulo 2

Producción de pares

La principal suposición del trabajo, en torno a la que giran realmente todos los objetivos y
resultados, es que los neutrinos incumplen la invariancia Lorentz y por ello pueden desintegrarse
durante su trayectoria en el espacio, lo que implica que pierden enerǵıa. Para describir esto se
emplea una teoŕıa de campos efectiva dentro de la que se define el modelo estándar extendido
SME, que incluye estas posibilidades [8]. El lagrangiano L del SME incluye un muy amplio
conjunto de nuevos términos respecto del modelo estándar, pero no vamos a entrar demasiado
en formalismos de teoŕıas cuánticas de campos, más que en las aproximaciones hechas y en las
repercusiones de la relación de dispersión modificada de los neutrinos.

Estar hablando de que la relatividad especial no es correcta en este desarrollo hace preguntar-
se en qué sistema de referencia se podrá realizar nuestra descripción cinemática. Una referencia
muy común y útil para teoŕıas de este tipo es aquella en la que la radiación de fondo de mi-
croondas (cosmic microwave background, CMB) es isótropa, asumiendo el movimiento respecto
a ella como despreciable. Además se puede mantener la invariancia rotacional como simetŕıa
básica, lo que simplifica bastante los términos del lagrangiano de la EFT usada, aunque en
nuestro análisis los apliquemos sin analizarlos uno a uno. La conservación de enerǵıa y momento
(cuadrimomento) se mantiene también como simetŕıa válida, mediante la ley de composición
ordinaria.

Como ya hemos dicho, una consecuencia es que los neutrinos puedan superar la velocidad
de la luz, que sean superlumı́nicos. Podemos deducir esta posibilidad empleando la definición
de velocidad en un espacio de fases canónico v = ∂E/∂p. Agrupamos todos los términos en
ε(p), sacando factor común p2 a la derecha de (1.1) y sin especificar la procedencia de sus
contribuciones:

E2 − p2 = m2 + ε(p)p2 (2.1)

Despejamos primero E en función de p, sacando factor común y considerando solo términos
dominantes en la masa del neutrino y en la desviación de relatividad especial:

E = [p2 +m2 + p2ε(p)]1/2 = p

[
1 +

m2

p2
+ ε(p)

]1/2

≈ p+
m2

2p
+
pε(p)

2
(2.2)

y después resolvemos la velocidad

v =
∂E

∂p
= 1− m2

2p2
+
ε(p)

2
+
pε′(p)

2
(2.3)

Para momentos altos, como la masa del neutrino es muy pequeña, se puede despreciar la
contribución m2/2p2. Los términos nuevos causan que el neutrino pueda exceder la velocidad de
la luz de la forma:

vν = 1 + δ (2.4)
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En la ecuación (1.1) estamos teniendo en cuenta los términos de cualquier orden n, pero
es lógico que pensar que uno de ellos será el dominante, de forma que los demás se puedan
desestimar. Para todo elemento dominante de orden n se puede definir una desviación (que irá
asociada a una δn superlumı́nica):

εn(p) = an

(
p

MPl

)n
(2.5)

A partir de aqúı se consideran despreciables todos los términos de n > 2. Las velocidades
superlumı́nicas para n = 0, 1 y 2 son:
Orden dominante n = 0

v = 1 +
ε0
2

+
p��ε
′
0

2
= 1 +

ε0
2
⇒ δ0 = ε0/2 (2.6)

Orden dominante n = 1

v = 1 +
a1

2

p

MPl
+ p

a1

2

1

MPl
= 1 + a1

p

MPl
⇒ δ1 = ε1 (2.7)

Orden dominante n = 2

v = 1 +
a2

2

p2

M2
Pl

+ p
a2

�2
�2p

M2
Pl

= 1 +
3

2
a2

p2

M2
Pl

⇒ δ2 =
3ε2
2

(2.8)

Como se ha dicho en la introducción, esto solo lo vamos a considerar posible para part́ıculas
tan ligeras como los neutrinos, ni para electrones ni positrones [5, 6]. En neutrinos superlumı́ni-
cos, el exceso de enerǵıa que proporcionan los nuevos términos dependientes de p posibilita las
nuevas desintegraciones VPE y NSpl. Veamos el balance de conservación de la enerǵıa en la
producción de un par electrón-positrón por un neutrino ν → ν + e+ + e−. Definimos los mo-
mentos de las part́ıculas implicadas, en nuestro sistema de referencia donde la CMB es isótropa:
neutrino inicial p, neutrino final p1, positrón p+ y eletrón p−. Despreciamos la contribución a la
enerǵıa de la masa del neutrino m2

ν/2p y consideramos ε(p) genérico:

p+ p
ε(p)

2
= p1 + p1

ε(p1)

2
+
√
m2
e + p2

+ +
√
m2
e + p2

− (2.9)

Sin la presencia de la contribución LIV es claro que esta ecuación no tiene solución debido
a la conservación del momento. En presencia de LIV, la ecuación śı tiene solución si la enerǵıa
del neutrino inicial es suficientemente alta. Para calcular esta enerǵıa umbral, consideraremos
que la reacción debe ser colineal, pues toda contribución al módulo del momento que no sea en
la dirección de la part́ıcula padre requerirá una mayor enerǵıa inicial:

p = p1 + p+ + p− (2.10)

Ahora bien, el caso ĺımite para que sea posible es aquel en el que p1 = 0, pues la contribución
extra a la enerǵıa del momento del neutrino final desaparece y la del neutrino padre se ‘invierte’
únicamente en producir el par de part́ıculas. En esta situación umbral, por conservación del
momento: p+ = p− = pe = p/2. Realizamos la aproximación

√
m2
e + p2

e = pe
√

1 +m2
e/p

2
e ≈

pe + m2
e/2pe para la enerǵıa positrón/electrón. En cuanto a la enerǵıa del neutrino hijo, esta

pasa a ser su masa en reposo mν ≈ 0. Despejamos el momento del neutrino en la conservación
de la enerǵıa:

p+ p
ε(p)

2
=
p

2
+
p

2
+
m2
e

p
+
m2
e

p
= p+

2m2
e

p
⇒ pε(p) =

4m2
e

p
⇒ p2

th =
4m2

e

ε(p)
(2.11)
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Figura 2.1: Derecha: proceso mediado por corriente cargada CC. Izquierda: procesos mediado
por corriente neutra NC [7].

pth es el momento umbral para que un neutrino pueda desintegrarse por VPE. Como ε(p)
y la masa del neutrino son pequeñas, p ≈ E, y por tanto hemos calculado la enerǵıa umbral
E∗ = pth.

También vamos a introducir un denominador diferente a la masa de Planck. Las desviaciones
respecto de la relación de dispersión de la relatividad especial no tienen por qué ser exactamente
del orden de la escala de Planck y podŕıan aparecer a enerǵıas menores. En (1.1) an seŕıan las
variables que se ajustaŕıan en función de ello, pero usando Λ podemos introducir esta escala en la
propia relación de dispersión. Tendremos pues una relación diferente según el orden dominante
sea n = 1, 2:

E2 − p2 = m2 +
p2+n

Λn
(2.12)

Consideramos que la modificación en la relación de dispersión está producida por nueva f́ısica
controlada por la escala Λ, con lo que descartamos el caso n = 0.

Cabe definir cierta masa efectiva, como masa en resposo modificada en la nueva relación de
dispersión, que proporciona una conveniente forma de comprender el formalismo y aplicarlo. Se
tendrá una diferente masa efectiva según el orden n dominante:

E2 − p2 = m̃2
n(E) = m2 + εn(p)E2 (2.13)

Otro punto importante es que la relevancia de uno u otro término con diferente valor de n
implica diferentes simetŕıas de la naturaleza. En el SME, las desviaciones de n impar implican la
violación de la simetŕıa CPT, al contrario que para n pares, donde se conserva CPT. Por tanto,
que uno domine sobre el otro tendŕıa como consecuencia la prevalencia o no de esta simetŕıa. Una
sutileza que presenta el proceso NSpl si no se conserva CPT, es que la propiedad de conjugación
implica que si los neutrinos son superlumı́nicos, los antineutrinos serán sublumı́nicos de forma
intŕınseca, y viceversa, dando lugar a la necesidad de diferenciar neutrinos y antineutrinos y
haciendo mucho más complicados los cálculos.

Descartaremos las diferencias según el sabor de los neutrinos, tomando la suposición de que
los tres tienen los mismos coeficientes debidos a la LIV. Además, como estamos suponiendo
enerǵıas relativistas muy altas p2 � m2, tampoco es relevante la diferencia de masa entre ellos,
lo que es coherente con que hayamos despreciado la masa del neutrino en las ocasiones anteriores.

Respecto a los propios procesos NSpl y VPE, se trata de dos procesos débiles, mediados
por los bosones de la interacción débil. La VPE es un proceso que puede debido a corriente
cargada (charged current, CC ) o a corriente neutra (neutral current, NC ), mientras que el NSpl
es mediado por NC. La imagen 2.1 representa varios diagramas de Feynman posibles: una VPE
mediada por corriente cargada, y una VPE y un NSpl de neutrinos electrónicos mediadas por
corriente neutra. En el caso de la VPE, los canales CC solo son cinemáticamente relevantes
para neutrinos electrónicos νe, para los muónicos νµ y tauónicos ντ se produciŕıa un par µµ o
ττ respectivamente, leptones de masas demasiado altas que, como hemos calculado al obtener
(2.11), suponen una enerǵıa umbral mucho mayor. Debido a la oscilación de neutrinos, si estos se
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propagan en largas distancias, 1/3 del camino el neutrino tiene sabor electrónico, única situación
en la que un proceso CC es relevante. Ahora bien, como el proceso NC se puede dar para los tres
sabores del neutrino, podemos despreciar en primera aproximación la contribución del proceso
mediado CC frente al caso NC [7].

La anchura de desintegración de la VPE por corriente neutra NC obtenida en [9] es:

Γ =
G2
F |~p|5

192π3

[
(1− 2s2

W )2 + (2s2
W )2

]( |~p|
Λ

)3n

ξn (2.14)

Esta anchura nos proporciona una ecuación diferencial resoluble anaĺıticamente a partir de
la cual obtener la enerǵıa del neutrino en cualquier instante de tiempo, para unas condiciones
iniciales. Pero antes de desarrollarla vamos a analizar primero la expresión. La constante G2

F

proviene de que la desintegración sea por interacción débil, el término con ángulo de Weinberg
s2
W es debido a la definición del bosón Z0 en la teoŕıa electrodébil, y el cociente 192π3 es un

cociente cinemático propio de las reacciones a tres cuerpos. ξn es el elemento de matriz, proviene
de la dinámica de la interacción, que debido a ser una dinámica asociada a los términos de
la SME, no es trivial. Sus posibles valores vienen calculados en [9], y al igual que Stecker,

elegiremos los del caso más sencillo, el primer ejemplo de esa referencia. El factor ( |~p|Λ )3n viene
de la perturbación LIV de orden n al cubo. Esto se debe al exponente de la enerǵıa: la masa
efectiva es m̃2

n(E) ≈ εn(p)E2, luego εn(p) irá asociado a E2. El cálculo requiere tomar el sistema
de referencia del neutrino para una masa efectiva

√
εn(p)E. Entonces, el factor de dilatación

relativista necesario para volver al sistema de referencia CMB es γ−1 =
√
εn(p), y puesto que

la enerǵıa va elevada a la 5, tenemos que E5ε
5/2
n (p)/

√
εn(p), con lo que queda al final E5ε3n(p)

[10]. Ahora bien, el |~p|5 se ha obtenido por argumentos dimensionales.
Otra forma de argumentar estos valores se desarrolla más sencillamente buscando analoǵıa

con una desintegración conocida, demostrada experimentalmente y cuya probabilidad de de-
caimiento ha sido calculada y contrastada. Es el caso de la siguiente desintegración del muón:
µ− → νµ + νe + e−, que con un factor de dilatación γµ, de nuevo en el sistema de referencia en
resposo del muón, tiene una probabilidad de:

Γ = γ−1
G2
Fm

5
µ

192π3
(2.15)

Está claro que E5ε3n(p) es análogo con el término de la masa del muón por el factor de
dilatación: γ−1m5. Los términos con el ángulo de Weinberg s2

W no salen porque el bosón mediador
es el W−, y el término dinámico ξ trivialmente tampoco aparece al no tratarse de un proceso
superlumı́nico.

Volviendo a la enerǵıa umbral para esta desintegración, tenemos que la dependencia en ε(p)
hace que se necesite su valor para conocer E∗, sin embargo no es una medición posible. Al valor
de δ solo se le pueden poner cotas, en concreto δ ≥ 5.2 × 10−21, cota superior dada para los
neutrinos en la referencia [11]. Este valor corresponde, dada una δ genérica, a una enerǵıa umbral
de VPE aproximada a E∗ = 10 PeV.

Nuestros cálculos serán válidos en el supuesto Eν � E∗. Por otro lado, también se está
asumiendo colinealidad del neutrino entre antes y después de la desintegración, es decir, esta no
provoca que su dirección se desv́ıe. El punto clave está en que ambas aproximaciones están liga-
das. La colinealidad requiere que la desviación ε(p) sea mucho menor que 1 y además la enerǵıa
sea mucho mayor que la umbral, de forma que las masas de las part́ıculas sean despreciables y
dichas enerǵıas se puedan aproximar al módulo de sus momentos. La conservación de la enerǵıa
será prácticamente la suma de los módulos de los momentos, llevando a ignorar términos no co-
lineales. Aśı, si la enerǵıa no es suficiente para aplicar las probabilidades de desintegración aqúı
presentadas, se dará el caso de que el neutrino saliente cambiará su dirección, ya no vendrá hacia
nosotros y no lo detectaremos [9]. En siguientes apartados será relevante indicar que estamos
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tomando una distribución radial de fuentes, por consiguiente las trayectorias de llegada de los
neutrinos también y despreciaremos el flujo de llegada por otras direcciones.

Dada Γ se obtiene la derivada temporal del momento lineal del neutrino, según la relación:

d|~p|
dt

= −
G2
F |~p|6

192π3

[
(1− 2s2

W )2 + (2s2
W )2

]( |~p|
Λ

)3n

ξ′n (2.16)

1

E

∂E

∂t
= −αnE5+3n (2.17)

donde ξ′n, calculado en la referencia [9], es aproximadamente igual a ξn por la enerǵıa promedio
perdida por interacción, puesto que γ da la probabilidad de interacción por unidad de tiempo.
Es esta ecuación diferencial la que nos proporciona la pérdida de enerǵıa del neutrino por VPE
en función del tiempo. La constante αn es:

αn =
G2
F ξ
′
n

192π3Λ3n

[
(1− 2s2

W )2 + (2s2
W )2

]
(2.18)

La ecuación diferencial tiene solución conocida, una integral entre la salida del neutrino y su
llegada a nuestro planeta, que se corresponden a enerǵıa y tiempos: Ee, te = 0 y Ed, td.∫ td

te=0
dt = −αn

∫ Ed

Ee

E−6−3ndE (2.19)

Conocidas la enerǵıa inicial del neutrino Ee y la posición en la que se emite re, se puede
calcular cuánto tiempo tarda en llegar td y con ello a qué enerǵıa Ed lo hace a partir de (2.19).
Hay sin embargo una sutileza que como hemos dicho invalida esta resolución, cuando la enerǵıa
del neutrino esté cercana al valor umbral dejará de perder enerǵıa por producción de pares.
En nuestro formalismo, donde la enerǵıa cambia de forma diferencial con el tiempo, se puede
aproximar que va perdiendo enerǵıa ininterrumpidamente hasta que alcanza el umbral. Si el
trayecto del neutrino dura lo suficiente como para ‘atenuarse’ hasta E∗, cuando lo haga dejará
de perder enerǵıa y llegará al detector con Ed = E∗. Dentro del formalismo, bastará con corregir
la enerǵıa de llegada Ed = E∗ si recorre una distancia tal que deja de producir pares electrón-
positrón, es decir, la integral deja de ser aplicable fuera del rango umbral. Si no deja de producir
pares se emplea el valor obtenido de Ed, y si se emite directamente por debajo del umbral es
obvio que llegará con la misma enerǵıa Ed = Ee. Aunque el caso de un neutrino que solo presente
VPE es sencillo, casos donde se combinan pérdidas por otros métodos no lo son tanto. Además,
este es un primer indicio de lo importante que va a ser conocer la distancia a la que se encuentra
la fuente del neutrino, tema en el que profundizaremos más adelante.

En cuanto al NSpl, nos encontramos con que para esta reacción no se ha calculado su anchura
de desintegración Γ. Darle una forma diferencial a la pérdida de enerǵıa también seŕıa más
complicado, puesto que habŕıa que añadir que en cada reacción se producen nuevos neutrinos.
Además, entrando en el caso n impar, habŕıa que diferenciar entre los neutrinos y antineutrinos
producidos, provocando de nuevo la problemática de que unos fueran superlumı́nicos y los otros
no. Aunque estos puntos quizá por śı solos puedan ser resueltos, el hecho de combinarlos con
VPE y Rsh daŕıa para un nuevo trabajo completo, y por tanto se deja para futuros estudios.
Analizaremos la pérdida de enerǵıa por redshift en el siguiente apartado.



Caṕıtulo 3

Desplazamiento al rojo de los
neutrinos

El redshift es consecuencia de la expansión del universo, fenómeno explicado por la teoŕıa de
la relatividad general de Albert Einstein [12]. El objeto de estudio de la relatividad general son
los fenómenos gravitatorios, interpretados como causa de la curvatura del espacio-tiempo que
produce la presencia de materia y enerǵıa. A distancias por encima del tamaño de los cúmulos de
galaxias, son apreciables consecuencias cosmológicas sobre la geometŕıa [13]. La estructura a gran
escala del universo viene dada por el llamado principio cosmológico: el universo es homogéneo e
isótropo, todo observador lo percibirá igual independientemente de su posición y de la dirección
a la que mire.

La estructura y composición del cosmos es explicada por el modelo cosmológico estándar
ΛCDM (lambda-cold dark matter). Según ΛCDM todo se inició en el Big Bang [14], afirmación
corroborada experimentalmente por el descubrimiento de la radiación cósmica de fondo [15] y
por la expansión del universo, observada a partir del propio desplazamiento al rojo [16, 17];
e incluye además el principio cosmológico, aśı que enmarcaremos en él nuestro desarrollo. En
śıntesis, la geometŕıa del universo presenta una expansión homogénea y acelerada [18].

En relatividad general el comportamiento del universo se modeliza a partir de su métrica.
Para un universo homogéneo, isótropo, localmente plano y en expansión uniforme, esta viene
definida por la llamada métrica de Friedman-Lemâıtre-Robertson-Walker (FLRW ) [19, 20]:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
(3.1)

donde se han empleado las llamadas coordenadas comoving. Se trata de coordenadas situadas
en el sistema de referencia de una galaxia considerada en reposo y con una elección apropiada
de la variable temportal. En un universo en expansión, homogéneo e isótropo, se da la excepcio-
nalidad de que en nuestra vecindad (la del observador) se puede tomar un tiempo de referencia
privilegiado, de forma que este sistema es idóneo para modelizar la métrica [13], donde además
la CMB es isótropa, lo que es coherente con la elección del apartado anterior. En la ecuación
(3.1) encontramos los siguientes términos: r es la coordenada radial, t es el tiempo propio, s es el
intervalo relativista, Ω es el ángulo sólido en coordenadas esféricas, a(t) es el llamado factor de
escala relativista, que marca la expansión del universo, y k es una variable que cambia según la
forma del universo y que puede tener los valores k = −1, 0,+1. Los valores de k se corresponden
respectivamente a universos hiperbólicos, planos o esféricos. El nuestro, además de localmente
llano, también es prácticamente plano a gran escala.

La expansión se define a partir de la Ley de Hubble, según la cual para cierto observador la
velocidad a la que se aleja un cuerpo y la distancia a la que se encuentra siguen una relación de
proporcionalidad [13]:

11
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v = Hd (3.2)

donde H es el parámetro de Hubble, cuyo valor cambia con el tiempo y en la actualidad es
aproximadamente H0 = 67,6+0,7

−0,6 km s−1Mpc−1 (obtenido por el Sloan Digital Sky Survey-III en
2016 [21]), conocido como la constante de Hubble.

El corrimiento al rojo es un aumento por efecto Doppler de la longitud de onda λ de las
ondas (electromagnéticas) provenientes de fuentes que se están alejando con cierta velocidad de
nosotros. Puesto que la expansión es uniforme, a mayor distancia mayor desplazamiento al rojo
de forma proporcional [13]. El coeficiente de Rsh z es una magnitud adimensional que permite
caracterizar la velocidad radial a la que se aleja una fuente, y por tanto su posición radial. El
procedimiento fundamental para medir z es a partir de ĺıneas espectrales bien caracterizadas
cuya longitud de onda de emisión sea conocida. Para la deformación de la longitud de onda λe
de un fotón emitido en un tiempo te que llega al observador en td, el coeficiente de Rsh z es:

z =
λd − λe
λe

=
a(td)

a(te)
− 1 (3.3)

que también está relacionado con el factor de escala en los momentos de emisión y recepción.
El hecho de que la longitud de onda aumente implica que la enerǵıa del fotón disminuya, lo que
se cumple para cualquier onda en recorrido libre por el cosmos, y es por eso que los neutrinos
pierden enerǵıa mediante Rsh.

Sin embargo, estamos hablando del concepto de distancia de una forma clásica, en cosmoloǵıa
la expansión del universo hace que este concepto sea más ambiguo. Observemos que la distancia
propia que recorre un fotón desde una fuente cosmológica hasta nosotros, no es la misma que
la distancia que nos separaba de ella cuando el fotón se emitió, ni la misma que nos separa en
la actualidad: la fuente se ha ido alejando con el tiempo. Esto es muy relevante para nuestro
desarrollo, pues necesitamos calcular qué enerǵıa pierden los neutrinos, y para ello necesitaremos
conocer las posiciones de las fuentes de las que provienen y la longitud de la trayectoria que han
recorrido. Una muy buena forma de estudiar estas distancias es mediante el coeficiente z, pues
“cuanto mayor sea la distancia, más rápido se alejará la fuente, y más acentuado será el aumento
de λ” [13]. Aunque z también depende de la velocidad relativa de las fuentes, a las distancias
que estudiamos no conlleva incertidumbres apreciables, pues la componente más relevante será
en la dirección radial.

Tomando coordenadas esféricas centradas en nuestro detector, consideramos dirección radial
de los neutrinos hacia nosotros. Para empezar, el parámetro de Hubble y el factor de escala en
un cierto momento t están relacionados: H(t) = ȧ(t)

a(t) , donde el punto indica derivada temporal.

Esto se calcula fácil, pues si la distancia se define como d = ra(t) y v = rȧ(t), al despejar en
(3.2) rȧ(t) = H(t)ra(t).

En astronomı́a lo que se mide es el flujo que llega de una fuente, de forma que conocida la
luminosidad que emite se puede hallar lo alejada que está de nosotros. La luminosidad de una
fuente es la enerǵıa por unidad de tiempo que emite, y se puede relacionar con el flujo detectado
φ (enerǵıa por unidad de tiempo por unidad de superficie) como:

L = 4πd2φ (3.4)

Para distancias no cosmológicas, conocida la luminosidad y el flujo, se puede estimar la
distancia real. Se define también la distancia luminosidad dL, observable que los astrónomos
pueden medir y que se describe como la longitud a la que se encontraŕıa una fuente si estuviera
en un universo eucĺıdeo:

dL =

(
L

4πφ

)1/2

(3.5)
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Vamos ahora a elegir las coordenadas de la fuente, centrando el origen en ella y con el detector
a una distancia r. Una fuente de luminosidad L emite de forma isótropa y esférica fotones de
frecuencia νe durante un intervalo de tiempo δte, cuando la coordenada temporal es te y llegan
en td. El número total de fotones emitidos es:

N =
Lδte
hνe

(3.6)

Ya alcanzado el detector por el flujo de fotones, el área propia de la esfera centrada en la
fuente se define a partir de la integral:∫

T
a(td)

2r2dΩ2 ⇒ A = 4πa(td)
2r2 (3.7)

Al llegar, los fotones se han desplazado al rojo un factor (1 + z) = a(td)/a(te), la nueva
frecuencia νd es:

hνd =
hνe

(1 + z)
(3.8)

y llegan en un intervalo de tiempo mayor

δtd
(1 + z)

= δte (3.9)

Aśı el flujo que llega en ese intervalo, considerando el detector puntual frente a la inmensa
esfera de propagación, es:

φd =
Nhνd
Aδtd

=
L

A(1 + z)2
(3.10)

aplicando en la segunda igualdad el valor de la luminosidad (3.4) y la relación entre frecuencias
e intervalos de tiempos de emisión y detección (3.8,3.9). La definición de distancia luminosidad
queda

dL = ra(td)(1 + z) (3.11)

Recordemos que esta distancia no es la que recorren los fotones, pero su definición es indis-
pensable para relacionar el flujo medido con la distancia recorrida. En la métrica FLRW, para la
ĺınea de universo de los fotones ds2 = 0 y un desplazamiento radial dΩ2 = 0, podemos relacionar
r y z:

dr

(1− kr2)1/2
= − dt

a(t)
=

dz

a(td)H(z)
(3.12)

donde la segunda igualdad se ha obtenido al derivar la de z y los factores de escala en la
ecuación (3.3) respecto del tiempo. El parámetro de Hubble depende del tiempo, y por ello
también se puede encontrar una expresión dependiente de z, que se obtiene a partir de las
llamadas ecuaciones de Friedman [22]:

H = H0[Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ + Ωk(1 + z)2]1/2 (3.13)

Los cuatro términos dentro de la ráız son las contribuciones de las diferentes componentes del
universo, según su parámetro de densidad Ω: densidad de materia Ωm, densidad de radiación Ωr,
densidad de curvatura espacial Ωk y densidad del vaćıo o constante cosmológica ΩΛ. Aplicando
las propiedades del modelo ΛCDM, nuestro universo es casi plano y la densidad de radiación
despreciable, luego Ωk ≈ Ωr ≈ 0, el parámetro que usaremos será [23]:

H ≈ H0[Ωm(1 + z)3 + ΩΛ]1/2 (3.14)
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Figura 3.1: Distribución de fuentes en función del corrimiento al rojo, tomada de la referencia [11].

Volvamos al análisis sobre las distancias: la distancia actual entre fuente y detector ahora
es a(td)r, y en el momento de la emisión era a(te)r. En un universo plano se pueden calcular a
partir del parámetro de Hubble:

a(td)r =

∫ z

0

dz′

H(z′)
y a(te)r =

1

(1 + z)

∫ z

0

dz′

H(z′)
(3.15)

Como ya hemos indicado ninguna de estas distancias coincide con la recorrida durante el
viaje D, pero se puede hallar a partir de la diferencia entre los tiempos de emisión y llegada.
Empleando (3.12) se logra calcular:

D = c

∫ td

te

dt = −
∫ 0

z

dz′

H(z′)(1 + z′)
=

∫ z

0

dz′

H(z′)(1 + z′)
(3.16)

La pérdida de enerǵıa por corrimiento al rojo es Ed = Ee/(1+z), de donde dE/E = dz/(1+z)
y, con la segunda igualdad de (3.12), llegamos a la misma expresión que Stecker [7]:

−d lnE

dt
= H(z) (3.17)

Modelizada la pérdida de enerǵıa, ahora hay que tener en cuenta que lo que mediremos será
el flujo que llega a nosotros. Cambiamos el sistema de coordenadas a uno centrado en nuestra
posición. Los cálculos anteriores tienen todos la misma validez, pues la expansión del universo
es uniforme y no se realiza en una dirección privilegiada, ignorando además la velocidad relativa
de las fuentes.

En todo caso, es necesario emplear una distribución de fuentes de neutrinos, a una cierta
distancia y con cierto espectro de enerǵıas, en concreto la misma que Stecker. La distribución de
fuentes elegida es aquella que se corresponde con la que sigue la tasa de formación de estrellas
(star formation rate, SFR) del art́ıculo [24]. Dicha distribución de fuentes viene mostrada en un
art́ıculo previo de Stecker [11], se corresponde a la figura 3.1, y es de ah́ı de donde hemos sacado
la que hemos usado nosotros.

A partir de esta gráfica hemos calculado la expresión matemática de esta distribución de
fuentes, como densidad radial de fuentes en función de la distancia a la Tierra. Puesto que el
análisis de Stecker se limita a fuentes de valor z comprendido entre 0.5 y 2, el ajuste lo hemos
limitado a dicho intervalo.

ρs(ze) = eaz
2+bz+c (3.18)
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donde a, b y c son parámetros del ajuste matemático de la gráfica.
Dada la distribución (3.18), el número de fuentes de una corona circular de espesor diferencial

y radio a(td)r es dNs = ρs4πa
2(td)r

2a(td)dr = ρs4πa
3(td)r

2dr. Aśı, con la definición del flujo
(3.10):

φ(Ed) =

∫
dNL

4πa2(td)r2(1 + z)2
=

∫
ρsa(td)Ldr

(1 + z)2
=

∫
ρs(ze)Ldz

H(z)(1 + z)2
(3.19)

Tras aplicar la relación entre dr y dz (3.12) obtenemos la integral a todas las fuentes en
función de la variable z. Esta integral contiene un cociente debido a la expansión del universo que
a primera vista entorpece enormemente el cálculo de la integral. Los ĺımites de integración indican
para qué intervalo de z puede haber fuentes de neutrinos que contribuyan al flujo detectado.

El flujo es el que llega para una enerǵıa Ed dentro del intervalo espectral disponible; esto es
importante, porque el cálculo debe ser necesariamente para una enerǵıa en concreto. Sea una
fuente genérica a una distancia z, todo neutrino emitido con enerǵıa E llegará al detector con
E/(1+z), de modo que para el flujo φ(Ed = E/(1+z)) contribuirán los ν emitidos por esa fuente
con enerǵıa E, como también lo harán ν de otra fuente a z′ y E′ tal que E/(1+z) = E′/(1+z′).
Esto obliga a introducir una dependencia de la luminosidad dentro de la integral:

φ(Ed) =

∫ z2

z1

ρs(ze)L(Ee(ze, Ed))dze
H(ze)(1 + ze)2

(3.20)

La contribución de la fuente será la de los ν emitidos a Ee = (1 + z)Ed, con lo que antes
de calcular la integral será necesario evaluar la luminosidad en función de a qué enerǵıa se
quiera calcular el flujo de llegada. A diferencia de en el caso de producción de pares, no hay
enerǵıa umbral, y sea cual sea la enerǵıa emitida el comportamiento será análogo. Por último,
el espectro de emisión de las fuentes ha sido elegido de forma que sigue una dependencia con
E−2, de acuerdo de nuevo con lo publicado por Stecker [7]:

L(Ee) = L0

(
Ee
E0

)−2

(3.21)



Caṕıtulo 4

Art́ıculo de Stecker

El objetivo del trabajo pasa por averiguar una expresión anaĺıtica del mismo problema anali-
zado en el art́ıculo [7], por lo que parece necesario resumir sus resultados para poder compararlos
con los nuestros. El art́ıculo nos da ciertas bases sobre las que se ha realizado el trabajo y que
nos han servido como punto de partida para nuestro modelo. Debe notarse que dicho trabajo
presenta resultados obtenidos mediante simulaciones de Monte Carlo, mientras que nuestro en-
foque será puramente anaĺıtico. La publicación comienza hablando del formalismo usado para
caracterizar los procesos superlumı́nicos de pérdida de enerǵıa, y define la probabilidad de un
proceso VPE de la misma manera que hemos hecho en el caṕıtulo 2 (2.14). Sin embargo, para
NSpl aplica la misma amplitud solo que un factor 3 veces superior, considerando que es un
proceso similar que se puede dar para neutrinos de cualquier sabor. Explica después las últimas
mediciones de neutrinos cósmicos realizadas por el detector IceCube [25]. Estas van a formar la
referencia experimental para contrastar los resultados y analizar las limitaciones de su validez.

En IceCube se da la detección de neutrinos de cualquier tipo que llegan a él. Pueden haberse
producido en la interacción de la radiación exterior con la atmósfera terrestre, en el Sol, en otras
regiones de nuestra galaxia o en fuentes extragalácticas, los llamados neutrinos astrof́ısicos. El
detector ha registrado 87+14

−10 eventos de neutrinos astrof́ısicos por encima de los 10 TeV, cuya
incertidumbre es para enerǵıas por debajo de 60 TeV, obtenida de la sustracción de los neutrinos
atmosféricos [26]. El espectro para enerǵıas superiores de 60 TeV se aproxima a seguir E−2

ν

[25, 26, 27]. La justificación de que estos eventos sean causados por neutrinos extragalácticos se
argumenta a partir de cuatro razones: 1) La distribución de los 37 eventos registrados a E >
0.1 PeV es consistente con la isotroṕıa del universo, sin una mejora significativa en la dirección
del plano galáctico [25], 2) la dirección de al menos uno de los neutrinos que alcanza los PeV
viene de fuera del plano galáctico [25], 3) el flujo esperado de neutrinos galácticos difundidos es
mucho menor, 4) los ĺımites superiores para los destellos de rayos γ galácticos (gamma ray burst,
GRB) difundidos en el rango de TeV y PeV no conllevan un flujo de neutrinos que explique las
medidas dadas [28].

El espectro del flujo recibido puede describirse mediante E2
ν(dNν/dEν) = 10−8GeV cm−2s−1.

Una tendencia más pronunciada que E−2
ν no se ajusta a los datos obtenidos en el rango de 60

TeV a 2 PeV, y no hay eventos a partir de 2 PeV como seŕıa de esperar al extender el espectro
desde lo medido hacia enerǵıas superiores. Pero hay algo que extraña aún más, la ausencia de
eventos asociados a la resonancia de Glashow. Debido a una reacción νe+ e− →W− → shower,
en torno a la enerǵıa de esta resonancia teórica (unos 6 PeV) debeŕıa apreciarse un aumento de
la sección eficaz de los antineutrinos electrónicos νe. Esto desembocaŕıa en que el área efectiva de
detección del IceCube en cuanto a νe y νe aumentaŕıa en un factor ∼10 [27]. Dadas las mediciones
del IceCube, suponiendo el mismo número de νe y νe y extendiendo el espectro E−2

ν a enerǵıa
altas, debeŕıan haber sido detectados en torno a 3 eventos correspondientes a la resonancia de
Glashow entre 2 PeV y 6 PeV. Es más, incluso sin la resonancia de Glashow seŕıan esperables
más eventos por encima de los 2 PeV. En conclusión, la falta de estos neutrinos esperados podŕıa

16
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Figura 4.1: Espectro de neutrinos para n = 2 (color online). En azul VPE + Rsh, en verde NSpl +
Rsh y en negro los tres procesos. Enerǵıa umbral a 10 PeV. Incluido el espectro normalizado de los
datos de IceCube, en gris incluyendo los neutrinos atmosféricos y en negro tras sustraerlos [25].

ser indicativa de un cutoff en el espectro de neutrinos [7].
El espectro de los neutrinos emitidos es tomado proporcional a E−2

ν entre 100 TeV y 100
PeV, y el flujo recibido viene normalizado siguiendo E2

ν(dNν/dEν) = 10−8GeVcm−2s−1sr−1,
valores consistentes con lo medido en el IceCube. Tras concretar el espectro se incluye el proceso
Rsh y cómo es la pérdida que implica, junto a la distribución de fuentes y el intervalo de z en el
que estas se encuentran.

Concretada ya la naturaleza de los neutrinos, se exponen los resultados obtenidos empleando
métodos de Monte Carlo para conocer el posible efecto aleatorio de los procesos VPE y NSpl en
el flujo de neutrinos superlumı́nicos. La enerǵıa umbral para la VPE se ha elegido entre 10 PeV
y 40 PeV. Se han hecho por separado los casos donde predominan los términos que implican
conservación (n = par) o no (n = impar) de la simetŕıa CPT.

El caso mejor ajustado a las mediciones es el de n = par, conservación de CPT, con enerǵıa
umbral de 10 PeV para el VPE, como se puede apreciar en la figura 4.1. Muestra el flujo recibido
según la enerǵıa, tras la simulación de Monte Carlo de las pérdidas en el transcurso del recorrido
cósmico, normalizado con el flujo detectado en IceCube. Los datos de IceCube, en negro y gris
respectivamente, marcan los eventos normalizados estimando el flujo con y sin la sustración de
los neutrinos atmosféricos. Los tres espectros se corresponden a casos donde los procesos de
pérdida de enerǵıa de los neutrinos son: en azul VPE + Rsh, en verde NSpl + Rsh y en negro
los tres procesos; para los tres n = 2 es el orden predominante.

El resultado es consistente con los datos de IceCube, en el sentido de que hay un corte de
detección a partir de 2 PeV. El umbral E∗ = 10 GeV se corresponde a un δ = 5,2 × 10−21.
Cualquier cálculo para E∗ ≤ 10 PeV no se corresponde con el cutoff supuestamente observado
por IceCube, y por ello es descartado [11].

Los neutrinos llegados presentan un importante descenso del flujo hasta la enerǵıa umbral, y
con una acumulación o pileup por debajo del entorno de esta enerǵıa, afectada por el corrimiento
al rojo según la distancia z a la que producen el último par de part́ıculas. Para el caso VPE
+ Rsh lo que ocurre es que los neutrinos más energéticos se propagan perdiendo enerǵıa. En
NSpl + Rsh es aún más pronunciado, al producirse dos neutrinos nuevos en cada desintegración.
Incluyendo las tres, la acumulación es algo menor. Esta acumulación seŕıa un gran indicativo
de que los términos para n = 2 dominan sobre los demás, aśı, con una mayor estad́ıstica por
encima de los 100 TeV que la observara, podŕıa encontrarse una señal de f́ısica en la escala de
Planck.

No tan esperanzador es el resultado para n = 1. La consecuencia principal de la violación
de la simetŕıa CPT es que, si un ν es superlumı́nico, el ν será subluminal, y viceversa. Tanto
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Figura 4.2: Espectro de neutrinos para n = 1 (color online). En rojo 100 % sublumı́nicos, en
azul 50 % de ambos tipos y en negro 100 % superlumı́nicos. Enerǵıa umbral a 10 PeV. Se mues-
tra también el espectro normalizado de los datos de IceCube, en gris incluyendo los neutrinos
atmosféricos y en negro tras sustraerlos [25].

en VPE como en NSpl se produce un par leptón-antileptón, una de las part́ıculas hijas seŕıa
superluminal y la otra subluminal, una interactuaŕıa y la otra no. Esto concierne también a las
fuentes, pueden tener una diferente proporción de ν o ν, si se emiten con el mismo espectro de
enerǵıa pero unos no son superlumı́nicos, estos perderán enerǵıa únicamente por Rsh y no darán
lugar al cutoff. IceCube no distingue entre ν y ν, por lo que en el resultado de la simulación
tampoco se diferencian. Sin embargo, esto seŕıa una excepción si se hubieran registrado trazas
de la resonancia de Glashow, pues esta solo se da para antineutrinos electrónicos νe.

En el resultado espectral de la imagen 4.2 se presentan los dos casos ĺımite de que sean
superlumı́nicos el 0 % de los neutrinos o el 100 % (en rojo y en negro respectivamente), y un
caso más realista con 50 % neutrinos y 50 % antineutrinos (en azul). Para todas, al darse una
pareja ν − ν, salen uno superlumı́nico y el otro sublumı́nico.

La simulación en ausencia de LIV es más bien una comprobación, sólo se produce Rsh y por
tanto la forma del flujo recibido será la misma que la del emitido. Con un 100 % de ν (o de ν),
el caso más extremo, se da una reducción del flujo por encima del cutoff, pero sin llegar a haber
un corte como en n = par, debido a que en un NSpl uno de los neutrinos hijos no volverá a
dividirse y la enerǵıa de llegada será la enerǵıa con la que se ha emitido, reducida por el Rsh.
Para 50 % de part́ıculas y antipart́ıculas, la disminución del flujo es menor, al haber una menor
cantidad de part́ıculas originalmente superlumı́nicas.



Caṕıtulo 5

Resultado anaĺıtico y conclusiones

Hasta ahora hemos obtenido ecuaciones diferenciales que nos proporcionan la posibilidad
de calcular la pérdida de enerǵıa de un neutrino por unidad de tiempo para los procesos VPE
(2.17) y Rsh (3.17). Tenemos también una expresión del flujo detectado, solo que esta incluye
únicamente el proceso Rsh (3.20). Hemos descartado la inclusión del NSpl al final del apartado
segundo, al no ser un proceso con un estudio anaĺıtico previo e implicar nuevas dificultades no
analizadas. Solo nos queda por tanto combinar VPE y Rsh. Para continuar, primero vamos a
buscar una fórmula del espectro del flujo pero con pérdida por VPE. En este caso la ausencia
de expansión del universo hace la integral mucho más simple, se prescinde del denominador de
la ecuación (3.20). Aśı, el flujo para cierta enerǵıa detectada será1:

φ(Ed) =

∫ r2

r1

ρs(re)L(Ee(re, Ed))dre (5.1)

Del mismo modo que con el Rsh se toma la luminosidad de la fuente según su distancia, y
a la enerǵıa emitida que se corresponde con la enerǵıa del flujo de llegada que se quiere medir,
con la VPE sucede lo mismo, siendo la relación entre ellos la solución de la ecuación diferencial
(2.17) deducida en el caṕıtulo 2. Si Ee ≤ E∗ tendremos que Ee = Ed, el neutrino está fuera del
rango de validez de la ecuación; o si Ed = E∗, la contribución será de neutrinos de múltiples
fuentes y enerǵıas tal que se alcance el umbral antes de llegar al detector.

Ahora bien, veamos el problema de juntar los dos procesos. Al perder enerǵıa por ambos
simultáneamente, la ecuación diferencial resulta complicada e irresoluble anaĺıticamente. Para
llegar a ella, primero es necesario introducir la pérdida de enerǵıa por VPE (2.17) en función
del parámetro z, para lo cual utilizamos (3.12):

1

E

dE

dt
= − 1

E

dE

dz

a(td)H(z)

a(te)
= − 1

E

dE

dz

(1 + z)H(z)

1
= −αnE5+3n (5.2)

de forma que la pérdida para ambos procesos, aplicando la ley de composición ordinaria, se
obtendrá simplemente sumando (5.2) y (3.17), tras despejar dt en (3.12) de nuevo:

1

E
dE = +

αnE
5+3n

(1 + z)H(z)
dz +

1

1 + z
dz (5.3)

La ecuación se puede simplificar mucho si se hace un cambio de variable Ẽ = E/(1 + z), es
decir, Ẽ es la enerǵıa desplazada al rojo por un redhisft de parámetro z:

dẼ

Ẽ6+3n
=
αn(1 + z)4+3ndz

H(z)
(5.4)

1Usamos r en vez de z, ya que aqúı no consideramos el redshift.
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La variable Ẽ es una enerǵıa efectiva que resulta ser invariante bajo el corrimiento al rojo, de
modo que mientras E śı disminuye por Rsh, Ẽ solo lo hace por VPE. El elemento a la derecha
de la ecuación final (5.4) no tiene solución anaĺıtica exacta, aunque se puede aproximar en varios
tramos. Para simplificarlo se pueden hacer dos cambios de variable sencillos. El primero seŕıa
1 + z = x, donde despejando el parámetro de Hubble, queda:

dẼ

Ẽ6+3n
=

αnx
4+3ndx

H0

√
Ωmx3 + ΩΛ

(5.5)

y el segundo cambio es x3 = t, con la consecuente diferencial 3x2dx = dt

dẼ

Ẽ6+3n
=

1

3

αnt
4/3+nt−2/3dt

H0

√
Ωmt+ ΩΛ

=
1

3

αnt
2/3+ndt

H0

√
Ωmt+ ΩΛ

(5.6)

Ya teniendo la ecuación diferencial simplificada, podemos pasar a calcular la forma del flujo
por enerǵıa detectada φ(Ed), considerando cómo se desarrolla la pérdida de enerǵıa del ν en
función de dónde y con qué enerǵıa ha sido emitido. Si nos centramos en la dinámica de un
neutrino, habrá tres casos posibles: emitido por debajo del umbral solo sufre pérdida de enerǵıa
por (Rsh), emitido por encima del umbral de forma que alcanza el umbral antes de llegar al
detector (Rsh + VPE / Rsh) y emitido por encima pero sin alcanzarlo antes de tiempo (Rsh
+ VPE). La diferencia principal será el método de cálculo de la luminosidad correspondiente, y
aunque el primer caso es simple y el tercero no requiere más que de manejar (5.6), el segundo
necesita introducir el concepto de z∗: la posición a la que un neutrino llega al umbral según ze
y Ee.

Ahora bien, si nos centramos en los parámetros con los que definimos cada neutrino en la
integral, su posición ze y enerǵıa de emisión Ee, tenemos cuatro posibilidades: que se emita por
debajo del umbral (Rsh, igual para toda ze), que se emita de forma que no llegue al umbral para
ninguna z permitida (Rsh + VPE, para toda ze), que para todas las fuentes llegue al umbral
antes que al detector (Rsh + VPE / Rsh, para toda ze) o que para algunas fuentes llegue y
para otras no (VPE + Rsh / Rsh, diferentes según ze). Si separamos estos cuatro posibles casos,
tendremos cuatro intervalos de valores Ed para los que calcular el flujo recibido, cada uno con
su correspondiente integral a las posiciones de las fuentes ze.

Pasemos a la ecuación diferencial con Rsh y VPE (5.6) y su resolución por medio de una
integral entre la emisión del neutrino y el final de la sitación VPE + Rsh, que puede darse
cuando alcanza el umbral o cuando llega al detector. El principal problema de esta ecuación es
que el lado izquierdo solo puede ser integrado de forma numérica, aunque el derecho se trate una
integral polinómica. Elegimos provisionalmente un ĺımite inferior sin definir al que llamaremos
“final”, indicado por un sub́ındice f . Veamos qué ocurre:

∫ Ẽe

Ẽf

dẼ

αnẼ6+3n
=

1

−αn(5 + 3n)

(
1

Ẽe
5+3n −

1

Ẽf
5+3n

)
=

1

3

∫ (1+ze)3

(1+zf )3

tmdt

H0

√
Ωmt+ ΩΛ

(5.7)

donde m = 2/3 + n
Los ĺımites inferiores cambiarán según llegue el neutrino al umbral antes de z = 0 o no.

Como puede llegar en dichos dos casos, se definen las dos siguientes integrales:

J(ze) =
1

3

∫ (1+ze)3

1

tmdt√
Ωmt+ ΩΛ

, J(ze, Ed) =
1

3

∫ (1+ze)3

(E∗/Ed)3

tmdt√
Ωmt+ ΩΛ

(5.8)

donde claramente J(ze, Ed) es la que incluye la posibilidad de que se dejen de producir pares
durante el recorrido, pues el ĺımite inferior es z∗ + 1 = E∗/Ed. Despejando de (5.7) las dos
situaciones anteriores, dando el valor a la enerǵıa final Ẽf = Ẽ∗ o Ẽf = Ẽd, y deshaciendo el
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cambio de Ẽ, se obtienen dos definiciones de la enerǵıa de emisión con las que se podrá dar el
valor de la luminosidad correspondiente:

Ee(ze, Ed) = (1 + ze)[E
−5−3n
d − J(ze)((5 + 3n)αn)H−1

0 ]−
1

5+3n (5.9)

E′e(ze, Ed) = (1 + ze)[E
−5−3n
d − J(ze, Ed)((5 + 3n)αn)H−1

0 ]−
1

5+3n (5.10)

Veamos ahora las contribuciones del flujo para los cuatro intervalos definidos.
Ed ≥ E∗, el neutrino es emitido por encima del umbral para todas las fuentes. A lo largo de

todo su recorrido se dan los procesos VPE y Rsh

φ(Ed) =

∫ z2

z1

ρs(ze)L(Ee(ze, Ed))dze
H(ze)(1 + ze)2

(5.11)

E∗/(1+z1) ≤ Ed ≤ E∗ (donde z1 = 0.5), para todos las fuentes el neutrino alcanza el umbral
antes llegar al detector. Es posible VPE hasta que alcanza el umbral, entonces solo pierde por
Rsh

φ(Ed) =

∫ z2

z1

ρs(ze)L(E′e(ze, Ed))dze
H(ze)(1 + ze)2

(5.12)

E∗/(1 + z2) ≤ Ed ≤ E∗/(1 + z1) (donde z2 = 2), dada Ee para neutrinos emitidos en una
fuente en z, los que estén más alejados que z∗ alcanzarán el umbral y los situados más cerca no
lo harán. Habrá pérdida por VPE y Rsh en todo momento, salvo para los casos en que alcanzan
el umbral, situación a partir de la cual dejarán de presentar VPE

φ(Ed) =

∫ z2

z∗

ρs(ze)L(E′e(ze, Ed))dze
H(ze)(1 + ze)2

+

∫ z∗

z1

ρs(ze)L(Ed(1 + z))dze
H(ze)(1 + ze)2

(5.13)

Ed ≤ E∗/(1+z2), el neutrino es emitido por debajo del umbral. Se da únicamente corrimiento
al rojo, con lo que se calcula empleando (3.20)

φ(Ed) =

∫ z2

z1

ρs(ze)L(Ed(1 + z))dze
H(ze)(1 + ze)2

(5.14)

El hecho de que para resolver J(ze) y J(ze, Ed) sean necesarios métodos numéricos entorpece
hacer estimaciones rápidas del flujo obtenido. De forma cualitativa, podemos ver claro que para
enerǵıas por encima del umbral, la cantidad de neutrinos recibidos será menor a mayor enerǵıa,
pues estos la irán perdiendo por dos métodos diferentes. Por otro lado, aquellos que alcancen el
umbral pasarán a perder enerǵıa únicamente por Rsh. Es posible entender una acumulación por
debajo de la enerǵıa umbral. Si no hubiese redshift, la acumulación se produciŕıa exactamente a
la enerǵıa umbral, debido a neutrinos de distintas enerǵıas y fuentes, que alcanzan esa enerǵıa
umbral antes de llegar al detector; al incorporar el redshift, seguirá habiendo una acumulación,
pero ahora por debajo de la enerǵıa umbral, aunque para entender su forma concreta habŕıa que
resolver las ecuaciones anteriores. La diferencia cualitativa entre n = 1 y n = 2 dependeŕıa de la
proporción entre ν y ν̄, superlumı́nicos o sublumı́nicos respectivamente o vicesersa. Si el 100 %
fueran superlumı́nicos (caso ideal), el espectro recibido seŕıa análogo. En todo caso, para conocer
mejor los resultados obtenidos seŕıa necesario resolver las integraciones numéricas y comprobar
si se producen el cutoff y el pileup. La resolución y posterior análisis se dejan pendientes para
futuros trabajos.

Una última estimación que śı se puede hacer es respecto al orden de magnitud del término
Λ, según el cual se obtiene la escala a la que la LIV es apreciable. En Stecker et al. se le confiere
a la enerǵıa umbral un valor E∗ = 10 PeV correspondiente a las cotas superiores de una posible
contribución superlumı́nica δ, y a partir de ello se puede calcular el orden de magnitud de Λ. A
partir de la ecuación 2.11:
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E2
∗

(
E∗
Λ

)n
= 4m2

e ⇒ E∗ = (4m2
eΛ

n)
1

2+n = (4m2
eM

n
P l)

1
2+n

(
Λ

MPl

) n
2+n

(5.15)

Se puede hallar un valor para Λ en función de la masa de Planck para n = 1 y n = 2, dando
valores a me = 0.5 MeV, E∗ = 10 PeV y MPl = 1,2× 1019 GeV

n = 1→ E∗ = 2× 104GeV

(
Λ

MPl

)1/3

⇒ Λ ≈ 108MPl (5.16)

n = 2→ E∗ = 108GeV

(
Λ

MPl

)1/2

⇒ Λ ≈ ×10−2MPl (5.17)

Un umbral ≈ 10 PeV como efecto de gravedad cuántica solo seŕıa razonable para n = 2, ya
que para n = 1 la escala debeŕıa ser mucho mayor que la escala de Planck.

En conclusión, en este trabajo hemos analizado los mecanismos de pérdida de enerǵıa de
neutrinos cosmológicos en un escenario de violación de invariancia Lorentz que da lugar a una
relación de dispersión modificada para el neutrino, y teniendo en cuenta la expansión del univer-
so (caṕıtulos 2 y 3). Estos mecanismos fueron tenidos en cuenta mediante simulaciones de Monte
Carlo de la propagación de estos neutrinos en el trabajo de Stecker et al. que hemos analizado en
el caṕıtulo 4. Nosotros, en cambio, hemos construido en el caṕıtulo 5, en lo que constituye el re-
sultado principal de este TFG, una aproximación anaĺıtica al problema, obteniendo expresiones
matemáticas que permitiŕıan obtener el flujo detectado. Este trabajo, que incluye la resolución
numérica de las integrales obtenidas, y que permitiŕıa realizar una comparación con los resul-
tados de Stecker, queda para una futura extensión de lo aqúı presentado. Dadas las medidas
de IceCube, la simulación de Monte Carlo y nuestro análisis cualitativo, podemos decir que si
la detección de neutrinos extragalácticos sigue dando cierto corte en el expectro para futuras
mediciones por debajo del entorno de 10 PeV, la posibilidad de estar frente a fenomenoloǵıa
de la escala de Planck no es descartable. En todo caso, falta mucho trabajo y estudio de los
procesos y cálculos que han quedado en segundo plano, lo que debe servir como incentivo para
no dejar de lado esta investigación.
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[9] J. M. Carmona, J. L. Cortés, and D. Mazón, Phys. Rev. D 85, 113001 (2012).

[10] A. G. Cohen and S. L. Glashow, Phys. Rev. Lett. 107, 181803 (2011).

[11] F.W. Stecker and S.T. Scully, Phys. Rev. D 90, 043012 (2014).

[12] A. Einstein, Sitzungsber. Preuss. Akad.Wiss. Berlin, 844-847 (1915).

[13] B. Schutz, A first course in General Relativity, p. 335 - 351.
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