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Abstract

The aim of this dissertation is to introduce the classical decision problems in groups focusing on the
word problem for polycyclic groups. We give two different solutions to that problem, the first and
more theoretical one is using the fact that polycyclic groups are residually finite and the second, more
practical, consist of creating an algorithm that tell us if a word is or is not the identity in the group.

First of all, we give the definition of free group and word:

Definition. Let F be a group, X a nonempty set and σ : X → F a function. Then F , or more exactly
(F,σ) is said to be free on X if to each function α from X to a group G there corresponds a unique
homomorphism β : F → G such that α = σβ .

Definition. Let X be a set. We denote by X−1 = {x−1|x ∈ X} where of course x−1 is merely a symbol.
By a word in X is meant a finite sequence of symbols from X ∪X−1, written for convenience in the form

w = xε1
1 · · ·x

εr
r xi ∈ X , εi =±1, r ≥ 0 .

The next result is to detect whether a given group is free.

Proposition. Let G be a group and X a subset of G. Assume that each element g of G can be uniquely
written in the form g = xl1

1 xl2
2 · · ·xls

s where xi ∈ X, s≥ 0, li 6= 0, and xi 6= xi+1. Then G is free on X.

Proposition. Let G be a group generated by a subset X and let F be a free group on a set Y . If α : Y →X
is a surjection, it extends to an epimorphism from F to G. In particular every group is an image of a
free group.

Now we have the tools to give a formal definition of a group presentation.

Definition. Let G be a group and π an epimorphism from a free group F to G. Thus if R = kerπ , we
have R/F and F/R' G. The elements of R are called the relators of the presentation.

Definition. A free presentation of a group G is an expression

G = 〈Y |S〉

where Y is a free generator set of G and S is a generator set of the subgroup of relators

Definition. A group is said to be finitely presented if it has a finite presentation 〈X |R〉, that is, one in
which X and R are finite.

At this point we are ready to prove von Dyck theorem.

Theorem. (von Dyck’s Theorem). Let G and H be groups with presentations ε : F → G and δ : F →
H such that each relator of ε is also a relator of δ . Then the function f ε 7→ f δ is a well-defined
epimorphism from G to H.

We can also prove two important properties about finitely presented groups.

Theorem. (B.H. Neumann). If X is any set of generators of a finitely presented group G, the group has
a finite presentation of the form 〈X0|r1 = r2 = · · ·= tt = 1〉 where X0 ⊆ X.
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iv Chapter 0. Abstract

Theorem. Let N /G and suppose that N and G/N are finitely presented groups. Then G is finitely
presented.

The proof of this last theorem will be very useful in the last section of this dissertation.
The three classical decision problems in group theory are.

• The word problem. Is there an algorithm which, when given a word w in the generators of a group
G, decides if w = 1 in G?

• The conjugacy problem. Is there an algorithm to decide if two given words w1, w2 in the genera-
tors of a group G are conjugate?

• The isomorphism problem. Is there an algorithm which can decide if two given groups are iso-
morphic?

Definition. A group G is residually finite if given g 6= 1 in G, there is an N /G such that g /∈ N and G/N
is finite.

We show that finitely presented residually finite groups have soluble word problem. As an example
of residually finite groups we consider finitely generated abelian groups and also finitely generated
linear groups (but we do not give a proof in this last case).

Definition. A group G is conjugacy separable if two elements are conjugate in G whenever their images
in every finite quotient of G are conjugate.

We show that finitely presented conjugacy separable groups has soluble conjugacy problem. We
also exhibit an example of finitely presented soluble groups with unsolvable word problem.

The main goal is to prove that polycyclic groups are residually finite. To do it begin by introducing
some concepts about group series. The first is Zassenhaus Lema.

Lemma. Let A1, A2, B1, B2 be subgroups of a group G such that A1 /A2 and B1 /B2. Let Di j = Ai∩B j.
Them A1D21 /A1D22 and B1D12 /B1D22. Furthermore the groups A1D22/A1D21 and B1D22/B1D12 are
isomorphic.

And the second is Schreier Refinement Theorem.

Theorem. Any two series of a group possess isomorphic refinements.

After that, we prove that subgroups and quotients of polycyclic groups are polycyclic too.
We prove that in a polycyclic group G the number of infinite factors in a cyclic series is independent

of the series and hence is an invariant of G which is known as the Hirsch length. Also we define the
notion of poly-infinite cyclic groups as groups with a series with infinite cyclic factors.

Some important notions are commutators and derived series.

Definition. Let G be a group, x1, x2 ∈ G and X1, X2 nonempty sets of G. It is said that [x1,x2] =
x−1

1 x−1
2 x1x2 is the commutator of x1 and x2. And it is said that [X1,X2] = 〈[x1,x2]|x1 ∈ X1, x2 ∈ X2〉 is

the commutator subgroup of X1 and X2. Finally it is said that G′ = [G,G] is the derived group of G.

We prove that for every group G, G/G′ is abelian and define the derived series of a group.

Definition. Let be G a group then G = G(0) ≥ G(1) ≥ ·· · where G(n+1) = (G(n))′ is called the derived
series of G. The length of this series is the derived lenght of G.

Some easy properties are:

Proposition. Let L and G be groups. If L/G, then L′ /G.

Proposition. Let G be a soluble group with derived length d. Then the derived length of G/G(d−1) is
d−1.
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We also give some important properties of finitely generated and polycyclic groups.

Proposition. Let H be a subgroup of finite index in a finitely generated group G. Then H is finitely
generated.

Proposition. A finitely generated abelian group G is finite if and only if it is a torsion group.

Proposition. A finitely generated soluble torsion group is finite.

Proposition. (i) Every polycyclic group has a normal poly-infinite cyclic subgroup of finite index.
(ii) An infinite polycyclic group contains a nontrivial torsion-free abelian normal subgroup.

These results are used to prove our main theorem.

Theorem. A polycyclic group is residually finite.

Now we illustrate these theoretical results with some examples as the discrete Heisenberg group and
Baumslag-Solitar groups. The discrete Heisenberg group is the unitriangular matrix group with n = 3
and integer entries. It is denoted by UT (3,Z). We prove that this group G is polycyclic.

After that, we describe its derived series, showing that G′ = 〈z〉 and G(2) = 1 where z is the matrix
with all entries zero except in the main diagonal and in the upper right corner where there are ones. We
give the following presentation of G:

G = 〈x,y,z | [x,y] = z, [x,z] = [y,z] = 1〉.

We know that G is residually finite because it is polycyclic but we give a different proof for this
particular case using the fact that UT (3,Z3n) is normal in G for all n ∈ N.

And finally we give an easy and useful algorithm to solve the problem word for the discrete Heisen-
berg group.

In the other example we considerer Baumslag-Solitar groups. The Baumslag-Solitar groups are
examples of two-generator one-relator groups. They are given by the group presentation 〈x,y|(xp)y =
xq〉. For each integer p and q, the Baumslag-Solitar group is denoted by BS(p,q). We prove that BS(1,2)
is residually finite but BS(2,3) is not. But both groups have soluble word problem. We also state the
following general result.

Theorem. The group BS(p,q) is residually finite if and only if p =±1 or q =±1 or p =±q.

In the last section we give an algorithm to solve the word problem for arbitrary polycyclic groups.
This algorithm uses the so called power-conjugate presentation that we describe next. Let 1 = G0 /
G1 / · · · /Gn−1 /Gn = G be the polycyclic series of G. For 1 ≤ i ≤ n we choose gi ∈ Gi such that
Gi = 〈gi,Gi−1〉. Then the sequence (g1, ...,gn) is called a polycyclic generating sequence of G. Let I be
the set of those i ∈ {1, ...,n} with ri := |Gi : Gi−1| finite. Each element of G can be written uniquely as
ge1

1 · · ·gen
n with ei ∈ Z for 1≤ i≤ n and 0≤ ei < ri for i ∈ I.

Each polycyclic generating sequence of G gives rise to a power-conjugate presentation for G with
the relators

ggi
j = ge(i, j,i−1)

i−1 · · ·ge(i, j,1)
1 for 1≤ j < i≤ n,

gg−1
i

j = g f (i, j,i−1)
i−1 · · ·g f (i, j,1)

1 for 1≤ j < i≤ n,

gri
i = gl(i,i−1)

i−1 · · ·gl(i,1)
1 for i ∈ I.

To finish, we give an example of this presentation for the unitriangular integer matrix group of
dimension n, UT (n,Z).
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Capítulo 1

Grupos libres y presentaciones

En este capitulo se dará una breve introducción a los grupos libres y enunciaremos los problemas de
decisión en la teoría de grupos, en especial el problema de la palabra.

La notación que usaremos será la usual en la teoría de grupos, es importante recordar los siguientes
símbolos. A no ser que se diga lo contrario usaremos ‘1’ para referirnos a la identidad del grupo. Con
K ≤ G y K < G nos referiremos a que un conjunto K es subgrupo del grupo G, con el primer símbolo
consideraremos que K puede ser G mientras que en el segundo caso no. Y en el caso en el que K
sea normal en G usaremos los símbolos E y /. Por otra parte para denotar el subgrupo de un grupo
G generado por una familia X ⊆ G usaremos la notación 〈X〉. Añadir que |G| denota el número de
elementos que tiene el grupo G y para un subgrupo K de G usaremos |G : K| para referirnos al índice de
K sobre G, que es el número de coclases distintas gK = {gk|k ∈ K}. Finalmente dados dos elementos
x,y ∈ G la conjugación de x por y lo denotaremos con xy = y−1xy.

1.1 Grupos libres

Definición. Sea F un grupo, X un conjunto no vacío y σ : X → F una función. Diremos que F o de
forma más rigurosa (F,σ) es libre sobre X si para cada función α de X a un grupo G le corresponde un
único homomorfismo β : F → G tal que α = σβ .

F

X G
α

σ β

Un grupo que es libre sobre algún conjunto se dice que es un grupo libre.

Definición. Sea X un conjunto. Denotaremos por X−1 = {x−1|x ∈ X} donde x−1 es simplemente un
símbolo. Nos referiremos por palabra a una secuencia finita de símbolos de X ∪X−1. Lo escribiremos:

w = xε1
1 · · ·x

εr
r xi ∈ X , εi =±1, r ≥ 0 .

En el caso r = 0 la secuencia será nula y w será la palabra nula, la cual la escribiremos como 1.

Definimos el producto de dos palabras como la yuxtaposición de las mismas, el inverso de una
palabra w como w−1 = x−εr

r · · ·x−ε1
1 y decimos que dos secuencias de símbolos de X ∪X−1 son la misma

palabra si se puede pasar de una a otra realizando las siguientes operaciones tantas veces sea necesario:

• Añadiendo xx−1 ó x−1x con x ∈ X .

• Sustrayendo xx−1 ó x−1x con x ∈ X .

1



2 Capítulo 1. Grupos libres y presentaciones

Entonces se puede probar que el conjunto de todas las palabras de X forman un grupo que además
es libre sobre X (ver [9, 2.1.1]). Tenemos así que para todo conjunto X existe un grupo libre sobre él.

Proposición 1.1. Sea F un grupo libre sobre X y G un grupo isomorfo a F. Entonces, G también es
libre sobre X.

Demostración. Sea H un grupo, como F es libre sobre X , para cada función α de X en H existirá un
único homomorfismo β de F en H. Luego llamando γ al isomorfismo de F en G, siendo σ la función
de X en F , bastará tomar ahora:

G

X H
α

γσ βγ−1

viendo así que G es libre sobre X .

Proposición 1.2. Sea G un grupo y X un subconjunto de G. Asumamos que cada elemento g de G puede
ser escrito de forma única como g = xl1

1 xl2
2 · · ·xls

s donde xi ∈ X, s ≥ 0, li 6= 0 y xi 6= xi+1. Entonces G es
libre sobre X.

Demostración. Sea F un grupo libre sobre el conjunto X con función asociada σ : X→F . Por definición
existe un homomorfismo β : F → G tal que σβ : X → G es la aplicación inclusión. Por hipótesis β es
sobreyectiva y es inyectiva por la unicidad de la expresión anterior. Por lo que G es isomorfo a F , y
como F es libre, lo será G.

Ejemplo 1. Consideramos las funciones xα = x+2 y xβ = x
2x+1 sobre C∞. Como α y β son biyecciones

debido a que tienen inversos: xα−1
= x−2 y xβ−1

= x
1−2x , entonces α y β generan un grupo de permu-

taciones F de C∞. Este grupo es libre sobre el conjunto {α,β}. Para verlo se puede razonar así: Al
aplicarle a un z que se encuentre en el interior del círculo unidad una potencia no nula de α el resultado
estará en el exterior y si a un w que se encuentre en el exterior del círculo le aplicamos una potencia no
nula de β el resultado estará en el interior sin el 0, a partir de esto se puede probar que ninguna palabra
puede ser reducida a 1 salvo la trivial teniendo así que todo elemento de F se puede escribir de forma
única en términos de α y β . Esto significa que se cumplen las hipótesis de (1.2) y F es libre en {α,β}.

Definición. Un grupo lineal G es un grupo isomorfo a un subgrupo de GL(n,F) con F anillo abeliano
y n un entero positivo.

Ejemplo 2. Consideremos las matrices A =

(
1 0
2 1

)
y B =

(
1 2
0 1

)
. Usando un argumento similar

al del ejemplo anterior se prueba que el grupo F2 = 〈A,B〉 es libre sobre el conjunto {A,B} además
F2 ≤GL(2,Z) por lo que es un grupo lineal. Y se puede probar que F2 contiene a todos los grupos libres
finitamente generados, luego todo grupo libre finitamente generado es lineal.

Proposición 1.3. Sea G un grupo generado por un conjunto X y sea F un grupo libre sobre un conjunto
Y . Si α : Y → X es sobreyectiva, existe un epimorfismo de F en G. En particular todo grupo es cociente
de un grupo libre.

Demostración. Como F es libre sobre Y , de la función α se puede extender un homomorfismo, que lo
llamaremos igual por simplicidad, α : F→G. Debido a que X genera G, los elementos de G serán de la
forma, xε1

1 xε2
2 · · ·x

εk
k donde xi ∈ X , εi =±1 y k ≥ 0. Para todo xi ∈ X ∃yi ∈ Y tal que yα

i = xi, luego dado
un elemento de G xε1

1 xε2
2 · · ·x

εk
k existen y1,y2, ...,yk tal que yα

1 = x1, yα
2 = x2,..., yα

k = xk, por lo que

(yε1
1 yε2

2 · · ·y
εk
k )

α = (yα
1 )

ε1(yα
2 )

ε2 · · ·(yα
k )

εk = xε1
1 xε2

2 · · ·x
εk
k

siendo así α un epimorfismo.
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1.2 Presentaciones de grupos

Hemos visto en la proposición anterior que todo grupo es cociente de un grupo libre, luego podríamos
pensar en describir cualquier grupo como un cociente.

Sea un epimorfismo π de un grupo libre F en G. Llamando R al núcleo de π tenemos que R C F y
F/R' G. A los elementos de R los llamaremos relaciones.

Elegimos ahora un conjunto de generadores libres de F , llamémosle Y , y un subconjunto S de F tal
que kerπ = SF 1. Si X = Y π entonces se tiene que X genera G. Por otra parte r ∈ F es una relación si
y solo si puede escribirse de la forma

(
sε1

1

) f1 · · ·
(
sεk

k

) fk donde si ∈ S, εi± 1, fi ∈ F . La presentación π

junto a la elección de Y y S determina un conjunto de generadores y de relaciones para G.

Definición. Llamaremos presentación de un grupo G a

G = 〈Y |S 〉 .

Vemos que la presentación de G se basa en la elección de Y y principalmente en la de π por lo que
también se conoce como presentación libre de G al epimorfismo π .

En la práctica es más conveniente dar las relaciones como s = 1, s ∈ S y siendo G generado por X ,
obtenemos

G = 〈X |s = 1, s ∈ S 〉 .

Nos referiremos a esta expresión como la presentación de G.

Ejemplo 3. Uno de los ejemplos más sencillo lo tenemos para los grupos cíclicos como por ejemplo,
G =

〈
x|x6 = 1

〉
, el grupo cíclico de 6 elementos. Tenemos X = {x}, el grupo libre F = 〈X〉 = 〈x〉 ={

1, x̄, x̄−1, x̄2, x̄−2, ...
}

y σ : x∈X 7→ x̄∈F . La función π : x̄i ∈F→ xγ(i) ∈G dada por γ(i) = i modulo(6)
claramente es un epimorfismo y se tiene kerπ =

〈
x6
〉
.

Ejemplo 4. G =
〈
x,y|x2 = 1,y2 = 1

〉
. Este grupo se llama grupo diédrico infinito, se denota por D∞.

Veamos otra presentación de este grupo. Llamando a= xy obtenemos que G=
〈
x,a|x2 = 1,x−1ax = a−1

〉
realizando cálculos vemos que x−1ax = x−1xyx = yx = a−1 pues a(yx) = xyyx = xy2x = xx = x2 = 1 y
recíprocamente y2 = (x−1a)2 = x−1axa = a−1a = 1. Utilizando las llamadas transformaciones de Tietze
(ver [6, 2. Finite presentations]) se deduce que son presentaciones del mismo grupo.

Teorema 1.4. (von Dyck). Sean G y H dos grupos con presentaciones ε : F → G y δ : F → H tal que
cada relación en ε es también una relación en δ , esto es, kerε ≤ kerδ . Entonces la función f ε 7→ f δ es
un epimorfismo bien definido de G en H.

Demostración. Por la definición de presentación se tiene que ε y δ son epimorfismos, luego dados
g ∈ G y h ∈ H existirán f1, f ∈ F tal que g = f ε

1 y h = f δ . Además la aplicación f ε 7→ f δ está bien
definida debido a que si g = f ε

1 y g = f ε entonces por fuerza f = f1k con k ∈ kerε y como kerε ≤ kerδ

tenemos que k ∈ kerδ por lo que f δ = f δ
1 . Y obviamente f ε 7→ f δ es un epimorfismo.

Definición. Un grupo se dice que es finitamente presentado si tiene una presentación finita 〈X |S〉, es
decir, existe una presentación en la que X y S son finitos.

Teorema 1.5. (B.H. Neumann) Si X es un conjunto generador de un grupo G finitamente presentado,
el grupo tendrá una presentación finita de la forma 〈X0|r1 = r2 = · · ·= tt = 1〉 donde X0 ⊆ X.

Demostración. Sea G = 〈y1, ...,ym|s1 = · · ·= sl = 1〉 una presentación finita de G. Como X genera G,
existirá un subconjunto finito X0 = {x1, ...,xn} ⊆ X donde cada xi se podrá expresar en función de los yi

de tal forma que X0 también generará G y hay, por lo tanto, expresiones para los yi en función de los x j

y viceversa. Llamemos yi = wi(x) y x j = v j(y). Las relaciones en términos de los x j’s serán:

sk(w1(x), ...,wm(x)) = 1 k = 1, ..., l.

1SF =
〈

f−1S f | f ∈ F
〉

es el subgrupo normal a F más pequeño que contiene a S
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Habrá un número finito de estas relaciones.
Sea G un grupo con generadores x1, ...,xn y las relaciones descritas arriba para los x1, ...,xn. Por

(1.4) existe un epimorfismo de G en G en el que xi 7→ xi. Definimos ahora yi = wi(x). Partiendo de que
x j = v j(w1(x), ...,wm(x)) j = 1, ...n. Se deduce que G = 〈y1, ...,ym〉. Debido a que sk(y) = 1 hay, de
nuevo por (1.4), un epimorfismo de G en G en el cual yi 7→ yi. Estos epimorfismos son mutuamente
inversos, luego son isomorfismos, por lo que G está generado por x1, ...,xn y tiene las relaciones de las
xi descritas antes.

Un ejemplo de grupos finitamente presentados son los grupos cíclicos.

Teorema 1.6. (P. Hall). Sea N / G si N y G/N son grupos finitamente presentados, entonces G es
finitamente presentado.

Demostración. Supongamos que N tiene una presentación con generadores x1, ...,xm y relaciones r1 =
· · ·= rk = 1 y que G/N tiene una presentación con generadores y1N, ...,ynN y relaciones s1 = · · ·= sl =
1G/N . Entonces, G está generado por x1, ...,xm,y1, ...,yn. Además cumplen las siguientes relaciones:
ri(x) = 1, (i = 1, ..,k) que son las que ya había en N, las relaciones que había en G/N son s j(y)N = N
lo que nos dice que s j(y) ∈ N por lo que estas relaciones se podrán poner en función de los generadores
de N:

s j(y) = t j(x) j = 1, ..., l.

Y finalmente las relaciones de normalidad:

y−1
j xiy j = ui j(x) y jxiy−1

j = vi j(x) i = 1, ...,m, j = 1, ...,n.

Sea G un grupo con generadores x1, ...,xm,y1, ...,yn y con las relaciones definidas arriba en términos
de los xi y y j. Por (1.4) hay un epimorfismo α : G→ G tal que xα

i = xi y yα
j = y j. Sea K = kerα .

La restricción de α a N ≡ 〈x1, ...,xm〉 es un isomorfismo, en efecto, todas las relaciones en los x j son
relaciones en los x j y de nuevo por (1.4) existe un epimorfismo de N en N en el que xi 7→ xi siendo esta
la aplicación inversa a la restricción de α en N. Por lo tanto K ∩N = 1. Por otra parte N /G porque
y−1

j xiy j y y jxiy−1
j pertenecen a N debido a que cumplen las relaciones de normalidad descritas arriba.

Luego α induce un epimorfismo de G/N en G/N en el que yiN 7→ yiN que es un isomorfismo debido a
que todas las relaciones en los yiN son también relaciones en los yiN.

Ejemplo 5. Retomemos el ejemplo 4 en el cual habíamos dado la siguiente presentación del grupo
diédrico infinito: G=

〈
x,a|x2 = 1,x−1ax = a−1

〉
. Vamos a ver que este grupo también se puede expresar

como el producto semidirecto de dos grupos, G = X nN con el grupo cíclico infinito N = 〈a〉 y el grupo
X = 〈x〉 cíclico de orden 2 y además x conjuga un elemento de N en su inverso, es decir, x−1ax = a−1.
Para ello vamos a servirnos de la demostración del teorema (1.6). Tenemos que N /G y además N y
X = G/N son finitamente presentados con presentaciones:

N = 〈a| 〉 , G/N = 〈xA|x2A = A〉.

Entonces G estará generado por a, x y las relaciones serán las siguientes:

• x2 = an para algún n ∈ N∪{0}.

• x−1ax = al para algún l ∈ N∪{0}.

• xax−1 = am para algún m ∈ N∪{0}.

Como x conjuga un elemento de N en su inverso entonces, l = −1 y m = −1 pues, x−1ax = a−1 ⇔
ax−1ax = 1⇔ ax−1a = x−1 ⇔ xax−1a = 1⇔ xax−1 = a−1. Finalmente x−1anx = a−n y x2 = an ⇒
a−n = x−1anx = x−1x2x = x2 teniendo así que an = x2 = a−n ⇒ n = 0 ⇒ x2 = 1. Por tanto G =〈
a,x|x2 = 1,x−1ax = a−1

〉
.
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1.3 Problemas clásicos de decisión en grupos

En esta sección abordaremos los problemas clásicos de decisión en grupos, que fueron formulados por
Max Dehn en 1911 [2, Über unendliche diskontinuierliche Gruppen]. En ellos se trata de saber si existe
un algoritmo que nos demuestre si es verdad o no una determinada igualdad.

Suelen ser formulados para grupos finitamente presentados, ya que sin esta condición, la respuesta
suele ser negativa pero también tienen sentido para grupos finitamente generados.

1.3.1 El problema de la palabra

Sea G un grupo finitamente presentado con generadores x1, ...,xn y relaciones r1, ...,rk. El problema de
la palabra se dice que es resoluble para la presentación dad si existe un algoritmo para determinar si una
palabra w en términos de los xi es o no es una relación, es decir, si w = 1 en G. Se puede comprobar
utilizando un razonamiento análogo al de la demostración de (1.5) que la respuesta a nuestro problema
no depende de la presentación dada, sino del propio grupo G.

Un primer intento para resolver el problema de la palabra sería enumerar todas las consecuencias
de nuestras relaciones r1, ...,rk, es decir, todas las palabras de la forma (r±1

i1 ) f1 · · ·(r±1
i j

) f j , ( fi ∈ F). De
tal forma, si w es una relación, aparecerá en nuestra lista, y dado suficiente tiempo, la detectaremos.
El verdadero problema viene cuando w no es una relación, esta no aparecerá en la lista y no podrá ser
encontrada. Por lo que necesitaremos también una forma de enumerar las palabras que no son relaciones.

Tras este análisis no es de extrañar que haya grupos finitamente presentados que tienen un problema
de la palabra irresoluble, que es justo lo que se demuestra en el famoso teorema de Novikov-Boone-
Britton [10, Theorem 12.8]. Pero a pesar de esto el problema de la palabra tiene solución para muchas
clases de grupos finitamente presentados. Veremos alguno.

Definición. Un grupo G se dice que es residualmente finito si dado 1 6= g∈G, existe N /G tal que g /∈N
y G/N es finito.

Proposición 1.7. Los subgrupos de los grupos residualmente finitos también son residualmente finitos.

Demostración. Sea K un grupo residualmente finito y H un subgrupo de este. Sea 1 6= h ∈ H entonces
h ∈ K. Luego por hipótesis existe N /K de índice finito en K tal que h /∈ N y en particular H ∩N /H
y h /∈ H ∩N. Como veremos en (2.4) NH ≤ K. De tal forma que aplicando el segundo teorema de
isomorfía tenemos que

H
N∩H

' NH
N
≤ K

N
.

Tenemos así que H/(N∩H) es finito.

Proposición 1.8. Los grupos abelianos finitamente generados son residualmente finitos.

Demostración. Como vamos a tratar con grupos abelianos usaremos la notación aditiva donde el 0 es
la identidad. El teorema fundamental para grupos abelianos finitamente generados nos dice que sea tal
grupo G existirán únicos r,m ∈ N∪{0} y n1, ...,nr ∈ N, donde n1|n2| · · · |nr, tal que

G' Zn1⊕Zn2⊕·· ·⊕Znr ⊕Zm.

Sea 0 6= g ∈ G podremos escribirlo como g = t +α1t1 + · · ·+αmtm donde t ∈ Zn1 ⊕Zn2 ⊕·· ·Znr ≡ T ,
t1, ..., tm son los generadores de cada copia de Z y α1, ...,αn ∈ Z. Podemos suponer que t = 0 pues en
caso contrario, g /∈Zm y G/Zm es finito. Sin pérdida de generalidad podemos suponer α1 6= 0. Tomamos
un p primo que no divida a α1. Entonces g /∈ pZ⊕Z⊕·· ·⊕Z⊕T y G/(pZ⊕Z⊕·· ·⊕Z⊕T ) es finito
(tiene orden p).

Teorema 1.9. (Mal’cev) Los grupos lineales finitamente generados son residualmente finitos.

Demostración. Podemos encontrarla en [12].
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Corolario 1.10. El grupo GL(n,Z) es residualmente finito para todo n entero positivo.

Demostración. Se sigue de (1.9) por ser Z finitamente generado.

Proposición 1.11. Los grupos libres finitamente generados son residualmente finitos.

Demostración. En el ejemplo (2) hemos visto que el grupo libre generado por dos elementos F2 es
un subgrupo de GL(2,Z) el cual acabamos de decir que es residualmente finito. Luego por (1.7) F2
es residualmente finito. Y como todos los grupos libres finitamente generados son subgrupo de F2, los
grupos libres finitamente generados son residualmente finitos.

Observación 1.12. Los cocientes de grupos residualmente finitos no tienen porque ser residualmente
finitos. En efecto, por (1.3) sabemos que todo grupo es cociente de un grupo libre, luego si lo fueran,
tendríamos que los grupos finitamente generados son residualmente finitos, lo cual es falso.

Proposición 1.13. Sea G un grupo residualmente finito y finitamente presentado. Entonces el problema
de la palabra tiene solución para G.

Demostración. Asumimos que G está dado por una presentación finita. Sea w una palabra en términos
de los generadores de esta presentación. Vamos a describir dos procedimientos que una vez puestos en
marcha, nos dirán si w = 1 o no.

El primer procedimiento consiste en enumerar todas las consecuencias de las relaciones dadas en la
presentación e ir comprobando una a una si es igual a nuestra palabra w. Si resulta que hay alguna que
sea igual a w, w = 1 en G y el procedimiento parará.

El segundo procedimiento consiste en enumerar todos los grupos finitos construyendo sus tablas de
multiplicación. Para cada grupo finito F construimos todos los homomorfismos θ de G en F , para ello
asignamos un elemento de F a cada generador de G y después comprobamos si las relaciones de la
presentación se cumplen en F . Como F es finito, habrá finitos homomorfismos y se podrá hacer. Para
cada homomorfismo θ calculamos wθ y comprobamos si es igual a la identidad en F . Si resulta que
wθ 6= 1 en F , entonces w 6= 1 en G y el procedimiento parará.

La clave reside en que si el grupo es residualmente finito, entonces uno de los dos procesos parará.
En efecto, si w 6= 1 en G como G es residualmente finito, existirá N /G con w /∈ N y F = G/N finito en
el cual w 6= 1 y por lo tanto el segundo proceso parará. Por otra parte si w = 1 en G el primer proceso
parará.

Teorema 1.14. Los grupos abelianos finitamente presentados tienen solución al problema de la pala-
bra.

Demostración. Se sigue de (1.13) y (1.8).

En la práctica el algoritmo descrito en (1.13) no suele ser el más rápido, y como no podía ser de
otra forma, para los grupos abelianos finitamente presentados hay otro algoritmo mucho más eficiente.
Veámoslo. Sea A tal grupo con familia generadora minimal 〈a1, ...,as,b1, ...,bt〉 siendo ai los elementos
generadores de orden finito. Por ser A abeliano, toda palabra w podrá ser reescrita de forma única como,
w = aε1

1 · · ·aεs
s bδ1

1 · · ·b
δt
t con ε1, ...,εs,δ1, ...,δt ∈ N∪{0}. Luego w = 1 si y solo si el orden de los ai

divide a εi para i = 1, ...,s y δi = 0.
Esto también ocurre para los grupos policíclicos2, lo veremos en el capitulo 4 después de demostrar

en el capítulo 2 que son finitamente presentados y residualmente finitos.

Corolario 1.15. Los grupos lineales finitamente generados y los grupos libres finitamente generados
tienen solución al problema de la palabra.

2Ver definición de policíclico en la pagina 9
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1.3.2 El problema de la conjugación

Sea G un grupo finitamente presentado con generadores x1, ...,xn y relaciones r1, ...,rk. El problema de
la conjugación se dirá que es resoluble para G si existe un algoritmo, el cual, cuando se le introducen
dos palabra w1 y w2 en términos de los xi decide si son o no son conjugadas como elementos de G.

Observar que al igual que en el problema de la palabra, la respuesta a nuestro problema no depende
de la presentación dada, sino del propio grupo G.

Observación 1.16. Todo grupo resoluble para el problema de la conjugación lo es para el de la palabra.

Definición. Diremos que un grupo G es separable para la conjugación si para todo par de elementos
g, h ∈ G no conjugados existe un subgrupo normal N de índice finito en G tal que las coclases de g y h
en G/N no son conjugadas.

Observación 1.17. La propiedad de ser separable para la conjugación no se conserva para subgrupos.
En efecto, sea K < G donde G es separable para la conjugación. Sean w1,w2 ∈ K no conjugados, no
implica que w1,w2 no sean conjugados en G, luego no puedo usar que G es separable para la conjugación
para ver que K lo es.

Proposición 1.18. Todo grupo G separable para la conjugación es residualmente finito.

Demostración. Sea 1 6= w ∈ G entonces, 1 y w no serán conjugadas luego existe N /G con G/N finito
donde @h ∈ G tal que 1N = h−1whN de lo que se deduce N 6= wN luego w /∈ N.

Proposición 1.19. Sea G un grupo separable para la conjugación y finitamente presentado. Entonces
el problema de la conjugación tiene solución para G.

Demostración. Al igual que para el problema de la palabra vamos a dar dos algoritmos de manera que
una vez puestos en marcha uno de ellos parará y nos dará el resultado.

En el primero, dadas las dos palabras w1 y w2 en términos de los generadores de la presentación,
conjugaremos w1 por los diferentes elementos distintos de la unidad de G, pues por (1.16) G tiene solu-
ción al problema de la palabra y por tanto sabemos que elementos son la unidad y cuales no. Tenemos
así que si estas palabras son conjugadas este procedimiento parará.

Y el segundo consiste en construir todos los cocientes finitos. Para cada cociente finito F construi-
mos los homomorfismos θ de G en F y comprobamos si wθ

1 y wθ
2 son conjugados, si encuentra uno en

el que no sean conjugados, tenemos que w1 es no es conjugado de w2 y este procedimiento parará.
Por lo que dado el tempo necesario uno de los dos procedimientos parará.

Teorema 1.20. Los grupos policíclicos tienen solución al problema de la conjugación.

Demostración. Ver [5, Corolary 9.1.2].

1.3.3 El problema del isomorfismo

Diremos que el problema del isomorfismo es resoluble en una clase de grupos si existe un algoritmo
que decida si son isomorfos o no dos grupos de esa clase.

Este problema fue propuesto por primera vez para clases de grupos finitamente generados por Hein-
rich Franz Friedrich Tietze en 1908 e identificado por Dehn en 1911 como uno de los tres problemas
fundamentales de la teoría de decisión de grupos. Sergei Ivanovich Adian y Michael Oser Rabin proba-
ron 50 años después de su formulación la existencia de clases en las cuales el problema es irresoluble.
Usando estos resultados, Markov en 1958 probó la irresubilidad del llamado problema fundamental
de la topología: El problema del homeomorfismo, que consiste en decidir si existe un algoritmo que
determine si dados dos poliedros son homeomorfos o no.
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1.3.4 Resultados negativos para grupos resolubles finitamente presentados

Estos tres problemas de decisión para grupos finitamente presentados estuvieron sin solución durante
años hasta la llegada del teorema de Boone-Novikov. Posteriormente fue demostrado por Olga Khar-
lampovich en 1981 que el problema de la palabra no tiene solución para determinados grupos resolubles
finitamente presentados. Esto también fue probado de forma independiente por Baumslag, Gildenhuys
y Strebel en 1985 y en ambos trabajos los autores usan resultados de M.Misnsky. En [1] se demuestra
el siguiente teorema.

Teorema 1.21. Existe un grupo resoluble finitamente presentado U de longitud derivada3 tres y un
conjunto de palabras w1,w2, ... en términos de los generadores de U tal que wp

i = 1 con p primo y wi

centrado en U, en el que no hay un algoritmo para decidir si dada una palabra w es o no es igual a la
identidad en U.

El grupo U tiene un subgrupo normal A tal que ∀a ∈ A ap2
= 1 y el cociente U/A es abeliano libre

de torsión4.
Se sigue de forma directa por (1.16) que U también proporciona un ejemplo en el que el problema

de la conjugación no tiene solución.
Por último añadir que el grupo U también puede ser usado para probar que el problema del isomor-

fismo no tiene solución en la clase de los grupos resolubles finitamente presentados de longitud derivada
tres. Para ver esto tomamos un grupo cíclico 〈x〉 de orden p3 y definimos los grupos Gi, con i = 1,2...
como

Gi =
U×〈x〉〈
xp2w−1

i

〉
donde w1, w2, ... es el conjunto de palabras anterior.

Veamos que wi = 1 en G si y solo si Gi no tiene elementos de orden p3. En efecto, supongamos
que wi = 1 y veamos que U no tiene elementos de orden p3. Sea b ∈U tal que bp3

= 1 tenemos que
bp3

A = A y como U/A es libre de torsión entonces bA = A, luego, b ∈ A y sabemos que ∀a ∈ A ap2
= 1,

por lo que bp2
= 1. Luego b tiene orden p ó p2. Ademas,

Gi =
U×〈x〉
〈xp2〉

'U× 〈x〉
〈xp2〉

'U×Zp2

luego los elementos de Gi no tendrán orden p3. Reciprocamente, supongamos que wi 6= 1. Ponemos
que T =

〈
xp2

w−1
i

〉
. Vamos a probar que xT tiene orden p3. Obviamente xp3

T = T luego, el orden de

xT ∈ G puede ser 1, p, p2, p3. Como queremos ver que xT tiene orden p3 será suficiente ver que
xp2

/∈ T , supongamos que xp2 ∈ T , notemos que T está generado por el elemento xp2
w−1

i que tiene
orden p ya que (w−1

i )p = 1. Entonces existirá un 0 ≤ r < p tal que xp2
= (xp2

w−1
i )r = xrp2

w−r
i luego

wr
i = xrp2−p2

y como wi 6= 1 tendrá que ser r = 0 luego 1 = x−p2
lo que implica que xp2

= 1 pero esto es
imposible ya que x tiene orden p3.

En el caso de que wi = 1 tenemos que Gi es isomorfo a G∗ =U×Zp2 y como no existe un algoritmo
que nos diga si wi = 1 tampoco existirá uno que nos diga si Gi ' G∗.

3Ver definición de longitud derivada en la página 13.
4Ver definición de libre de torsión en la página 14



Capítulo 2

Cadenas, descomposición de grupos y
grupos policíclicos

El propósito de este capítulo será demostrar que los grupos policíclicos son finitamente presentados y
residualmente finitos y por tanto resolubles para el problema de la palabra. Para ello daremos una serie
de conceptos de descomposición de grupos y ciertas propiedades que poseen determinados grupos que
nos serán útiles en la demostración final.

2.1 Cadenas de grupos

Definición. Diremos que un grupo G es policíclico (resoluble) si existe una cadena de subgrupos

1 = G0 /G1 / · · ·/Gi /Gi+1 / · · ·/Gn = G

donde cada Gi+1/Gi es cíclico (abeliano). Llamaremos términos de la cadena a los Gi y factores de la
cadena a los Gi+1/Gi. Si todos los Gi son distintos, al entero n lo llamaremos longitud de la serie.

Proposición 2.1. Los grupos policíclicos son finitamente presentados.

Demostración. 1 = G0 es trivialmente finitamente presentado. Como G1/G0 = G1/1 = G1 es cíclico,
será finitamente presentado y aplicando el teorema (1.6) obtenemos que G1 es finitamente presentado,
al realizar este razonamiento recursivamente, obtenemos que G es finitamente presentado.

Teorema 2.2. Todo grupo policíclico es isomorfo a un subgrupo de GL(n,Z).

Demostración. Ver [5, Sección 3.3].

Observación 2.3. Como GL(n,Z) es finitamente generado, podemos deducir por (1.9) que los grupos
policíclicos son residualmente finitos.

Definición. Sea G grupo con una cadena de subgrupos 1 = G0 /G1 / · · · /Gn = G que llamaremos S.
Dada otra cadena T de G diremos que es un refinamiento de S si T contiene a todos los términos de la
cadena S. Si hay un término en T que no esté en S diremos que es un refinamiento propio. Se dice que
dos cadenas S y T de un grupo G son isomorfas si los factores de S y T son isomorfos.

En general si H y K son subgrupos de G, HK no tiene porque ser un subgrupo de G. Un sencillo
ejemplo de ello es el grupo generado por las permutaciones de tres elementos, S3, y los subgrupos
H = {1,(1,2)} y K = {1,(1,3)}. En este caso HK = {1,(1,2),(1,3),(1,2,3)} que no es un subgrupo
de S3.

Lema 2.4. Sean dos subgrupos H, K, de un grupo G. Si uno de ellos es normal en G, entonces HK ≤G.
En tal caso HK = KH.

9
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Demostración. Supongamos que H /G. Sean h1k1, h2k2 ∈ HK, veamos que su producto también está

en HK. Por ser H /G y K ⊆ G, k1h2k−1
1 ∈ H. Luego h1k1h2k2 = h1

∈H︷ ︸︸ ︷
k1h2k−1

1︸ ︷︷ ︸
∈H

k1k2︸︷︷︸
∈K

∈ HK.

Lema 2.5. Si N E G y H E K ≤ G, entonces HN E KN.

Demostración. Por (2.4) HN y KN serán subgrupos de G. Veamos que son normales. Sean k1 ∈ K,
n1,n2 ∈ N, y h1 ∈ H. Hay que probar que k1n1h1n2(k1n1)

−1 ∈ HN.

k1n1h1n2(k1n1)
−1 = k1n1h1n2n−1

1 k−1
1 = k1n1k−1

1︸ ︷︷ ︸
∈N

k1h1k−1
1︸ ︷︷ ︸

∈H

k1n2n−1
1 k−1

1︸ ︷︷ ︸
∈N

.

Y como por (2.4) NH = HN, tenemos que k1n1h1n2(k1n1)
−1 ∈ HN.

Lema 2.6. Sean A, K y G grupos cumpliendo A /G, A /K entonces K/A /G/A si y solo si K /G y en
tal caso (G/A)/(K/A)' G/K.

Demostración. Para probar que K /G hay que ver que g−1kg ∈ K ∀k ∈ K, g ∈ G. Sean k ∈ K, g ∈ G,
por hipótesis sabemos que g−1kgA ∈ K/A. Luego g−1kgA = k1A para algún k1 ∈ A, multiplicando por
k−1

1 por la izquierda tenemos que k−1
1 g−1kg ∈ A. Luego k−1

1 g−1kg = a para algún a ∈ A. Multiplicando
ahora por k1 por la izquierda llegamos a que g−1kg = k1a ∈ KA ⊆ K debido a que A ≤ K y queda
probado que K /G. Se sigue por el tercer teorema de isomorfía que (G/A)/(K/A)' G/K.

Reciprocamente tenemos que ver que gkg−1A ∈ K/A ∀g ∈G,k ∈ K. Sea g ∈G,k ∈ K, como K /G,
gkg−1 ∈ K. Luego ∃k1 ∈ K tal que gkg−1 = k1 por lo que gkg−1A = k1A, es decir, gkg−1A ∈ K/A.

Proposición 2.7. (Lema de Zassenhaus). Sean A1, A2, B1, B2 subgrupos de un grupo G tales que A1 /A2
y B1/B2. Sea Di j =Ai∩B j. Entonces, A1D21/A1D22 y B1D12/B1D22. Además, los grupos A1D22/A1D21
y B1D22/B1D12 son isomorfos.

Demostración. En primer lugar, observamos que como A1 /A2, D22 ≤ A2 y D21 ≤ A2 se sigue por (2.4)
que A1D21 y A1D22 son grupos.

Como D22 ≤ A2 y A1 / A2 tenemos que D22 normaliza a A1. Por otra parte B1 / B2 implica que
D21 /D22. Tenemos así que D22 normaliza a A1D21.

De formal trivial A1 / A1, luego si vemos que para todo g ∈ D21 y para todo x ∈ A1 se cumple
que gx ∈ A1D22 habremos probado que A1D21 /A1D22. Veamoslo, sea g ∈ D21 y x ∈ A1 tenemos que
gx = x−1gx como x−1g∈ A1D21 = D21A1 existirán g1 ∈D21 y x1 ∈ A1 tales que x−1g = g1x1 de tal forma
que gx = x−1gx = g1x1x ∈D21A1 = A1D21. De forma análoga se prueba que B1D12 es normal en B1D22.

El segundo teorema de isomorfía nos dice que dados un subgrupo H y un subgrupo normal N de
un grupo G. Entonces N ∩H /H y H/(N ∩H) ' (NH)/N. Aplicándolo para H = D22 y N = A1D21
tenemos que D22/(A1D21∩D22)' (A1D21D22)/(A1D21). Y como D21 ⊆ A1, por la ley modular:

(A1D21)∩D22 = (A1∩D22)D21 = (A1∩A2∩B2)D21 = (A1∩B2)D21 = D12D21.

Y juntando ambos resultados obtenemos que D22/(D12D21) ' (A1D22)/(A1D21). De forma análoga
vemos que D22/(D12D21)' (B1D22)/(B1D21). Y se sigue que

A1D22

A1D21
' B1D22

B1D21
.

Teorema 2.8. (Teorema del refinamiento de Schereier). Dos cadenas cualesquiera de un grupo tienen
refinamientos isomorfos.
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Demostración. Sean 1=H0/H1/ · · ·/Hl =G y 1=K0/K1/ · · ·/Km =G dos cadenas de G. Definimos:
Hi, j = Hi(Hi+1∩K j) y Ki, j = K j(Hi∩K j+1). Aplicando (2.7) a A1 = Hi, A2 = Hi+1, Bi = K j y B2 = K j+1
obtenemos que:

Hi, j /Hi, j+1, Ki, j /Ki+1, j,

Hi, j+1

Hi, j
=

Hi(Hi+1∩K j+1)

Hi(Hi+1∩K j)
'

K j(Hi+1∩K j+1)

K j(Hi∩K j+1)
=

Ki+1, j

Ki, j
.

Como Hi,0 = Hi(Hi+1 ∩ K0) = Hi(Hi+1 ∩ 1) = Hi y Hi,m = Hi(Hi+1 ∩ Km) = Hi(Hi+1 ∩G) =
HiHi+1 = Hi+1 tenemos que la cadena {Hi, j|i = 0, ..., l−1, j = 0, ...,m} es un refinamiento de {Hi|i =
0, ..., l} de forma análoga {Ki, j|i = 0, ..., l, j = 0, ...,m− 1} lo es de {K j| j = 0, ...,m}. Y estos refina-
mientos son isomorfos.

2.2 Propiedades de grupos resolubles y policíclicos

Proposición 2.9. Sea G un grupo policíclico (resoluble) y A≤G, entonces A es policíclicos (resolubles).
En el caso A/G, entonces G es policíclico (resoluble) si y solo si A y G/A son policíclicos (resolubles).

Demostración. Sea A≤G y sea una cadena de G, 1/H0 /H1 / · · ·/Hn = G, consideramos 1 = H0∩A/
H1∩A/ · · ·/Hn∩A = A que es una cadena de A. Veamos ahora que sus factores son cíclicos (abelianos).
Para ello notaremos que como Hi−1 /Hi y A∩Hi ≤ Hi por (2.4) Hi−1(A∩Hi) es un subgrupo de Hi y
por la ley modular Hi−1(A∩Hi) = Hi−1A∩Hi.

Por el segundo teorema de isomorfía se sigue que:

Hi−1A∩Hi

Hi−1
=

Hi−1(A∩Hi)

Hi−1
' A∩Hi

A∩Hi∩Hi−1
=

A∩Hi

A∩Hi−1
.

Como Hi/Hi−1 es cíclico (abeliano) y (Hi−1A∩Hi)/Hi−1 es un subgrupo de este, tenemos que (Hi−1A∩
Hi)/Hi−1 es cíclico (abeliano) y por tanto (A∩Hi)/(A∩Hi−1) será cíclico (abeliano).

Probemos ahora que un cociente de un grupo policíclico (resoluble) es policíclico (resoluble). Como
A/G y Hi−1 /Hi, se sigue por (2.5) que AHi−1 /AHi.
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Por tanto, por (2.6) tenemos que AHi/A E AHi+1/A. Tenemos así que Hi ≤ AHi y AHi−1 E AHi. Por el
segundo y tercero teorema de isomorfía se sigue que:

Hi

Hi∩AHi−1
' AHi−1Hi

AHi−1
=

AHi

AHi−1
' (AHi)/A

(AHi−1)/A
.

Y al igual que antes como Hi/Hi−1 es cíclico (abeliano), lo será Hi/(Hi ∩AHi−1), por lo que lo será
(AHi)/A
(AHi−1)/A . Tenemos una cadena 1 = AH0/A /AH1/A / · · · /AHn/A = G/A. Luego G/A es policíclico
(resoluble). El recíproco se sigue fácilmente usando (2.6).

Proposición 2.10. En un grupo policíclico el número de grupos cociente infinitos en una cadena es
independiente de la cadena escogida y por tanto es fijo para G.

Demostración. Sea una cadena 1 = G0 /G1 / · · ·/Gn = G se deduce de (2.8) que todo refinamiento de
esta cadena tendrá el mismo número de factores cíclicos infinitos.

Definición. A este número se le conoce como longitud de Hirsch, lo denotaremos por l(G).

Observación 2.11. La longitud de Hirsch se puede definir para grupos resolubles como la suma de los
rangos libres de los factores abelianos.

Observación 2.12. Sea A/G, entonces l(G) = l(G/A)+ l(A).

Observación 2.13. Sea A un grupo policíclico infinito entonces l(A)> 0.

Definición. Diremos que un grupo es poli-infinito cíclico si tiene una cadena con factores cíclicos
infinitos, esto es, un grupo policíclico en la que todos sus factores son infinitos.

Observación 2.14. Un subgrupo H de un grupo poli-infinito cíclico G es también poli-infinito cíclico.

2.3 Conmutadores y la cadena derivada

Definición. Sea G un grupo, x1, x2 elementos de G y X1, X2 conjuntos no vacíos de G. Llamaremos
conmutador de x1 y x2 a

[x1,x2] = x−1
1 x−1

2 x1x2

y subgrupo conmutador de X1 y X2 a

[X1,X2] = 〈[x1,x2]|x1 ∈ X1, x2 ∈ X2〉.

Finalmente, se llama grupo derivado de G y se denota por G′, al generado por todos los conmutado-
res de G, esto es, G′ = [G,G].

Proposición 2.15. Sean L y G grupos si L E G. Entonces L′ E G.

Demostración. Sea g∈G tenemos que ver que g−1lg∈ L′ ∀l ∈ L′. Sera suficiente ver que dado [l1, l2]∈
L, entonces g−1[l1, l2]g ∈ L. Como L E G tenemos

g−1[l1, l2]g= g−1l−1
1 l−1

2 l1l2g= g−1l−1
1 gg−1l−1

2 gg−1l1gg−1l2g=(g−1l1g)−1 (g−1l2g)−1 g−1l1gg−1l2g∈L′.

Corolario 2.16. El derivado de un grupo es normal en este.

Demostración. Inmediato por (2.15) con L = G.

Proposición 2.17. Para todo grupo G, G/G′ es abeliano.
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Demostración. Sean x1,x2 ∈ G. Veamos que (x1G′)(x2G′) = x1x2G′ y (x2G′)(x1G′) = x2x1G′ son el
mismo elemento de G/G′. La igualdad x1x2G′ = x2x1G′ es cierta si y solo si x−1

1 x−1
2 x1x2G′ = G′ lo cual

se cumple si y solo si x−1
1 x−1

2 x1x2 ∈ G′ que es cierto, luego G/G′ es abeliano.

Corolario 2.18. Para todo grupo G, el subgrupo normal más pequeño de G cuyo cociente es abeliano
es G′.

Demostración. Sea K /G tal que G/K es abeliano. Sean x,y ∈ G entonces que xyK = yxK implica que
x−1y−1xy ∈ K, o bien que [x,y] ∈ K. Por tanto G′ ≤ K.

Definición. Llamaremos cadena derivada de G a:

G = G(0) ≥ G(1) ≥ ·· ·

donde G(n+1) = (G(n))′. Notar que esta cadena podría no llegar a 1 o incluso no terminar. Por supuesto
todos los factores serán abelianos por (2.17).

Al número de factores de esta cadena lo llamaremos longitud derivada de G.

Observación 2.19. Por inducción sobre (2.15) obtenemos que L(d) /G.

Proposición 2.20. Para todo A normal en G e i≥ 0, G(i)/A = (G/A)(i).

Demostración. Probémoslo por inducción sobre i. Para i= 0 el resultado es trivial. Supongámoslo cierto
para i−1 y probémoslo para i.

(G/A)(i) = [(G/A)(i−1),(G/A)(i)] = [G(i−1)/A,G(i−1)/A] = 〈[x1A,x2A]|x1,x2 ∈ G(i−1)〉=
= 〈x−1

1 x−1
2 x1x2A|x1,x2 ∈ G(i−1)〉= [G(i−1),G(i−1)]/A = G(i)/A.

Proposición 2.21. Si 1 = G0 /G1 / · · ·Gn = G es una cadena cuyos factores son abelianos, entonces
G(i) ≤ Gn−i. En particular G(n) = 1.

Demostración. Si i = 0 el teorema se cumple trivialmente. Supongámoslo cierto para i− 1 y probé-
moslo para i. Tenemos que G(i) = (G(i−1))′ = [G(i−1),G(i−1)] ≤ [Gn−(i−1),Gn−(i−1)] = (Gn−(i−1))

′. Por
otra parte como Gn−(i−1)/Gn−i es abeliano, su derivado será el grupo trivial, y por (2.20) se sigue que
(Gn−(i−1))

′/Gn−i = 1 teniendo así que (Gn−(i−1))
′ ≤ Gn−i. Por lo tanto G(i) ≤ Gn−i. Se sigue que una

cadena con factores abelianos no puede ser mas corta que la derivada.

Observación 2.22. La longitud derivada de G es la longitud de la cadena abeliana más corta de G.

Proposición 2.23. Sea G un grupo resoluble con longitud deriva d. Entonces la longitud derivada de
G/G(d−1) es d−1.

Demostración. Sabemos que la cadena derivada de G es

1 = G(d) E G(d−1) E G(d−2) E · · ·E G(1) E G(0) = G.

Como hemos visto en (2.15) G(d−1) E G(i) ∀0≤ i≤ d−1 y al hacer uso del tercer teorema de isomorfía
tenemos que

1 = G(d−1)/G(d−1) E G(d−2)/G(d−1) E · · ·E G(1)/G(d−1) E G(0)/G(d−1) = G/G(d−1)

cuyos factores son abelianos y es la cadena derivada de G/G(d−1) debido a que por (2.20) sabemos que
G(i)/G(d−1) = (G/G(d−1))(i) por lo que la distancia derivada de G/G(d−1) es d−1.
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2.4 Propiedades de grupos finitamente generados y policíclicos

Definición. Diremos que un grupo G es libre de torsión si gn 6= 1 ∀g ∈ G, ∀ 0 6= n ∈ Z mientras que
diremos que G es de torsión si ∀g ∈ G ∃0 6= n ∈ Z tal que gn = 1.

Observación 2.24. Todo grupo finito es de torsión.

Proposición 2.25. Sea H un subgrupo de índice finito en un grupo finitamente generado G, entonces,
H es finitamente generado.

Demostración. Sea X un conjunto finito de generadores de G y sea {1= t1, t2, ..., tn}=T un transversal a
derecha de H en G. Esto es, Hti 6=Ht j ∀1≤ i, j≤ n y G=

⋃
i∈T

Ht j. Si g∈G, entonces para cada t j existirá

un elemento del transversal que dependerá de j y g, llamémosle t( j,g), de forma que Ht jg = Ht( j,g) y por
tanto existirá un elemento de H que dependerá de j y g, llamémosle h( j,g), de forma que

t jg = h( j,g)t( j,g).

Todo a ∈ H podremos escribirlo como producto de generadores de G, es decir a = y1 · · ·yk con yl ∈ X .
Aplicando ahora la igualdad anterior de forma reiterada:

a = t1a = t1y1 y2 · · ·yk = h(1,y1) t(1,y1)y2 y3 · · ·yk = h(1,y1)h((1,y1),y2)t((1,y1),y2)y3 y4 · · ·yn = ...=

= h(1,y1)h((1,y1),y2) · · · t((···((1,y1),y2)···),yn).

Entonces como a ∈ H se deduce t((···((1,y1),y2)···),yn) ∈ H, luego t((···((1,y1),y2)···),yn) = t1 = 1 por lo que los
h’s, los cuales unicamente dependen de los generadores de G, generaran H. Siendo así H finitamente
generado.

Proposición 2.26. Un grupo abeliano finitamente generado es finito si y solo si es de torsión.

Demostración. Sea G de torsión. Sean g1, ...,gn generadores asociados a la descomposición de (1.8)
tenemos que G = 〈g1, ...,gn〉 y Gi = 〈gi〉, como G es de torsión todos los Gi serán finitos. Sabiendo que
G es la suma de G1, ...,Gn tenemos que G es finito. El reciproco es la observación (2.24).

Proposición 2.27. Un grupo de torsión resoluble y finitamente generado es finito.

Demostración. Sea G dicho grupo y llamemos d a su longitud derivada. Vamos a probarlo por por
inducción sobre d. Si d = 0, no hay nada que probar. Así que sea d > 0 supongamos el resultado cierto
para d− 1 y probémoslo para d, escribimos A = G(d−1) el cual será el último miembro de la cadena
distinto de 1 y por tanto será abeliano. Como sabemos por (2.23) que la distancia derivada de G/A es
d−1, G/A es finito. Y por (2.25) tenemos que A es finitamente generado. Finalmente como un subgrupo
de un grupo de torsión también es de torsión, aplicando (2.26) obtenemos que A es finito y por tanto G
finito.

Proposición 2.28. Sea G un grupo policíclico infinito:

(i) G tiene un subgrupo poli-infinito cíclico normal de índice finito.

(ii) G contiene un subgrupo normal abeliano no trivial libre de torsión.

Demostración. (i) Sea 1 = G0 /G1 / · · ·/Gn = G una cadena cíclica de un grupo policíclico G. Si n≤ 1,
entonces G es cíclico y el resultado es obvio. Sea n > 1 y definimos N = Gn−1. Por inducción sobre
n hay un subgrupo normal M de N tal que M es poli-infinito cíclico y N/M es finito. Consideramos
ahora MG =

⋂
g∈G Mg el cual es normal en G y como N ≤ G, MG /N por lo que podemos pensar

en N/MG que es finitamente generado, en efecto, como N es policíclico, N es finitamente generado y
N/MG también lo será. Veamos que N/MG es de torsión. Sabemos que N/M es finito, sea m su orden.
Sea un x ∈ N. Entonces, para cualquier g ∈ G, xg ∈ N, por ser G normal en N, luego (xg)m ∈ M por
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tanto (xm)g = (xg)m ∈M luego xm ∈Mg−1
para cualquier g∈G, lo que implica que xm ∈MG deduciendo

así que N/MG es de torsión. Finalmente como N es policíclico, entonces N/MG será policíclico y en
particular resoluble luego podemos aplicar (2.27) teniendo así que N/MG es finito. Por otra parte MG

es poli-infinito cíclico por ser subgrupo de M. Por lo que no hay perdida de generalidad en asumir que
M /G. Si G/N es finito, entonces |G : M|= |G : N||N : M|< ∞ por lo que G/M será finito y habremos
terminado.

Por lo que ahora consideramos el caso en el que G/N es cíclico infinito. Sea xN con x ∈ G un
generador de dicho grupo. Como xN genera G/N =C∞ entonces x∈G tiene orden infinito y es claro que
G = 〈x,N〉. El elemento x actuará por conjugación en cualquier subgrupo de G. Por ser M /G, Mx = M.
Luego también actuará por conjugación en N/M el cual es finito. Al ser este cociente finito, existirá un
r tal que xr actúa trivialmente sobre N/M, es decir, gxr

M = gM ∀g ∈ N. Llamamos L = 〈xr,M〉. En el
resto de la demostración vamos a probar que L es el grupo que buscamos.

Veamos que L = 〈xr,M〉/ 〈x,N〉= G. Como M /N y Mx = M la normalidad se seguirá si probamos
que N normaliza a 〈xr,M〉. Sabemos que nxr

M = nM ∀n ∈ N lo que es lo mismo que (xr)−1nxrM =
nM↔ (xr)−1n−1xrnM = M teniendo así que (xr)−1n−1xrn ∈M luego (xr)n ∈ 〈xr,M〉 y se prueba lo que
queríamos. Vamos ahora a probar que G/L es finito. Por un lado es producto de 〈x,L〉/L y NL/L. En
efecto, como L≤M ≤ N, tenemos

〈x,L〉
L
· NL

L
=
〈x〉L

L
· NL

L
=
〈x〉LNL

L
=
〈x〉N

L
=
〈x,N〉

L
=

G
L
.

Veamos ahora que estos grupos son finitos. El segundo teorema de isomorfía implica que:

LN
L
' N

L∩M
=

N
M

debido a que M ⊆ L luego como N/M es finito, LN/L también lo será. Veamos ahora que 〈x,L〉/L es
finito. Se tiene que 〈xr〉 ≤ L∩〈x〉 ≤ 〈x〉 y es claro que el índice de 〈x〉 en 〈xr〉 es r, luego, 〈x〉/(L∩〈x〉)
es finito y el segundo teorema de isomorfía nos dice que

〈x,L〉
L

=
〈x〉L

L
' 〈x〉

L∩〈x〉
.

Luego 〈x,L〉/L es finito. y deducimos que G/L también lo es. Unicamente nos falta de ver que L es
poli-infinito.

Como no hay ninguna potencia de x que pueda pertenecer a N, debido a que xN genera un grupo
cíclico infinito, si L/M fuera finito existiría un m ∈ N tal que (xr)m = xrm ∈ M ≤ N lo cual es una
contradicción, luego el factor L/M es infinito. Por el segundo teorema de isomorfía.

L
M

=
〈xr〉M

M
' 〈xr〉

M∩〈xr〉

que es cíclico por lo que L/M es cíclico infinito. Como M es poli-infinito cíclico, enlazando las cadenas
tenemos una cadena con factores cíclicos en la que todos son infinitos por lo que L será poli-infinito
cíclico.

(ii) Si G es infinito, entonces L 6= 1 y se sigue de (2.14) que L también será poli-infinito cíclico, y
en particular será un grupo resoluble. El término mas pequeño de la cadena derivada de L, llamémosle
A, es abeliano, normal en G por (2.15) y libre de torsión por ser cíclico e infinito.

Definición. Llamaremos Gm al conjunto generado por los gm tales que g ∈ G para cualquier grupo G y
0 6= m ∈ Z.

Lema 2.29. Sea A E G, entonces Am E G.

Demostración. Sea g ∈ G y am ∈ Am. Se tiene que gamg−1 = gag−1︸ ︷︷ ︸
∈A

gag−1︸ ︷︷ ︸
∈A

· · ·gag−1︸ ︷︷ ︸
∈A

∈ Am.
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Observación 2.30. Para un grupo G y 0 6= m ∈ Z, |G : Gm| no tiene porqué ser finito.

Lema 2.31. Sea A abeliano y B/A con |A : B|< ∞, entonces ∃m > 0 tal que Am ≤ B.

Demostración. Llamamos m = |A : B| entonces A/B será finito de orden m por lo que (aB)m = B ∀a∈ A
luego amB = B tenemos así que am ∈ B y como A es abeliano ambm = (ab)m de forma que

Am = 〈am|a ∈ A〉= {am|a ∈ A} ≤ B.

Lema 2.32. Sea un grupo abeliano finitamente generado A entonces |A : Am|< ∞ ∀m ∈ N.

Demostración. Es trivial que Am EA ∀m∈N por ser A abeliano. Sea a∈A, entonces, am ∈Am. Teniendo
así (aAm)m = amAm = 1A/Am luego todo elemento de A/Am tiene orden m o divisor de m y como A/Am

es finitamente generado es finito por (2.26).

Teorema 2.33. Los grupos policíclicos son residualmente finitos.

Demostración. Lo primero de todo es decir que como G es policíclico, será finitamente presentado y en
particular finitamente generado por lo que si además es abeliano por (1.8) será residualmente finito.

Veamos ahora el caso general en el que G no tiene porque ser abeliano. Habrá que demostrar que
para cualquier 1 6= g ∈ G, con G policíclico, existe N /G tal que g /∈ N y G/N es finito.

Sea l la longitud de Hirsch de G. En el caso en el que l = 0 el grupo G es finito y no hay nada
que probar. Supongamos cierto para todo G policíclico con l(G) < n siendo n > 0 y razonaremos por
inducción. Por (2.28) existe un subgrupo normal de G abeliano, no trivial y libre de torsión A 6= 1 . Por
(2.13) l(A)> 0 entonces como l(G) = l(G/A)+ l(A) tenemos que l(G/A)< l(G) y por inducción sobre
l, partiendo de que G/A es policíclico por (2.9) entonces, será residualmente finito.

Sea g ∈ G, hay que encontrar un subgrupo K tal que |G : K| < ∞ y g /∈ K. Si g /∈ A entonces
1 6= gA ∈ G/A y como G/A es residualmente finito, existirá K/A /G/A con gA /∈ K/A lo que implica
por (2.6) que K /G y (G/A)/(K/A)' G/K finito y que g /∈ K. Veamos ahora el caso en el que g ∈ A.

Por el caso abeliano existe un subgrupo B de A que además es normal en A con |A : B|< ∞ y g /∈ B.
Por otra parte por (2.31) tenemos que Am ≤ B para algún m > 0 y por (2.32) sabemos que |A : Am|< ∞.
Notaremos que Am y G/Am serán policíclicos pues Am es un subgrupo normal de G por (2.29). Y Am

será infinito debido a que A lo es y |A : Am|< ∞.
Por otra parte como G es finitamente presentado, A será finitamente presentado. Ya hemos visto que

A/Am es finito. Al igual que antes, por (2.13), l(Am)> 0 y l(G) = l(G/Am)+ l(Am) lo que implica que
l(G/Am)< l(G) y como G/Am por (2.9) es policíclico, por inducción sobre l el teorema será cierto para
G/Am. Luego si, g /∈ Am entonces 1 6= gAm ∈ G/Am por lo que existe H/Am con gAm /∈ H/Am tal que
H/Am /G/Am y (G/Am)/(H/Am) es finito y por (2.6), H /G y (G/Am)/(H/Am) ' G/H será finito y
g /∈ H, siendo así G residualmente finito. En el caso en el que g ∈ Am como Am ≤ B entonces g ∈ B lo
cual contradice que g /∈ B.

Corolario 2.34. Los grupos policíclicos tienen solución al problema de la palabra.

Demostración. Se sigue de (2.1), (2.33) y (1.13).



Capítulo 3

Ejemplos

3.1 El grupo discreto de Heisenberg

Definición. Dada una matriz triangular superior diremos que es unitriangular si todos los elementos de
la diagonal principal son unos.

El conjunto de estas matrices de tamaño n× n con entradas en Z junto con la operación producto
forman un grupo conocido como grupo unitriangular, lo denotaremos por UT (n,Z). Estos grupos son
policíclicos para todo n ∈ N y el caso en el que n = 3 se conoce como Grupo de Heisenberg discreto
mientras que el grupo de Heisenberg continuo es UT (3,R). Las aplicaciones más destacadas de este
grupo las encontramos en la descripción de sistemas de partículas cuánticos y en el análisis de Fourier
(en algunas formulaciones del teorema de Stone-Von Neumann).

Ejemplo 6. Se ve fácilmente que UT (2,Z) es isomorfo al grupo (Z,+).

UT (2,Z) =
{(

1 a
0 1

)∣∣∣∣a ∈ Z
}
=

〈(
1 a
0 1

)∣∣∣∣a ∈ Z
〉
' (Z,+).

Ahora probaremos que el grupo de Heisenberg es policíclico, buscaremos su cadena derivada, vere-
mos que es residualmente finito, daremos una presentación y construiremos un algoritmo más sencillo
para resolver el problema de la palabra.

3.1.1 El grupo de Heisenberg discreto como grupo policíclico

Tenemos que el grupo discreto de Heisenberg es el formado por el siguiente conjunto de matrices:

UT (3,Z) =


 1 a c

0 1 b
0 0 1

∣∣∣∣∣∣a,b,c ∈ Z

 .

Tomemos la matriz

 1 0 1
0 1 0
0 0 1

 = z. Notaremos que zn =

 1 0 n
0 1 0
0 0 1

 para todo n ∈ Z. En

particular z−1 =

 1 0 −1
0 1 0
0 0 1

. Al igual que en el ejemplo 6, el grupo generado por esta matriz, que

llamaremos Z, es isomorfo a (Z,+) de lo que deducimos que este grupo es cíclico.

17
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Por otra parte 〈z〉= Z es normal en UT (3,Z), en efecto, tomando A =

 1 a c
0 1 b
0 0 1

 tenemos que:

 1 a c
0 1 b
0 0 1

−1 1 0 n
0 1 0
0 0 1

 1 a c
0 1 b
0 0 1

=

 1 −a ab− c
0 1 −b
0 0 1

 1 0 n
0 1 0
0 0 1

 1 a c
0 1 b
0 0 1

=

=

 1 −a ab− c+n
0 1 −b
0 0 1

 1 a c
0 1 b
0 0 1

=

 1 0 n
0 1 0
0 0 1

 .

Lo que prueba que Z no solo es normal en UT (3,Z), sino que además lo centraliza.

Por lo que tenemos que 1/Z /UT (3,Z) con Z cíclico, luego si vemos que UT (3,Z)/Z es policíclico
se seguirá de (2.9) que UT (3,Z) es policíclico. Para ver esto veamos si es isomorfo a algún grupo
conocido.

Pensemos en las matrices x =

 1 1 0
0 1 0
0 0 1

, y =

 1 0 0
0 1 1
0 0 1

.

Vemos que xy =

 1 1 1
0 1 1
0 0 1

 6=
 1 1 0

0 1 1
0 0 1

 = yx pero xy = yxz. De lo que deducimos que

xayb =

 1 a ab
0 1 b
0 0 1

= ybxazab ∀a,b,c∈Z teniendo así que xayb e ybxa pertenecen a la misma coclase

de nuestro grupo cociente. Luego UT (3,Z)/Z es abeliano.

Por otra parte, dado un elemento del cociente,

 1 a c
0 1 b
0 0 1

Z este quedará unequívocamente

determinado por xaybZ luego UT (3,Z)/Z ' 〈xZ,yZ). Luego, la aplicación f : 〈xZ,yZ) −→ Z⊕Z tal
que a cada xaybZ 7→ (a,b) es un isomorfismo de grupos. Esto implica que UT (3,Z)/Z ' Z⊕Z es
policíclico.

3.1.2 Cadena derivada del grupo discreto de Heisenberg

Empecemos viendo cual es el derivado de UT (3,Z) = G. Recordaremos que

G′ = [G,G] = 〈[x1,x2]|x1,x2 ∈ G〉.

Sabemos por (2.18) que G′ es el menor grupo normal con G/G′ abeliano, por tanto G′ ≤ Z y (G′)′ = 1.

Tomemos dos matrices genéricas de G, x1 =

 1 a1 c1
0 1 b1
0 0 1

 y x2 =

 1 a2 c2
0 1 b2
0 0 1

 y calculemos

su conmutador
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[x1,x2] = x−1
1 x−1

2 x1x2 =

 1 a1 c1
0 1 b1
0 0 1

−1 1 a2 c2
0 1 b2
0 0 1

−1 1 a1 c1
0 1 b1
0 0 1

 1 a2 c2
0 1 b2
0 0 1

=

=

 1 −a1 a1b1− c1
0 1 −b1
0 0 1

 1 −a2 a2b2− c2
0 1 −b2
0 0 1

 1 a1 c1
0 1 b1
0 0 1

 1 a2 c2
0 1 b2
0 0 1

=

=

 1 −a1−a2 a1b1 +a1b2 +a2b2− c1− c2
0 1 −b1−b2
0 0 1

 1 a1 +a2 a1b2 + c1 + c2
0 1 b1 +b2
0 0 1

=

=

 1 0 −a2b1 +a1b2
0 1 0
0 0 1

 .

Por lo que G′ =

〈 1 0 1
0 1 0
0 0 1

〉.

Comprobemos la teoría calculando (G′)′. El derivado de G′ será el generado por: 1 0 a1
0 1 0
0 0 1

−1 1 0 a2
0 1 0
0 0 1

−1 1 0 a1
0 1 0
0 0 1

 1 0 a2
0 1 0
0 0 1

=

 1 0 0
0 1 0
0 0 1

 .

Tenemos así que la cadena derivada es 1/G′ /G, que es la obtenida anteriormente.

3.1.3 Presentación del grupo discreto de Heisenberg

Veamos una presentación de este grupo. Para ello vamos a hacer uso del teorema (1.6). En nuestro caso
tendremos G = UT (3,Z) y N = 〈z〉. Veamos la representación del grupo cociente G/N. Hemos visto
antes que N = G′ = 〈[x1,x2]|x1,x2 ∈ G〉. luego G/N = 〈x,y|[x,y] = 1〉.

La demostración del teorema (1.6) nos dice que existe una presentación de G generada por x,y,z
con las siguientes relaciones entre ellos: [x,y] = zk para algún k ∈ Z y las relaciones de normalidad,
x−1zx = z j, y−1zy = zi con j, i ∈ Z. Por otra parte hemos visto antes que 〈z〉 centraliza a G, luego
i = j = 1 y también que xy = yxz. Por lo tanto [x,y] = x−1y−1xy = z teniendo así que k = 1, luego
nuestra presentación de G queda:

G = 〈x,y,z | [x,y] = z, [x,z] = [y,z] = 1〉.

3.1.4 El grupo discreto de Heisenberg como ejemplo de grupo residualmente finito

Ahora probaremos que UT (3,3nZ) = N es normal en G para todo n ∈ N.

Tomemos g =

 1 a c
0 1 b
0 0 1

 con a,b,c ∈ Z y h =

 1 d f
0 1 e
0 0 1

 con d,e, f ∈ 3nZ

g−1hg =

 1 −a ab− c
0 1 −b
0 0 1

 1 d f
0 1 e
0 0 1

 1 a c
0 1 b
0 0 1

=

 1 d bd−ae+ f
0 1 e
0 0 1

 ∈ N

y G/N =UT (3,Z3n) que es finito. Luego dado g ∈G existirá un N /G asociado a n tal que 3n no divida
a las entradas de g y como |G : N| es finito, tenemos que G es residualmente finito.



20 Capítulo 3. Ejemplos

3.1.5 El problema de la palabra para el grupo discreto de Heisenberg

En la practica no suele ser eficiente usar el algoritmo descrito en (1.13) para comprobar si una palabra
es la identidad en un grupo o no, y el caso del grupo discreto de Heisenberg no va a ser una excepción,
existe una forma mucho más eficiente y sencilla de comprobarlo, veámosla.

Una palabra w se dará en términos de los elementos x,y,z anteriores. Sabemos que z centraliza al
grupo, luego podemos pasar todas las z’s a la derecha obteniendo que w = vzl donde v es una palabra en
términos de x,y.

También sabemos que xy = yxz luego cada vez que veamos un producto xy lo cambiamos por un
yxz y reagrupamos la z a la derecha. Realizamos esto hasta que obtengamos todos los y’s en la parte
izquierda, llegamos así a una palabra w = xiy jzk. Esta palabra es la identidad si y solo si i = j = k = 1.

3.2 Grupos de Baumslag-Solitar

Definición. Los grupos dados por la presentación 〈x,y|(xp)y = xq〉 con q, p ∈ Z se llaman grupos de
Baumslag-Solitar. Los denotaremos por BS(p,q).

Fueron introducidos por Gilbert Baumslag y Donald Solitar en 1962. Tienen especial importancia
en la teoría combinatoria de grupos y en la teoría geométrica de grupos en donde suelen aparecer como
contraejemplos. En nuestro caso vamos a ver si son residualmente finitos y si tienen solución al problema
de la palabra.

Estos grupos también se pueden ver como extensiones HNN1 de 〈x〉 con letra estable y, lo cual es
fundamental para poder emplear el lema de Britton2, el cual nos dice cuando una palabra w es o no es
la identidad del grupo. En nuestro caso el lema se reduce a que si en una palabra w ∈ BS(p,q) no hay
una secuencia consecutiva de la forma y−1xpαy ó yxqαy−1 con α ∈ Z, entonces w 6= 1.

3.2.1 EL grupo BS(1,2)

Proposición 3.1. El grupo BS(1,2) = 〈x,y|y−1xy = x2〉 tiene solución al problema de la palabra.

Demostración. Sea una palabra w en términos de x e y, la relación xy = yx2 puede usarse para mover la
letra y a la izquierda. De forma similar usando la relación y−1x = yx2 puede usarse para mover y−1 a la
derecha, de tal forma que reduciendo cuando sea posible, tras un número finito de iteraciones llegamos
a tener la palabra w de la siguiente forma

w = yix jy−k

donde i,k ≥ 0 y j ∈ Z.
En el caso en el que j sea par, j = 2m, y i, j > 0 podemos aplicar la relación xm = yx2my−1 obtenida a

partir de x = yx2y−1 y deducimos que w= yi−1xmy−(k−1) si de nuevo m es par y i−1, j−1> 0 repetimos
este proceso. De tal forma que tras un número finito de iteraciones obtenemos que w = yaxby−c donde
o bien b es impar o bien a = 0 o c = 0. Tenemos así que por el lema de Britton, w = 1 si y solo si b = 0
y a = c.

Proposición 3.2. El grupo BS(1,2) es residualmente finito.

Demostración. Tal y como hemos visto en la demostración anterior, cualquier palabra w∈ BS(1,2) = G
se puede reducir a la forma w = yaxby−c donde o bien b impar o bien a = 0 o c = 0. Luego dada
1 6= w = yaxby−c de esta forma, sabemos que, o bien b > 0, o bien a 6= c. En el caso en el que b 6= 0
elegimos un p primo impar que no divida a b y consideramos el subgrupo de G generado por y,xp

entonces se puede probar que w no está en este subgrupo y que este subgrupo tiene índice finito en

1Ver definición de extensión HNN con una única letra en [6, página 180]
2Lema de Britton en [6, página 181]
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G. Por otra parte si b = 0, tenemos que w = yd con 0 6= d ∈ Z, elegimos un p que no divida a d y
consideramos el subgrupo de G generado por yp,x y al igual que antes, se puede probar que w no está
en este subgrupo y que este subgrupo tiene índice finito en G.

Otra propiedad interesante de este grupo es que es lineal. Veamoslo. Consideramos la aplicación

α : BS(1,2)→ G donde G es el grupo generado por las matrices xα = A =

(
1 1
0 1

)
y yα = B =(

1/2 0
0 1

)
veamos que es un isomorfismo. Es claro que está bien definida porque conserva las rela-

ciones, en efecto,

B−1AB =

(
2 0
0 1

)(
1 1
0 1

)(
1/2 0

0 1

)
=

(
2 2
0 1

)(
1/2 0
0 1

)
=

(
1 2
0 1

)
= A2.

Por el teorema de von Dyck (1.4) tenemos que es un epimorfismo. Y por último usando el lema de
Britton se prueba la inyectividad.

3.2.2 El grupo BS(2,3)

Lo interesante de este grupo es que no es residualmente finito pero si que tiene solución al problema de
la palabra, comencemos con un lema que necesitaremos para probar que no es residualmente finito.

Lema 3.3. Sea K un grupo finito y a,b ∈ K. Si a y b son conjugados y se cumple a2 = b3, entonces
[a,b] = 1.

Demostración. Como a y b son conjugados, tienen el mismo orden m. Supongamos que m es par.
Entonces m = 2n para algún n entero positivo y se cumple que b2n = 1 y que bn 6= 1. Elevamos la
relación a2 = b3 a n y queda 1 = am = a2n = b3n. Ahora, tenemos b2n = b3n = 1 lo que implica bn = 1,
que es una contradicción. Por lo tanto, el orden de a y b es impar. Esto significa, por la identidad de
Bezout, que existen enteros s y t de manera que 1 = 2s+mt. Por tanto 2s = 1−mt. Elevamos la relación
a2 = b3 a s y queda a = a2s+mt = a2s = b3s de lo que se deduce que a y b conmutan.

Proposición 3.4. El grupo BS(2,3) = 〈x,y|y−1x2y = x3〉 no es residualmente finito.

Demostración. El resultado quedará probado si encontramos un 1 6= w ∈ N tal que w ∈ N para todo
N /G = BS(2,3) de índice finito. Para ello consideramos la palabra w = [y−1xy,x] = y−1x−1yx−1y−1xyx.
Al aplicar el lema de Britton, que en nuestro caso nos dice que si en una palabra z ∈ G no hay una
secuencia consecutiva de la forma y−1x2αy ó yx3αy−1 con α ∈ Z, entonces z 6= 1. Obtenemos así que
w 6= 1.

Veamos ahora que w pertenece a todos los grupos N normales y de índice finito en G. Sea N tal
grupo, entonces G/N es finito y que y−1x2yN = x3N implica que (y−1xyN)2 = y−1x2yN = (xN)3 luego
tomando a = y−1xyN y b = xN se sigue de (3.3) que [y−1xyN,xN] = N luego w = [y−1xy,x] ∈ N.

Observación 3.5. El grupo BS(2,3) no es lineal. Pues de serlo sería residualmente finito.

Proposición 3.6. El grupo BS(2,3) tiene solución al problema de la palabra.

Demostración. Sea w una palabra de G en términos de x,y. El lema de Britton, enunciado en la demos-
tración anterior, nos dice que si no hay una secuencia consecutiva de la forma y−1x2αy ó yx3αy−1 con
α ∈ Z, entonces w 6= 1 con lo cual si no las hay, ya sabemos que w 6= 1 y en el caso de que las haya,
aplicamos la relación y−1x2y = x3 o su inversa yx3y−1 = x2 hasta obtener o w = 1 o bien una palabra
en la que no hay secuencias consecutivas de la forma mencionada anteriormente. Esto se alcanzará en
un número finito de iteraciones debido a que cada vez que aplico una relación obtengo una palabra más
corta.
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Enunciamos ahora una serie de teoremas generales para saber si un grupo de Baumslag-Solitar es o
no es residualmente finito.

Lema 3.7. Si p y q no son potencias del mismo primo y son distintos en valor absoluto entre ellos o de
1, entonces, el grupo BS(p,q) no es residualmente finito.

Demostración. Ver [7, Lemma 2.1].

Lema 3.8. Si p y q son distintos en valor absoluto entre ellos o de 1 y uno de ellos divide al otro,
entonces el grupo BS(p,q) no es residualmente finito.

Demostración. Ver [7, Lemma 2.2].

Teorema 3.9. El grupo BS(p,q) es residualmente finito si y solo si p =±1 ó q =±1 ó p =±q.

Demostración. Ver [7, Theorem C].



Capítulo 4

Un algoritmo para el problema de la
palabra para grupos policíclicos

Como hemos visto anteriormente, emplear el algoritmo expuesto en la demostración de (1.13) no suele
ser la forma más eficiente para resolver el problema de la palabra.

En este capítulo veremos un algoritmo sencillo y eficiente para comprobar si una palabra de un
grupo policíclico es o no la identidad.

4.1 Presentación de un grupo policíclico

Sea G un grupo policíclico y 1 = G0 /G1 / · · · /Gn−1 /Gn = G una cadena policíclica, es decir, una
cadena de G cuyos factores son cíclicos no triviales. Para 1 ≤ i ≤ n podemos elegir gi ∈ Gi tal que
Gi = 〈gi,Gi−1〉. A la secuencia (g1, ...,gn) la llamaremos secuencia policíclica generadora de G. Sea
I el conjunto de los i ∈ {1, ...,n} tales que ri := |Gi : Gi−1| es finito. Entonces cada elemento de Gi

se puede poner de forma única como gei
i wi con 0 ≤ ei < ri y wi ∈ Gi−1. Lo que nos induce a deducir

que cada elemento de G podrá ser escrito de forma única como ge1
1 · · ·gen

n con ei ∈ Z para 1 ≤ i ≤ n y
0≤ ei < ri para i ∈ I.

Proposición 4.1. Para cada secuencia generadora de G tenemos una presentación, que llamaremos
presentación potencia conjugada, con las siguientes relaciones:

ggi
j = ge(i, j,i−1)

i−1 · · ·ge(i, j,1)
1 para 1≤ j < i≤ n,

gg−1
i

j = g f (i, j,i−1)
i−1 · · ·g f (i, j,1)

1 para 1≤ j < i≤ n,

gri
i = gl(i,i−1)

i−1 · · ·gl(i,1)
1 para i ∈ I.

Demostración. Sea 1 = G0 /G1 / · · · /Gn−1 /Gn = G la cadena policíclica de G. Realizaremos la de-
mostración por inducción sobre n. Para n = 0 es trivial. Supongámoslo cierto para n−1 y probémoslo
para n.

Sabemos que Gn−1 es policíclico y por hipótesis de inducción tiene una presentación potencia conju-
gada. Definiendo In = {k∈ {1, ...,n−1}|rk := |Gk : Gk−1| finito}. Esta presentación tendrá las siguientes
relaciones:

ggk
j = ge(k, j,k−1)

k−1 · · ·ge(k, j,1)
1 para 1≤ j < k ≤ n−1,

gg−1
k

j = g f (k, j,k−1)
k−1 · · ·g f (k, j,1)

1 para 1≤ j < k ≤ n−1,

grk
k = gl(k,k−1)

k−1 · · ·gl(k,1)
1 para k ∈ In.

Por otra parte, tenemos que Gn−1 /Gn y Gn/Gn−1 es cíclico luego existirá gn ∈ Gn tal que Gn/Gn−1 =
〈gnGn−1|grn

n Gn−1 = Gn−1〉 con rn ∈ Z∪{∞}, si rn = ∞ no habrá relación.

23
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Luego se sigue de la demostración de (1.6) que G está generado por gn y Gn−1 con las siguientes
relaciones:

(1). Las ya existentes en Gn−1.

(2). Si rn 6= ∞, tenemos grn
n = gl(n,n−1)

n−1 · · ·gl(n,1)
1 .

(3). Las relaciones de normalidad:

• ggn
j = g f (n, j,i)

n−1 · · ·g f (n, j,1)
1 para 1≤ j < n.

• gg−1
n

j = gl(n, j,n−1)
n−1 · · ·gl(n, j,1)

1 para 1≤ j < n.

Quedando probada la proposición para n.

Una vez estudiada esta presentación, el procedimiento a seguir para ver si un elemento, dado en
términos de una secuencia policíclica generadora de un grupo es la identidad o no, es bastante sencillo,
veámoslo. Nos dan la palabra w que es un elemento de G y está escrita en potencias de la secuencia
policíclica (g1, ...,gn). El procedimiento a seguir será el siguiente:

Paso 1. Buscamos la potencia gn más a la derecha de nuestra palabra.

Paso 2. Si tiene exponente en ≥ rn procederemos a reducirlo. Para ello calcularemos qn, sn tales que
en = rnqn + sn con sn < rn y escribiremos gen

n = gsn
n (g

rn
n )

qn ahora aplicamos reiteradamente la
relación (2) a (grn

n )
qn obteniendo así que la potencia de gn mas a la derecha de nuestra palabra

tiene exponente sn < rn. Sin perdida de generalidad renombramos en = sm.

Paso 3. Tenemos gen
n con en < rn. Lo moveremos hacia la izquierda reiterando relaciones del tipo

g jgen
n = gen

n g f ′(n,,i)
n−1 · · ·g f ′(n, j,1)

i obtenidas por inducción a partir de las relaciones de tipo (3).

Obtendremos así que nuestro elemento habrá avanzado una posición hacia la izquierda. Realizaremos
este procedimiento hasta que obtengamos que todos los gn están a la izquierda. Una vez conseguido
esto, procederemos con los gn−1 y así sucesivamente hasta llegar a los g1. Al final del proceso nuestra
palabra será de la forma gen

n · · ·g
e1
1 con ei ∈ Z para 1≤ i≤ n y 0≤ ei < ri para i ∈ I. Una palabra de este

tipo es la identidad en G si y solo si todos los exponentes son 0.

4.2 Presentación del grupo UT (n,Z)

En las siguientes lineas usaremos el método descrito en la sección anterior para dar una presentación
del grupo policíclico G =UT (n,Z) con n un entero positivo.

Lo primero es encontrar un cadena policíclica de G. Tomemos los siguientes conjuntos de G:

G1,n =





1 0 . . . 0 a
...

. . . . . . 0
...

. . . . . .
...

...
. . . 0

0 . . . . . . 0 1




, G1,n−1 =





1 0 . . . b a
...

. . . . . . 0
...

. . . . . .
...

...
. . . 0

0 . . . . . . 0 1




,

G2,n =





1 0 . . . b a
...

. . . . . . c
...

. . . . . .
...

...
. . . 0

0 . . . . . . 0 1




, G1,n−2 =





1 0 . . . d b a

0 1
. . . 0 c

...
. . . . . . 0

...
. . . . . .

...
...

. . . 0
0 . . . . . . . . . 0 1




, ...
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Con a,b,c,d, ... ∈ Z.
Es decir Gi, j es el conjunto de matrices unitriangulares con entradas nulas excepto posiblemente

en los elementos ek,l (siendo k la fila del elemento y l la columna) con, o bien l− k < j− i, o bien
l− k = j− i y i < k.

De tal forma que Gi, j ⊂ Gk,l si, o bien l− k < j− i, o bien l− k = j− i y i < k siempre y cuando
1 < i < j ≤ n y 1 < k < l ≤ n.

Se puede ver fácilmente que estos subconjuntos son subgrupos de G y que forman un cadena po-
licíclica 1 = G0 /G1,n /G1,n−1 /G2,n / · · ·/Gn−2,n−1 /Gn−1,n = G de longitud (n−1)!. Ahora tenemos
que elegir gi, j ∈ Gi, j tal que Gi, j = 〈gi, j,Gi−1, j−1〉 si j 6= n ó Gi, j = 〈gi, j,G1,2+n−i〉 si j = n. Es fácil
comprobar que las matrices gi, j definidas como matrices unitriangulares n×n con un 1 en la entrada de
fila i y columna j y en el resto ceros, lo cumplen.

Tenemos así que nuestra secuencia policíclica generadora de G es (g1,n,g1,n−1,g2,n−1,g1,n−2, ...,
gn−2,n−1,gn−1,n). Por otra parte todos los cocientes de nuestra cadena son infinitos luego no hay rela-
ciones del tipo grk

k = gl(k,k−1)
k−1 · · ·gl(k,1)

1 .
Vemos que en nuestro grupo las relaciones de la presentación potencia conjugada son relaciones del

tipo [gi, j,gk,l] = gm,t con 1≤ i < j ≤ n, 1≤ k < l ≤ n y 1≤ m < t ≤ n. Veamos cuales son. Para ello lo
primero es ver como se multiplican los elementos de nuestra secuencia policíclica. Sean dos elementos,
gi, j y gk,l . Tenemos que gi, jgk,l = (In +Ei, j)(In +Ek,l) = In +Ei, j +Ek,l +Ei, jEk,l donde Ei, j es la matriz
n×n con ceros en todas las entradas y un uno en la entrad de fila i y columna j. El producto Ei, jEk,l es
igual a la matriz nula si j 6= k y es Ei,l si j = k. Por otra parte el inverso de un elemento gi, j = In+Ei, j es
In−Ei, j, en efecto, (In +Ei, j)(In−Ei, j) = In +Ei, j−Ei, j−Ei, jEi, j = In. Una vez conocido el resultado
de estas operaciones veamos cuales son las relaciones.

[gi, j,gk,l] = g−1
i, j g−1

k,l gi, j,gk,l = (In−Ei, j)(In−Ek,l)(In +Ei, j)(In +Ek,l) =

= (In−Ek,l−Ei, j +Ei, jEk,l)(In +Ek,l +Ei, j +Ei, jEk,l) =

= In +Ek,l +Ei, j +Ei, jEk,l−Ek,l−Ek,lEi, j−Ek,lEi, jEk,l−Ei, j−Ei, jEk,l +

+Ei, jEk,l +Ei. jEk,lEi, j +Ei, jEk,lEi, jEk,l =

= In−Ek,lEi, j−Ek,lEi, jEk,l +Ei, jEk,l +Ei, jEk,lEi, j +Ei, jEk,lEi, jEk,l

A partir de aquí tenemos varias posibilidades

• j = k. En cuyo caso i < j = k < l luego, i 6= l. Tenemos [gi, j,gk,l] = In−Ek,lEi, j−Ek,lEi,l +Ei,l +
Ei,lEi, j +Ei,lEi,l = In +Ei,l = gi,l .

• j 6= k. Nos queda que [gi, j,gk,l] = In−Ek,lEi, j.

– i = l. [gi, j,gk,l] = In−Ek, j = g−1
k, j . La cual es la misma relación que la obtenida antes debido

a que esta relación implica que gk, j = [gk,l,gi, j].

– i 6= l. [gi, j,gk,l] = In = 1.

Tenemos así que una presentación potencia-conjugada de nuestro grupo es la siguiente:

UT (n,Z)=
〈

gi, j con 1≤ i < j < n
∣∣∣∣ [gi, j,gk,l] = 1 si j 6= k, i 6= l con 1≤ i < j ≤ n, 1≤ k < l ≤ n[

gi, j,g j,l
]
= gi,l si 1≤ i < j < l ≤ n

〉
.
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