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Abstract

The aim of this dissertation is to introduce the classical decision problems in groups focusing on the

word problem for polycyclic groups. We give two different solutions to that problem, the first and

more theoretical one is using the fact that polycyclic groups are residually finite and the second, more

practical, consist of creating an algorithm that tell us if a word is or is not the identity in the group.
First of all, we give the definition of free group and word:

Definition. Let F' be a group, X a nonempty set and ¢ : X — F a function. Then F, or more exactly
(F,0) is said to be free on X if to each function o from X to a group G there corresponds a unique
homomorphism f3 : F — G such that @« = 3.

Definition. Let X be a set. We denote by X! = {x~!|x € X} where of course x ! is merely a symbol.
By a word in X is meant a finite sequence of symbols from X UX !, written for convenience in the form

w=ax{l-xf xeX, =+1,r>0.
The next result is to detect whether a given group is free.

Proposition. Let G be a group and X a subset of G. Assume that each element g of G can be uniquely
written in the form g = xll‘xlz2 ---xb where x; € X, s >0, I; # 0, and x; # x;11. Then G is free on X.

Proposition. Let G be a group generated by a subset X and let F be a free groupona setY. If o0 : Y — X
is a surjection, it extends to an epimorphism from F to G. In particular every group is an image of a

free group.
Now we have the tools to give a formal definition of a group presentation.

Definition. Let G be a group and 7 an epimorphism from a free group F to G. Thus if R = kerx, we
have R<F and F /R ~ G. The elements of R are called the relators of the presentation.

Definition. A free presentation of a group G is an expression
G=(Y|S)
where Y is a free generator set of G and S is a generator set of the subgroup of relators

Definition. A group is said to be finitely presented if it has a finite presentation (X |R), that is, one in
which X and R are finite.

At this point we are ready to prove von Dyck theorem.

Theorem. (von Dyck’s Theorem). Let G and H be groups with presentations € : F — G and d : F —
H such that each relator of € is also a relator of 8. Then the function f€ — f% is a well-defined
epimorphism from G to H.

We can also prove two important properties about finitely presented groups.
Theorem. (B.H. Neumann). If X is any set of generators of a finitely presented group G, the group has

a finite presentation of the form (Xo|ry =ry =+ =1, = 1) where Xy C X.

il
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Theorem. Let N <G and suppose that N and G/N are finitely presented groups. Then G is finitely
presented.

The proof of this last theorem will be very useful in the last section of this dissertation.
The three classical decision problems in group theory are.

o The word problem. Is there an algorithm which, when given a word w in the generators of a group
G, decides if w =1 in G?

o The conjugacy problem. Is there an algorithm to decide if two given words wy, w; in the genera-
tors of a group G are conjugate?

o The isomorphism problem. Is there an algorithm which can decide if two given groups are iso-
morphic?

Definition. A group G is residually finite if given g # 1 in G, there is an N<G such that g ¢ N and G/N
is finite.

We show that finitely presented residually finite groups have soluble word problem. As an example
of residually finite groups we consider finitely generated abelian groups and also finitely generated
linear groups (but we do not give a proof in this last case).

Definition. A group G is conjugacy separable if two elements are conjugate in G whenever their images
in every finite quotient of G are conjugate.

We show that finitely presented conjugacy separable groups has soluble conjugacy problem. We
also exhibit an example of finitely presented soluble groups with unsolvable word problem.

The main goal is to prove that polycyclic groups are residually finite. To do it begin by introducing
some concepts about group series. The first is Zassenhaus Lema.

Lemma. Let Ay, Ay, By, By be subgroups of a group G such that Ay <A, and B1 <B». Let D;j = A;NB;.
Them ADy; <A Dy, and B1D1y <BDyy. Furthermore the groups A\Dy, /A1 D1 and B1Do, /B D1, are
isomorphic.

And the second is Schreier Refinement Theorem.
Theorem. Any two series of a group possess isomorphic refinements.

After that, we prove that subgroups and quotients of polycyclic groups are polycyclic too.

We prove that in a polycyclic group G the number of infinite factors in a cyclic series is independent
of the series and hence is an invariant of G which is known as the Hirsch length. Also we define the
notion of poly-infinite cyclic groups as groups with a series with infinite cyclic factors.

Some important notions are commutators and derived series.

Definition. Let G be a group, xi, x2 € G and X;, X> nonempty sets of G. It is said that [x;,x] =
xl_lxz_lxlxg is the commutator of x; and x,. And it is said that [X;,Xz] = ([x1,x2]|x1 € X1, x2 € X3) is
the commutator subgroup of X, and X,. Finally it is said that G’ = [G, G] is the derived group of G.

We prove that for every group G, G/G’ is abelian and define the derived series of a group.

Definition. Let be G a group then G = G(¥) > G(1) > ... where G""+1) = (G’ is called the derived
series of G. The length of this series is the derived lenght of G.

Some easy properties are:
Proposition. Let L and G be groups. If L<G, then L' <G.

Proposition. Ler G be a soluble group with derived length d. Then the derived length of G/ G- s
d—1.
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We also give some important properties of finitely generated and polycyclic groups.

Proposition. Let H be a subgroup of finite index in a finitely generated group G. Then H is finitely
generated.

Proposition. A finitely generated abelian group G is finite if and only if it is a torsion group.
Proposition. A finitely generated soluble torsion group is finite.

Proposition. (i) Every polycyclic group has a normal poly-infinite cyclic subgroup of finite index.
(ii) An infinite polycyclic group contains a nontrivial torsion-free abelian normal subgroup.

These results are used to prove our main theorem.
Theorem. A polycyclic group is residually finite.

Now we illustrate these theoretical results with some examples as the discrete Heisenberg group and
Baumslag-Solitar groups. The discrete Heisenberg group is the unitriangular matrix group with n =3
and integer entries. It is denoted by UT (3,Z). We prove that this group G is polycyclic.

After that, we describe its derived series, showing that G’ = (z) and G(>) = 1 where 7 is the matrix
with all entries zero except in the main diagonal and in the upper right corner where there are ones. We
give the following presentation of G:

G={xyzlxy =z [xz=Mhid=1)

We know that G is residually finite because it is polycyclic but we give a different proof for this
particular case using the fact that UT (3,Z3") is normal in G for all n € N.

And finally we give an easy and useful algorithm to solve the problem word for the discrete Heisen-
berg group.

In the other example we considerer Baumslag-Solitar groups. The Baumslag-Solitar groups are
examples of two-generator one-relator groups. They are given by the group presentation (x,y|(x?)? =
x7). For each integer p and g, the Baumslag-Solitar group is denoted by BS(p,q). We prove that BS(1,2)
is residually finite but BS(2,3) is not. But both groups have soluble word problem. We also state the
following general result.

Theorem. The group BS(p,q) is residually finite if and only if p = +1 or g = +1 or p = +q.

In the last section we give an algorithm to solve the word problem for arbitrary polycyclic groups.
This algorithm uses the so called power-conjugate presentation that we describe next. Let 1 = Gp <
G1<4---<4Gy—1 4G, = G be the polycyclic series of G. For 1 <i < n we choose g; € G; such that
G; = (gi,Gi—1). Then the sequence (g1,...,g,) is called a polycyclic generating sequence of G. Let I be
the set of those i € {1,...,n} with r; :== |G; : G;_;| finite. Each element of G can be written uniquely as
gy g withe; € Zfor 1 <i<nand0<e; <riforiel.

Each polycyclic generating sequence of G gives rise to a power-conjugate presentation for G with
the relators

gif = gffij=i’1)...gi(i’j’l) for1 <j<i<n,
—1 ... ..
gifi _ glf_(ll,]ﬂ—]) . _g{(wJ) for1 <j<i<n,
g = gﬁ(_"’li_l) . -gll(M) foriel.

To finish, we give an example of this presentation for the unitriangular integer matrix group of
dimension n, UT (n,7Z).
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Capitulo 1

Grupos libres y presentaciones

En este capitulo se dard una breve introduccién a los grupos libres y enunciaremos los problemas de
decisién en la teoria de grupos, en especial el problema de la palabra.

La notacién que usaremos serd la usual en la teoria de grupos, es importante recordar los siguientes
simbolos. A no ser que se diga lo contrario usaremos ‘1’ para referirnos a la identidad del grupo. Con
K < G y K < G nos referiremos a que un conjunto K es subgrupo del grupo G, con el primer simbolo
consideraremos que K puede ser G mientras que en el segundo caso no. Y en el caso en el que K
sea normal en G usaremos los simbolos < y <. Por otra parte para denotar el subgrupo de un grupo
G generado por una familia X C G usaremos la notacién (X). Afiadir que |G| denota el nimero de
elementos que tiene el grupo G y para un subgrupo K de G usaremos |G : K| para referirnos al indice de
K sobre G, que es el nimero de coclases distintas gK = {gk|k € K}. Finalmente dados dos elementos
x,y € G la conjugacién de x por y lo denotaremos con x* =y~ lxy.

1.1 Grupos libres

Definicion. Sea F' un grupo, X un conjunto no vacio y ¢ : X — F una funcién. Diremos que F o de
forma mds rigurosa (F, o) es libre sobre X si para cada funcién a de X a un grupo G le corresponde un
tinico homomorfismo f : F — G tal que ¢ = 6 3.

X G
o

Un grupo que es libre sobre algtin conjunto se dice que es un grupo libre.

Definicién. Sea X un conjunto. Denotaremos por X ! = {x~!|x € X} donde x~! es simplemente un
simbolo. Nos referiremos por palabra a una secuencia finita de simbolos de X UX ~!. Lo escribiremos:

w:x‘lglmxs" xi€X, g==x1,r>0.

y
En el caso r = 0 la secuencia serd nula y w serd la palabra nula, la cual la escribiremos como 1.

Definimos el producto de dos palabras como la yuxtaposicién de las mismas, el inverso de una
palabra w como w™! = x, & .. -xl_81 y decimos que dos secuencias de simbolos de X UX ! son la misma
palabra si se puede pasar de una a otra realizando las siguientes operaciones tantas veces sea necesario:

1 1

e Afiadiendoxx " 6x ‘xconx € X.

1 1

e Sustrayendoxx™ " 6 x™ 'xconx € X.
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Entonces se puede probar que el conjunto de todas las palabras de X forman un grupo que ademds
es libre sobre X (ver [9, 2.1.1]). Tenemos asi que para todo conjunto X existe un grupo libre sobre éI.

Proposicion 1.1. Sea F un grupo libre sobre X y G un grupo isomorfo a F. Entonces, G también es
libre sobre X.

Demostracion. Sea H un grupo, como F es libre sobre X, para cada funciéon o de X en H existird un
tnico homomorfismo 8 de F en H. Luego llamando v al isomorfismo de F en G, siendo ¢ la funcién
de X en F, bastara tomar ahora:

G
14 Y

viendo asi que G es libre sobre X. U

Proposicion 1.2. Sea G un grupo y X un subconjunto de G. Asumamos que cada elemento g de G puede
ser escrito de forma vinica como g = xlllxlz2 ---xls donde x; € X, s >0, I; # 0 y x; # x;11. Entonces G es

libre sobre X.

Demostracion. Sea F un grupo libre sobre el conjunto X con funcién asociada ¢ : X — F. Por definicién
existe un homomorfismo 3 : F — G tal que o3 : X — G es la aplicacion inclusién. Por hipétesis B es
sobreyectiva y es inyectiva por la unicidad de la expresion anterior. Por lo que G es isomorfo a F, y
como F es libre, lo sera G. L]

Ejemplo 1. Consideramos las funciones x* =x+2y xf = 547 sobre Ce.. Como ot y B son biyecciones

. . . —1 -1
debido a que tienen inversos: x* =x—2yxf = 1255 €ntonces o y B generan un grupo de permu-

taciones F de C.. Este grupo es libre sobre el conjunto {c, 3}. Para verlo se puede razonar asi: Al
aplicarle a un z que se encuentre en el interior del circulo unidad una potencia no nula de « el resultado
estard en el exterior y si a un w que se encuentre en el exterior del circulo le aplicamos una potencia no
nula de f3 el resultado estard en el interior sin el 0, a partir de esto se puede probar que ninguna palabra
puede ser reducida a 1 salvo la trivial teniendo asi que todo elemento de F se puede escribir de forma
tnica en términos de o y 3. Esto significa que se cumplen las hipétesis de (1.2) y F es libreen {c, 3 }.

Definicion. Un grupo lineal G es un grupo isomorfo a un subgrupo de GL(n,F) con F anillo abeliano
y 1 un entero positivo.

Ejemplo 2. Consideremos las matrices A = < ; (1) yB= (1) ? ) . Usando un argumento similar
al del ejemplo anterior se prueba que el grupo F, = (A,B) es libre sobre el conjunto {A,B} ademds
F, <GL(2,7Z) por lo que es un grupo lineal. Y se puede probar que F, contiene a todos los grupos libres

finitamente generados, luego todo grupo libre finitamente generado es lineal.

Proposicion 1.3. Sea G un grupo generado por un conjunto X y sea F un grupo libre sobre un conjunto
Y.Sia:Y — X es sobreyectiva, existe un epimorfismo de F en G. En particular todo grupo es cociente
de un grupo libre.

Demostracion. Como F es libre sobre Y, de la funcién a se puede extender un homomorfismo, que lo
llamaremos igual por simplicidad, ¢ : F — G. Debido a que X genera G, los elementos de G serdn de la
forma, x{'x3? - -x{* donde x; € X, & = %1y k > 0. Para todo x; € X Jy; € Y tal que y¥ = x;, luego dado
un elemento de G x{'x5? -+ x{* existen y1,y2, ..., Yk tal que y¥ = x1, y¥ = xa,..., y¥ = x4, por lo que

OF5 -3 = O 05)% - O =i af

siendo asi o un epimorfismo. O
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1.2 Presentaciones de grupos

Hemos visto en la proposicién anterior que todo grupo es cociente de un grupo libre, luego podriamos
pensar en describir cualquier grupo como un cociente.

Sea un epimorfismo 7 de un grupo libre F' en G. Llamando R al niicleo de 7 tenemos que R <1 F' y
F /R~ G. A los elementos de R los llamaremos relaciones.

Elegimos ahora un conjunto de generadores libres de F', llamémosle Y, y un subconjunto S de F tal
que kerw = S 1. Si X = Y” entonces se tiene que X genera G. Por otra parte r € F' es una relacion si
y solo si puede escribirse de la forma (sfl)f b (s,f" )f “donde s5; € S, & £ 1, f; € F. La presentacion 7
junto a la elecciéon de Y y § determina un conjunto de generadores y de relaciones para G.

Definicion. Llamaremos presentacion de un grupo G a
G=(Y|S).

Vemos que la presentacion de G se basa en la eleccion de Y y principalmente en la de & por lo que
también se conoce como presentacion libre de G al epimorfismo 7.
En la prictica es mds conveniente dar las relaciones como s =1, s € S y siendo G generado por X,
obtenemos
G=(X|s=1,s€8).

Nos referiremos a esta expresién como la presentacién de G.

Ejemplo 3. Uno de los ejemplos més sencillo lo tenemos para los grupos ciclicos como por ejemplo,
G = (x|x® = 1), el grupo ciclico de 6 elementos. Tenemos X = {x}, el grupo libre F = (X) = (x) =
{1,x,x 1,7, 2,..} yo:xeX—xecF.Lafuncién 7 : ¥ € F — x") € G dada por y(i) = i modulo(6)
claramente es un epimorfismo y se tiene ker 7 = <x6>.

Ejemplo 4. G = <x, 2 =1,y = 1>. Este grupo se llama grupo diédrico infinito, se denota por D..
Veamos otra presentacion de este grupo. Llamando a = xy obtenemos que G = <x, ax*> =1,xlax=a"! >
realizando cdlculos vemos que x 'ax = x 'xyx = yx =a" ! pues a(yx) = xyyx =xy’x =xx=x> =1y
reciprocamente y> = (x~'a)? = x 'axa = a~'a = 1. Utilizando las llamadas transformaciones de Tietze

(ver [0, 2. Finite presentations]) se deduce que son presentaciones del mismo grupo.

Teorema 1.4. (von Dyck). Sean G y H dos grupos con presentaciones € : F — Gy 6 : F — H tal que
cada relacion en € es también una relacion en 0, esto es, ker € < Ker 8. Entonces la funcion f€ — f S es
un epimorfismo bien definido de G en H.

Demostracion. Por la definicién de presentacién se tiene que € y & son epimorfismos, luego dados
g€GyheHexistirdn fi, fe Ftalque g = ff y h= f%. Ademds la aplicacién f€ — f9 estd bien
definida debido a que si g = ff y g = f* entonces por fuerza f = fik con k € kere y como kere < kerd
tenemos que k € ker § por lo que f% = fl‘S .Y obviamente € — £ es un epimorfismo. O

Definicién. Un grupo se dice que es finitamente presentado si tiene una presentacion finita (X|S), es
decir, existe una presentacién en la que X y S son finitos.

Teorema 1.5. (B.H. Neumann) Si X es un conjunto generador de un grupo G finitamente presentado,
el grupo tendrd una presentacion finita de la forma (Xo|ri =rp, =--- =1, = 1) donde Xp C X.

Demostracion. Sea G = (y1,...,ym|s1 = --- = s; = 1) una presentacion finita de G. Como X genera G,
existird un subconjunto finito Xo = {xy,...,x,} € X donde cada x; se podrd expresar en funcién de los y;
de tal forma que X, también generard G y hay, por lo tanto, expresiones para los y; en funcion de los x;
y viceversa. Llamemos y; = w;(x) y xj = v;(y). Las relaciones en términos de los x;’s serdn:

sEwi1 (%), oW (X)) =1 k=1,...,1.

st = <f*1Sf\f € F) es el subgrupo normal a F mds pequefio que contiene a S
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Habra un nimero finito de estas relaciones.

Sea G un grupo con generadores Xp,...,X, y las relaciones descritas arriba para los Xi, ...,X,. Por
(1.4) existe un epimorfismo de G en G en el que X; — x;. Definimos ahora ¥, = w;(%). Partiendo de que
X =viwi(X),...,wn(x)) j=1,...n. Se deduce que G = (y,...,¥,,). Debido a que s¢(y) = 1 hay, de
nuevo por (1.4), un epimorfismo de G en G en el cual y; — y;. Estos epimorfismos son mutuamente
inversos, luego son isomorfismos, por lo que G estd generado por x1,...,x, y tiene las relaciones de las
x; descritas antes. ]

Un ejemplo de grupos finitamente presentados son los grupos ciclicos.

Teorema 1.6. (P. Hall). Sea N<G si N 'y G/N son grupos finitamente presentados, entonces G es
finitamente presentado.

Demostracion. Supongamos que N tiene una presentacion con generadores xp, ..., X;, y relaciones r| =
---=ry =1y que G/N tiene una presentacion con generadores y| N, ...,y,N y relaciones s; = --- = 5; =
lg/n- Entonces, G esta generado por Xi,...,Xm,)1,-..,yn. Ademas cumplen las siguientes relaciones:
ri(x) =1, (i=1,..,k) que son las que ya habfa en N, las relaciones que habia en G/N son s;(y)N =N
lo que nos dice que s;(y) € N por lo que estas relaciones se podran poner en funcion de los generadores
de N:

siy) =tj(x) j=1,...,L

Y finalmente las relaciones de normalidad:
vy =uii(x) oyt =) i=1.,m, j=1,..n.

Sea G un grupo con generadores X1, -y Xm, Y1, ---, ¥, ¥ con las relaciones definidas arriba en términos
de los X; y y;. Por (1.4) hay un epimorfismo o : G—Gtalquex¥* =x y ¥} =yj. Sea K =kera.
La restriccion de o a N = (X1, ...,X,,) es un isomorfismo, en efecto, todas las relaciones en los x; son
relaciones en los X; y de nuevo por (1.4) existe un epimorfismo de N en N en el que x; — X; siendo esta
la aplicacién inversa a la restriccion de o en N. Por lo tanto K NN = 1. Por otra parte N <G porque
y]flx,y vy jf,-y;l pertenecen a N debido a que cumplen las relaciones de normalidad descritas arriba.
Luego « induce un epimorfismo de G/N en G/N en el que y;N + y;N que es un isomorfismo debido a
que todas las relaciones en los y;N son también relaciones en los y;N. O

Ejemplo 5. Retomemos el ejemplo 4 en el cual habiamos dado la siguiente presentacion del grupo
diédrico infinito: G = (x,a|x* = 1,x 'ax =a~'). Vamos a ver que este grupo también se puede expresar
como el producto semidirecto de dos grupos, G = X X N con el grupo ciclico infinito N = (a) y el grupo
X = (x) ciclico de orden 2 y ademds x conjuga un elemento de N en su inverso, es decir, x 'ax =a~!.
Para ello vamos a servirnos de la demostracion del teorema (1.6). Tenemos que N <G y ademds N y
X = G/N son finitamente presentados con presentaciones:

N={a]), G/N=(xA|x*A=A).

Entonces G estard generado por a, x y las relaciones serdn las siguientes:

e x? = a" para algiin n € NU{0}.

e x 'ax = a' para algiin [ € NU{0}.

e xax ! = @™ para algin m € NU{0}.

Como x conjuga un elemento de N en su inverso entonces, [ = —1 y m = —1 pues, x 'ax=a"' &

lax=1s axla=x"exax 'a=1< xax™! =a!. Finalmente x 'a"x=a "y x* =d" =
a™ = x"'a"x = x 'x’x = x? teniendo asi que @ = x> =a " = n=0= x> = 1. Por tanto G =
<a,x|x2 = l,xflax:a*1>.

ax—
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1.3 Problemas clasicos de decision en grupos

En esta seccion abordaremos los problemas clésicos de decisién en grupos, que fueron formulados por
Max Dehn en 1911 [2, Uber unendliche diskontinuierliche Gruppen]. En ellos se trata de saber si existe
un algoritmo que nos demuestre si es verdad o no una determinada igualdad.

Suelen ser formulados para grupos finitamente presentados, ya que sin esta condicion, la respuesta
suele ser negativa pero también tienen sentido para grupos finitamente generados.

1.3.1 El problema de la palabra

Sea G un grupo finitamente presentado con generadores xi, ...,x, y relaciones ry, ..., 7. El problema de
la palabra se dice que es resoluble para la presentacion dad si existe un algoritmo para determinar si una
palabra w en términos de los x; s o no es una relacidn, es decir, si w = 1 en G. Se puede comprobar
utilizando un razonamiento andlogo al de la demostracién de (1.5) que la respuesta a nuestro problema
no depende de la presentacién dada, sino del propio grupo G.

Un primer intento para resolver el problema de la palabra serfa enumerar todas las consecuencias
de nuestras relaciones ry, ..., g, es decir, todas las palabras de la forma (ritl)f] (rij/_tl)f?', (fie F).De
tal forma, si w es una relacion, aparecerd en nuestra lista, y dado suficiente tiempo, la detectaremos.
El verdadero problema viene cuando w no es una relacion, esta no aparecerd en la lista y no podra ser
encontrada. Por lo que necesitaremos también una forma de enumerar las palabras que no son relaciones.

Tras este andlisis no es de extrafiar que haya grupos finitamente presentados que tienen un problema
de la palabra irresoluble, que es justo lo que se demuestra en el famoso teorema de Novikov-Boone-
Britton [10, Theorem 12.8]. Pero a pesar de esto el problema de la palabra tiene solucién para muchas
clases de grupos finitamente presentados. Veremos alguno.

Definicién. Un grupo G se dice que es residualmente finito si dado 1 # g € G, existe N<G tal que g ¢ N
y G/N es finito.

Proposicion 1.7. Los subgrupos de los grupos residualmente finitos también son residualmente finitos.

Demostracion. Sea K un grupo residualmente finito y H un subgrupo de este. Sea 1 £ h € H entonces
h € K. Luego por hipétesis existe N <K de indice finito en K tal que & ¢ N y en particular HNNN<H
y h ¢ HNN. Como veremos en (2.4) NH < K. De tal forma que aplicando el segundo teorema de
isomorfia tenemos que
H__NH _K

NNH N — N’
Tenemos asi que H/(NNH) es finito. O
Proposicion 1.8. Los grupos abelianos finitamente generados son residualmente finitos.

Demostracion. Como vamos a tratar con grupos abelianos usaremos la notacion aditiva donde el 0 es
la identidad. El teorema fundamental para grupos abelianos finitamente generados nos dice que sea tal
grupo G existiran tnicos ,m € NU{0} y ny,...,n, € N, donde nj|nz|-- - |n,, tal que

Gy @ lp,® - B, SL".

Sea 0 # g € G podremos escribirlo como g =1+ ity + -+ + Oypty, donde t € Zy, & Zp, - ZLp, =T,
t1,...,t son los generadores de cada copiade Z y «y,..., 0, € Z. Podemos suponer que ¢ = 0 pues en
caso contrario, g ¢ Z™ y G /7™ es finito. Sin pérdida de generalidad podemos suponer a; # 0. Tomamos
un p primo que no divida a ;. Entonces g ¢ pZ®Z®---OZOT yG/(pZOLZD---DZDT) es finito
(tiene orden p). L]

Teorema 1.9. (Mal’cev) Los grupos lineales finitamente generados son residualmente finitos.

Demostracion. Podemos encontrarla en [12]. O
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Corolario 1.10. El grupo GL(n,Z) es residualmente finito para todo n entero positivo.

Demostracion. Se sigue de (1.9) por ser Z finitamente generado. O

Proposicion 1.11. Los grupos libres finitamente generados son residualmente finitos.

Demostracion. En el ejemplo (2) hemos visto que el grupo libre generado por dos elementos F; es
un subgrupo de GL(2,Z) el cual acabamos de decir que es residualmente finito. Luego por (1.7) F;
es residualmente finito. Y como todos los grupos libres finitamente generados son subgrupo de F, los
grupos libres finitamente generados son residualmente finitos. 0

Observacion 1.12. Los cocientes de grupos residualmente finitos no tienen porque ser residualmente
finitos. En efecto, por (1.3) sabemos que todo grupo es cociente de un grupo libre, luego si lo fueran,
tendriamos que los grupos finitamente generados son residualmente finitos, lo cual es falso.

Proposicion 1.13. Sea G un grupo residualmente finito y finitamente presentado. Entonces el problema
de la palabra tiene solucion para G.

Demostracion. Asumimos que G estd dado por una presentacién finita. Sea w una palabra en términos
de los generadores de esta presentacion. Vamos a describir dos procedimientos que una vez puestos en
marcha, nos dirdn si w = 1 o no.

El primer procedimiento consiste en enumerar todas las consecuencias de las relaciones dadas en la
presentacién e ir comprobando una a una si es igual a nuestra palabra w. Si resulta que hay alguna que
seaigual aw, w=1en Gy el procedimiento parara.

El segundo procedimiento consiste en enumerar todos los grupos finitos construyendo sus tablas de
multiplicacion. Para cada grupo finito F' construimos todos los homomorfismos 6 de G en F, para ello
asignamos un elemento de F' a cada generador de G y después comprobamos si las relaciones de la
presentacion se cumplen en F. Como F' es finito, habra finitos homomorfismos y se podrd hacer. Para
cada homomorfismo 6 calculamos w® y comprobamos si es igual a la identidad en F. Si resulta que
w? £ 1 en F, entonces w # 1 en G y el procedimiento parard.

La clave reside en que si el grupo es residualmente finito, entonces uno de los dos procesos parara.
En efecto, si w # 1 en G como G es residualmente finito, existird N<G conw ¢ N 'y F = G/N finito en
el cual w # 1 y por lo tanto el segundo proceso parara. Por otra parte si w = 1 en G el primer proceso
parara. O

Teorema 1.14. Los grupos abelianos finitamente presentados tienen solucion al problema de la pala-
bra.

Demostracion. Se sigue de (1.13) y (1.8). ]

En la préctica el algoritmo descrito en (1.13) no suele ser el més rdpido, y como no podia ser de
otra forma, para los grupos abelianos finitamente presentados hay otro algoritmo mucho mds eficiente.
Vedmoslo. Sea A tal grupo con familia generadora minimal (ay, ...,ay, b1, ..., b;) siendo a; los elementos
generadores de orden finito. Por ser A abeliano, toda palabra w podra ser reescrita de forma tnica como,
w=ad ~~af§'bf] b con g,...,€,81,....,8, € NU{0}. Luego w = 1 si y solo si el orden de los a;
dividea g parai=1,...,sy § = 0.

Esto también ocurre para los grupos policiclicos?, lo veremos en el capitulo 4 después de demostrar
en el capitulo 2 que son finitamente presentados y residualmente finitos.

Corolario 1.15. Los grupos lineales finitamente generados y los grupos libres finitamente generados
tienen solucion al problema de la palabra.

2Ver definicién de policiclico en la pagina 9
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1.3.2 El problema de la conjugacion

Sea G un grupo finitamente presentado con generadores xp, ..., x, y relaciones ry, ..., 7. El problema de
la conjugacién se dird que es resoluble para G si existe un algoritmo, el cual, cuando se le introducen
dos palabra wi y w, en términos de los x; decide si son o no son conjugadas como elementos de G.

Observar que al igual que en el problema de la palabra, la respuesta a nuestro problema no depende
de la presentacion dada, sino del propio grupo G.

Observacion 1.16. Todo grupo resoluble para el problema de la conjugacién lo es para el de la palabra.

Definiciéon. Diremos que un grupo G es separable para la conjugacion si para todo par de elementos
g, h € G no conjugados existe un subgrupo normal N de indice finito en G tal que las coclases de gy h
en G/N no son conjugadas.

Observacion 1.17. La propiedad de ser separable para la conjugacién no se conserva para subgrupos.
En efecto, sea K < G donde G es separable para la conjugacion. Sean wy,w, € K no conjugados, no
implica que wy, ws no sean conjugados en G, luego no puedo usar que G es separable para la conjugacién
para ver que K lo es.

Proposicion 1.18. Todo grupo G separable para la conjugacion es residualmente finito.

Demostracion. Sea 1 #w € G entonces, 1 y w no serdn conjugadas luego existe N <G con G/N finito
donde $4 € G tal que IN = h~'whN de lo que se deduce N # wN luego w ¢ N. O

Proposicion 1.19. Sea G un grupo separable para la conjugacion y finitamente presentado. Entonces
el problema de la conjugacion tiene solucion para G.

Demostracion. Al igual que para el problema de la palabra vamos a dar dos algoritmos de manera que
una vez puestos en marcha uno de ellos parard y nos dar el resultado.

En el primero, dadas las dos palabras w; y w; en términos de los generadores de la presentacion,
conjugaremos wj por los diferentes elementos distintos de la unidad de G, pues por (1.16) G tiene solu-
cién al problema de la palabra y por tanto sabemos que elementos son la unidad y cuales no. Tenemos
asi que si estas palabras son conjugadas este procedimiento parara.

Y el segundo consiste en construir todos los cocientes finitos. Para cada cociente finito F' construi-
mos los homomorfismos 6 de G en F' y comprobamos si w? y wg son conjugados, si encuentra uno en
el que no sean conjugados, tenemos que w; es no es conjugado de w; y este procedimiento parard.

Por lo que dado el tempo necesario uno de los dos procedimientos parara. O

Teorema 1.20. Los grupos policiclicos tienen solucion al problema de la conjugacion.

Demostracion. Ver [5, Corolary 9.1.2]. O]

1.3.3 El problema del isomorfismo

Diremos que el problema del isomorfismo es resoluble en una clase de grupos si existe un algoritmo
que decida si son isomorfos o no dos grupos de esa clase.

Este problema fue propuesto por primera vez para clases de grupos finitamente generados por Hein-
rich Franz Friedrich Tietze en 1908 e identificado por Dehn en 1911 como uno de los tres problemas
fundamentales de la teoria de decision de grupos. Sergei Ivanovich Adian y Michael Oser Rabin proba-
ron 50 afios después de su formulacién la existencia de clases en las cuales el problema es irresoluble.
Usando estos resultados, Markov en 1958 prob¢ la irresubilidad del llamado problema fundamental
de la topologia: El problema del homeomorfismo, que consiste en decidir si existe un algoritmo que
determine si dados dos poliedros son homeomorfos o no.
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1.3.4 Resultados negativos para grupos resolubles finitamente presentados

Estos tres problemas de decisidn para grupos finitamente presentados estuvieron sin solucién durante
afios hasta la llegada del teorema de Boone-Novikov. Posteriormente fue demostrado por Olga Khar-
lampovich en 1981 que el problema de la palabra no tiene solucion para determinados grupos resolubles
finitamente presentados. Esto también fue probado de forma independiente por Baumslag, Gildenhuys
y Strebel en 1985 y en ambos trabajos los autores usan resultados de M.Misnsky. En [1] se demuestra
el siguiente teorema.

Teorema 1.21. Existe un grupo resoluble finitamente presentado U de longitud derivada® tres y un
conjunto de palabras wi,wy,... en términos de los generadores de U tal que w¥ =1 con p primo y w;
centrado en U, en el que no hay un algoritmo para decidir si dada una palabra w es o no es igual a la
identidad en U.

El grupo U tiene un subgrupo normal A tal que Va € A a’’ =1 y el cociente U /A es abeliano libre
de torsién®.

Se sigue de forma directa por (1.16) que U también proporciona un ejemplo en el que el problema
de la conjugacidén no tiene solucidn.

Por dltimo afnadir que el grupo U también puede ser usado para probar que el problema del isomor-
fismo no tiene solucidn en la clase de los grupos resolubles finitamente presentados de longitud derivada
tres. Para ver esto tomamos un grupo ciclico (x) de orden p? y definimos los grupos G;, con i = 1,2...

como
U x (x)

(i)
donde wy, wy,... es el conjunto de palabras anterior.

Veamos que w; = 1 en G si y solo si G; no tiene elementos de orden p>. En efecto, supongamos
que w; = 1 y veamos que U no tiene elementos de orden p>. Sea b € U tal que b’ =1 tenemos que
b A = A y como U /A es libre de torsién entonces bA = A, luego, b € A y sabemos que Va € A ab’ = 1,

2 . , 2
por lo que b”” = 1. Luego b tiene orden p 6 p~. Ademas,

Gi=

G,‘=U<;)2<>X>EUX<)<;2>2UXZP2

luego los elementos de G; no tendran orden p3. Reciprocamente, supongamos que w; # 1. Ponemos

que T = <xp2wl._ 1>. Vamos a probar que x7T tiene orden p3. Obviamente T =T luego, el orden de

xT € G puede ser 1, p, p*, p’. Como queremos ver que x7T tiene orden p> serd suficiente ver que
X ¢ T, supongamos que X e T, notemos que T estd generado por el elemento x”zwi_1 que tiene
orden p ya que (w; ')? = 1. Entonces existird un 0 < r < p tal que X’ = (x”ZWZ._])’ = x’pzwi_r luego
wi =x" Pi=p? y como w; # 1 tendrd que ser r = 0 luego 1 = x P 1o que implica que X =1 pero esto es
imposible ya que x tiene orden p>.

En el caso de que w; = 1 tenemos que G; es isomorfo a G* = U X Z > y como no existe un algoritmo
que nos diga si w; = 1 tampoco existird uno que nos diga si G; ~ G*.

3Ver definicién de longitud derivada en la pagina 13.
4Ver definicién de libre de torsion en la pagina 14



Capitulo 2

Cadenas, descomposicion de grupos y
grupos policiclicos

El propésito de este capitulo serd demostrar que los grupos policiclicos son finitamente presentados y
residualmente finitos y por tanto resolubles para el problema de la palabra. Para ello daremos una serie
de conceptos de descomposicion de grupos y ciertas propiedades que poseen determinados grupos que
nos serdn utiles en la demostracion final.

2.1 Cadenas de grupos
Definicion. Diremos que un grupo G es policiclico (resoluble) si existe una cadena de subgrupos
1 =Gp<G1<---<4Gi<dGiy1<4---<1G, =G

donde cada G;;1/G; es ciclico (abeliano). Llamaremos términos de la cadena a los G; y factores de la
cadena a los G;11/G;. Si todos los G; son distintos, al entero n lo llamaremos longitud de la serie.

Proposicion 2.1. Los grupos policiclicos son finitamente presentados.

Demostracion. 1 = Gy es trivialmente finitamente presentado. Como G /Gy = G;/1 = G es ciclico,
serd finitamente presentado y aplicando el teorema (1.6) obtenemos que G es finitamente presentado,
al realizar este razonamiento recursivamente, obtenemos que G es finitamente presentado. U

Teorema 2.2. Todo grupo policiclico es isomorfo a un subgrupo de GL(n,Z).
Demostracion. Ver [5, Seccion 3.3]. ]

Observacion 2.3. Como GL(n,Z) es finitamente generado, podemos deducir por (1.9) que los grupos
policiclicos son residualmente finitos.

Definicion. Sea G grupo con una cadena de subgrupos 1 = Gy <G| <--- <G, = G que llamaremos S.
Dada otra cadena T de G diremos que es un refinamiento de S si T contiene a todos los términos de la
cadena S. Si hay un término en T que no esté en S diremos que es un refinamiento propio. Se dice que
dos cadenas S y T de un grupo G son isomorfas si los factores de S y T son isomorfos.

En general si H y K son subgrupos de G, HK no tiene porque ser un subgrupo de G. Un sencillo
ejemplo de ello es el grupo generado por las permutaciones de tres elementos, S3, y los subgrupos
H={1,(1,2)} y K={1,(1,3)}. En este caso HK = {1,(1,2),(1,3),(1,2,3)} que no es un subgrupo
de S3.

Lema 2.4. Sean dos subgrupos H, K, de un grupo G. Si uno de ellos es normal en G, entonces HK < G.
En tal caso HK = KH.
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Demostracion. Supongamos que H < G. Sean hky, hok, € HK, veamos que su producto también estd
€H
P——

en HK. Por ser H<G y K C G, kjhok; " € H. Luego hikihoka = hy kihoky ' kiky € HK. O
——

cH €K
Lema 2.5. SiN Gy H <K <G, entonces HN < KN.

Demostracion. Por (2.4) HN y KN serdn subgrupos de G. Veamos que son normales. Sean k; € K,
ni,ny € N,y hy € H. Hay que probar que kjnyhina(kyny)~' € HN.

klnlhlnz(/{]n])il = klnlhlngnflkfl = k]l”l]kfl k]h]kflklnzn;lkfl .
—— —— —— ——
EN €H eN
Y como por (2.4) NH = HN, tenemos que kinihiny(kyny)~! € HN. O

Lema 2.6. Sean A, K y G grupos cumpliendo A< G, A<K entonces K/A<G/A siy solo si K<G y en
tal caso (G/A)/(K/A) ~ G/K.

Demostracion. Para probar que K <G hay que ver que g 'kg € K Vk €K, g€ G. Seank € K, g € G,
por hipétesis sabemos que g~ 'kgA € K/A. Luego g~ 'kgA = ki A para algin k; € A, multiplicando por
k1_1 por la izquierda tenemos que kl_1 g 'kg € A. Luego kl_l g 'kg = a para algiin a € A. Multiplicando
ahora por k; por la izquierda llegamos a que g~ 'kg = kja € KA C K debido a que A < K y queda
probado que K <G. Se sigue por el tercer teorema de isomorfia que (G/A)/(K/A) ~ G/K.
Reciprocamente tenemos que ver que gkg 'A € K/A Vg € G,k € K.Seag € G,k € K, como K<G,
gkg~! € K. Luego Jk; € K tal que gkg~' = k; por lo que gkg™'A = kA, es decir, gkg 'A € K/A. [

Proposicion 2.7. (Lema de Zassenhaus). Sean A1, Az, By, By subgrupos de un grupo G tales que A1 <A;
yB1<4B;. Sea D;j = A;NB;. Entonces, AjD21 <A1 Dy y B1D12<B1D2;. Ademds, los grupos A1D2; /A1 Dy
y B1Dy, /B Dy son isomorfos.

Demostracion. En primer lugar, observamos que como A <Ay, Dy < Ay y Dy < Aj se sigue por (2.4)
que A;Dy1 y A; Doy son grupos.

Como Dy < Ay y A <A, tenemos que Dy, normaliza a A;. Por otra parte By < B, implica que
D»| <iDy;. Tenemos asi que Dyy normaliza a A1 Dy;.

De formal trivial A} <Aj, luego si vemos que para todo g € D,; y para todo x € A; se cumple
que g* € A1 Dy, habremos probado que A;D;; <A1Dy;. Veamoslo, sea g € Dy y x € A| tenemos que
g= x‘lgx como x‘lg € A1Dy = DA existirdn g1 € D1 y x1 € Aj tales que x‘lg = g1x; de tal forma
que g = xilgx = g1x1x € Dy1A1 = A1 D;. De forma andloga se prueba que By D1, es normal en B1D»;.

El segundo teorema de isomorfia nos dice que dados un subgrupo H y un subgrupo normal N de
un grupo G. Entonces NNH<H y H/(NNH) ~ (NH)/N. Apliciandolo para H = Dy, y N = A; Dy,
tenemos que Dy /(A1D21 NDyy) ~ (A1D21D22)/(A1D71). Y como Dy C Ay, por la ley modular:

(A1D21) D2y = (A1 NDyy)Day = (A1 NA2NB2)Dyy = (A1 NB2)Day = Dy2Dy;.

Y juntando ambos resultados obtenemos que Dyy/(D12D21) ~ (A1D2)/(A1D31). De forma andloga
vemos que Dy, /(D12D71) ~ (B1D22)/(B1D21). Y se sigue que

A1Dy»  BiDx
AiDy;  BiDy

O]

Teorema 2.8. (Teorema del refinamiento de Schereier). Dos cadenas cualesquiera de un grupo tienen
refinamientos isomorfos.
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Demostracion. Sean 1 = Hy<H;<---<H; =Gy 1 =Ky<K;<---<K,,, = G dos cadenas de G. Definimos:
Hi,j = Hi(Hi-H ﬂKj) y Ki,j = Kj(Hiij+l)- Aplicando (2.7)aA| =H;,A, =H;1,B; = Kj y By, = Kj+]
obtenemos que:

H; j<Hjy1, Kij<Kitij,

Hi,j-t,-l _ Hi(Hi-H ij-t,-l) - KJ(HH_] ij-t,-l) _ Ki-‘rl,j
H; ; Hi(Hi1NKj) Ki(HiNKji1) K

Como Hl',() = Hi(Hi+1 OK()) = Hi(Hl'Jrl N 1) =H, vy Hi,m = Hi(Hi+1 ﬂKm) = H,'(Hl'+1 N G) =
H;H; | = Hj; tenemos que la cadena {H, ;|i =0,...,I —1, j=0,...,m} es un refinamiento de {H;|i =
0,...,1} de forma andloga {K;;[i =0,...,I, j=0,...m—1}loesde {K;|j=0,...,m}. Y estos refina-
mientos son isomorfos. O

2.2 Propiedades de grupos resolubles y policiclicos

Proposicion 2.9. Sea G un grupo policiclico (resoluble) y A < G, entonces A es policiclicos (resolubles).
En el caso A< G, entonces G es policiclico (resoluble) si y solo si Ay G/A son policiclicos (resolubles).

Demostracion. SeaA < Gy seaunacadenade G, 1 <Hy<H|<---<H, = G, consideramos 1 = HyNA<
HiNA«---<H,NA = A que es una cadena de A. Veamos ahora que sus factores son ciclicos (abelianos).
Para ello notaremos que como H;_; <H; y ANH; < H; por (2.4) H;_1 (AN H;) es un subgrupo de H; y
por la ley modular H;_ (A mH,‘) =H;, {ANH,.

AN Hifl

Por el segundo teorema de isomorfia se sigue que:

H 1ANH;, Hi(ANH)  ANH;  ANH;
H_, H;_, T ANH,NH_, ANH_;

Como H;/H;_ es ciclico (abeliano) y (H;_1ANH;)/H;_; es un subgrupo de este, tenemos que (H;_1AN
H;)/H;_ es ciclico (abeliano) y por tanto (A NH;)/(ANH;_;) seré ciclico (abeliano).
Probemos ahora que un cociente de un grupo policiclico (resoluble) es policiclico (resoluble). Como
A<AGy H;_1<H;, se sigue por (2.5) que AH;_| <AH,.
AH;

AH;

H,NAH; 4

H;
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Por tanto, por (2.6) tenemos que AH;/A < AH;/A. Tenemos asi que H; < AH; y AH;_ < AH;. Por el
segundo y tercero teorema de isomorfia se sigue que:
H; AH; H;  AH; (AH;)/A
H;NAH; | AH; AH;_| (AHifl)/A.

Y al igual que antes como H;/H,_; es ciclico (abeliano), lo serd H;/(H; NAH;_1), por lo que lo serd

(/gf[\;ﬂg;\# Tenemos una cadena 1 = AHy/A<AH,;/A<---<AH,/A = G/A. Luego G/A es policiclico

(resoluble). El reciproco se sigue facilmente usando (2.6). ]

Proposicion 2.10. En un grupo policiclico el niimero de grupos cociente infinitos en una cadena es
independiente de la cadena escogida y por tanto es fijo para G.

Demostracion. Sea una cadena 1 = Gy<G1<---<4G, = G se deduce de (2.8) que todo refinamiento de
esta cadena tendra el mismo nimero de factores ciclicos infinitos. OJ

Definicién. A este nimero se le conoce como longitud de Hirsch, lo denotaremos por /(G).

Observacion 2.11. La longitud de Hirsch se puede definir para grupos resolubles como la suma de los
rangos libres de los factores abelianos.

Observacion 2.12. Sea A< G, entonces [(G) =1(G/A) +1(A).
Observacion 2.13. Sea A un grupo policiclico infinito entonces /(A) > 0.

Definicion. Diremos que un grupo es poli-infinito ciclico si tiene una cadena con factores ciclicos
infinitos, esto es, un grupo policiclico en la que todos sus factores son infinitos.

Observacion 2.14. Un subgrupo H de un grupo poli-infinito ciclico G es también poli-infinito ciclico.

2.3 Conmutadores y la cadena derivada

Definiciéon. Sea G un grupo, x, x» elementos de G y X;, X> conjuntos no vacios de G. Llamaremos
conmutador de x1 y x» a
-1 -1
[x1,X2] = x7 x5 x1x2

y subgrupo conmutador de X1 y X, a

[Xl,Xz] = <[x1,xz]\x1 € X1, x €X2>.

Finalmente, se llama grupo derivado de G y se denota por G, al generado por todos los conmutado-
res de G, esto es, G’ =[G, G].

Proposicion 2.15. Sean Ly G grupos si L < G. Entonces L' < G.

Demostracion. Sea g € G tenemos que ver que g~ 'lg € L' VI € L. Sera suficiente ver que dado [l1,1] €
L, entonces g~ '[I1,l2]g € L. Como L <! G tenemos

le 'ligg 'hgel

g hblg=g 'l hbhe =g "1 g7y eg T hge T he = (g7 hig) T (87 he)”
O
Corolario 2.16. El derivado de un grupo es normal en este.

Demostracion. Inmediato por (2.15) con L = G. ]

Proposicion 2.17. Para todo grupo G, G/G' es abeliano.
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Demostracion. Sean x1,x; € G. Veamos que (x;G')(x2G') = x1x2G" y (x2G')(x1G’) = x2x1G’ son el
mismo elemento de G/G’. La igualdad x;x,G’ = x,x1 G’ es cierta si y solo si xl’lxz’ Lx1%,G = G’ 1o cual
se cumple si y solo si xl_lxz_ x1x2 € G’ que es cierto, luego G /G’ es abeliano. U

Corolario 2.18. Para todo grupo G, el subgrupo normal mds pequerio de G cuyo cociente es abeliano
es G

Demostracion. Sea K<G tal que G/K es abeliano. Sean x,y € G entonces que xyK = yxK implica que
x~'y~lxy € K, o bien que [x,y] € K. Por tanto G’ < K. O

Definicion. Llamaremos cadena derivada de G a:
G=G9>cl>...

donde G"+1) = (G<”))’ . Notar que esta cadena podria no llegar a 1 o incluso no terminar. Por supuesto
todos los factores serdn abelianos por (2.17).
Al nimero de factores de esta cadena lo llamaremos longitud derivada de G.

Observacion 2.19. Por induccidn sobre (2.15) obtenemos que LW qG.
Proposicion 2.20. Para todo A normal en G e i >0, G /A = (G/A)Y).

Demostracion. Probémoslo por induccién sobre i. Para i = 0 el resultado es trivial. Supongamoslo cierto
parai— 1 y probémoslo para i.

(6/A)Y =[(6/A)Y,(G/A) =[GV /A,G"V JA] = (A Al v, x € GV =
= (7 'y oA x,xn € GUY) = [6UY 6V /A = GW/A.
O

Proposicion 2.21. Si 1 = Gy< G <---G, = G es una cadena cuyos factores son abelianos, entonces
Gl < G,_i. En particular G =1.

Demostracion. Si i = 0 el teorema se cumple trivialmente. Supongdmoslo cierto para i — 1 y probé-
moslo para i. Tenemos que G = (G = [GD G V] < [G,_(;_1),Gy—(i-1)] = (G,—(i—1))"- Por
otra parte como G,_(;_1) /Gn—; es abeliano, su derivado serd el grupo trivial, y por (2.20) se sigue que
(Gu—(i-1))'/Gn—i = 1 teniendo asi que (G,_(;_1))’ < G,—;. Por lo tanto G < G,_;. Se sigue que una
cadena con factores abelianos no puede ser mas corta que la derivada. O

Observacion 2.22. La longitud derivada de G es la longitud de la cadena abeliana mds corta de G.

Proposicion 2.23. Sea G un grupo resoluble con longitud deriva d. Entonces la longitud derivada de
G/G9 D esd—1.

Demostracion. Sabemos que la cadena derivada de G es
1=G@ Q Gld-n 4 Gld-2) G- el < GO = ¢G.

Como hemos visto en (2.15) G- < G v0 <i<d—1y al hacer uso del tercer teorema de isomorfia
tenemos que

1=G6YY/G) aG=2/Gl4-D q... a6V /gD < GO /G- = G /G4

cuyos factores son abelianos y es la cadena derivada de G/ G'?=1) debido a que por (2.20) sabemos que
G /GU=1) = (G/G=D)D por lo que la distancia derivada de G/G@~ D esd — 1. O
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2.4 Propiedades de grupos finitamente generados y policiclicos

Definicion. Diremos que un grupo G es libre de torsion si g" # 1 Vg € G, ¥V 0 # n € Z mientras que
diremos que G es de torsion siVg € G 30#n € Z tal que g" = 1.

Observacion 2.24. Todo grupo finito es de torsion.

Proposicion 2.25. Sea H un subgrupo de indice finito en un grupo finitamente generado G, entonces,
H es finitamente generado.

Demostracion. Sea X un conjunto finito de generadores de Gy sea {1 =1y,1,...,t, } = T un transversal a

derechade H en G.Estoes, Ht; #Ht; V1 <i,j<nyG= U Ht;. Si g € G, entonces para cada 7; existird
i€T

un elemento del transversal que dependeréd de j y g, llamémosle #; .y, de forma que Htjg = Ht(; o) y por

tanto existira un elemento de H que dependera de j y g, llamémosle 4 ; ., de forma que

1j&8 = hijg)lije)-
Todo a € H podremos escribirlo como producto de generadores de G, es decira =y;---y; con y; € X.
Aplicando ahora la igualdad anterior de forma reiterada:
a=na=ny1y2--Ye =hay) 11y)Y2Y3 Yk = Ry By ) H(Ly1) ) Y3 Y4 Yn = oo =
= Ay ()2 (L)) )0)-

Entonces como a € H se deduce #((...((1,y,),y2)).yn) € Hs 1020 7((..((1,3,) 32))3) = 11 = 1 por lo que los
h’s, los cuales unicamente dependen de los generadores de G, generaran H. Siendo asi H finitamente
generado. O

Proposicion 2.26. Un grupo abeliano finitamente generado es finito si y solo si es de torsion.

Demostracion. Sea G de torsion. Sean g1, ..., g, generadores asociados a la descomposicion de (1.8)
tenemos que G = (g1, ...,&x) Y Gi = (gi), como G es de torsion todos los G; seran finitos. Sabiendo que
G es lasuma de Gy, ...,G, tenemos que G es finito. El reciproco es la observacién (2.24). ]

Proposicion 2.27. Un grupo de torsion resoluble y finitamente generado es finito.

Demostracion. Sea G dicho grupo y llamemos d a su longitud derivada. Vamos a probarlo por por
induccién sobre d. Si d = 0, no hay nada que probar. Asi que sea d > 0 supongamos el resultado cierto
para d — 1 y probémoslo para d, escribimos A = G~ el cual serd el dltimo miembro de la cadena
distinto de 1 y por tanto serd abeliano. Como sabemos por (2.23) que la distancia derivada de G/A es
d—1, G /A es finito. Y por (2.25) tenemos que A es finitamente generado. Finalmente como un subgrupo
de un grupo de torsién también es de torsion, aplicando (2.26) obtenemos que A es finito y por tanto G
finito. O

Proposicion 2.28. Sea G un grupo policiclico infinito:
(i) G tiene un subgrupo poli-infinito ciclico normal de indice finito.
(ii) G contiene un subgrupo normal abeliano no trivial libre de torsion.

Demostracion. (i) Sea 1 = Gy<G;<---<G, = G una cadena ciclica de un grupo policiclico G. Sin <1,
entonces G es ciclico y el resultado es obvio. Sea n > 1 y definimos N = G,,_;. Por induccién sobre
n hay un subgrupo normal M de N tal que M es poli-infinito ciclico y N/M es finito. Consideramos
ahora Mg = (\geg M® el cual es normal en Gy como N < G, Mg <N por lo que podemos pensar
en N/Mg que es finitamente generado, en efecto, como N es policiclico, N es finitamente generado y
N /Mg también lo serd. Veamos que N /Mg es de torsién. Sabemos que N/M es finito, sea m su orden.
Sea un x € N. Entonces, para cualquier g € G, x¥ € N, por ser G normal en N, luego (x8)" € M por
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tanto (x)8 = (x8)" € M luego X" € M¢ ' para cualquier g € G, 1o que implica que x™ € M deduciendo
asi que N/Mg es de torsion. Finalmente como N es policiclico, entonces N /Mg sera policiclico y en
particular resoluble luego podemos aplicar (2.27) teniendo asi que N/Mg es finito. Por otra parte Mg
es poli-infinito ciclico por ser subgrupo de M. Por lo que no hay perdida de generalidad en asumir que
M<G. Si G/N es finito, entonces |G : M| = |G : N||N : M| < oo por lo que G/M sera finito y habremos
terminado.

Por lo que ahora consideramos el caso en el que G/N es ciclico infinito. Sea xN con x € G un
generador de dicho grupo. Como xN genera G/N = C. entonces x € G tiene orden infinito y es claro que
G = (x,N). El elemento x actuard por conjugacion en cualquier subgrupo de G. Por ser M <G, M* = M.
Luego también actuard por conjugacién en N/M el cual es finito. Al ser este cociente finito, existird un
r tal que x” actiia trivialmente sobre N /M, es decir, g M = gM Vg € N. Llamamos L = (x",M). En el
resto de la demostracién vamos a probar que L es el grupo que buscamos.

Veamos que L = (x",M) < (x,N) = G. Como M <N y M* = M la normalidad se seguird si probamos
que N normaliza a (x",M). Sabemos que n* M = nM ¥n € N lo que es lo mismo que (x")~'nx'M =
nM < (x")"'n~1x"nM = M teniendo asi que (x")~"'n~'x"n € M luego (x")" € (x", M) y se prueba lo que
querfamos. Vamos ahora a probar que G/L es finito. Por un lado es producto de (x,L)/L y NL/L. En
efecto, como L < M < N, tenemos

L L L

(x,L) NL (x)L NL (x)LNL _(x)N _(x,N) G
' L L L L L

Veamos ahora que estos grupos son finitos. El segundo teorema de isomorfia implica que:

IN N _N
L LNM M
debido a que M C L luego como N/M es finito, LN /L también lo serd. Veamos ahora que (x,L)/L es
finito. Se tiene que (x") < LN (x) < (x) y es claro que el indice de (x) en (x") es r, luego, (x) /(LN (x))
es finito y el segundo teorema de isomorfia nos dice que
L) L )

L L~ LNn()

Luego (x,L)/L es finito. y deducimos que G/L también lo es. Unicamente nos falta de ver que L es
poli-infinito.

Como no hay ninguna potencia de x que pueda pertenecer a N, debido a que xN genera un grupo
ciclico infinito, si L/M fuera finito existiria un m € N tal que (x")” =x" € M < N lo cual es una
contradiccion, luego el factor L/M es infinito. Por el segundo teorema de isomorfia.

L _OM ()

M M MO
que es ciclico por lo que L/M es ciclico infinito. Como M es poli-infinito ciclico, enlazando las cadenas
tenemos una cadena con factores ciclicos en la que todos son infinitos por lo que L serd poli-infinito
ciclico.
(ii) Si G es infinito, entonces L # 1 y se sigue de (2.14) que L también serd poli-infinito ciclico, y
en particular serd un grupo resoluble. El término mas pequefio de la cadena derivada de L, llamémosle
A, es abeliano, normal en G por (2.15) y libre de torsién por ser ciclico e infinito. O

Definicion. Llamaremos G™ al conjunto generado por los g™ tales que g € G para cualquier grupo G y
0£meZ.

Lema 2.29. Sea A < G, entonces A™ < G.

1

Demostracion. Seag € Gy a™ € A™. Se tiene que ga”g ' = gag 'gag™'---gag™' € A™. O
e e e Ve

€A €A €A
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Observacion 2.30. Para un grupo Gy 0 # m € Z, |G : G™| no tiene porqué ser finito.
Lema 2.31. Sea A abeliano 'y B<A con |A : B| < oo, entonces 3m > 0 tal que A™ < B.

Demostracion. Llamamos m = |A : B| entonces A /B serd finito de orden m por lo que (aB)" = BVa € A
luego @B = B tenemos asi que a” € B'y como A es abeliano a”b™ = (ab)™ de forma que

A" =(a"lac Ay ={d"|lac A} <B.

Lema 2.32. Sea un grupo abeliano finitamente generado A entonces |A : A™| < oo Vm € N.

Demostracion. Es trivial que A™ 1A Vm € N por ser A abeliano. Sea a € A, entonces, a” € A™. Teniendo
asi (aA™)™ = a"A™ = 1, 4n luego todo elemento de A/A™ tiene orden m o divisor de m y como A/A™
es finitamente generado es finito por (2.26). 0

Teorema 2.33. Los grupos policiclicos son residualmente finitos.

Demostracion. Lo primero de todo es decir que como G es policiclico, serd finitamente presentado y en
particular finitamente generado por lo que si ademads es abeliano por (1.8) sera residualmente finito.

Veamos ahora el caso general en el que G no tiene porque ser abeliano. Habrd que demostrar que
para cualquier 1 # g € G, con G policiclico, existe N< G tal que g ¢ N 'y G/N es finito.

Sea [ la longitud de Hirsch de G. En el caso en el que [ = 0 el grupo G es finito y no hay nada
que probar. Supongamos cierto para todo G policiclico con /(G) < n siendo n > 0 y razonaremos por
induccion. Por (2.28) existe un subgrupo normal de G abeliano, no trivial y libre de torsién A £ 1 . Por
(2.13) I(A) > 0 entonces como [(G) =1(G/A) +1(A) tenemos que [(G/A) < I(G) y por induccion sobre
1, partiendo de que G/A es policiclico por (2.9) entonces, serd residualmente finito.

Sea g € G, hay que encontrar un subgrupo K tal que |G: K| <oy g ¢ K. Si g ¢ A entonces
1 # gA € G/A y como G/A es residualmente finito, existird K/A<G/A con gA ¢ K/A lo que implica
por (2.6) que K<Gy (G/A)/(K/A) ~ G/K finito y que g ¢ K. Veamos ahora el caso en el que g € A.

Por el caso abeliano existe un subgrupo B de A que ademéds es normal en A con |A: B| <oy g ¢ B.
Por otra parte por (2.31) tenemos que A” < B para algtiin m > 0y por (2.32) sabemos que |A : A™| < oo.
Notaremos que A™ y G/A™ serén policiclicos pues A™ es un subgrupo normal de G por (2.29). Y A™
serd infinito debido a que Aloes y |A : A™| < oo.

Por otra parte como G es finitamente presentado, A serd finitamente presentado. Ya hemos visto que
A/A™ es finito. Al igual que antes, por (2.13), [(A™) >0y I[(G) = [(G/A™) +(A™) lo que implica que
I(G/A™) < 1(G) y como G/A™ por (2.9) es policiclico, por induccién sobre [ el teorema serd cierto para
G/A™. Luego si, g ¢ A™ entonces 1 # gA™ € G/A™ por lo que existe H/A™ con gA™ ¢ H/A™ tal que
H/A"<G/A" y (G/A™)/(H/A™) es finito y por (2.6), H<G y (G/A™)/(H/A™) ~ G/H seré finito y
g ¢ H, siendo asi G residualmente finito. En el caso en el que g € A™ como A™ < B entonces g € B lo
cual contradice que g ¢ B. O

Corolario 2.34. Los grupos policiclicos tienen solucion al problema de la palabra.

Demostracion. Se sigue de (2.1), (2.33) y (1.13). ]



Capitulo 3

Ejemplos

3.1 El grupo discreto de Heisenberg

Definiciéon. Dada una matriz triangular superior diremos que es unitriangular si todos los elementos de
la diagonal principal son unos.

El conjunto de estas matrices de tamafio n X n con entradas en Z junto con la operacién producto
forman un grupo conocido como grupo unitriangular, 1o denotaremos por UT (n,Z). Estos grupos son
policiclicos para todo n € N y el caso en el que n = 3 se conoce como Grupo de Heisenberg discreto
mientras que el grupo de Heisenberg continuo es UT (3,R). Las aplicaciones mds destacadas de este
grupo las encontramos en la descripcion de sistemas de particulas cudnticos y en el andlisis de Fourier
(en algunas formulaciones del teorema de Stone-Von Neumann).

Ejemplo 6. Se ve facilmente que UT (2,Z) es isomorfo al grupo (Z,+).

= {(3 1)) (30

Ahora probaremos que el grupo de Heisenberg es policiclico, buscaremos su cadena derivada, vere-
mos que es residualmente finito, daremos una presentacion y construiremos un algoritmo mas sencillo
para resolver el problema de la palabra.

ac Z> ~ (Z,+).

3.1.1 El grupo de Heisenberg discreto como grupo policiclico

Tenemos que el grupo discreto de Heisenberg es el formado por el siguiente conjunto de matrices:

1 a ¢
UT(3,Z) = 0 1 b |lab,cel
0 01
1 01 1 0 n
Tomemos la matriz | 0 1 0 | = z. Notaremos que 7" 0 1 O | paratodon € Z. En
0 0 1 0 01
particular 77! = ) Al igual que en el ejemplo 6, el grupo generado por esta matriz, que

llamaremos Z, es 1som0rf0 a (Z,+) de lo que deducimos que este grupo es ciclico.

17
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1 a ¢
Por otra parte (z) = Z es normal en UT(3,7Z), en efecto, tomandoA= | 0 1 b | tenemos que:
0 0 1
1l ac\ ' /10 n 1 a ¢ 1 —a ab—c 1 0 n Il a c
01 b 010 01 b |)=(0 1 —b 010 01 b
0 0 1 0 0 1 0 0 1 0 O 1 0 01 0 0 1
1 —a ab—c+n 1 a c 1 0 n
=10 1 —b 01 b ]|=10T1F20
0 O 1 0 0 1 0 0 1

Lo que prueba que Z no solo es normal en UT(3,7), sino que ademds lo centraliza.

Por lo que tenemos que 1<Z<UT (3,7Z) con Z ciclico, luego si vemos que UT (3,7) /Z es policiclico
se seguird de (2.9) que UT(3,7Z) es policiclico. Para ver esto veamos si es isomorfo a algin grupo

conocido.

1 10 1 00
Pensemos en las matricesx=| 0 1 0 |,y=11 0 1 1
0 0 1 0 0 1
1 11 1 10
Vemos que xy=| 0 1 1 | # ( 0 1 1 | =yxperoxy=yxz. De lo que deducimos que
0 01 0 01
1 a ab
¥yY=[0 1 b | =yx%"%Va,b,cc Zteniendo asi que x*y* e y*x“ pertenecen a la misma coclase
0 0 1
de nuestro grupo cociente. Luego UT (3,7Z)/Z es abeliano.
1 a ¢
Por otra parte, dado un elemento del cociente, 0 1 b |Z este quedard unequivocamente
0 01

determinado por x“y*Z luego UT(3,7)/Z ~ (xZ,yZ). Luego, la aplicacién f : (xZ,yZ) — 7 ® 7 tal
que a cada x%y*Z  (a,b) es un isomorfismo de grupos. Esto implica que UT(3,Z)/Z ~ Z ® 7 es
policiclico.

3.1.2 Cadena derivada del grupo discreto de Heisenberg

Empecemos viendo cual es el derivado de UT (3,Z) = G. Recordaremos que
G = [G,G] = <[X1,X2”X1,X2 S G>.

Sabemos por (2.18) que G’ es el menor grupo normal con G/G’ abeliano, por tanto G' < Zy (G')' = 1.

1 a ¢ 1 a o
Tomemos dos matrices genéricasde G,x;=| 0 1 by |yx=1| 0 1 by | ycalculemos
0 0 1 0 0 1

su conmutador
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—1 —1

1 a 1 a o 1 a 1 a o
) =x " xan=1 0 1 b 0 1 b 0 1 b 0 1 b |=
0 0 1 0 0 1 0 0 1 0 0 1
1 —a; aib)—c 1 —ay axby—c> 1 a 1 a o
=10 1 —b 0 1 —by 0 1 b 01 b |=
0 0 1 0 0 1 0 0 1 0 0 1
1 —ay—ay aiby+aiby+aby —ci—c2 1 ai+ay aiby+ci+c
= 0 1 —b1— by 0 1 b1+ by =
0 0 1 0 0 1
1 0 —axbi+aiby
=101 0
00 1
1 0 1
Por lo que G’ = < 010 >
0 01
Comprobemos la teoria calculando (G’)’. El derivado de G’ serd el generado por:
1o\ '/10am)'/10a 10 a 100
01 0 01 0 01 0 01 0 |=10120
0 0 1 0 0 1 00 1 00 1 0 0 1

Tenemos asi que la cadena derivada es 1 <G’ <G, que es la obtenida anteriormente.

3.1.3 Presentacion del grupo discreto de Heisenberg

Veamos una presentacion de este grupo. Para ello vamos a hacer uso del teorema (1.6). En nuestro caso
tendremos G = UT(3,Z) y N = (z). Veamos la representacién del grupo cociente G/N. Hemos visto
antes que N = G’ = ([x1,x2]|x1,x2 € G). luego G/N = (x,y|[x,y] = 1).

La demostracién del teorema (1.6) nos dice que existe una presentacion de G generada por x,y,z
con las siguientes relaciones entre ellos: [x,y] = z* para algiin k € Z y las relaciones de normalidad,
x'zx =7/, y~'zy = 7/ con j,i € Z. Por otra parte hemos visto antes que (z) centraliza a G, luego
i =j =1y también que xy = yxz. Por lo tanto [x,y] = x~!'y~'xy = z teniendo asi que k = 1, luego
nuestra presentaciéon de G queda:

G=(xyz|xy =z [xz=[nzd=1).

3.1.4 El grupo discreto de Heisenberg como ejemplo de grupo residualmente finito

Ahora probaremos que UT(3,3"Z) = N es normal en G para todo n € N.

1 a c 1 d f
Tomemosg=| O 1 b | cona,b,ceZyh=| 0 1 e | cond,e,f¢c3"Z
0 0 1 0 0 1
1 —a ab—c 1 d f 1 a ¢ 1 d bd—ae+f
g lhg=10 1 —b 01 e 01 b ]|=[01 e EN
0 O 1 0 0 1 0 01 0 0 1

y G/N =UT(3,Z3) que es finito. Luego dado g € G existird un N <G asociado a n tal que 3" no divida
a las entradas de g y como |G : N| es finito, tenemos que G es residualmente finito.
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3.1.5 El problema de la palabra para el grupo discreto de Heisenberg

En la practica no suele ser eficiente usar el algoritmo descrito en (1.13) para comprobar si una palabra
es la identidad en un grupo o no, y el caso del grupo discreto de Heisenberg no va a ser una excepcion,
existe una forma mucho mas eficiente y sencilla de comprobarlo, vedmosla.

Una palabra w se dard en términos de los elementos x,y,z anteriores. Sabemos que z centraliza al
grupo, luego podemos pasar todas las z’s a la derecha obteniendo que w = vz’ donde v es una palabra en
términos de x, y.

También sabemos que xy = yxz luego cada vez que veamos un producto xy lo cambiamos por un
yxz y reagrupamos la z a la derecha. Realizamos esto hasta que obtengamos todos los y’s en la parte
izquierda, llegamos asf a una palabra w = x'y/z*. Esta palabra es la identidad si y solosii= j=k = 1.

3.2 Grupos de Baumslag-Solitar

Definicién. Los grupos dados por la presentacién (x,y|(x”)’ = x?) con g, p € Z se llaman grupos de
Baumslag-Solitar. Los denotaremos por BS(p,q).

Fueron introducidos por Gilbert Baumslag y Donald Solitar en 1962. Tienen especial importancia
en la teorfa combinatoria de grupos y en la teoria geométrica de grupos en donde suelen aparecer como
contraejemplos. En nuestro caso vamos a ver si son residualmente finitos y si tienen solucién al problema
de la palabra.

Estos grupos también se pueden ver como extensiones HNN'! de (x) con letra estable y, lo cual es
fundamental para poder emplear el lema de Britton?, el cual nos dice cuando una palabra w es o no es
la identidad del grupo. En nuestro caso el lema se reduce a que si en una palabra w € BS(p,q) no hay
una secuencia consecutiva de la forma y~'x?%y 6 yx4%y~! con a € Z, entonces w # 1.

3.2.1 EL grupo BS(1,2)
Proposicion 3.1. El grupo BS(1,2) = (x,y|y~'xy = x?) tiene solucion al problema de la palabra.

Demostracién. Sea una palabra w en términos de x e y, la relacién xy = yx? puede usarse para mover la
letra y a la izquierda. De forma similar usando la relacién y~!x = yx? puede usarse para mover y~! a la
derecha, de tal forma que reduciendo cuando sea posible, tras un nimero finito de iteraciones llegamos
a tener la palabra w de la siguiente forma

w = yixly*
donde i,k >0y jeZ.

En el caso en el que j sea par, j =2m, y i, j > 0 podemos aplicar la relacién x™ = yx*"y~! obtenida a
partir de x = yx?y~! y deducimos que w = y = 1xmy= (=1 si de nuevo m es paryi—1,j—1> Orepetimos
este proceso. De tal forma que tras un niimero finito de iteraciones obtenemos que w = y*x?y~¢ donde
o bien b es impar o bien a = 0 o ¢ = 0. Tenemos asi que por el lema de Britton, w =1 si y solo si b =0
ya=c. O

Proposicion 3.2. El grupo BS(1,2) es residualmente finito.

Demostracion. Tal y como hemos visto en la demostracion anterior, cualquier palabraw € BS(1,2) =G
se puede reducir a la forma w = y“x’y~¢ donde o bien b impar o bien a = 0 o ¢ = 0. Luego dada
1 # w = y“xPy~¢ de esta forma, sabemos que, o bien b > 0, o bien a # c. En el caso en el que b # 0
elegimos un p primo impar que no divida a b y consideramos el subgrupo de G generado por y,x”
entonces se puede probar que w no estd en este subgrupo y que este subgrupo tiene indice finito en

Ver definicién de extensién HNN con una tinica letra en [6, pagina 180]
2Lema de Britton en [6, pagina 181]
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G. Por otra parte si b = 0, tenemos que w = y¢ con 0 # d € 7Z, elegimos un p que no divida a d y
consideramos el subgrupo de G generado por y”,x y al igual que antes, se puede probar que w no esta
en este subgrupo y que este subgrupo tiene indice finito en G. U

Otra propiedad interesante de este grupo es que es lineal. Veamoslo. Consideramos la aplicacién

o : BS(1,2) — G donde G es el grupo generado por las matrices x* = A = ( (1) } ) yy*=B=

1/2 0
0 1
ciones, en efecto,

(33D (E DR (1)

Por el teorema de von Dyck (1.4) tenemos que es un epimorfismo. Y por tltimo usando el lema de
Britton se prueba la inyectividad.

) veamos que es un isomorfismo. Es claro que estd bien definida porque conserva las rela-

3.2.2 El grupo BS(2,3)

Lo interesante de este grupo es que no es residualmente finito pero si que tiene solucién al problema de
la palabra, comencemos con un lema que necesitaremos para probar que no es residualmente finito.

Lema 3.3. Sea K un grupo finito y a,b € K. Si a y b son conjugados y se cumple a> = b’

[a,b] = 1.

, entonces

Demostracion. Como a y b son conjugados, tienen el mismo orden m. Supongamos que m es par.
Entonces m = 2n para algiin n entero positivo y se cumple que b*" = 1 y que b" # 1. Elevamos la
relacion > = b® any queda 1 = @™ = a®" = b*". Ahora, tenemos b*" = b*" = 1 lo que implica b" = 1,
que es una contradiccién. Por lo tanto, el orden de a y b es impar. Esto significa, por la identidad de
Bezout, que existen enteros s y t de manera que 1 = 2s+ mt. Por tanto 2s = 1 — mt. Elevamos la relacién
a’* =b3asyquedaa=a*™ = a* = b* de lo que se deduce que a y b conmutan. O

Proposicién 3.4. El grupo BS(2,3) = (x,y|y~'x*y = x*) no es residualmente finito.

Demostracion. FEl resultado quedard probado si encontramos un 1 # w € N tal que w € N para todo
N<G = BS(2,3) de indice finito. Para ello consideramos la palabra w = [y~ 'xy,x] =y~ lx~lyx~ 1y~ Ixyx.
Al aplicar el lema de Britton, que en nuestro caso nos dice que si en una palabra z € G no hay una

secuencia consecutiva de la forma y~'x**y 6 yx3%y~! con o € Z, entonces z # 1. Obtenemos asi que

w# 1.

Veamos ahora que w pertenece a todos los grupos N normales y de indice finito en G. Sea N tal
grupo, entonces G/N es finito y que y~'x>yN = x*N implica que (y~'xyN)? = y~!x?yN = (xN)? luego
tomando a =y~ 'xyN y b = xN se sigue de (3.3) que [y~ 'xyN,xN] = N luego w = [y~ 'xy,x] € N. O

Observacion 3.5. El grupo BS(2,3) no es lineal. Pues de serlo seria residualmente finito.
Proposicién 3.6. El grupo BS(2,3) tiene solucion al problema de la palabra.

Demostracion. Sea w una palabra de G en términos de x,y. El lema de Britton, enunciado en la demos-
tracién anterior, nos dice que si no hay una secuencia consecutiva de la forma y~'x?%y 6 yx3*y~! con
o € 7Z, entonces w # 1 con lo cual si no las hay, ya sabemos que w # 1 y en el caso de que las haya,
aplicamos la relacién y~'x?y = x> o su inversa yx’y~! = x? hasta obtener o w = 1 o bien una palabra
en la que no hay secuencias consecutivas de la forma mencionada anteriormente. Esto se alcanzard en
un ndmero finito de iteraciones debido a que cada vez que aplico una relaciéon obtengo una palabra mas

corta. O
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Enunciamos ahora una serie de teoremas generales para saber si un grupo de Baumslag-Solitar es o
no es residualmente finito.

Lema 3.7. Si p y g no son potencias del mismo primo y son distintos en valor absoluto entre ellos o de
1, entonces, el grupo BS(p,q) no es residualmente finito.

Demostracion. Ver [7, Lemma 2.1]. ]

Lema 3.8. Si p y g son distintos en valor absoluto entre ellos o de 1 y uno de ellos divide al otro,
entonces el grupo BS(p,q) no es residualmente finito.

Demostracion. Ver [7, Lemma 2.2]. ]
Teorema 3.9. El grupo BS(p,q) es residualmente finito si y solo si p=+16qg==+16 p==+q.

Demostracion. Ver [7, Theorem C]. O



Capitulo 4

Un algoritmo para el problema de la
palabra para grupos policiclicos

Como hemos visto anteriormente, emplear el algoritmo expuesto en la demostracion de (1.13) no suele
ser la forma mas eficiente para resolver el problema de la palabra.

En este capitulo veremos un algoritmo sencillo y eficiente para comprobar si una palabra de un
grupo policiclico es o no la identidad.

4.1 Presentacion de un grupo policiclico

Sea G un grupo policiclicoy 1 = Gy< G 4---<G,—1 <G, = G una cadena policiclica, es decir, una
cadena de G cuyos factores son ciclicos no triviales. Para 1 < i < n podemos elegir g; € G; tal que
G; = (gi,Gi—1). A la secuencia (g1, ...,g,) la llamaremos secuencia policiclica generadora de G. Sea
I el conjunto de los i € {1,...,n} tales que r; := |G; : G;_1| es finito. Entonces cada elemento de G;
se puede poner de forma tnica como gf" wicon 0 <e; <r;yw; €G;_1. Lo que nos induce a deducir
que cada elemento de G podrd ser escrito de forma tnica como g{'--- g% cone; € Zparal <i<ny
0<e;<rjparaiel.

Proposicion 4.1. Para cada secuencia generadora de G tenemos una presentacion, que llamaremos
presentacion potencia conjugada, con las siguientes relaciones:

e(i,ji—1)

8i __ e(ivjvl)
8 = 8i-1 8y

paral < j<i<n,

—1 e e e e s
gifi = gﬁ’l‘r/v’_” .. .g{(”]’l) paral < j<i<n,

(ii-1) ‘gll(i,l)

g? = gﬁ,l parai €l

Demostracion. Sea 1 = Gg<G1<---4G,_1 4G, = G la cadena policiclica de G. Realizaremos la de-
mostracion por induccién sobre n. Para n = 0 es trivial. Supongamoslo cierto para n — 1 y probémoslo
para n.

Sabemos que G, es policiclico y por hipétesis de induccién tiene una presentacién potencia conju-
gada. Definiendo I, = {k € {1,...,n — 1}|rx := |Gy : Gx—_1| finito}. Esta presentacion tendra las siguientes
relaciones:

gifk = gz(_k'ij’k*” ...gi(k’j’l) paral < j<k<n-—1,
-1 . .
gz];k :gﬁk{/,k—l).”g{(/@/»l) paral < j<k<n—1,
I(kk—1 I(k,1
g :gk(71 )---gl( ) para k € I,.

Por otra parte, tenemos que G,—1 <G, y G,/G,_ es ciclico luego existird g, € G, tal que G,,/G,—| =
(8nGn-118"Gn—1 = G,_1) con r, € ZU{eo}, si r, = oo no habrd relacion.

23
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Luego se sigue de la demostracion de (1.6) que G estd generado por g, y G,—; con las siguientes
relaciones:

(1). Las ya existentes en G,_1.

(2) Si n ;E oo, tenemos g;'ln — gifj:]'l—l) . .gll(n,l)‘

(3). Las relaciones de normalidad:

° gin — gi;@{J'l) .. .g-{(nvjvl) para 1 S ] < n.
—1 . .
° gfj” = gi(f’lf’” D, .gll("’J’l) paral < j<n.
Quedando probada la proposicién para n. O

Una vez estudiada esta presentacion, el procedimiento a seguir para ver si un elemento, dado en
términos de una secuencia policiclica generadora de un grupo es la identidad o no, es bastante sencillo,
veamoslo. Nos dan la palabra w que es un elemento de G y estd escrita en potencias de la secuencia
policiclica (gj, ..., gx). El procedimiento a seguir sera el siguiente:

Paso 1. Buscamos la potencia g, mas a la derecha de nuestra palabra.

€n = Fngn+ Sy con s, < r, y escribiremos g&r = gi(g/" )9 ahora aplicamos reiteradamente la
relacion (2) a (g!" )9 obteniendo asi que la potencia de g, mas a la derecha de nuestra palabra
tiene exponente s, < r,. Sin perdida de generalidad renombramos e, = s,.

Paso 2. Si tiene exponente e, > r, procederemos a reducirlo. Para ello calcularemos g, s, tales que

Paso 3. Tenemos g con e, < r,. Lo moveremos hacia la izquierda reiterando relaciones del tipo
gigm =g gﬁ/frll”i) - -g{ (m,7:1) obtenidas por induccién a partir de las relaciones de tipo (3).
Obtendremos asi que nuestro elemento habra avanzado una posicién hacia la izquierda. Realizaremos
este procedimiento hasta que obtengamos que todos los g, estdn a la izquierda. Una vez conseguido
esto, procederemos con los g, y asi sucesivamente hasta llegar a los g;. Al final del proceso nuestra
palabra serd de la forma g¢ - - -g‘fl cone; € Zparal <i<ny0<e; <rparaiécl. Unapalabrade este
tipo es la identidad en G si y solo si todos los exponentes son 0.

4.2 Presentacion del grupo UT (n,Z)

En las siguientes lineas usaremos el método descrito en la seccién anterior para dar una presentacién
del grupo policiclico G = UT (n,Z) con n un entero positivo.
Lo primero es encontrar un cadena policiclica de G. Tomemos los siguientes conjuntos de G:

1 0 ... 0 a 1 0 ... b a
0 STl T 0
Gl,n: ) Gl,nflz )
.0 : .0
0 0 1 0 . 0 1/
(/1 0 d b a
1 0 b a 01 0
C
¢ 0
Gy = : e y Gip2= .
[\ 0 0 1)) (i) 0 1
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Cona,b,c,d,... € Z.

Es decir G; ; es el conjunto de matrices unitriangulares con entradas nulas excepto posiblemente
en los elementos ey ; (siendo k la fila del elemento y [/ la columna) con, o bien / —k < j—i, o bien
l—k=j—iyi<k.

De tal forma que G; ; C Gy si,obien [ —k < j—i,obienl—k = j—iy i<k siempre y cuando
I<i<j<nyl<k<lI<n

Se puede ver facilmente que estos subconjuntos son subgrupos de G y que forman un cadena po-
liciclica 1 = Gp< G, <9G1-14G2, <+ <4Gy—2,-1<9G,_1, = G de longitud (n—1)!. Ahora tenemos
que elegir g; ; € G;; tal que G; ; = (8i.j,Gi—1,j—1) i j #n 6 G j = (8i,j,G1,24n—i) si j = n. Es facil
comprobar que las matrices g; ; definidas como matrices unitriangulares n X n con un 1 en la entrada de
fila i y columna j y en el resto ceros, lo cumplen.

Tenemos asi que nuestra secuencia policiclica generadora de G €S (g1,1,81.1—1,821—1,81,n—25 -+
8n—2.n—1,8n—1n)- Por otra parte todos los cocientes de nuestra cadena son infinitos luego no hay rela-

. . re  A(kk—1) I(k,1)
ciones del tipo g/ =g," | "---g;" .

Vemos que en nuestro grupo las relaciones de la presentacion potencia conjugada son relaciones del
tipo [g,',j,ng] =gmsoeon1<i<j<n, 1<k<lI<nyl<m<t<n. Veamos cuales son. Para ello lo
primero es ver como se multiplican los elementos de nuestra secuencia policiclica. Sean dos elementos,
8ij ¥ 8k,- Tenemos que g; jgx; = (I, + Ei j)(In+ Ex;) = I, + Ei j + Ex; + E; jEy; donde E; ; es la matriz
n X n con ceros en todas las entradas y un uno en la entrad de fila i y columna j. El producto E; ;Ey ; es
igual a lamatriznulasi j # ky es E;; si j = k. Por otra parte el inverso de un elemento g; ; = I, + E; j es
I, — E; j, en efecto, (I, +E; j)(I, — Eij) = I, + E; j — E; j — E; ;E; j = I,. Una vez conocido el resultado
de estas operaciones veamos cuales son las relaciones.

[8io8kt] = &) 8t 8ijr8ki = (I —Eij)(In— Ext) (I + Ei j) (I + Ex) =

(I —Exy —Ei j+E; jEi ;) (In + Exy +Ei j+ Ei jEy ) =

= L+Eg+E;+E E—Ey—EgEj—EE;i jEy —E; j—E; jE +
+E; jEy +Ei jEx B j+E; jEy E; B =

= I, —EyE;j— EE; jEy +E; jE ) + E; jEE; j+ Ei B E; Exg

A partir de aqui tenemos varias posibilidades

e j=k. Encuyocasoi< j=k<Iluego, i l. Tenemos [g; j, 8k = I, — Ex Eij— Ex Ei; +Ei; +
EiEij+EiEij =1, +E;; =g

e j# k. Nos queda que [g; j,&k1] = I — Ex Ei j.

- i=1.gij 81l =1, —Ex, i= gk_; La cual es la misma relacién que la obtenida antes debido
a que esta relacién implica que gk j = gk, &i,j]-

- i# L [gij gk =1 =1
Tenemos asi que una presentacion potencia-conjugada de nuestro grupo es la siguiente:

[g,'7j,gk71]:1 sijFki#lconl <i<j<n 1<k<I<n

UT(n,Z):<gl~_’jcon1§l<J<n [8i7j7gj,l]:gi,l sil<i<j<l<n

).
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