sas Universidad
18 Zaragoza

1542

Proyecto Fin de Carrera

Ingenieria en Informatica

Comportamiento de un cluster heterogéneo de
CPUs y GPUs para el trazado de rayos

Autor

Daniel Martinez Cucaldn

Directores

Francisco José Serdén Arbeloa
Juan Antonio Magallén Lacarta

Escuela de Ingenieria y Arquitectura de la Universidad de Zaragoza
2016

RESUMEN

El objetivo de este PFC es realizar la adaptacién de un trazador de rayos al calculo en
paralelo sobre varias computadoras conectadas en red y estudiar su comportamiento y el
rendimiento consequido.

En el texto se describe la motivacién del proyecto, que nace de simular de manera
matematica el fenémeno de la iluminaciéon y como es interpretada de forma humana por
medio de la vision.

A continuacion, en el capitulo 2, se hace un recorrido por el estado de la tecnologia con
respecto a la sintesis de imagenes por computador, con las técnicas mas relevantes sobre
la simulacion de la iluminacion y los trazadores de rayos. En el mismo capitulo, se describen
las tecnologias actuales en cuanto a materia de paralelizacién, tanto en hardware como en
el software necesario para hacerlo funcionar.

En el capitulo 3, se describe el sistema hardware concreto sobre el que se despliega el
cluster de pruebas, asi como las tecnologias con las que se ha desarrollado el proyecto.

En el cuarto capitulo se presenta el sistema ALEPH/FTL, que es el trazador de rayos que se
ha usado para realizar este estudio, haciendo un recorrido por su estructura.

En ese mismo capitulo se encuentra la explicaciéon de como se ha afrontado el disefio de la
adaptacién al calculo en paralelo del software trazador de rayos, y se detalla la
implementaciéon de la solucion adoptada. Con respecto a este punto, se affade como
apéndice el cédigo en C++ de la clase que dota al motor de estas caracteristicas y que es
aportado por el alumno al c6digo del motor ALEPH/FTL.

El siguiente capitulo esta dedicado a la presentacién de lo necesario para realizar las
pruebas: escenas, disefio de pruebas, medidas de rendimiento...

El sexto capitulo es una continuacién del anterior, ya que su contenido consiste en la
presentacion y analisis de las pruebas realizadas.

Por dltimo, se encuentra un capitulo con conclusiones y se indican lineas de trabajo futuro.

Agradecimientos

A mis padres, Félix y Maria Carmen, por hacer todo lo que ha estado en su mano para
darme las oportunidades y facilidades para formarme de la mejor manera posible, tanto
como ingeniero como persona.

A Francisco José Serén, por todas las oportunidades, el apoyo, la ayuda aportada en estos
altimos afios de la carrera y por haber confiado en mi para este PFC y otros proyectos.
También por haberme hecho ver, desde la primera vez que fui su alumno, que el mundo
universitario no es tan frio y que la excelencia no esta refiida con el caracter humano y la

cercania.

A Juan Antonio Magallén, por su colaboracion y dedicacion en la puesta en marcha de todo
el cluster, el cédigo del trazador ALEPH, y su evolucion FTL, los parches imposibles cuando
no habia manera de ver el problema, y por toda su ayuda para la realizacion técnica del
proyecto.

Al ISAAC, al GIGA, y a los compafieros con los que he compartido laboratorio: Carlos,
Tomas, Manuel, David, Eduardo...; a los otros que aun no habiendo estado en el mismo
laboratorio han sido grandes compafieros durante tantos afios de carrera: Andrés, Adrian,
Javier, Jaime, Jorge... y de igual manera a los demas que sin haber compartido tanto tiempo
también me han apoyado en momentos puntuales.

A mis amigos: Cristina, Jorge, Ana Pilar, Maria, y mi hermana Beatriz, por ayudarme a

superar los momentos dificiles, tanto en el marco académico como en el personal.

A Jessica, por el aguante y la paciencia que tiene cuando hablo de ordenadores y demas
cacharros raros; pero sobre todo por su amistad, su apoyo, su carifio y ayuda en el
momento critico... y resumiendo, por todos los momentos que hemos compartido desde
hace tanto tiempo.

GRACIAS a todos, con mayusculas.

Indice General

L INErOAUCCION. ...ttt s bbb 13
1.1 Alcance del dOCUMENTO........cccuiiiiiiiiiiiiicc s 13
1.2 Contexto de desSarrollo...........ooiiiiiiiiiiiiicc 13
1.3 Motivacion del Proyecto........cociiieiiinieieeeeeeetreete ettt 13
1.4 Objetivos y alCanCe.......cccuiuiiiiiiiiiicic e 14
1.5 Trabajo del @UEOT......couiiiiiiec e s 14
1.6 Contenido de la documMEeNtaCion.......ccccviiriiiiiriiiiieerec e 15

2 EStado del Arte... .o e 16
2.1 Sintesis de imagen por COMPULAAOT......c..cucirieuirirueinieinieieiereenreeteree et et eseeaenes 16

2.1.1 Proceso general: Pipeline grafiCa.......cccoeeeiveininicninicinicciniciiccecieeeeeeeeeeee 16
2. 0.2 ILUMINACION. ..ttt ettt bbb a e 17
2.1.2.1 Ecuacion integral de la radiancia........ccoeeeeeveiniicninicinicicceceeeee 18
2.1.2.2 Trazado de Fray0S INVEISO.....ccccererueirerreneeenientetesesseseestesesseeesesseneeseessesseensensens 19
Trazado de rayos SIMPLe......ccciiiiiiiniiic s 20
Trazado de rayos distribuido........cccoevueiiiiniiiinicc e 20
Métodos de Monte Carlo........cociiiiiniiiiiiic 20
2.1.2.3 RAdiOSIAAM.....ciiiiiieicirecteeteee ettt s 21
2.1.2.4 Métodos hibridos.........ccoveveiiininiiiiiiciccc e 21
2.1.2.5 MEtod0os dir@CLOS......coiviiiiiiiiiiieitee et 22
2.1.3 Path Tracing....ccccieiiiiiiiiciiice e 22
2.1.3.1 Primera capa: trazado de rayos Simple........cccccevveviiininiininincniccccccnee, 22
2.1.3.2 Segunda capa: calculo de la iluminacién indirecta.......ccocccveevieininencnnennne 23
2.1.3.3 Complejidad........ccoiiiiiiiiiiiiii e 24
2.2 Computacion Paralela.......ccoceiriiniiiiicicee e 25
2. 2.1 CPUS..cii s 25
2.2.2 GPUS....oi s 26
2.2.2. 1 GPGPU....iiiiiiiiit s 27
2.2.3 CLUSTEIES.....oiiiiiictcec s 28
2.2.4 ParalelizaCion.......c.cieereirieiccteeee et 29
2.2.4.1 Memoria COMPArtida......cccoceeriiiiinieiiinecineeeeeeee et 31
2.2.4.2 Memoria distribuida........cccocoviviiiiiniiiiniicc e 31
2.2.4.3 COMUNICACION. .c.cviireiiieieieteetteite ettt ettt be bbbt s et bt ese b aene 32
2.2.4.4 Tecnologias de paralelizacion.........cocccoeeeirieviniieninieinieciecncceeeeree e 32
OPENMP...iiiii e 32
P 32
HAOOP ..ottt 32

2.3 Path tracer sobre un cluster heterogéneo de CPUs y GPUs..........cccccooeciniiiiiiniinnnnens 33

3 Descripcion del SIStemMa........cccciviiiiiiiiiiiicc e 34

3.1 HAMAWAT...c e 34

3.1.1 COMPULAAOTAS. ..ttt ettt ettt b s b st be st nesre e ens 34
3.2 SOTEWATE. ..ttt ettt 35
B2 L G L e 35
3.2.2 OPENMP L.t s 35

3.3 RO CUMSOS. e e e e e e e e e e e e eaeeaeaaaaaaaaaaaaaaaaaaaaaaaeaaaaasaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeseesennnnaaseaens 36

3.4 Control y MONITOMZACION......cccouiuiiieiieiicct e s 36

4 Disefio y paralelizacion del trazador de rayos..........cccoeeeirieiniciniicnincncrceceeeeeeeeeens 37
4.1 Trazador de ray0s ALEPH. ...ttt s 37
4.1.] DeSCrIPCION....ciiiuiiiiiiiiciiteite ettt 37
4.1.2 Algoritmo SIMPLAICAAO.....ccuiiriiieieeccec e 37

4.2 Paralelizacion..........cciiiiiiiic s 38
4.2.1 Nivel de unidad de ProCeso.........ccueiviiiiniiiniiiiiic e 39
4.2.2 NIVel d@ NOAO.....couiiiiiiiciiccee ettt a e s 39
4.2.3 Nivel de ClUSTEccuiiiiiiiie s 40
4.2.3.1 Reparto de trabajo......cccceiriiiiiniiniiiiiicicicicc e 40
EQUITAtIVO...ceii 41
Proporcional a la capacidad........c.cccocviiiiiiniiiiiiiiic 41

Cola de Trabajos......couiriiieeieecteeee e e 41

4.2.3.2 Puesta en comUn de resultados...........ccccvueeviiiiniiiniieninieicrcecreeeeeeeeenens 42

4.2.4 IMPLemMENTACION.....c.cciiiiiieiiciec et 42

5 Pruebas y @XPerimentos. ...ttt 49
5.1 ESCONGAS. .ot 49
5.1.1 ODjJeto SIMPLe....c.eiiiiiiiiicceetetee ettt s 49
5.1.2 COrNELL DOXu.uiviieiiiiiiieieiicicceteete ettt 50
5.1.3 Atrio del Palacio SPONZa.........cccceiriiniiininiiieineieeccteeete e 51

5.2 ENtOrn0os de @J@CUCION. ..c..ciiiriiiiiiiiiirect ettt 52
5.3 ParamMetrOS....cvciiiiiiiiciiiccete e e 53
5.4 PrU@DaAs....cuiiiiiicic et 54
5.4.1 Medidas de rendimi@nto.........ccociviviiininiiiiiniiic e 54

5.4. 1.1 EfiCIENCIA ettt 54

5.4.1.2 Balanceo de Carga........ccoeeirueinieiiniiieinieinieeiett et 55

6 RESULTAAOS. ... e 56
6.1 CPU..eci e 56
6.2 GPU = CPU. ..t 56
6.3 Cluster ROMOGENEO.......cciuiriiiiiieicece ettt 57
6.3.1 Cola de trabajos.......ccoiiiiiiiiiiiiiic s 59

6.4 Cluster heterogéneo..........ccciiiiiiiiiiiiiiii s 60
6.4.1 Desbalanceado.........ccccoueiiiriiiiiiiniiiie e 61

6.5 ESCONAS....cuiiiiiiiiiiete e 61

7 Conclusiones y trabajo fULUMO.......cccioiiieiriiiircccctc e 63
7.1 Cumplimiento de objetivos........ccociiiiiiiiii 63
7.2 Problemas @ INCIAENCIAS. ..ottt 63
7.3 Valoracion del QULOT ... 64
7.4 TTabaJO FULUO. ettt ettt ettt s ae s 64

8 Diagrama TeMPOTal......cciviiuiiiiiiiiciiec et 66
1 Apéndice: REFEIENCIAS.couiieiiitctet ettt s s 67
2 Apéndice: COAIGO TUBNTE......couiiiirieicirirete ettt st st s 68
2.1 Clase MultiHOStMaNAgGeT.........ccciiiiiiiiiiiicic s 68
2.1.1 render/multihostmanager.h.........ccooii 68
2.1.2 render/multihoshmanager.CC........ccoviiiiiniiiini 69

MultiHoStManager::SPlit.........ccoiiiiiiiiiiiicc e 71

MultiHostManager::queueManager..........ccoeviiiiniiiiiiinicic e 73
MultiHoStManager::WOrkRECIVET...........ccuviiuiiriciiiiiciicceeee e 74
MultiHoStManager:irender........ccociiiiniiiiiiiccc e 76
MultiHOSTMaNAger:jOiN....ccucuiiiiiiciicccc e 79
MULtIHOSTMANAGEI::STALS.eoiiieiiiecc ettt 80
2.2 OtrOS COAIGOS....uiuiiiiiiriinieieitrietetete ettt ettt b ettt be et sa s sb e e be st esbeennens 83
2.2.1 base/Math.Cluu i 83
SPLLI(INT M INT K)ot e 84

Indice de ilustraciones

[lustracion 1: Esquema conceptual de un trazador de rayos.......c.cccecveveereneneecineeeennennenn 20
[lustracion 2: (a) Método de Monte Carlo, path-tracing. (b) Trazado de rayos distribuido. 21
[lustracién 3: (a) Modelo fisico, photon-tracing. (b) Trazado de rayos inverso simple........ 23
[lustracion 4: Imagen sintetizada del objeto simple.........cocooeiiniiininiie, 49
[lustracién 5: Imagen sintetizada de la caja de Cornell.......c.ccoecveinnenincineiiniciceccecennes 50
[lustracién 6: Imagen sintetizada del atrio del Palacio Sponza..........ccccoeveeinenieviiciicinininnene. 52

Indice de tablas

Tabla 1: Caracteristicas de las computadoras del sistema.........ccccceveveininiinieniniinicneceenens 34
Tabla 2: Resultados en funcion del nimero de nudcleos en una misma CPU..........cccccueuenenee. 56
Tabla 3: Resultados en funcion de la maquina con el balanceo CPU-GPU...........cccccceueuenenee. 57
Tabla 4: Resultados en funcion del nimero de maquinas para la estrategia de raparto
EQUITATIVAL e 58
Tabla 5: Resultados en funcion del nimero de maquinas para la estrategia de reparto por
cola de trabajos con 80 fragmentos........ccceecirieiniiiriiiciniciece e 58
Tabla 6: Resultados en funcion del nimero de fragmentos para la estrategia de reparto por
COLA dE trAD@JOS... ettt 59
Tabla 7: Tiempos por nodo del C. heterogéneo...........cccecivueiniiiiiiciniicniiciccceece 60
Tabla 8: Resultados para el cluster heterogéneo en funcion de la estrategia de reparto....60
Tabla 9: Tiempos por nodo del C. heterogéneo desbalanceado.........ccccceceevecerenereenicneenenne. 61
Tabla 10: Resultados para el cluster desbalanceado en funcién de la estrategia de reparto
.. 61

Tabla 11: Resultados en funcién de las escenas para los clusteres homogéneo y
RELEIOGENEO.......iiiiiiic e 62

10

MEMORIA

11

12

1 Introduccion

1.1 Alcance del documento

El presente documento describe el trabajo realizado por el alumno Daniel Martinez Cucalén
como Proyecto de Fin de Carrera, titulado “Comportamiento de un cluster heterogéneo de
CPUs y GPUs para el trazado de rayos”.

Este PFC consiste en la paralelizacion de un sistema de trazado de rayos, su despliegue en
un cluster de varias computadoras y el analisis de su comportamiento.

1.2 Contexto de desarrollo

El Grupo de Informatica Grafica Avanzada (GIGA) inici6 su andadura en la Universidad de
Zaragoza a principios de los 90, desde entonces ha sido coordinado por el Dr. Francisco
José Seron, en estos momentos profesor Catedratico de Universidad. El grupo pertenece al
Instituto de Investigacion de Ingenieria de Aragdn,y esta considerado como grupo
consolidado por el Gobierno de Aragén.

Su enfoque inicial se centro en la realizacién de actividades de 1+D+i en las areas tipicas de
la Informatica Grafica tradicional. En el momento actual el grupo esta formado por
profesores de universidad estables alrededor de los cuales se aglutinan varios doctorandos
y colaboradores del grupo cuyo ndmero fluctda a lo largo del tiempo en funcién de la
financiacion de que se dispone en cada momento.

El grupo tiene experiencia probada en la realizacién de proyectos mediante convocatoria
publica competitiva a nivel regional, nacional e internacional, y ha realizado transferencia
tecnoldgica a numerosas empresas e instituciones.

La simulacién de la interaccion de la luz con los materiales para generar imagenes por
ordenador es una de esas areas tipicas en las que el grupo histéricamente ha estado
trabajando.

1.3 Motivacion del proyecto

Desde hace algun tiempo se viene usando la tecnologia informatica para simular aspectos y
comportamientos fisicos del mundo natural, basandose en modelos matematicos extraidos
del ambito cientifico.

Uno de estos aspectos es la interaccion de los rayos de luz sobre los materiales y la
percepcion humana que tenemos de este fenémeno a traveés de la vision.

En el mundo natural, existen fuentes de luz que la irradian en todas las direcciones sobre
los materiales, los cuales, al poseer distintas propiedades, interaccionan con esa radiacion

13

bien absorbiéndola calentandose, o bien reflejandola o transmitiéndola, pudiendo a su vez
cambiar sus propiedades como direccién, intensidad u otras. El hecho de reflejar esta
radiacion, convierte a su vez a los materiales en fuentes emisoras de luz en todas las
direcciones, interactuando con los materiales del entorno de manera recursiva, y nuestros
ojos, o mas bien sus células receptoras (conos y bastones) al encontrarse en el camino de
esa radiacion, se ven estimulados por ella y nuestro cerebro lo interpreta como una imagen.
Este comportamiento es el que se pretende simular mediante los trazadores de rayos.

Para comprender la magnitud del problema al que nos enfrentamos, ademas de tener en
cuenta la recursion generada en los rebotes, seria preciso reparar también en el hecho de
que la radiaciéon puede incidir desde cualquier direccién, lo que es imposible de tratar de
manera computacional, y fuerza a recurrir a la discretizacién de esas radiaciones y tratarlas
en forma de rayos, de manera que la complejidad y la precision de la simulacién se puede
ajustar de manera infinitesimal, pareciendo claro que a mayor numero de rayos e
interacciones sean calculadas, mas preciso sera el resultado, mas costoso sera su calculo y
por ende, mas capacidad computacional sera necesaria para obtener los resultados en una
cantidad de tiempo menor.

La capacidad de comunicacién de computadoras entre si hace pensar en que problemas
como el citado se pueden abordar en conjunto por un numero de computadoras
coordinadas para resolverlos, ademas, estas computadoras pueden contar con diferentes
caracteristicas y capacidades, lo que extiende el problema a la optimizacion de la
distribucion del trabajo y la medida del rendimiento de estos sistemas heterogéneos.

1.4 Objetivos y alcance

El objetivo principal de este PFC es estudiar las posibles ventajas que aporta la capacidad
del calculo en paralelo distribuido en varias maquinas, sobre el rendimiento y los tiempos
de calculo de los software de sintesis de imagenes mediante el trazado de rayos.

Indirectamente, el c6digo necesario para la paralelizacién en varias maquinas escrito para la
realizacién de este estudio, pasa a formar parte del motor de renderizado que se ha
modificado, y supone una aportacién que si bien pudiera no ser definitiva, si que amplia las
posibilidades del desarrollo y la evolucion de este motor hacia otros aspectos vy
caracteristicas que inicialmente no estaban contempladas.

1.5 Trabajo del autor

El trabajo del autor para estudiar el comportamiento de un cluster heterogéneo de CPUs y
GPUs para el trazado de rayos ha sido el siguiente:

* Repaso de conocimientos en técnicas de programacién paralela e informatica grafica
adquiridas durante el transcurso de la carrera, asi como otros conocimientos sobre

14

programacion orientada a objetos, administracién de sistemas y redes.

Estudio de la implementacién del motor de trazado de rayos ALEPH disponible en el
GIGA, entendiendo su estructura y preparando conocimientos sobre las tecnologias
usadas en el desarrollo de ese motor, en especial el lenguaje de programacion C+
+11.

Eleccion de las herramientas y bibliotecas a usar para la implementacién de la
adaptacién del anterior motor al procesamiento en paralelo, asi como el
entrenamiento, documentacién y pruebas practicas enfocadas en la adquisicién de

conocimientos sobre estas.

Implementaciéon de la adaptacion, con las distintas técnicas de comunicacién entre
las unidades de proceso del cluster, del motor de trazado de rayos al calculo en
paralelo.

Disefio e implementacion de pruebas para evaluar el comportamiento del sistema.

Medicién de resultados y extraccion de conclusiones al respecto.

1.6 Contenido de la documentacion

Este documento consta de:

Memoria: que contiene los siguientes apartados:

o Introduccion: El presente capitulo, donde se detalla el contexto, la motivacion y
los objetivos del proyecto.

o Estado del arte: Capitulo 2, que contiene una descripcién general del estado de
la tecnologia con respecto a la sintesis de imagen por computador y al
procesamiento de datos en paralelo.

o Descripcion, disefio e implementacion del trazador de rayos: Capitulos 3 y 4,
donde se describe la arquitectura y las caracteristicas del sistema mediante el
que se ha llevado a cabo este estudio. En el capitulo 4 se detalla como se ha
implementado la adaptacion del motor de trazado de rayos al calculo en paralelo.

© Pruebas y resultados: Capitulos 5 y 6, con descripcion y resultados de las
pruebas realizadas para la validacion de la solucion adoptada, asi como el analisis
de los resultados obtenidos.

o Conclusiones: Capitulo final con las conclusiones y valoraciones finales.

15

2 Estado del Arte

2.1 Sintesis de imagen por computador

2.1.1 Proceso general: Pipeline grafica

La sintesis de imagenes por computador es un proceso que consta de varias etapas,
partiendo de la definicién de la geometria, hasta llegar a la propia visualizacién de la
imagen.

Como etapa inicial de este proceso, se lleva a cabo el modelado de la escena, definiendo la
geometria de cada objeto.

Una vez definida la geometria de los objetos con respecto a unas coordenadas locales, se
les aplica a estos unas transformaciones tridimensionales (posicionamiento, escala), con lo
cual se obtienen las coordenadas globales del mundo, en esta etapa se posicionan las
fuentes de luz, cuales poseen también unas propiedades asociadas.

Como las caras ocultas de los objetos no formaran parte de la imagen sintetizada, en este
punto del proceso se eliminan de forma independiente para cada objeto.

A continuacion, se procede al calculo de la iluminacion de la escena, que segun los métodos
empleados, se realizara de una manera o de otra, y que al ser especialmente relevante para
los objetivos de este PFC se detallara en otras secciones mas extensas que esta
introduccion.

Con la iluminacion de la escena calculada, se establece un sistema de referencia visual,
donde se define la posicion del observador y las caracteristicas 6pticas de la camara.
Teniendo estas propiedades definidas, se calcula el volumen de visualizacién (cono de
vision), y se descartan todos los poligonos, o las partes de ellos, que no estan contenidos
en este volumen.

Después se hace una proyeccién de la escena al espacio en dos dimensiones de la pantalla
plana y con ello se conoce la relaciéon de las coordenadas en el espacio plano con las
globales de la escena, pertenecientes al espacio tridimensional.

Como proceso integrador de todas las etapas anteriores, se llega a la etapa de
rasterizacion, donde se triangularizan las mallas de los objetos para asegurarse de que
todos los triangulos son planos, se eliminan las superficies ocultas (cuando se encuentran
otros objetos entre el plano de la imagen y las superficies), y se calcula el “color shading”
para cada uno de los pixeles de la pantalla.

El color shading consiste en calcular, conociendo el modelo de iluminacion y las
propiedades del tridngulo al que corresponde un pixel, el color para éste, asi pues, las

16

operaciones de sombreado, coloreado y testeado, son necesarias debido a que segun con
que técnicas de iluminacion no se calculan las intensidades para todos y cada uno de los
pixeles del plano de la imagen, siendo necesaria la aplicacién de tratamientos posteriores al
propio calculo de la iluminacion, como pudiera ser la interpolacion entre vértices, para los
que si que se ha realizado ese calculo de manera real.

Al buscar una imagen calculada de la manera mas precisa posible, para la realizacion de
este PFC se ha enfocado en técnicas de iluminacién completas en las que se calcula esta
para todos y cada uno de los puntos de la imagen, no solo en los vértices de los triangulos,
sin recurrir a estas técnicas de interpolacién, a cambio, evidentemente, de un mayor coste
computacional.

Por dltimo, y también como parte resultante de todo el proceso descrito anteriormente, se
realiza la propia visualizacion de la imagen.

2.1.2 lluminacioén

En el proceso descrito en el punto anterior, teniendo una escena definida, y habiendo
elegido un punto de vista desde el cual observarla, el problema de la sintesis de la imagen
se reduce a conocer como estan iluminados los puntos visibles de esta.

Asi pues, uno de los aspectos que mas relevancia tiene dentro del calculo de imagenes por
computador, sin tener en cuenta temas artisticos, como podria ser el propio modelado de
las formas, son los modelos de iluminacién, pues la simulacion de esta, con todos los
detalles que engloba, es la que va a dar como resultado una imagen, que sera mas o menos
comparable a su equivalente en el mundo fisico dependiendo de lo fidedigno que resulte el
modelo de iluminacion.

Un modelo de iluminacion define analiticamente la interaccion de la luz con los materiales
de la escena. Para cada punto de la escena se tiene el equivalente a dos fuentes de
iluminacién, la directa, proveniente de las fuentes de luz, y la indirecta, que resulta de la
reflejada por otros elementos de la escena.

Los materiales que componen los objetos de la escena poseen distintas propiedades, que
les transfieren distintos comportamientos 6pticos, como la reflexion, compuesta por las
componentes especular, difusa y ambiental, que definen de que manera la luz es reflejada
al llegar al material; o la refraccién, que determina como cambia la direccion de la luz al
transmitirse hacia el interior de un material que posea cierta transparencia. También se
puede entender como una propiedad de este estilo la capacidad que algunos materiales
tienen en la naturaleza, de brillar (emitir radiacion luminica por si mismo) cuando son
excitados por una corriente eléctrica, calor, o radiacion, y en tal caso, estos objetos
pasarian a ser fuentes de luz. Este comportamiento se modela a través de la BDRF
(Bidirectional Reflectance Distribution Function) [Hal88].

17

Conociendo el comportamiento de las superficies (dado por su BDRF) y los modelos
matematicos de las fuentes de luz, para llegar al objetivo de calcular la iluminacién de la
escena, es necesario aplicar algin modelo de transporte de luz, los cuales estan basados
en la ecuacion integral de la radiancia.

2.1.2.1Ecuacion integral de la radiancia

El proceso de iluminacién de la escena puede ser descrito con la Ecuacion Integral de la
Radiancia, que simplificada para tener en cuenta Unicamente la reflexién toma la siguiente
forma:

donde:

« L(P,d) es la radiancia total saliente de un punto P , en una direccién
determinada d .

« L/(P,d) es la radiancia emitida por la superficie desde el punto P de manera

independiente al resto del entorno.

« L/(P,d) es laradiancia proveniente del resto del entorno y que es reflejada desde

el punto P en ladireccién d .

La radiancia reflejada por la superficie depende de la radiancia total que incide sobre el
punto P , saliendo desde todos los puntos de todas las superficies que componen todos
los objetos de la escena; de las propiedades 6pticas del material y la superficie donde esta
situado el punto P ;y de la posicion relativa de cada elemento de la escena respecto al
punto P , ya que puede darse el caso de que unos puntos estén ocultos con respecto a
otros. La radiancia reflejada L,(P,d) se puede calcular mediante la integral:

—

L(P,d)=[p(P,d,d)L,(P,d)(i-d)dS

1

S
=[p(P,d,d)h(P,P")L(P",d,)(7d,)dS
S
donde:
* S representa el conjunto de superficies de la escena.

« L/(P,d) es la radiancia que incide sobre el punto P en una direccién

determinada d .

. p(P,d,d;) es lareflectividad bidireccional de la superficie, la proporcién de luz que

llega desde la direccién d, y es reflejada en una direccién d .

* 1 eslanormal ala superficie en el punto P .

18

Entonces, la ecuacion integral de la radiancia puede expresarse como:
L(P,d)=L,(P,d)+ | p(P,d,d)h(P,P")L(P",d)(f-d,)dS
P'eS
A partir de la ecuacion anterior, para cada punto de la escena es necesario determinar la
integral del segundo miembro, que a su vez depende del valor de la funcién en otro punto
del dominio. Ademas se debe de determinar la ocultacién entre el punto P y cada uno de
los puntos P’ pertenecientes al dominio de integracion.

Se puede utilizar como dominio de integracion, en vez de las superficies de la escena, el
angulo solido @, que comprende a todas las posibles direcciones de incidencia.
Normalmente este angulo comprendera toda la semiesfera de incidencia, o bien, si se
incluyen en la ecuacién los efectos de transmision, la esfera completa. Entonces, la
ecuacién tomara la siguiente forma:

L(P,d)=L(P,d)+ [p(P,d,d)L(P",d,)(7-d)d<,

=S4

|

Entonces, la variable de integracion pasa a ser d; , y es necesario determinar que punto

1

P’ es visible en esa direccion.

Esta ecuacién refleja todos los posibles comportamientos de la luz con la materia: difusa-
difusa, difusa-especular, especular-difusa, y especular-especular.

La integracion completa y exacta de la ecuacion resulta inviable en tiempo necesario de
calculo y necesidades de almacenamiento, y han surgido varios algoritmos con el objetivo
de abordarla basandose en introducir ciertas simplificaciones.

2.1.2.2Trazado de rayos inverso

Esta técnica para el cilculo de la iluminacion global se basa en las leyes de la dptica

geomeétrica.

Los trazadores de rayos trabajan disparando rayos desde el punto de vista hacia la escena a
través del plano de la imagen a sintetizar, que al incidir sobre las superficies de los objetos
que la componen, estos se vuelven a lanzar de manera desde ese punto de incidencia hasta
un nivel arbitrario de profundidad, con esto se consiguen simular los efectos de reflexién y
refraccion.

Los calculos con estos métodos dependen del punto de vista del observador, ya que las
trayectorias de los rayos tiene como origen este mismo punto.

Aunque el calculo de la iluminacién directa se realiza de manera similar en todos, el calculo
de la iluminacién indirecta permite distinguir entre distintos métodos.

19

Image

Camera / 8 Light Source
J EeSeg

View Ray

Scene Object

Ilustraciéon 1: Esquema conceptual de un trazador
de rayos

Trazado de rayos simple

Estos métodos Unicamente tienen en cuenta uno de los comportamientos de la iluminacion
indirecta, el especular-especular y permiten capturar la iluminacion directa especular y
difusa, pero no las interacciones de tipo difuso-difuso o especular-difuso entre objetos, en
los que se recibe luz de todas las direcciones.

Trazado de rayos distribuido

[CPC84] Con respecto a los anteriores, estos métodos afiaden al calculo simple el calculo
de toda la iluminacién, tanto directa como indirecta, mediante la integracién local de la
ecuacion de iluminacién en un punto de la superficie.

Son muy costosos en tiempo de calculo, ya en cada rebote de un rayo se debe evaluar una
integral y por tanto, la complejidad de este calculo crece de manera exponencial.

Métodos de Monte Carlo

Buscando reducir el elevado coste de los métodos anteriores, aparecieron métodos que
tratan de resolver la ecuacién integral de la radiancia de forma global a lo largo del camino
de un rayo, integrando todos los rebotes en el mismo calculo.

A este grupo pertenecen los algoritmos de path-tracing, como el usado por el motor
elegido para realizar este estudio.

20

Light Source Light Source
S R

P N
lmage Plaoc D

P N
lmage Plane

Eve é

(a) (b)
llustracion 2: (a) Método de Monte Carlo, path-tracing. (b) Trazado de rayos
distribuido.

2.1.2.3Radiosidad

Radiosidad [CGIB86] es una técnica de iluminacion global que trata de resolver el problema
de la sintesis de imagenes de la forma mas real, basandose en la teoria fisica de la
transferencia de calor para simular la iluminacién indirecta en escenas con superficies
difusas.

La teoria de la transferencia de calor describe a la radiacion como la transferencia de
energia desde una superficie cuando esta ha sido excitada térmicamente. Esto incluye tanto
a las superficies emisoras de energia, como las fuentes de luz, como a las que reciben
energia de otras superficies y por lo tanto tienen energia para transferir.

Estos métodos, también denominados métodos de elementos de contorno, obtienen la
interaccion difusa-difusa y los resultados obtenidos son independientes del punto de vista
del observador.

2.1.2.4Métodos hibridos

Existen métodos de calculo de iluminacién que buscan integrar lo mejor de los dos ya
descritos anteriormente, resultando en los llamados métodos hibridos o de doble pasada.

Estos métodos calculan la iluminacién difusa haciendo uso de un algoritmo de radiosidad y
adicionalmente se realiza una pasada de trazado de rayos simplificada, con lo que
consiguen calcular las interacciones difusa-difusa y especular-especular, pero no obtienen
los resultados de los otros dos modos de interaccién de la luz con la materia.

21

2.1.2.5Métodos directos

Otros métodos modelan la luz desde el punto de vista de la naturaleza cuantica de la luz y
simular el comportamiento de los fotones que viajan desde las fuentes de luz e
interaccionan con los materiales de los que se componen los objetos.

Los métodos mas representativos de este tipo son los de mapas de fotones: La iluminacién
se distribuye sobre los objetos en funcion de la cantidad de fotones que llegan a cada
superficie y se almacena en los llamados mapas de fotones [JenO1].

2.1.3 Path Tracing

Los algoritmos de path-tracing, como el utilizado como base de este estudio, pueden verse
como un trazador de rayos simple, al que se le han afiadido capacidades de un trazador de
rayos distribuido, pero de manera simplificada, por lo que se puede considerar que estos

trazadores tienen varias capas.

Estos algoritmos integran sobre toda la iluminancia que llega a cada punto de la superficie
de un objeto y a tal resultado se le aplica una funcién de reflectancia (BRDF), que
determina cuanta de esta iluminacion llega a la camara, y que por tanto, forma parte de la
imagen sintetizada.

Este tipo de trazado de rayos aporta algunas ventajas sobre la simulacion mediante
trazadores de rayos tradicionales, consiguiendo que la iluminacién global sea mas fiel a la
realidad, simulando efectos como las sombras suaves o la iluminacién indirecta, entre
otros, de manera natural, al contrario de lo que ocurre con los trazadores de rayos
tradicionales, donde estos efectos tienen que ser afiadidos especificamente.

Si se cuenta con modelos exactos y precisos de las fuentes de luz, 6ptica de la camara, de
las superficies y de las propiedades de los materiales, este tipo de simuladores pueden
sintetizar imagenes practicamente indistinguibles de las fotografias, y de hecho, se usan
para generar imagenes de referencia con las que comparar las generadas por otros
algoritmos de renderizado.

2.1.3.1Primera capa: trazado de rayos simple

La finalidad de un software trazador de rayos es simular la interaccion de la luz con los
materiales de la escena que se trata de sintetizar, dando como resultado una imagen.

Si se descompone el plano donde se va a sintetizar la imagen en puntos (o pixeles), se
puede encontrar una correspondencia de coordenadas entre el mundo en tres dimensiones
de la escena y el plano en dos dimensiones de la imagen interpretada por nuestro cerebro,
con lo que se pueden trazar lineas rectas entre esas correspondencias, estas lineas
constituyen el camino de lo que llamaremos rayos.

22

En la naturaleza, las camaras, o nuestros ojos, se ven afectadas por la radiacion luminica
que proviene del exterior, directamente de las fuentes de luz, o reflejada por los objetos
del entorno, esta radiacion es la que se modela simplificandola en forma de rayos.

Sin embargo, sintetizar imagenes siguiendo cada rayo desde la fuente carece de sentido
debido a que gran parte de los rayos calculados no incidirian en la camara, y por tanto no
formarian parte de la imagen. En un algoritmo tipico de trazado de rayos, estos se
“disparan” a través del plano de la imagen, en sentido contrario a como lo harian en la
naturaleza, por lo que estos métodos se dice que estan basados en el trazado de rayos

inverso.
Lighl ¥ curce Lighl Yource
N R
N N
lmage Plape & lmage Plane

i By /
i @ ! Shadd

Eye é

b

(a) (b)

Ilustracion 3: (a) Modelo fisico, photon-tracing. (b) Trazado de rayos inverso simple.

Para cada rayo que se dispara, se calculan las incidencias de estos con los objetos, y se
determina cuanta luz, proveniente del resto de la escena, incide en el punto.

2.1.3.2Segunda capa: calculo de la iluminacion indirecta

Una vez calculada la iluminacién directa, mediante una funcién probabilistica basada en el
método de Monte Carlo, se calcula aleatoriamente hacia que direccion disparar el rayo
reflejado desde el punto de incidencia con las superficies de los objetos de la escena, y se
determina si estos llegan al vacio, a otra superficie (que a su vez reflejaria un nuevo rayo
reflejado, hasta un nivel arbitrario de profundidad), o a una fuente de luz.

El método de Monte Carlo es un método estadistico numérico, que se usa para aproximar
expresiones matematicas complejas muy costosas de evaluar con exactitud. Consiste en
resolver un problema mediante procesos aleatorios, cuyo comportamiento simula un

23

fenémeno real gobernado por una distribucién de probabilidad o para realizar calculos
costosos, como por ejemplo, en el caso que nos interesa aplicado a este proyecto, evaluar
una integral. El uso de estos métodos simplifica el calculo de las trayectorias de los rayos
de luz, consiguiendo que las muestras seleccionadas de manera aleatoria por este método
tengan mas relevancia en el resultado del calculo final. La funcién probabilistica usada se
determina por las propiedades 6pticas de los materiales y las superficies de los objetos de
la escena.

Este proceso se repite recursivamente hasta un nivel arbitrario de profundidad, y la
iluminancia resultante del pixel por el que se ha disparado el rayo sera la suma de las
iluminancias calculadas en los rebotes, multiplicadas en cada nivel por un factor menor que
la unidad, con lo que se consigue calcular la pérdida de energia en cada rebote.

2.1.3.3Complejidad

Debido a la naturaleza discreta de las computadoras, se hace imposible de abordar el
problema de evaluar completamente una integral de manera exacta, por lo que se debe de
discretizar el espacio.

En el caso de la radiacién luminica, esto se consigue tomando muestras en forma de rayos,
y es esta la primera de las simplificaciones que se van a llevar a cabo en este tipo de
métodos para el calculo de la iluminacién. Evidentemente, cuanto mas cerca se esté de
calcular estas muestras de manera infinitesimal, mas cerca se estara del resultado exacto, y
por tanto de la evaluacion completa de la integral.

Entonces, como una primera base para conocer la magnitud del problema, se tiene el
tamafio o resolucion de la imagen a generar, ya que, como se ha explicado en puntos
anteriores, estos trazadores de rayos disparan los rayos a través de los pixeles de la
imagen. Con la profundidad o nivel se definira cual es el nimero de rebotes que se van a
calcular para cada rayo, este nivel es arbitrario, de la misma manera que el tamafio de la
imagen, pero también se debe de tener en cuenta al estudiar la cantidad de operaciones
necesarias para el calculo de la imagen.

Cada vez que uno de los rayos incide en una superficie, habria que conocer la suma infinita
de toda la iluminacién, teniendo como dominio de integracién todo el hemisferio exterior
(recordemos que el punto esta situado en una superficie) alrededor del punto, y por las
mismas razones descritas anteriormente, esto resulta computacionalmente inabordable. La
solucién adoptada aqui por los trazadores de rayos distribuidos es, de igual manera que a
la hora de simplificar la radiacion, muestrear de manera discreta sobre el hemisferio, lo
cual, aunque simplifica el calculo, no lo hace de manera eficiente, ya que al distribuir las
muestras sobre el dominio integrador de manera reqular no necesariamente todas esas
muestras tendran el mismo peso ni relevancia en el resultado del calculo.

24

En cambio, los algoritmos de path-tracing encaran este problema haciendo uso de una
funcién probabilistica para calcular hacia dénde trazar un Unico rayo rebotado, de manera
que sea mas probable que la iluminancia que llega de esa direccién sea la mas relevante en
el calculo final, haciendo que el nimero necesario de rayos a trazar para obtener el mismo
resultado se vea disminuido considerablemente.

En ambos casos, a mayor nimero de muestras, mayor precisién del calculo, pero si se
comparan, a mismo numero de muestras en ambos métodos, estadisticamente es mas
probable que el de path-tracing sea mas preciso, ya que estas muestras han sido
estadisticamente mejor elegidas.

Debido a esta manera probabilistica de calcular los rayos reflejados, cada vez que se lanza
un mismo rayo el resultado no es exactamente el mismo, por lo que repetir el calculo y
realizar el calculo de la media de resultados, nos dara un resultado mas preciso, con lo que
este nimero de repeticiones también sera una magnitud a tener en cuenta para hacerse a la
idea del tamafio del calculo.

Todavia, después de aplicar estas simplificaciones, la cantidad de operaciones a realizar es
enorme, y resulta logico estudiar formas de tratar ya directamente este calculo, ya que
estos calculos aunque abordables, siguen teniendo un coste en tiempo elevado. Sin
embargo, las computadoras actuales retnen una serie de caracteristicas que permiten
recurrir a ciertas estrategias para obtener el resultado del calculo en una cantidad de
tiempo menor, entre ellas, la capacidad de realizar varios calculos de manera concurrente.

2.2 Computacion paralela
2.2.1 CPUs

La unidad central de procesamiento o CPU (del inglés: Central Processing Unit), hace
referencia al elemento de un computador que interpreta las instrucciones y procesa los
datos de los programas.

Esencialmente, estan constituidas por: registros, unidad de control, unidad aritmético-
légica, y posiblemente una unidad de calculo en coma flotante (conocida como
coprocesador). Aunque las arquitecturas de las CPUs actuales tienden a ser mucho mas
complejas, ya que han sufrido una de las evoluciones mas impresionantes y rapidas en la
historia de la tecnologia.

Los microprocesadores actuales poseen uno o varios niveles de la conocida como memoria
caché, que se usa como almacén intermedio entre las CPUs y la memoria principal del
sistema, y es mucho mas rapida que esta, aunque mas pequefia, de hecho, a mayor nivel:
mayor tamafio, menor velocidad, y mayor tiempo de acceso. Por ello, se suele usar para
que la CPU tenga al alcance directamente ciertos datos que probablemente vaya a usar con

25

mas asiduidad o de forma mas inmediata, priorizando por niveles.

Las subunidades que componen los procesadores realizan calculos a nivel de palabra, es
decir, un conjunto de bits a los que se les aplica la misma operacién. Entonces el nivel mas
bajo de paralelizacién simplemente lo define el ancho de palabra, o nimero de bits que la
componen. Actualmente el tamafio de palabra mas comun se trata del de 64 bits, aunque
histéricamente se han usado palabras de 32, 16, 8 y las primeras unidades de proceso lo
hacian con palabras de 4 bits.

Aprovechando la independencia existente entre las distintas subunidades que componen los
microprocesadores, los hilos de ejecucion se diseflan conforme al concepto de
segmentacion. Esta técnica consiste en que las instrucciones se descomponen en varias
etapas, en cada una de las cuales cada instruccion hace un uso exclusivo de una subunidad
dejando libres las restantes, pudiendo ser utilizadas por otras etapas de otras instrucciones.
Esto supone otro nivel de paralelizacién, pues se puede ver que, aunque es cierto que no
acaban a la vez, hay varias instrucciones ejecutandose de manera concurrente. Este tipo de
paralelismo viene dado por la propia arquitectura del procesador, y los compiladores
recientes tienen la capacidad de aplicar ciertas técnicas para optimizar el c6digo maquina
que generan, aprovechando las posibilidades de la arquitectura para la que estan
generando ese cédigo. A este nivel se puede encontrar todo un mundo, perteneciente al
ambito de la arquitectura y disefio de computadores, que mezcla a la vez hardware vy
software de bajo nivel, con mucho por explorar y de gran interés, pero tan extenso que se
escapa de los limites de este estudio.

Los microprocesadores de las computadoras modernas integran varios nucleos, por lo que
en realidad se trata de multiprocesadores, y por tanto, ya presentan cierta capacidad de
realizar calculos en paralelo, compartiendo la memoria principal del sistema, por lo tanto
presentan un paralelismo de memoria compartida, si bien habria que tener en cuenta la
coherencia de caches entre unidades.

Una solo ndcleo también puede tener la capacidad de ejecutar mdltiples hilos de ejecucién,
esta caracteristica, conocida como multithreading simultaneo, o mediante la denominacion
comercial de Intel, Hyperthreading, no se trata de varios hilos de calculo completamente
independientes, ya que, aunque virtualmente se tengan varios procesadores, en este caso la
totalidad de la unidad de proceso no se encuentra fisicamente replicada de forma completa
sino solo partes especificas de esta.

2.2.2 GPUs

La unidad de proceso grafico o GPU (Graphics Processor Unit) es un coprocesador dedicado
al procesamiento de graficos u operaciones de coma flotante, en principio usado para
aligerar la carga de trabajo del procesador central de un sistema en aplicaciones como

26

videojuegos. Al liberar de esta carga a la CPU, la capacidad de esta puede dedicarse a otro
tipo de calculos simultaneos de utilidad para esas aplicaciones, como calculos de la
mecanica o la inteligencia artificial en el mundo del videojuego.

Las GPUs actuales son muy potentes, y pueden llegar a frecuencias de reloj comparables a
las alcanzadas por las CPUs, aunque no es reemplazable una por otra, debido a la alta
especializaciéon de las GPUs. De hecho, esta especializacion es la razén de su alta potencia,
ya que al estar pensadas para realizar una tarea en concreto, es posible dedicar mas
espacio fisico, en el silicio, para componentes con los que llevar a cabo esa tarea de manera
mas eficiente.

Las aplicaciones graficas conllevan un alto grado de paralelismo inherente, al ser sus
unidades fundamentales de calculo completamente independientes, por lo que las GPUs
suelen consistir en cientos de procesadores shader unificados, que son capaces de actuar
como vertex shaders, pixel shaders, o fragment shaders. Adicionalmente, en las GPUs se
encuentra una cantidad de memoria RAM usada por las propias unidades de calculo.

En el pipeline grafico, los vertex shaders tendrian el papel de calcular las operaciones que
se deben aplicar a los vértices de los triangulos que componen los objetos, y una vez
aplicado esto y hecha la traslaciéon a pixeles, los pixel shaders se encargan de calcular
texturas, iluminacién, etc., también es en esta etapa cuando se aplican efectos como el
antialiasing o efectos opticos propios de la lente de la camara sintética. Una vez realizado,
se almacena temporalmente en la caché, desde la cual otras unidades, llamadas ROP,

preparan los pixeles para su visualizacion.

Debido a las diferentes arquitecturas de GPUs, en un inicio estas se programaban en un
lenguaje ensamblador especifico para cada arquitectura, mas tarde la tecnologia evolucioné
creando APIs especificas para graficos, de las cuales cabe destacar el estandar abierto
OpenGlL, o la biblioteca propietaria DirectX.

2.2.2.1GPGPU

Con el objetivo de aprovechar la potencia de calculo de las GPUs para realizar calculos
fuera del ambito de los graficos, nace el concepto de la computacion de propésito general
en unidades de proceso grafico, o GPGPU (del inglés: General-Purpose Computing on
Graphics Processing Units).

Las caracteristicas especiales de calculo de las GPUs, tales como la especializaciéon en coma
flotante, o la manera masivamente paralela de trabajar, las hacen idéneas, ademas que para
su utilizacién en la generacion de graficos, para los calculos cientificos en diversos campos,
como por ejemplo la simulacion.

Precisamente, debido a estas caracteristicas, los algoritmos se deben de programar

27

pensando en su ejecucion en estos sistemas, y para ello se han creado ciertos lenguajes o
extensiones de lenguajes ya existentes, como por ejemplo y la mas extendida, CUDA, que
es una extension para el lenguaje C, disefiada para codificar programas con calculos de
proposito general para las GPUs de nVidia. AMD (antes ATI), cred su propia version de esta
tecnologia y la denominé Close to Metal.

También en este aspecto habria que nombrar el lenguaje e interfaz, OpenCL, que persigue
la creaciéon de una tecnologia con la que ser capaz de codificar programas paralelos de
manera independiente a la arquitectura de las maquinas donde se ejecuten, pudiendo
mezclar CPUs y GPUs de diversas arquitecturas, independientemente de que se traten de
un fabricante u otro.

2.2.3 Clasteres

Las unidades de calculo, que se han descrito en puntos anteriores, unidas a una memoria
principal, unidades de almacenamiento, y capacidad de entrada/salida consisten una
computadora. A su vez estas computadoras, dotadas con capacidad de comunicacién en
red, pueden agruparse para formar un grupo de computadoras interconectadas, que
programadas y coordinadas de la manera oportuna forman un cluster. EL papel de cada
computadora en una formacion de este tipo recibe el nombre de nodo.

La agrupacion de este modo, permite crear sistemas con caracteristicas que no serian que
una computadora por separado no seria capaz de proveer, habitualmente, estas
caracteristicas son las de: alto rendimiento, alta disponibilidad y alta eficiencia.

Mientras que las caracteristicas relativas a la eficiencia y rendimiento del sistema hacen
referencia a las capacidades que tiene para realizar calculos en el menor tiempo posible, la
disponibilidad denomina a la capacidad de hacer frente a fallos, ya que por ejemplo, el fallo
de uno de estos nodos no comprometeria el funcionamiento del sistema y este seguiria
operativo apoyandose en el funcionamiento del resto de nodos.

Adicionalmente a los nodos, un cluster de computadoras no es nada sin una buena red de
interconexién, un almacenamiento, y un middleware.

Con respecto a la red de interconexion, ésta directamente puede tratarse desde una red
ethernet basica, hasta soluciones mas avanzadas tecnolégicamente, como infiniband o
mirinet. Evidentemente, cuanto mas ancho de banda y menos latencia tenga la red, menos

impacto negativo tendra en el rendimiento del sistema.

El almacenamiento es un tema critico si la finalidad del cluster es el analisis o la generacién
de gran cantidad de datos. Existen sistemas de ficheros especificos para su uso en
clusteres, como GlusterFS, o LUSTRE, hasta soluciones mas avanzadas, pero que ya
suponen un cluster en si Gnicamente para el servicio de almacenamiento, como las basadas

28

en Ceph. Los sistemas de ficheros desplegados en un cluster suelen tratarse de sistemas de
ficheros distribuidos, y algunos de los middleware o frameworks para la computacion
masiva se aprovechan de esta caracteristica analizando la localidad de los datos.

El middleware es una pieza de software que proporciona la capacidad de ver a un cluster
como una maquina completa, en vez de como varias maquinas independientes, aunque la
realidad fisica sea esa. Este software se encarga de balancear la carga entre nodos,
migracion de procesos, gestion de colas de trabajo, y la asignacion de prioridades a
procesos, entre otras acciones.

Se puede hacer una distincién en cuanto a estos sistemas, ya que inicialmente se buscaba
realmente dar la imagen de un sistema operativo Unico, con un kernel distribuido, ejemplos
de esto podrian ser OpenSSl/, u OpenMosix.

Sin embargo, la tendencia actual es dotar a los nodos de capacidad de calculo en paralelo,
aun sin perder su sistema operativo local, soluciones de este tipo son las que proporcionan,
por ejemplo, los proyectos Apache Hadoop o Condor. También es posible que una forma
basica de middleware esté en el propio algoritmo de calculo, y no tener que recurrir a
soluciones a nivel de sistema, como por ejemplo haciendo uso de técnicas de paso de
mensajes.

2.2.4 Paralelizacion

La idea basica detras del concepto de paralelizaciéon de algoritmos es la realizacion de
varios calculos de manera concurrente. No obstante, hay que tener en cuenta varios
aspectos y consideraciones a la hora de paralelizar los calculos, ya que aunque la idea es
sencilla, en la practica se encuentran problemas debido a la propia arquitectura de memoria
de los sistemas capaces de realizar estos calculos en paralelo, las dependencias de los
resultados, la localidad de los datos, o la propia capacidad de paralelizacion del algoritmo,
entre otros, que hacen que la paralelizacién en si misma sea otro campo mas a estudiar e

investigar.

Partimos de la base de que un hilo de ejecuciéon hardware, Unicamente se aprovecha en su
totalidad si esta realizando calculo activamente y no esperando, el tiempo desaprovechado
decimos que es tiempo ocioso. Esta afirmacién de base que resulta tan trivial en el caso de
una ejecuciéon secuencial, no es tan evidente en el ambito de la computacion paralela,
aunque un ejemplo nos permitira visualizar este hecho: si tenemos dos unidades de calculo,
estaremos aprovechando totalmente la capacidad de calculo cuando ambas unidades estén
realizando calculos activamente, ya que si una de ellas sé6lo estuviera realizando calculos la
mitad del tiempo, la carga de trabajo recaeria Unicamente sobre la otra unidad,
desperdiciando “un cuarto” de la capacidad total de calculo, por supuesto este ejemplo es
extrapolable a N unidades de computo.

29

El uso del entrecomillado en el ejemplo anterior no es casual, ya que la teoria nos marca
unos limites de rendimiento. Parece claro que lo ideal seria que la aceleracién conseguida
por la paralelizacion fuese la lineal, es decir, que duplicar el nimero de unidades de
procesamiento reduzca el tiempo de procesado a la mitad y duplicarlo una segunda vez lo
reduciria a la cuarta parte. Sin embargo muy pocos algoritmos logran esa aceleracion ideal,
la mayoria aceleran de manera lineal para un nimero pequefio de unidades de proceso y
pasa a ser constante para un nimero mas elevado de unidades.

Este fendmeno queda plasmado en la teoria por la ley de Amdahl, que establece:

“La mejora obtenida en el rendimiento de un sistema debido a la alteracion de
uno de sus componentes esta limitada por la fraccién de tiempo que se utiliza
dicho componente.” [Amd67]

Y se aplica particularmente al caso de la paralelizacion debido a que existen secciones de
los algoritmos que son paralelizables y otras que no lo son, las cuales necesariamente han
de ser secuenciales, entonces, aunque se consiguiera reducir el tiempo de las secciones
paralelizables de manera infinita (tiempo de ejecuciéon nulo), el limite lo marcaria el tiempo

necesario para calcular las secciones secuenciales.

Formalmente, si o es la fraccion de tiempo que un algoritmo invierte en secciones no
paralelizables, y P el nimero de unidades de proceso, tenemos que la maxima
aceleracion alcanzable viene dada por:

Es interesante recalcar el hecho de que la paralelizaciéon se puede presentar en varios

niveles:

» Paralelizacién a nivel de datos: aplicar el mismo algoritmo a fragmentos del total de
datos, actuando cada unidad de proceso sobre un fragmento diferente.

* Paralelizacién a nivel de tareas: aplicar distintos algoritmos al total de los datos,
donde cada unidad de proceso realiza un calculo diferente.

* Paralelizacién a nivel de instruccién: haciendo uso de la segmentacion de
instrucciones apoyada en la independencia que poseen las distintas subunidades que
componen las unidades de proceso.

» Paralelizacién a nivel de bit: ampliando el tamafio de palabra con el que trabaja una
unidad de proceso.

El paralelismo consequido tanto a nivel de instrucciéon como a nivel de bit vienen

30

determinados por la arquitectura y el disefio de cada unidad de proceso, y por tanto
cambian con la maquina, en cambio, el paralelismo a los otros dos niveles lo define el
propio algoritmo a afrontar. La forma de tratar esos tipos de paralelismo es diferente y hay
que estudiar que caracteristicas posee el problema a solucionar de manera especifica, ya
que resulta imposible establecer soluciones globales que funcionen universalmente para
todos los algoritmos. Aunque se describird en una seccién dedicada, se puede precisar que
el algoritmo usado para llevar a cabo este estudio, posee un paralelismo a nivel de datos.

Existe una distincion clara entre las organizaciones de memoria usadas por los sistemas con
capacidad de procesamiento en paralelo: en un lado el uso de un espacio de
direccionamiento comun, y en el otro, uno privado a cada unidad de proceso. Esta distincion
fuerza también a tener en cuenta la capacidad de comunicacién entre estas, ya sea para
obtener los datos de entrada para los calculos, o bien para el almacenamiento de los
resultados.

2.2.4.1 Memoria compartida

En los sistemas de memoria compartida, cada unidad de proceso tiene acceso a toda la
memoria, ya que cuentan con un espacio de direccionamiento compartido, comun a todas
las unidades.

Fisicamente, esta memoria puede estar centralizada o repartida (distribuida) entre las
unidades de proceso.

Las grandes ventajas que aporta esta arquitectura son la simplicidad de las
implementaciones de los algoritmos que hacen uso de ellas, y que no se hace necesario
especificar en el cédigo la comunicacion para el traspaso de datos entre unidades de
proceso, de hecho, en el caso de arquitecturas con acceso a una Unica memoria fisica, esa
comunicacion es inexistente. En cambio tiene una serie de inconvenientes, como podria ser
la coherencia de caches, en el caso de la memoria compartida-distribuida, y sobre todo en
la limitada escalabilidad de ambos sistemas.

2.2.4.2 Memoria distribuida

Las unidades de proceso que forman parte de los sistemas basados en memoria distribuida
tienen su propia memoria local.

Para que una unidad de proceso pueda operar con datos que otra unidad tiene en su
memoria local, es necesaria una transmisién de esta informacién de una a otra, ya que no
tienen acceso a la misma memoria, y este aspecto es uno de los inconvenientes de esta
arquitectura. En cambio, este sistema ofrece una escalabilidad mucho mayor, que no seria
posible desde el enfoque de la arquitectura de memoria compartida.

31

2.2.4.3Comunicacion

Necesariamente, las unidades de proceso que llevan a cabo un calculo en paralelo se tienen
que comunicar de algdn modo, pues necesitan o bien traspasar datos de una unidad a otra,
si estas no comparten un direccionamiento comun, o en el caso de las arquitecturas de
memoria compartida para indicar a otra unidad de proceso la posicion de memoria del
resultado calculado por una unidad; o bien por el simple hecho de coordinarse: indicar la
finalizacion de un calculo por parte de una unidad cuyo resultado es requerido como
entrada para los calculos de otra, para sefialar y coordinar el inicio de los calculos, o para
otros aspectos.

Segun la naturaleza del algoritmo a paralelizar, y a las estrategias para repartir el trabajo
entre las unidades de proceso, esta comunicaciéon sera mas o menos intensiva, por lo que el
medio (hardware) por el que se van a transmitir estas comunicaciones también tendra un
impacto en la eficiencia de estos algoritmos.

2.2.4.4Tecnologias de paralelizacion

OpenMP

OpenMP es una interfaz para la programacion de aplicaciones multiproceso en plataformas
de memoria compartida y permite afiadir concurrencia a los programas escritos en C, C++y
Fortran con un modelo de ejecucién fork-join, este modelo de ejecucion consiste en bifurcar
un proceso en varios hilos y después agregar el resultado de todos ellos mediante una
funcién que los integra.

MPI

MPI (del inglés: Message Passing Interface), es un estandar que define la sintaxis y la
semantica de las funciones contenidas en una biblioteca de paso de mensajes disefiada para
usarse en programas que explotan las caracteristicas de los sistemas capaces de realizar
calculos en de forma concurrente. El paso de mensajes es una técnica que aporta
sincronizacion entre procesos y que permite la exclusion mutua, de manera similar a la
utilizaciéon de semaforos o monitores. La implementaciéon mas relevante de este estandar es
OpenMPI.

Hadoop

Apache Hadoop es un framework creado en el lenguaje Java para soportar aplicaciones
distribuidas y que permite escalar al nivel de miles de nodos y a petabytes de datos, por lo
que se usa para analizar cantidades enormes de datos, o lo que se denomina Big Data.

La arquitectura de este sistema consiste en dos partes diferenciadas, en un lado se tiene un
sistema de ficheros, HDFS, que hace el trabajo de replicar y localizar los bloques de datos
para hacerlos accesibles de forma concurrente a la otra parte, la encargada del calculo,
MapReduce.

32

2.3 Path tracer sobre un cluster heterogéneo de CPUs y GPUs

Como ultimo punto de este capitulo, y habiendo presentado las distintas tecnologias y
técnicas anteriores, se puede pensar en unirlas para un fin coman.

Asi pues, para este proyecto de fin de carrera, se plantea el estudio del rendimiento al
generar imagenes sintéticas simulando la interaccién de la luz con los materiales mediante
un software de trazado de rayos basado en path tracing, con capacidad de realizar calculos
en paralelo y desplegado sobre un cluster de varias computadoras, disponiendo, cada una
de ellas, tanto de CPUs con varios nucleos, como GPUs.

33

3 Descripcion del sistema

3.1 Hardware

El sistema en el que se ha desplegado el proyecto consiste en un cluster de computadoras
conectadas en red, el software de trazado de rayos y otros software que permiten la
comunicacion coordinacion y trafico de datos entre ellas. Este cluster se compone de
maquinas propias del Grupo de Informatica Grafica Avanzada y de equipos de los
laboratorios docentes del departamento de informatica e ingenieria de sistemas.

Estas computadoras tienen distintas caracteristicas y unidades de proceso, en las cuales se
incluyen a las CPUs y/o las GPUs, que a su vez pueden pertenecer a distintas arquitecturas,
debido a esto, se considera que el sistema de trazado de rayos desplegado en este entorno
es heterogéneo.

3.1.1 Computadoras

En esta seccidon se presentan las computadoras que han formado parte del sistema
desplegado para la realizacion de este estudio junto a sus caracteristicas principales.

CPU GPU
Nombre S.0.
Modelo Nucleos | Hilos | Memoria Modelo Nucleos | Hilos | Memoria
Equipos del
laboratorio | Core i5-3470 | 4 4 | 4GB N/A N/A | NA | NA Ceé‘gos
0.01 .
Annwn | Corei7-4790 | 4 8 8 GB N/A N/A | NA | NA Magela
Beatrix | Core i7-4770 | 4 8 | 8GB GeFog%%GTX 5 960 | 2GB Magem
Amelia | Corei7-2600 | 4 8 6 GB Geposr;g GIX | 15 480 | 1280MB Magma
Tesla C1060 30 240 | 4GB
Tesla C1060 30 240 | 4GB
Grendel Core2 Quad 4 4 4GB CentOS
Q9450 Tesla C1060 30 240 4GB 7.2
Tesla C1060 30 240 | 4GB
Tesla C1060 30 240 | 4GB
Wargo Core2 Quad 4 4 4GB CentOS
Q9450 Tesla C1060 30 240 4GB 7.2
Lugh Pentium 4 1 2 | 3GB N/A N/A | NJA | NA Magma
Bran Pentium 4 1 2 3GB N/A N/A | NA | NA Magela

Tabla 1: Caracteristicas de las computadoras del sistema

Estas computadoras se encuentran interconectadas mediante la red ethernet institucional

34

de la Universidad de Zaragoza.

3.2 Software

Ademas de las maquinas, se utiliza el propio software de trazado de rayos, el cual se
detalla mas adelante, y que se ha modificado para repartir la carga de trabajo paralelizando
los calculos, para este fin se ha utilizado la biblioteca OpenMPI, que es una implementacion
de coédigo abierto de MPI (Message Passing Interface) [MPI]. EL motor trazador de rayos y
la adaptacion al calculo en paralelo usados en este proyecto estan escritos en el lenguaje
de programacién C++11, aunque en la adaptacion del cédigo para realizar la paralelizacion
se han utilizado los bindings de MPI para C, ya que los de C++ se consideran obsoletos por
el MPI Forum, la organizacién que redacta el estandar MPI, al no aportar ventajas sobre los
de Cy a que el compilador de C++ es totalmente compatible con estos.

Los sistemas operativos que gestionan las maquinas del sistema estan basados en Linux,
aunque no se trata en todos los casos de la misma distribucion, ya que se han usado los
sistemas con los que ya contaban, encontrandose entre ellos: Debian, Ubuntu, Mageia y
CentOS. Esto permite que las rutas de acceso tengan la misma estructura, que se puedan
conectar entre ellos mediante las tecnologias NFS (Network File System) para la
comparticion del directorio de trabajo, SSH para el acceso a una shell remota, y que tengan
disponibles las herramientas y bibliotecas de OpenMPI.

3.21C++11

C++ 11 es la revisiéon del lenguaje de programacion C++ aprobada en agosto de 2011
sobre la revision anterior, C++03, y afiade ciertas evoluciones con respecto a este, entre
otras y la que mas ha convenido en la concepcién de este motor de renderizado es la
inclusion del modelo de hilos para la ejecucién concurrente de cédigo en la biblioteca
estandar.

C++ es un conocido lenguaje de programacion que ofrece los paradigmas de programacion
orientada a objetos y programacion estructurada, que surge como evolucién del lenguaje C.

3.2.2 OpenMPI

Esta biblioteca se ha usado para escribir el cédigo de las tareas de sincronizacién y
comunicaciéon entre procesos del sistema, es decir, para el desarrollo de las funciones
esenciales que han permitido la paralelizacién del cédigo en varias maquinas.

Se trata de una implementacién libre y de cddigo abierto del estandar de paso de mensajes
MPI. Este estandar define la sintaxis y la semantica de las funciones que componen la
biblioteca, entre las que se hallan las propias para envio y/o recepcién de mensajes y datos,
identificaciéon y sincronizacién de los procesos. También se definen los tipos de datos y
estructuras disefiadas para su correcto funcionamiento.

35

Las caracteristicas principales de esta tecnologia son la estandarizacién, la portabilidad
(posibilidad de implementaciones en distintas arquitecturas, lenguajes y sistemas), el
rendimiento, la amplia funcionalidad y la existencia de implementaciones libres.

Esta biblioteca es usada por la mayor parte de los supercomputadores pertenecientes a la
lista de los 500 mas rapidos del mundo, la TOP500, en su mayoria concebidos para ayudar
en el calculo de aplicaciones cientificas de alto rendimiento enfocadas a la investigacién y
estudio por universidades y otras instituciones.

3.3 Recursos

El acceso a los datos necesarios para generar la escena, tales como: modelos, texturas,
mallas de puntos, etc... se realiza a través un directorio de trabajo compartido por todas las
maquinas del sistema mediante NFS, haciendo que todos los nodos tengan un espacio de
almacenamiento comun, aunque este Unicamente se usa como fuente de recursos y
almacenamiento final del resultado, nunca como almacén de intercambio de datos de
calculo entre los nodos, esto, aunque probablemente mas sencillo de gestionar, tendria un
impacto negativo en el rendimiento del sistema, debido a ello, estas transmisiones de datos
se llevan a cabo mediante las funciones propias de MPI para esta finalidad.

Con el objetivo de simplificar la gestién de las rutas de acceso a estos recursos se ha
optado por mantener el mismo punto de montaje en todas las maquinas.

3.4 Control y monitorizacion

Las mediciones de tiempos y el seguimiento de la ejecucién de los programas se ha
realizado usando las herramientas tipicas de los entornos Linux, tales como top, htop, time;
o bien mediante la instrumentacién del propio software desarrollado.

Se han escrito funciones dedicadas a extraer tiempos y calcular datos estadisticos para
facilitar la tarea de la realizacién de pruebas y experimentos, y la extracciéon de
conclusiones al respecto.

36

4 Diseio y paralelizacion del trazador de rayos

4.1 Trazador de rayos ALEPH
4.1.1 Descripcion

El software ALEPH [Mag03] es un sistema de simulacién fisica de la iluminacion vy
generacion de imagenes sintéticas realistas desarrollado en el GIGA como herramienta de
investigacion.

El sistema utiliza modelos fisicos en todas las etapas de la simulacién, por lo que los
resultados se pueden utilizar de forma predictiva y fiable, no solo a nivel de imagen, sino a
nivel de resultados numéricos de la iluminacién en un entorno. El algoritmo utilizado esta
basado en el trazado de rayos distribuido, utilizando BRDFs fisicas y con especial incidencia
en la correcciéon no solo visual, sino fisica, de los resultados.

En la actualidad el sistema esta en fase de redisefio e implementacién de ciertos algoritmos,
originando un nuevo sistema denominado ALEPH/FTL (Faster Than Light).

Los motivos para ese redisefio son entre otros:
* La mejora del rendimiento general, aumentando la velocidad de render.
* La utilizacion del algoritmo de path-tracing, en lugar de trazado de rayos distribuido.

* La implementacion del uso de GPUs para realizar la simulacion en paralelo con la
CPU del sistema.

* La conversion de partes del sistema a la nueva funcionalidad estandar aparecida en
C++11 (gestion de multiproceso simétrico, hilos, mutexes, temporizadores...) que
permiten que sea mas portable y la simplificacion del cédigo.

Hasta el momento se ha dedicado el esfuerzo de reimplementacién a la mejora de los
tiempos de interseccion y trazado de rayos, y la implementacion de los modelos de
iluminacion, dejando pendientes temas como el texturado, efectos volumétricos, etc, que
mejorarian el aspecto visual de la imagen.

4.1.2 Algoritmo simplificado
Color TracePath(Ray r, depth) {
if (depth == MaxDepth) {

return Black; // Suficientes rebotes.

r.FindNearestObject();
if (r.hitSomething == false) {

37

return Black; // No hubo intersecciodn.

Material m = r.thingHit->material;

Color emittance = m.emittance;

// Escoger direccién aleatoria y continuar.
Ray newRay;
newRay.origin = r.pointWhereObjWasHit;

newRay.direction = RandomUnitVectorInHemisphereOf(r.normalWhereObjwasHit);

// Calcular la BRDF para este rayo (asumir refleccién difusa)
float cos_theta = DotProduct(newRay.direction, r.normalwWhereObjwasHit);
Color BDRF = 2 * m.reflectance * cos_theta;

Color reflected = TracePath(newRay, depth + 1);

// Aplicar la ecuacioén de renderizado aqui.

return emittance + (BDRF * reflected);

}

4.2 Paralelizacion

Como se ha tratado en apartados anteriores, la idea detras del aprovechamiento de las
capacidades computacionales del cluster reside en la posibilidad de realizar calculos de
forma concurrente.

Para que la capacidad de calculo se aproveche de manera eficiente, el objetivo a conseguir
es repartir el trabajo de tal manera que las unidades de proceso estén realizando
activamente trabajo de calculo durante todo el tiempo que dure el calculo completo,
evitando en lo posible los tiempos ociosos de alguna de ellas.

Analizando el problema de sintesis de imagen y su algoritmo, vemos que presenta un
paralelismo de datos, con lo que la forma de repartir el trabajo sera dividiendo
directamente la imagen a calcular, por simplicidad, esta divisiéon se ha realizado en franjas
horizontales.

El trabajo resulta tan sencillo de dividir debido a la independencia de los resultados de los
calculos, ya que cada muestra (rayo) no necesita ningun otro resultado de otro calculo para
ser procesada, y ya que los rayos se disparan una o varias veces para cada pixel de la
imagen, podemos asignar pixeles a trabajos, y por simplicidad, estos pixeles han sido
seleccionados por franjas horizontales que suponen un area, que consiste un fragmento de
imagen.

38

El sistema hardware sobre el que se ha realizado el estudio, posee la capacidad de realizar
calculos en paralelo a varios niveles: a nivel de unidad de proceso, de nodo, o de cluster;
asi que en los siguientes subcapitulos se explicaran las distintas técnicas empleadas.

4.2.1 Nivel de unidad de proceso

El motor de trazado de rayos que se ha usado como base para este proyecto presentaba ya
una paralelizacién a nivel de hilos, que originalmente se lanzaban a razén de uno por nucleo
de la CPU, repartiendo la imagen de manera equitativa dividiéndola en tantas franjas iguales
como hilos de ejecucién soporta nativamente el procesador. Esto resulta relativamente
sencillo debido al hecho de que las subunidades de una misma unidad de proceso, los
nucleos, suelen ser practicamente idénticas y por tanto tienen un rendimiento similar.

No obstante, en la evolucion de este estudio y al comprobar las ventajas de un reparto de
trabajo mas dinamico, que se detallara en el apartado dedicado a la paralelizacion a nivel de
cluster y llamaremos cola de trabajos, se ha terminado por adaptar este tipo de reparto
también entre los ndcleos de una unidad de proceso, con el pretexto de conseguir un
reparto de trabajo mejor balanceado (mas equilibrado).

4.2.2 Nivel de nodo

A nivel de una maquina completa, se puede disponer de varias unidades capaces de realizar
calculos, por lo que el sistema también debe de repartir el trabajo entre estas unidades.

El objetivo en este reparto de trabajo seria asignar a cada unidad de proceso una cantidad
de trabajo proporcional a la capacidad relativa con respecto a la capacidad total de
unidades que tiene el nodo.

La estimacién de esa capacidad relativa supone un problema en si misma, y se han
desarrollado (y descartado) varios procedimientos enfocados a tal fin. Esta estimacion se
podria realizar conociendo los datos de las propias unidades de proceso, como la
frecuencia, el nimero de nucleos y/o hilos de procesamiento; o de una manera secundaria
haciendo un pequefio benchmark. Todas estas técnicas tienen sus ventajas e
inconvenientes, pero ninguna de las desarrolladas ha dado unos resultados realmente
satisfactorios.

En la implementacion actual del software trazador la velocidad de cada CPU corresponde al
nimero de hilos de proceso totales: suma de todos los hilos de todos los nudcleos. En
cambio para la estimacion de la potencia de la GPU, se toma el propio nimero de nucleos
de la GPU y un factor multiplicativo dependiente de la generacién de la arquitectura de
esta.

Aunque es una técnica sencilla y que obtiene unos resultados proporcionales, esta no llega
a hacer un reparto eficiente del trabajo y provoca desbalanceos en la carga de trabajo que

39

penalizan el tiempo de calculo, como se pone de manifiesto en las pruebas llevadas a cabo
para la realizacion de este estudio.

4.2.3 Nivel de cluster

Interconectando varios nodos, tenemos un cluster, lo que supone otro nivel de paralelismo,
donde también se deben de definir las estrategias para la gestiéon de esos calculos
concurrentes.

Tomando la paralelizacién de los niveles mas bajos como referencia, teniendo en cuenta las
necesidades de la paralelizacion a nivel de nodos a través de la red, y que al no tener una
memoria compartida se hace necesaria una comunicacién adicional, se ha construido una
capa de control dentro de la biblioteca, por encima de las capas ya existentes, donde entre
otros métodos, se definen los esenciales para repartir el trabajo y la puesta en comun de
resultados.

En esta fase del desarrollo es donde se han usado las funciones de la biblioteca MPI, junto
con las ya usadas en el céddigo de base relativas a la ejecucién concurrente mediante hilos
de ejecucion de la biblioteca estandar de C++11.

4.2.3.1Reparto de trabajo

Debido a la naturaleza del problema, y de los métodos empleados, nos encontramos que
para paralelizar el trabajo simplemente se ha de dividir la imagen, pudiendo procesar con
cualquier unidad cualquier segmento de esa imagen como si se tratase de una imagen
completa, sin tener dependencias de resultados de unas a otras, ademas, debido a que el
sistema de ficheros del que se extraen los datos relativos a los componentes de la escena
es el mismo (montado en todas las maquinas por medio de NFS), Unicamente se hace
necesaria la comunicacién entre las unidades para la puesta en comun del resultado y para
comunicar a cada unidad de proceso los limites en los que debe de trabajar, aunque esto
ualtimo no es necesario en todos los casos.

Los datos necesarios para generar la escena, tales como modelos de objetos, mapas de
entorno de iluminacién y otros, son accesibles por todos los nodos, y cada uno de ellos
genera la escena de forma local en su propia memoria, de manera que esta queda replicada
en cada uno de los nodos que forman el cluster, aunque el calculo de la imagen no se
realice enteramente en cada uno de ellos, sino que cada nodo calcula el area de la imagen
que le ha sido asignada mediante las distintas estrategias implementadas.

En la adaptaciéon se ha considerado que el proceso que hace de maestro, al ejecutarse
también en un nodo con capacidad de calculo, ademas de ejercer los papeles de director de
reparto de trabajo y de receptor de resultados provenientes de los demas nodos, también
aporta resultados de calculo como cualquier otro proceso integrante del sistema.

40

Por simplicidad, la divisién de la imagen se realiza en franjas horizontales y se han
considerado tres estrategias para el reparto de trabajo entre las unidades de proceso:
equitativa, proporcional a la capacidad y mediante una cola de trabajos.

Equitativo

La estrategia mas sencilla de todas es la del reparto equitativo, la estrategia es simple y no
es necesaria ninguna comunicacion para el reparto de trabajo, ya que cada unidad de
proceso dispone de los datos necesarios para poder calcular cual es su segmento a
procesar con las siguientes formulas:

alturatotal delaimagen
numero de procesos

inicio=identificador del proceso-

alturatotal delaimagen
numero de procesos

final =inicio+ 1

Proporcional a la capacidad

Otra estrategia que se pensoé Util es la del reparto proporcional a la capacidad de cada
maquina, pero para ello se necesita algo de comunicacion, ya que los procesos que se
trabajan en cada maquina deben enviar la capacidad de esta a uno de los procesos que
actda como encargado de calcular la capacidad relativa de cada maquina respecto a la total
del sistema, con estos datos, el proceso maestro calcula el tamafio de las franjas a procesar
y se envia el inicio y el final de cada una a los demas procesos, que se han quedado a la
espera de recibir tales datos para poder comenzar a realizar el trabajo de cailculo, no
obstante, la eficiencia de este método depende de la exactitud a la hora de medir o estimar
la velocidad de las unidades de proceso.

Las funciones con las que se estima la capacidad total de cada nodo tienen como base las
mismas que se usan para el reparto entre unidades de proceso a nivel de nodo, de hecho, la
capacidad total de una maquina que se envia al proceso maestro es la suma de las
velocidades de todas sus unidades de proceso. Por tanto, los problemas experimentados en
cuanto a ese reparto son también patentes a este nivel de reparto.

Cola de trabajos

La estrategia mas elaborada que se ha implementado es una cola de trabajo. Usando esta
estrategia, la imagen se divide en un numero arbitrario de franjas y se arranca un hilo
concurrente en uno de los procesos, que sera el encargado de repartir el trabajo y hara las
veces de maestro, este hilo escucha peticiones y responde a ellas con el inicio y final de la
siguiente franja a calcular. Los hilos principales de todos los procesos se encargan de
realizar esas peticiones, y conociendo los limites de la franja a calcular comienza con el
trabajo de calculo.

41

4.2.3.2Puesta en comun de resultados

La otra parte necesaria de la comunicaciéon esta en la puesta en comin del resultado a
través de mensajes entre procesos, pues se ha considerado que uno de los procesos es el
que debe de tener la imagen calculada por completo en memoria, para después escribirla en
disco o realizar las acciones que fueran pertinentes. Se puede pensar también en realizar
esta puesta en comun de resultados directamente escribiendo cada unidad de proceso sus
resultados en el directorio de trabajo, ya que éste esta compartido por todas las maquinas,
pero esto implicaria un tratamiento posterior volviendo a leer cada uno de estos resultados
para su utilizacion u obtencién de la imagen completa. Por el poco interés que tiene esta
opcién debido a la pérdida de rendimiento al pasar los datos por el almacenamiento fisico,
se ha optado Unicamente por la anterior.

En la solucién adoptada, el proceso que tiene el papel de maestro arranca un hilo
concurrente que queda a la escucha y recibe los resultados de los calculos de los demas
procesos, esto permite que el proceso maestro pueda sequir calculando su parte de trabajo
en el hilo principal.

Cuando una unidad de proceso termina de realizar el trabajo de calculo, esta envia al
proceso encargado la linea inicial y la linea final de este, y si no es el mismo proceso
maestro, también el buffer de resultados, esto permite al maestro conocer cual es el
tamafio de la franja y su posicién, pudiendo asi introducir tales resultados en la matriz de
resultados para su volcado en la memoria. En el caso especial del proceso maestro, no se
requiere el envio del buffer de resultados (ni su recepcién), ya que estos ya se encuentran

en la matriz de resultados, ahorrando asi comunicaciones innecesarias.

El hilo de recepcion de resultados, en el proceso maestro, cada vez que recibe un resultado
comprueba cual es el proceso que se lo ha enviado, y si el remitente no es él mismo, recibe
el buffer de resultados y lo integra en la matriz de resultados.

Después de esta puesta en comin de los resultados, segun la estrategia de reparto, los
procesos o bien terminan su ejecucion, si sélo han de calcular un Unico segmento de la
imagen como en el reparto proporcional a la velocidad o en el equitativo, o bien vuelven a
solicitar, calcular y enviar mas trabajos, hasta que reciben un trabajo vacio (tamafio
negativo o nulo), tras lo cual termina su ejecucion.

4.2.4 Implementacion

El motor del trazador de rayos ALEPH se encuentra escrito en el lenguaje de programacion
C++, y presentaba el cédigo necesario para realizar calculos tanto en CPU, mediante uso
de hilos de la biblioteca estandar; como en GPU, implementados en CUDA. Pero no
presentaba capacidad de calculos de forma distribuida a través de red, debido a ello, con el
fin de usar dicha funcionalidad para este estudio, esta se ha tenido que desarrollar.

42

Este cédigo esta dividido en tres bloques:

* Base: clases que definen el nivel mas bajo del motor, con inicializaciones, funciones
basicas e interfaces de comunicacién con el sistema.

» Core: clases que consisten el motor de manejo de objetos, formatos de salida de

imagen.
* Render: clases de gestion del calculo, generacién de escenas, manejo de la camara.

El trabajo de implementacion de la funcionalidad de calculo en paralelo distribuido por red
se ha llevado a cabo en el bloque render, dentro de este, en el cédigo original del motor, se
hallaba una clase encargada de lanzar los calculos y gestionar tiempos, resultados etc.

[lamada Manager.

Aprovechando el mecanismo de herencia del lenguaje C++, se ha creado una clase
MultiHostManager, que hereda de la propia clase Manager. El uso de esta técnica permite
reutilizar el coédigo ya existente, y solo desarrollar los métodos y propiedades que son
necesarias especificamente para el calculo distribuido. Esta clase es la que contiene los
métodos descritos en el punto anterior.

A continuacion se muestra una explicacién de la codificaciéon de los métodos mas relevantes
para la paralelizacion del motor, y su esquema en pseudocédigo. La implementacién real en
C++ se puede consultar en el apéndice de esta memoria correspondiente al cédigo fuente.

El método MultiHostManager: :workReceiver(FrameBuffer& f) define el hilo de recepcién
de resultados y su estructura consiste en un bucle que queda a la espera de mensajes MPI
etiquetados como resultados, provinientes de cualquiera de los nodos integrantes del
comunicador de MPI. Al recibir uno de estos mensajes, este lleva las acciones oportunas
para integrar el resultado en la matriz final.

desde 0 hasta numero_de_fragmentos

{
inicio_final = recibir_de_cualquier_proceso(ETIQUETA_FRAGMENTO_A_JUNTAR, remitente);

si es_proceso_esclavo(remitente);

{
buffer = recibir (ETIQUETA_MATRIZ_RESULTADOS, remitente);

inicio = inicio_final[0Q];

final = inicio_final[1];

copiar(buffer,matriz_de_resultados,inicio, final);
}
MultiHostManager::join(FrameBuffer& f) es la parte que se encuentra enfrente del
método del hilo de recepcion de resultados, es decir, es el método mediante el que cada
nodo envia sus resultados. Su cédigo es simplemente un envio de mensaje MPI con los

43

limites del trabajo con el proceso maestro como destinatario, y un envio con el buffer de
resultados, en caso de que el propio proceso no sea el nodo maestro.

enviar(inicio_final, maestro, ETIQUETA_FRAGMENTO_A_JUNTAR);

si soy_proceso_esclavo

{

buffer = generar_buffer_para_enviar(imagen);

enviar(buffer,maestro, ETIQUETA_MATRIZ_ RESULTADOS);
}
El método MultiHostManager::queueManager(int h) contiene el cédigo del hilo que hace
de director en la estrategia de reparto por cola de trabajo. Es un bucle que recibe mensajes
MPI solicitando un nuevo trabajo de calculo, al que responde con una tupla que contiene el
inicio y el final de la franja que el nodo esclavo debe de calcular.

Una vez se ha llegado a la altura completa de la imagen (y por tanto, se han repartido
todos los trabajos), se envia un trabajo erréneo, haciendo uso de la técnica de la pildora
envenenada, y los procesos interpretan como que ya no existen mas trabajos.

particiones = partir_bien(altura, fragmentos);

desde 0 hasta fragmentos

{
inicio_final = { particiones[i], particiones[i+1]-1 };
recibir_de_cualquier_proceso(ETIQUETA_PETICION, demandante);

enviar(inicio_final,demandante, ETIQUETA_INICIO);
}

veneno = { -1,-1 };
desde 1 hasta numero_de_procesos

{
recibir_de_cualquier_proceso(ETIQUETA_PETICION, demandante);

enviar(veneno, demandante, ETIQUETA_INICIO);
}

Con el objetivo de realizar una particion de la mejor manera posible, y debido a los
problemas acarreados por realizar la divisién de manera entera, se ha disefiado la funcién
que en este pseudocodigo se ha llamado partir_bien y que esta definida en otra clase
(base/math.h), pero por el interés que tiene debido al reflejo de la solucién adoptada, se
considera comentarla en este capitulo. Concretamente hace una gestion de los restos de un
cociente, logrando que aunque las divisiones no logren ser exactamente iguales, sean lo
mas semejante posible.

1k = n/k;

1x = n mod k;

inicializar(s, 1lk);

44

sumar_desde_hasta(s,0,1x,1);

devuelve suma_parcial(s);

El método MultiHostManager::split(int h,bool& more) es la principal funcién que se
encarga del reparto de trabajo. A esta funcién se le llama tantas veces sea necesaria (hasta
que la variable mas tome el valor de falso, que indica que ya no se le debe de volver a
invocar, ya que todo el trabajo ya esta repartido) desde el método render.

mas = false;
conmutar (estrategia_de_reparto)

{
caso EQUITATIVO:

{
particiones = partir_bien(altura_total, numero_de_procesos);
inicio = particiones[identificador_proceso];
final = particiones[identificador_proceso+1]-1;
mas = false;
devuelve true;
}
parar;
caso PROPORCIONAL:
{

si soy_proceso_maestro
{
para r desde 0@ hasta numero_de_procesos
{
1r[r] = velocidades_relativas(r)*altura_total;

}

1w suma_componentes(1lr);

Im = altura_total - 1lw;
suma_a_todos_componentes(1lr,1);

li=suma_parcial(lr);

para r desde O hasta numero_de_procesos

{
inicio_final = { 1li[r], li[r+1]-1 };

si es_proceso_esclavo(r)

{
enviar(inicio_final, r, ETIQUETA_INICIO);
}
si_no
{

45

inicio=inicio_final[0];

final=inicio_final[1];

}
}
}
si no //soy proceso esclavo
{
inicio_final = recibir (ETIQUETA_INICIO, maestro);
}

mas = false;
devuelve true;
}
parar;
caso COLA_DE_TRABAJOS:
{
enviar(maestro, ETIQUETA_PETICION);
inicio_final = recibir (ETIQUETA_INICIO, maestro);
si inicio_final[0]<0
{
mas = false;
devuelve false;
}
inicio = inicio_final[0Q];
final = inicio_final[1];
mas = true;
devuelve true;
}
parar;

}

devuelve false;

La funcion MultiHostManager::render(const Camera& c,FrameBuffer& f) es la que lanza
los hilos de ejecucién hacia las unidades de calculo del propio nodo, marcando los limites
que obtiene de la llamada a la funcién split.

También se encarga de arrancar y parar los hilos de manejo de cola de trabajos y recepcion
de los mismos en el nodo maestro.
arrancar (temporizador_maestro);

set_speeds();

si soy_proceso_maestro

{

46

arranca_hilo_concurrente(workReceiver);
si estrategia_de_reparto=COLA_DE_TRABAJOS
{

arranca_hilo_concurrente(queueManager);

3

arrancar (temporizador);
mientras que split(altura_total,mas)=true

{
h

final-inicio+1;

w = ancho(imagen);
is = inicio;
ie = final-1;

para cada unidad en vector_unidades

is = ie + 1;
ie = is + int(res[i]*(h-1));

si (ie > (inicio+h-1))

{

ie = inicio+h-1;
}
arrancar_hilo_en_unidad(unidad, is,ie, 0,w-1);

}

esperar_hilos_en_unidades();
join(f);
si !mas parar;
}
congelar (temporizador);
si soy_proceso_maestro
{
si estrategia_de_reparto=COLA_DE_TRABAJOS
{
esperar_hilo(queueManager);
}
esperar_hilo(workReceiver);
}
congelar (temporizador_maestro);

stats(temporizador, temporizador_maestro);

En la funcién MultiHostManager::set_speeds() se realiza el intercambio de datos de
velocidad entre los nodos, haciendo que el maestro conozca las velocidades del resto.

47

si soy_proceso_maestro
{
velocidades[identificador_de_proceso] = mi_velocidad;
desde 1 hasta numero_de_procesos
{
velocidad = recibir_de_cualquier_proceso(ETIQUETA_VELOCIDAD, remitente);
velocidades[remitente] = velocidad;
}
velocidad_total = suma_componentes(velocidades);
para cada vel en velocidades_relativas
{
vel = velocidades[r]/velocidad_total;
}
}

si no //soy proceso esclavo

{
enviar(mi_velocidad, maestro, ETIQUETA_VELOCIDAD);

48

5 Pruebas y experimentos

Con el objetivo de medir y analizar el rendimiento asi como validar las caracteristicas y el
funcionamiento del sistema se han seleccionado una serie de escenas y entornos de
ejecucion, de tal forma que podamos extraer conclusiones de la comparaciéon de los
resultados medidos en las distintas combinaciones de estos.

5.1 Escenas

Existen escenas tipicas que, por sus caracteristicas, por el conocimiento que se tiene sobre
ellas, o simplemente por razones historicas, se usan tradicionalmente para realizar pruebas
sobre sistemas de generacion de imagenes por computador, ya sea como en este caso, de
manera similar a la que la generaria la luz natural, o bien mediante otros procedimientos. Se
ha considerado que alguna de estas escenas eran las indicadas para poner a prueba el
sistema.

5.1.1 Objeto simple

Esta escena simplemente se trata de un objeto en medio de un mapa de entorno de
iluminacion, la razéon de su inclusién en las pruebas no es otra que estudiar la manera en
que afecta, o no, la complejidad de la escena en la eficiencia del calculo de la simulacion de
la interaccion de la luz con los materiales.

Ilustracion 4: Imagen sintetizada del objeto simple

Ademas, también existe una pequefia razén, mas personal que técnica, y es que este tipo de

49

escenas simples se usaron en las primeras pruebas de las etapas preliminares del cédigo
empleado para la adaptaciéon del software al calculo en paralelo, con lo que parecia un
poco injusto dejar fuera de este trabajo estas escenas que tan Utiles (y motivadoras) fueron
al comienzo, para comprobar que el trabajo iba por el buen camino.

Cabe destacar la complejidad geométrica del modelo del objeto que se sitia en el centro de
la escena, en este caso un coche, con mucho detalle y por tanto un nimero de triangulos
elevado, por lo que el calculo de las intersecciones tendra un peso importante en el calculo
total.

Por otro lado, la simplicidad de la escena, ya que Gnicamente existe un objeto, provoca que
el nimero de rebotes sea reducido, ya que la mayor parte de los rayos saldran hacia afuera
de la escena y no deberan de continuar siendo calculados. Por este motivo, la iluminacién
indirecta va a tener muy poca influencia en esta escena, al contrario que la iluminacién
directa, que va a suponer casi la totalidad de la iluminacién de la misma.

5.1.2 Cornell box

La caja de Cornell es un test que determina la precisién de los software de sintesis de
imagenes que fue creado en el Program of Computer Graphics de la Universidad Cornell en
1984, para un paper titulado: Modeling the Interaction of Light Between Diffuse Surfaces.

Se credé un modelo fisico, se fotografié con una camara CCD y se midieron con exactitud las
variables de la escena, tales como: posiciones de los objetos, caracteristicas del foco y de

llustracion 5: Imagen sintetizada de la caja de Cornell

50

los materiales etc. Con estos datos se recre6 el modelo en el software de sintesis y los
resultados de la simulacién digital se comparaban con la fotografia.

El modelo es muy simple y consiste en una caja, donde la pared izquierda es de color rojo,
la derecha verde y la de atras blanca. Suelo y techo blancos, donde en el centro este dltimo
se encuentra el foco que ilumina la escena. En el interior de esta caja se disponen objetos
como cajas, esferas, u otras que se consideren Utiles para comprobar las caracteristicas del
software de sintesis.

La geometria de esta escena es basica y se puede modelar con un ndmero muy bajo de
triangulos. En cambio, al haber objetos de diferentes colores, son necesarias un nimero
elevado de muestras para que el color-bleeding (cambio de color de la luz al rebotar en un
objeto de color), se haga patente en la escena. EL nimero alto de muestras también facilita
que los rayos rebotados en la caja especular (caja grande), incidan sobre el techo de la caja,
ya que si este numero es bajo solo una parte muy pequefia de los rayos lo harian y
visualmente se apreciarian puntos aislados en vez de una “mancha” de luz proyectada.

En cambio, no serian necesarios gran nimero de rebotes ya que la geometria es muy
simple, pero aun asi el peso de la iluminacién indirecta es comparable al que tiene la
iluminacion directa.

5.1.3 Atrio del Palacio Sponza

El Palacio Sponza esta situado en la ciudad croata de Dubrovnik y alberga en su interior un
atrio que debido a sus pasillos perimetrales, columnas y apertura central; se trata de un
escenario idéneo para experimentar con simulaciones de modelos de iluminacién, sombras y

rebotes.

El modelo digital de este patio permite definir determinadas posiciones de camara donde
poder observar de forma visual la validez del modelo, analizando la precision de las
sombras, o el nimero de reflejos necesarios para que la luz lleque a los recovecos de la
escena. El disponer de varios puntos de vista también permite observar las diferencias de la
complejidad de los calculos y su eficiencia de manera analitica.

La geometria de esta escena es muy compleja y por tanto esta descrita por un nimero muy
alto de triangulos. Ademas, la luz incidente en la propia escena proviene de la apertura
central del atrio, por lo que el peso de la iluminacion directa es bastante mas pequefio que
el de la indirecta, que es la que ilumina los pasillos perimetrales.

Debido a ello, el nimero de rebotes necesarios para simular de manera correcta la
iluminacién en esta escena es elevado, y al ser la geometria compleja también el nimero de
muestras tendra que ser elevado para obtener un resultado preciso.

51

Ilustracion 6: Imagen sintetizada del atrio del Palacio Sponza

5.2 Entornos de ejecucion

La forma en la que esta escrito el cédigo del software trazador de rayos permite
seleccionar las unidades de proceso que van a llevar a cabo el trabajo de calculo de manera
arbitraria, por lo que aunque una CPU tenga varios cores y/o hilos de proceso, se puede
forzar a que solo se utilicen las necesarias, de la misma manera, si en una unidad de
proceso se encuentran mas de una CPU y/o GPU, también existe la posibilidad de indicar si
usar o dejar de usar estas. Adicionalmente, y ya en la capa de computacion distribuida,
evidentemente es posible especificar que maquinas o nodos van a formar parte de este
sistema. Esto nos da tres niveles de seleccion de las unidades que finalmente llevaran a
cabo el calculo, y por tanto permiten definir los entornos de ejecucién que se usan para
realizar las pruebas.

Otro aspecto a tener en cuenta es que al utilizar las bibliotecas de MPI en el cédigo, para
que los programas hagan uso de las funciones de comunicacién de esa biblioteca, se deben
lanzar con las herramientas de OpenMPI destinadas a tal efecto, y son estas las que
permiten especificar qué maquinas forman parte del cluster de calculo.

Para verificar el comportamiento del sistema, y disponiendo de las maquinas ya descritas en
el apartado correspondiente al hardware, se han definido los siguientes entornos:

* 1 equipo del laboratorio, limitado a 1 solo ndcleo.
* 1 equipo del laboratorio, CPU completa.
* 4,8, 016 equipos del laboratorio.

* Annwn + Beatrix + Amelia + Grendel + Wargo, o cada una de ellas por separado.

52

* Annwn + Beatrix + Amelia + Grendel + Wargo + Lugh + Bran.

5.3 Parametros

La sintesis de imagenes puede depender de gran cantidad de variables, las cuales se pueden
ajustar para escalar la complejidad (y exactitud) de la imagen a generar. Con esto se
consigue variar el nidmero de calculos necesario para generar la imagen, y de forma
consecuente, el tiempo necesario para calcularla.

Los parametros principales a ajustar serian: el tamafio de la imagen que denotamos con un
multiplicador ‘k’, la profundidad del calculo (nimero de rebotes de un mismo rayo, de forma
que se simula la luz reflejada) ‘b’, o el nimero de muestras calculadas (rayos) para cada
pixel de la imagen s’.

Los parametros usados para cada escena son:

* Objeto simple: k=8 b=8 s=256 que da como resultado una imagen cuadrada de
1080 pixeles de lado.

* Cornell Box: k=8 b=3 s=256 que también tiene como resultado una imagen
cuadrada de 1080 pixeles de lado.

» Palacio Sponza: k=8 b=4 s=256 que da como resultado una imagen de tamafio 1920
pixeles de ancho y 1080 pixeles de alto.

La razén de la eleccién de estos parametros y no otros cualesquiera Gnicamente radica en
que se buscaba consequir una imagen que tuviera carga importante de trabajo, pero que
permitiese hacer varias pruebas a lo largo del dia, evitando asi calculos de excesiva
duraciéon que ademas no aportarian valor adicional al estudio, ya que los tiempos obtenidos
ya permiten extraer datos lo suficientemente relevantes como para sacar conclusiones al
respecto.

Adicionalmente, la estrategia de reparto de trabajo a emplear también se trata de un
parametro ajustable, y que en el caso de la cola de trabajo, introduce otra variable, el
numero de fragmentos en que se divide la imagen. Como la teoria nos dice que el reparto
de trabajo influye directamente en el rendimiento del sistema resulta interesante estudiar
varios casos, y debido a ello no se han definido fijos por escena, sino que se han aplicado
varios valores para ellos en todas las escenas.

En este aspecto cabe destacar que las estrategias de cola de trabajos y equitativa se tratan
esencialmente de la misma cuando el nimero de segmentos en los que se divide coincide
con el nimero de nodos del sistema. También, aunque se ha implementado la estrategia de
reparto proporcional a la velocidad, esta practicamente coincide con la equitativa en los
casos en que las maquinas tienen caracteristicas similares, debido a que el motor esta en

53

desarrollo y no dispone de los recursos para medir la velocidad efectiva de cada maquina,
teniendo en cuenta solo el nimero de unidades de proceso de cada maquina y no las
capacidades reales de estas.

5.4 Pruebas

Con la realizacion de las pruebas, ademas de validar el correcto funcionamiento del
sistema, se ha buscado estudiar aspectos propios de la paralelizacion, de las maquinas o
del propio algoritmo.

Concretamente, se ha estudiado el comportamiento del sistema con respecto a los
siguientes aspectos.

* Paralelizacién a nivel de CPU

* Paralelizacién a nivel de nodo

» Paralelizacién en un sistema homogéneo
» Comparacién de estrategias de reparto

» Paralelizacién en un sistema heterogéneo
* Influencia de la escena

5.4.1 Medidas de rendimiento
5.4.1.1Eficiencia

Se define la eficiencia conseguida mediante la siguiente férmula:

T,
T

E=

‘n

n

Donde n es el nimero de unidades de proceso,y T, el tiempo empleado para calcular

la imagen completa con n unidades.

El dato de la eficiencia no resulta tan sencillo de calcular en los sistemas heterogéneos
donde las computadoras no son similares en cuanto a capacidad de calculo, debido a que
no se cuenta con un tiempo de referencia que pueda ser tomado para sustituir al tiempo
que en el caso del cluster homogéneo era del de una maquina.

Si se desarrolla el calculo de la eficiencia para el caso de maquinas similares:

T, T/n
=

E=

" ,y sedefine T,=T,/n que denota el tiempo ideal en paralelo.

n n

Tomando la potencia de cada maquina, P,

1

, siendo el trabajo W , como:

54

Se puede escribir T, , de la siguiente manera:

_W_w _w _ 1

T

" P, LW 1
P, = > =
2P 2y 2

Dado que la media arménica, H , que siendo n el ndmero de maquinas, y x; el tiempo

empleado por la maquina i esta definida como:

H=—"_ y dado que T,:E ,
>L ”
i=1 X;
se puede usar H para sustituir el tiempo de referencia, y entonces, la eficiencia para

estos casos se toma como:

T, HI

E=—=—=

n H
T, T,n

5.4.1.2Balanceo de carga

Es interesante introducir un dato estadistico que pueda dar idea de como de balanceada
esta la carga de trabajo entre las unidades. Se ha optado por usar la desviacion tipica que

denotaremos con ¢ y que, siendo n el ndmero de muestras, x;

1

la propia muestra y
X la media aritmética de todas las muestras, se define como:
0=J12 (x5
Nz
Para poder comparar esta magnitud de forma independiente a los tiempos en las distintas
pruebas, ya que estos pueden ser muy diferentes, se puede recurrir a escalarla dividiéndola
entre la media aritmética X de las muestras, lo que resulta en un factor entre O y 1, que
denominaremos factor de desbalanceo, y notaremos como & . Al restar de la unidad esta

magnitud, obtendremos su complementario, que nos dara informacion sobre el equilibrio de
la carga de trabajo, y le denominaremos factor de balanceo, f .

=9

- 1—6:6
X

Esta magnitud puede tomar valores entre O y 1, y cuanto mas cercana sea a 1, menos
dispersién existira entre las muestras ya que estas tendran menos diferencias entre si, y por
tanto mejor balanceado estara el trabajo entre las unidades.

El valor de este dato se calcula en tiempo de ejecucién del programa trazador de rayos.

55

6 Resultados
6.1 CPU

Todas las CPU de las computadoras que han formado parte de este estudio poseen varios
nucleos, con lo que es posible realizar calculos de manera paralela en la propia CPU.

Se han tomado como referencia los tiempos obtenidos por una computadora del
laboratorio 0.01 del edificio Ada Byron de la EINA.

En esta prueba se ha sintetizado la imagenes de las escenas de prueba y se han medido los
tiempos con un Unico ndcleo de la CPU, y con todos ellos (la CPU usada en esta prueba
dispone de 4 nicleos).

La siguiente tabla muestra el tiempo, en milisequndos y la eficiencia conseguida con una
CPU para las tres escenas de prueba:

Escena Nucleos Tiempo Eficiencia
Simple 1 386631 1,00
4 133605 0,72
Chox 1 1219451 1,00
4 418904 0,73
Sponza 1 6875196 1,00
4 2320158 0,74

Tabla 2: Resultados en funcién del nimero de
ntcleos en una misma CPU

Se puede apreciar que la eficiencia alcanzada con los 4 nucleos en paralelo se queda en un
valor alrededor de 0.75.

Este fenédmeno puede estar debido a las colisiones de caché, ya que al calcularse distintas
areas de la imagen de manera concurrente la caché puede aprovechar menos la localidad de
los datos que si se calculase de manera secuencial.

6.2 GPU - CPU

Continuando con las pruebas y verificaciones a nivel de nodo, nos encontramos que las
maquinas que cuentan con GPUs tienen capacidad de realizar calculos tanto con sus CPUs
como con sus GPUs al mismo tiempo, con lo que resulta interesante analizar que
rendimiento se obtiene al ponerlas a trabajar a la vez.

En esta prueba, se ha calculado la imagen del palacio Sponza en las maquinas que disponen
de GPU, se han medido los tiempos de calculo y el balanceo que medimos mediante f .

56

Maquina Tiempo B
Beatrix 1208840 0,918
Amelia 1394664 0,882
Grendel 3325563 0,890
Wargo 3293219 0,891

Tabla 3: Resultados en funcién de la
maquina con el balanceo CPU-GPU

El desequilibrio que se aprecia puede tener varias lecturas: una de ellas es que puede
deberse a la problematica descrita en el punto donde se describe la paralelizacién a nivel de
nodo, es decir, la limitada capacidad para comparar las velocidades relativas de una unidad
de proceso frente a otra (CPU frente a GPU).

Por otro lado, debido a la experimentalidad del cédigo, y que este se encuentra en una fase
de desarrollo, todavia hay segmentos en el cédigo de las funciones donde la GPU realiza el
trabajo de calculo, que no se encuentran migrados a CUDA, y que se tienen que apoyar en
la capacidad de la CPU para poder llevarse a cabo. EL mas significativo de estos segmentos
de cédigo esta en la propia evaluacién de la funcion de Monte Carlo que obtiene la
direccion del rayo rebotado en una superficie.

6.3 Cluster homogéneo

A partir de esta prueba es donde se procede a validar el entorno distribuido por red.
Aunque mas adelante en este estudio se analiza el comportamiento del cluster heterogéneo
(con maquinas de diferentes capacidades), se ha querido dedicar un apartado a validar las
capacidades de computacién masivamente paralela realizando las pruebas con una cantidad
considerable de maquinas, por ello, se ha configurado un cluster con los equipos del
laboratorio 0.01 del edificio Ada Byron de la EINA.

Estas computadoras cuentan con una CPU de 4 nucleos, y no disponen de GPU. Todas
estas maquinas son de idénticas caracteristicas y por ello, para este caso, denominaremos
esta formacién como cluster homogéneo. Intuitivamente se puede pensar que al tratarse de
maquinas iguales el reparto de la carga de trabajo resulta sencillo pero la solucién a este
problema veremos que no resulta tan evidente.

Se ha querido usar este cluster homogéneo con varios objetivos: en una mano validar la
escalabilidad del sistema, analizando el rendimiento conseguido al afiadir nodos al sistema;
y en la otra, verificar las diferencias entre las diferentes estrategias de reparto de trabajo.

A tal fin se ha lanzado el calculo de la escena del palacio Sponza con 1, 4, 8 y 16 maquinas
del laboratorio 0.01, con las estrategias de reparto equitativa y cola de trabajos (con un
nimero de trabajos fijado a 80). La razén de no incluir en esta prueba la estrategia
proporcional a la capacidad se debe a que al ser las maquinas de similares caracteristicas el
reparto realizado por dicha estrategia seria el mismo que el que realiza la equitativa.

57

Maquinas Tiempo Eficiencia B
1 2320158 1,00 1
4 588651 0,99 0,879
8 315513 0,92 0,903
16 162500 0,89 0,922
Tabla 4: Resultados en funcion del numero de
mdquinas para la estrategia de raparto equitativa
1,05 1,05
1,00 1
-§ 0,95 0,95
§ 0,90 “ 09
Y 0,85 0,85
0,80 0,8
1 4 8 16 1 4 8 16

Numero de méquinas Numero de maquinas

Estos resultados son los esperados, ya que aumentando el nimero de maquinas, aunque el
balanceo se mantiene en valores alrededor de 0.90, la eficiencia se ve disminuida. La razéon
de esta pérdida de eficiencia puede explicarse por la razén de que son necesarias mas
comunicaciones, y ademas, el tiempo dedicado a estas es relativamente mayor al del
calculo que con un menor nimero de maquinas, ya que el tamafio del fragmento a calcular
por cada maquina en la estrategia de reparto equitativa es inversamente proporcional al
nimero de maquinas.

Magquinas Tiempo Eficiencia B
1 2320158 1,00 1
4 534979 1,08 0,998
8 298794 0,97 0,969
16 163933 0,88 0,965

Tabla 5: Resultados en funcién del numero de
maquinas para la estrategia de reparto por cola de
trabajos con 80 fragmentos

1,20 1,01
< 0,80 8’32
L_) 1
.E’ 0,60 @ 097
L2 0,40
= O 0,96

0,20 0,95

0,00 0,94

1 4 8 16 1 4 8 16

Nimero de maquinas NUmero de maquinas

58

Con 80 fragmentos en la cola de trabajos, la eficiencia llega hasta ser mayor que la unidad,
esto, aparentemente imposible, puede explicarse mediante el funcionamiento correcto de la
memoria caché de las CPU, que hacen uso de la localidad de datos pero son limitadas en
capacidad, por lo que deben ir cargandose y descargandose para contener a los espacios de
memoria con los que trabajar, en cambio, al estar replicado y esta caché no ser compartida,
este intercambio de informacion con la memoria principal no es necesario. Aln asi, este
fendmeno no se manifiesta con tanta intensidad cuando el nimero de maquinas se
incrementa, ya que, como en el caso del reparto equitativo, las comunicaciones pasan a
tener mas peso en el tiempo total y por consiguiente, la eficiencia del sistema cae.

Con respecto al balanceo se aprecia que es practicamente idéneo aunque decrece
ligeramente cuando aumenta el nimero de maquinas, esto principalmente se debe a la
diferencia de carga entre unos fragmentos y otros de la imagen.

Comparando ambas estrategias de reparto se ve una considerable mejora del tiempo
conseguida con la cola de trabajos, de mayor manera cuando existen mas fragmentos por
maquina, ya que de esta manera el sistema se autobalancea mucho mejor.

6.3.1 Cola de trabajos

Tomando las conclusiones del punto anterior, y viendo las ventajas de la estrategia de
reparto mediante cola de trabajos, es preciso realizar la comparativa con el parametro
ajustable de este método de reparto, el nimero de trabajos o fragmentos en los que se
divide la imagen.

En esta prueba se ha lanzado el calculo de la escena del palacio Sponza contra el cluster
homogéneo de 16 maquinas del laboratorio 0.01, variando el nimero de trabajos entre 12,
40, 160 y 280.

Fragmentos Tiempo Eficiencia B
12 165631 0,88 0,919
40 147267 0,98 0,865
80 163933 0,88 0,965
160 150856 0,96 0,976
280 128948 1,12 0,989

Tabla 6: Resultados en funciéon del numero de
fragmentos para la estrategia de reparto por cola de
trabajos

Para la confeccién de la tabla, como tiempo de referencia para el calculo de la eficiencia se
ha tomado el de una sola maquina (2320158 ms.).

Configurando el numero de fragmentos a 12, siendo el cluster de 16 maquinas se ha
querido forzar el que hubiera maquinas sin trabajos para realizar, y de hecho esto se pone
de manifiesto al consequir de esta manera una eficiencia mas baja que las normalmente
alcanzadas por esta estrategia de reparto.

59

Las demas configuraciones, ponen de manifiesto la importancia de la elecciéon de un ndmero
de fragmentos razonable y consecuente tanto con el nimero de maquinas que componen el
clister como con el propio tamafio de la imagen, pues la eficiencia conseguida puede
depender en gran medida de esta eleccion.

6.4 Cluster heterogéneo

El objetivo principal de este estudio es crear un sistema de trazado de rayos sobre un
cluster heterogéneo, donde las computadoras que formen parte de él contengan CPUs vy
GPUs. Para ello, se ha configurado el cluster para hacer uso de 5 maquinas situadas en los
laboratorios del GIGA: Amelia, Annwn, Beatrix, Grendel y Wargo, que han sido presentadas
junto a sus caracteristicas en la seccion donde se describe el sistema.

Al existir diferencias de caracteristicas y capacidades entre las maquinas, en esta prueba
toma alin mas relevancia el dato del factor de balanceo, pues va a dar una visién de la
capacidad de adaptacién de cada estrategia de reparto, y del aprovechamiento de la
capacidad total de calculo del sistema completo.

La prueba se trata de la sintesis de la imagen de la escena del palacio Sponza, con las
distintas estrategias de reparto: equitativa, proporcional a la capacidad y cola de trabajos.
En el caso del reparto por cola de trabajos, se ha fijado el nimero de fragmentos en 80.

Maquina Tiempo
Beatrix 1208840
Amelia 1394664 Estrategia Tiempo Eficiencia B
Grendel 3325563 Equitativa 631268 0,55 0.727
Wargo 3293219 Proporcional 553753 0,63 0.812
Annwn 1368327 Cola trabaj. 400479 0,87 0.974

M. Armoénica 1736453,2121
Tabla 7: Tiempos por
nodo del C. heterogéneo

Analizando los datos de esta prueba llama la atencion la baja eficiencia conseguida con el

Tabla 8: Resultados para el cluster heterogéneo en
funcién de la estrategia de reparto

reparto equitativo, y es de esperar, debido a la diferencia de rendimiento entre maquinas y
a la diversidad de carga de trabajo de los fragmentos de la imagen: dependiendo de a qué
maquina le toque procesar segin que fragmento esto puede suponer un desbalanceo
todavia mayor que el propio generado por las diferencias entre las maquinas. La diferencia
de tiempos para el trabajo completo entre el mas rapido, Beatrix, y el mas lento, Grendel,
es de 2.75 veces mayor para el mas lento.

Para aliviar este desbalanceo, se opta por probar las otras estrategias de raparto de
trabajo, y se verifica en los resultados, que la estrategia que consigue mejor equilibrio y
también mas eficiencia es la del reparto por cola de trabajos.

60

6.4.1 Desbalanceado

Como prueba adicional, y para hacer el cluster mas desbalanceado, al cluster heterogéneo
de las maquinas del GIGA, se le han afiadido dos nodos: lugh y bran, con una capacidad
mucho mas limitada que los del punto anterior. Para evidenciar esta diferencia, disponemos
de los datos de los tiempos que invierte en el calculo la computadora que mas rapido ha
obtenido el resultado: Beatrix, en 1208840 ms., mientras que la mas lenta, lugh, ha
invertido 28011752 ms., nétese que el tiempo de lugh es mas de 23 veces mayor que el de

Beatrix.

Con este deajuste se ha buscado probar el impacto que tiene la coordinacion entre los
nodos, y como varia dependiendo de la estrategia de reparto.

Maquina Tiempo

Beatrix 1208840

Amelia 1394664 Estrategia Tiempo Eficiencia B

Grendel 3325563 Equitativa 2726194 0,12 0.610
Wargo 3293219 Proporcional | 701738 0,48 0.742
Annwn 1368327 Cola trabaj. 505869 0,67 0.875
Lugh 28011752 Tabla 10: Resultados para el cluster desbalanceado
Bran 27764628 en funcién de la estrategia de reparto

M. Armonica 2371957,5309
Tabla 9: Tiempos por
nodo del C. heterogéneo
desbalanceado
En estos resultados se pueden apreciar los mismos efectos que con el cluster del punto

anterior, pero mucho mas acusados, debido a la extrema diferencia de potencias entre la
computadora mas rapida y la mas lenta. Se ponen especialmente de manifiesto con el uso
de la estrategia de reparto equitativa, ya que las maquinas mas potentes deben de esperar
a que las mas lentas terminen de procesar el fragmento que se les ha asignado.

Aunque en esta prueba se ha fijado el niumero de fragmentos a 80 con el objetivo de poder
comparar los dos custeres con los mismos parametros en las pruebas, se puede prever que
con un mayor nimero de fragmentos, el balanceo se habria realizado de mejor manera y la
eficiencia hubiera sido mayor. Teéricamente, dada la diferencia de 23:1. es previsible que un
numero de fragmentos de 23 * 7, debido a la diferencia y al nimero de maquinas daria
mejores resultados, ya que la maquina mas veloz realizaria 23 trabajos en el tiempo que la
mas lenta haria 1.

6.5 Escenas

Es interesante incidir en el hecho de que en el equilibrio del reparto del trabajo no solo
influye la capacidad de los nodos, o de las unidades de calculo de las que disponen, sino
que otro factor a tener en cuenta es la propia complejidad de la escena.

61

Esta complejidad, puede no estar repartida uniformemente en todo el area de la imagen, y
segun la estrategia de reparto utilizada, o las capacidades de la maquina a la que se asigne

segun que fragmento de imagen, los resultados pueden variar.

En esta prueba se ha lanzado el calculo de las tres escenas, sobre el cluster heterogéneo y
sobre el cluster homogéneo, usando la estrategia de reparto por cola de trabajos, con un

numero de trabajos de 80.

Cluster homogéneo Cluster heterogéneo
Escena Tiempo Eficiencia B Tiempo Eficiencia B
Simple 8326 1,00 0.979 58384 0,51 0.870
Chox 23532 1,11 0.953 97053 0,78 0.970
Sponza 163933 0,88 0.965 400479 0,87 0.974
Tabla 11: Resultados en funciéon de las escenas para los clusteres homogéneo y
heterogéneo

62

7 Conclusiones y trabajo futuro

7.1 Cumplimiento de objetivos

El objetivo principal de este proyecto, que consistia en la adaptacion del software de
simulacion de la interaccién luz-material al calculo en paralelo y el estudio de su
comportamiento.

Se ha implementado una solucién basada en MPI para dotar al motor trazador de rayos
ALEPH/FTL, la capacidad de realizar calculos de manera concurrente en varios equipos
conectados por red.

Se ha estudiado la problematica del reparto de trabajo en un cluster que no tiene por qué
estar balanceado, proponiendo tres estrategias de reparto: equitativa, proporcional a la
capacidad y mediante cola de trabajos.

Una vez propuestas, se han comparado, quedando evidenciada la mejora de rendimiento y
aprovechamiento de la capacidad potencial del sistema mediante la estrategia de cola de
trabajos.

El objetivo secundario consistente en la aportacién del cédigo para esta adaptacion al
motor de renderizado ALEPH desarrollado en el GIGA, queda validado también con los
resultados anteriores, quedando disponible en el repositorio de cédigo de tal proyecto para
futuras revisiones y adaptaciones, o bien sirviendo de base para la implementacion de
nuevas caracteristicas. Este c6digo también abre posibilidades de estudio del cédigo en si
mismo y de las tecnologias usadas para su desarrollo.

7.2 Problemas e incidencias

En el transcurso de la realizacion de este proyecto de fin de carrera han ocurrido ciertos
problemas y dificultades que se han logrado solventar bien adquiriendo conocimientos
técnicos, aplicando mejoras y herramientas, o adoptando soluciones fruto del ingenio del
alumno o de los directores.

Los principales problemas se han debido a la forma de sincronizar recepcién de trabajos,
comunicacion entre nodos, etc. que se han solucionado implementando nuevos métodos, o
bien reestructurando los ya existentes, después de muchas pruebas erréneas y potenciales
soluciones hasta que se ha llegado a las definitivas.

También se han solventado tanto problemas como tareas repetitivas con la creaciéon de
pequefios scripts que facilitaban dichas tareas, entre otras, conocer qué equipos se
encontraban encendidos (o directamente encenderlos por red, por medio de wake on lan),
para poder lanzar las simulaciones en ellos, o para encontrar la ruta precisa a las

63

bibliotecas y afiadirlas a las variables de entorno para que el software no tuviera problemas
en localizarlas, ya que debido a la heterogeneidad entre los sistemas operativos de las
maquinas, estas pueden no coincidir en todos los casos.

Como en cualquier tipo de proyecto, la gestion del tiempo, disponibilidad, y recursos ha
supuesto un reto que, aunque al final se ha sido capaz de controlar, ha traido retrasos y
situaciones no idéneas.

7.3 Valoracion del autor

La valoracion de la realizacion de este PFC resulta muy satisfactoria, ya que ha permitido al
alumno adentrarse mas en el conocimiento de la programacion paralela y la computacién de

alto rendimiento.

También le ha supuesto conocer las técnicas de simulacion de la luz, tema con el que no
habia tratado antes, asi como la fisica que existe detras de todos esos calculos que son
llevados a cabo por la simulacion.

Este proyecto, también ha traido consigo la oportunidad de trabajar con tecnologias propias
de los mayores supercomputadores del mundo, asi como solventar problemas y adquirir
conocimientos que de otra manera dificilmente se hubiera dado el caso.

El alumno ha tenido que profundizar en el conocimiento de estas tecnologias, como por
ejemplo OpenMPI, que aunque presentadas en algunas de las asignaturas cursadas en el
transcurso de la carrera, se han tenido que adaptar al problema concreto de la sintesis de
imagenes.

Otro aspecto a valorar es el reto que ha supuesto a la capacidad del alumno al enfrentarse
a nuevos problemas, a demostrar y a aplicar los conocimientos adquiridos durante la

carrera.

7.4 Trabajo futuro

Al tratarse de un software experimental y en fases iniciales de desarrollo, este cuenta con
muchas posibles mejoras, tanto en el software que se ha tomado como base, como en el
perfeccionamiento del cédigo para la paralelizacion que se ha aportado mediante la
realizacion de este proyecto.

Un aspecto interesante a mejorar en la paralelizaciéon es la capacidad de estimar la
velocidad de una determinada maquina, probablemente con un microbenchmark al arrancar
el software, con una medida de la velocidad fiable, se optimizaria el reparto de trabajo
proporcional a la velocidad.

Gracias a la bateria de pruebas llevadas a cabo en este estudio, se ha evidenciado el
problema de reparto entre las unidades de un nodo (CPU - GPU), por lo que se ha abierto

64

un camino en el desarrollo del propio motor para implementar un reparto de trabajo
mediante cola de trabajos también a este nivel.

También se encuentra en vias de desarrollo la migraciéon del calculo de un rayo de forma
completa en la GPU, y esto supondra el aislamiento completo de los calculos que se
realizan en la GPU con respecto a los que se hacen en la CPU, lo que hara que esos
calculos sean independientes y que el rendimiento no se vea afectado por las otras
unidades de proceso de la misma maquina.

65

8 Diagrama Temporal

El trabajo de este proyecto de fin de carrera se ha estimado en 650 horas, repartidas segun
el esquema temporal.

mana 47 |

Se
]

mana 46

Sé

mana 43

Sé

Semana 44

5

3

mana 4

Se

mana 42 |

Sa

41|

S&mana

Semana 40

5

oct 2016

mana 39

S5é&

mana 38

S

mana 37

Sé

Semana 36

5

| set 2016

mana 35

S5&

Trab
3od
d
144
94
444
3d
214
0d

Adquisicion d& Conad mientos

Planteamienbo
Repaso de conadimisntas

Codific ac i

Preparacion
Prus

Desarrollo
bas
Documentac i

Naombre

(o))
(e))]

1 Apéndice: Referencias

[CGIB8E]

[CPC84]

[Amd67]

[Gre91]
[Hal88]

[Jen01]

[Mag03]

[MPI]

Cohen M.F., Greenberg D.P., Immel D.S. y Brock P.J.: An efficient radiosity
approach for realistic image synthesis. IEEE Computer Graphics and
Applications, tomo 6(3), pags 26-35 (1986) ISSN 0272-1716.

Cook R.L., Porter T. y CarpenterlL.: Distributed Ray Tracing. En Computer
Graphics (ACM SIGGRAPH ‘84 Proceedings), tomo 18, pags. 137-148 (1984).

Gene Amdahl, "Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities”, 1967.

Green S.: Parallel Processing for Computer Graphics (Pitman Publishing, 1991).

Hall R.: [llumination and Color in Computer Generated Imagery (Springer,
Berlin, 1988).

Jensen H.: Realistic image synthesis using photon mapping (A.K. Peters, Natick,
Massachusets, 2001).

Magallén, J. A.: ALEPH. Simulacion realista de la iluminaciéon global mediante
técnicas de MonteCarlo y Procesado paralelo. Tesis doctoral de ingenieria
industrial, Universidad de Zaragoza, 2003.

The message passing interface (mpi) standard. http://mpi-forum.org/docs/

67

http://mpi-forum.org/docs/

2 Apéndice: Cadigo fuente
Si bien resulta imposible la inclusién de todo el cédigo fuente del trazador de rayos usado
para este estudio, si que se ha estimado que resulta util y esclarecedor hacerlo con la clase

que realiza las tareas de paralelizaciéon MultiHostManager, ya que contiene el cédigo fuente
que se ha tenido que desarrollar para poder llevar a cabo este estudio.

2.1 Clase MultiHostManager

2.1.1 render/multihostmanager.h

#pragma once

#include <ftl/render/manager.h>

#include <ftl/base/dmp.h>
#ifdef CONFIG_HAS_MPI

namespace FTL {

namespace render {

using namespace FTL::base;

using namespace FTL::core;
enum distribution_t {EQUALLY, SPEED_PROPORTIONAL, WORK_QUEUE};

#define NODESPD_TAG 1
#define WORLDSPD_TAG 2
#define CHNKSTART_TAG 3
#define CHNKEND_TAG 4
#define CHNKTOJOIN_TAG 5
#define DATAMATRIX_TAG 6
#define WQREQUEST_TAG 7
#define WQCHNKSTART_TAG 8
#define DURATION_TAG 9

class __public_render MultiHostManager : public Manager

{

private:
int _dist;
int _chunks;

68

float _myspeed;
vector<float> _speed;
vector<float> _rspeed;
float _wspeed;
vector<float> _work;
int myis;

int myie;

float myspeed();

void set_speeds();

void queueManager (int h);

void workReceiver (FrameBuffer& f);
bool split(int h,bool& more);

void init();

void fini();
void join(FrameBuffer& f);

protected:
void stats(const Duration& et, const Duration& met,

const vector<Duration>& eng) const;

public:
MultiHostManager (int dist=SPEED_PROPORTIONAL, int chunks = 0);
MultiHostManager(bool uc, bool ug, int dist=SPEED_PROPORTIONAL, int chunks = 0);

MultiHostManager (int nc,int kc,int ng,int kg, int dist=SPEED_PROPORTIONAL, int chunks
= 0);

~MultiHostManager();
int chunks() const;

void chunks(int n);

void render(const Camera& c,FrameBuffer& f);

#endif

2.1.2 render/multihoshmanager.cc
#include "ftl/render/manager.h"

#include "ftl/render/multihostmanager.h"

69

#include "ftl/base/sysinfo.h"
#include "ftl/base/dmp.h"
#include "ftl/base/logger.h"
#include "ftl/core/tonemap.h"

#include "ftl/core/png.h"

#include "ftl/render/shader.h"

#ifdef CONFIG_HAS_MPI

namespace FTL {

namespace render {

using namespace FTL::base;

using namespace FTL::core;

MultiHostManager: :MultiHostManager (int dist, int chunks)

: Manager ()
{
_dist = dist;
_chunks = (_dist==EQUALLY || _dist==SPEED_PROPORTIONAL) ? DMP::csize() : chunks;

if (_chunks<DMP::csize()) _chunks = DMP::csize();
_myspeed = myspeed();

_wspeed = 0;

MultiHostManager: :MultiHostManager (bool uc, bool ug, int dist, int chunks)

: Manager (uc, ug)

_dist = dist;

_chunks = (_dist==EQUALLY || _dist==SPEED_PROPORTIONAL) ? DMP::csize() : chunks;
if (_chunks<DMP::csize()) _chunks = DMP::csize();
_myspeed = myspeed();

_wspeed = 0;

MultiHostManager: :MultiHostManager (int nc,int kc,int ng,int kg, int dist, int chunks)

: Manager (nc, kc, ng, kg)
{
_dist = dist;
_chunks = (_dist==EQUALLY || _dist==SPEED_PROPORTIONAL) ? DMP::csize() : chunks;

70

if (_chunks<DMP::csize()) _chunks = DMP::csize();
_myspeed = myspeed();

_wspeed = 0;

MultiHostManager: :~MultiHostManager ()
{

fini();

void MultiHostManager::fini()

{

// logger::lock();

// logger::cinfo() << "Process " << DMP::rank()

// << " ending [on " << SysInfo::name() << "]" << endl;
// logger::unlock();

}

float MultiHostManager::myspeed()
{

float tes = 0.0f;

for (const auto& e : engines)

tes += e->speed();

return tes;

bool MultiHostManager::split(int h,bool& more)
{
more = false;
MPI_Status status;
switch (_dist)
{
case EQUALLY:
{
vector<int> 1k = spliti(h,DMP::csize());
myis = 1k[DMP::rank() 1];
myie = 1k[DMP::rank()+1]-1;
more = false;

return true;

}

71

break;

case SPEED_PROPORTIONAL:
{
if (DMP::master())
{
vector<int> 1r(DMP::csize());
for (int r=0; r<DMP::csize(); r++)
1r[r] = int(_rspeed[r]*h);
int lw = accumulate(begin(lr),end(1lr),0);
int Im = h - 1lw;
for (int r=0; r<lm; r++)
Ir[r]++;
vector<int> 1i(DMP::csize()+1,0);
partial_sum(begin(1lr),end(1lr),begin(li)+1);
for (int r=0; r<DMP::csize(); r++)
{
int ise[2] = { 1i[r], li[r+1]-1 };
if (DMP::slave(r))
{
#if o
MPI_Send(&ise[0],1,MPI_INT, r, CHNKSTART_TAG, MPI_COMM_WORLD);
MPI_Send(&ise[1],1,MPI_INT, r, CHNKEND_TAG, MPI_COMM_WORLD);
#else
MPI_Send(ise, 2, MPI_INT, r, CHNKSTART_TAG, MPI_COMM_WORLD);
#endif

else

myis=ise[0];

myie=ise[1];

else

#if o
MPI_Recv(&myis,1,MPI_INT,DMP: :masterid(), CHNKSTART_TAG, MPI_COMM_WORLD, &status);
MPI_Recv(&myie,1,MPI_INT,DMP: :masterid(), CHNKEND_TAG, MPI_COMM_WORLD, &status);
#else

int ise[2];

72

MPI_Recv(ise, 2,MPI_INT,DMP: :masterid(), CHNKSTART_TAG, MPI_COMM_WORLD, &status);
myis=ise[0];
myie=ise[1];
#endif
}
more = false;
return true;

}

break;

case WORK_QUEUE:
{
int buff = 0;
MPI_Send(&buff,1,MPI_INT,DMP: ::masterid(), WQREQUEST_TAG, MPI_COMM_WORLD);
int ise[2];
MPI_Recv(&ise,2,MPI_INT,DMP: :masterid(), WQCHNKSTART_TAG,MPI_COMM_WORLD, &status);
if (ise[0]<0)
{
more = false;
return false;

3

myis = ise[0];

myie = ise[1];

more = true;
return true;

}

break;

return false;

void MultiHostManager: :queueManager (int h)
{

MPI_Status status;

int buff=0,

vector<int> 1k = spliti(h,_chunks);
for (int i=0; i< _chunks; i++)
{

int ise[2] = { 1k[i], 1k[i+1]-1 };

73

MPI_Recv(&buff,1,MPI_INT,MPI_ANY_SOURCE, WQREQUEST_TAG, MPI_COMM_WORLD, &status);
MPI_Send(&ise,2,MPI_INT,status.MPI_SOURCE, WQCHNKSTART_TAG, MPI_COMM_WORLD);

}

logger::lock();

logger::cinfo() << "QueueMGR: No jobs left" << endl;

logger::unlock();

static const int done[2] = { -1,-1 };

for (int i=0; i<DMP::csize(); i++)

{
MPI_Recv(&buff,1,MPI_INT,MPI_ANY_SOURCE, WQREQUEST_TAG, MPI_COMM_WORLD, &status);
MPI_Send(&done,2,MPI_INT, status.MPI_SOURCE, WQCHNKSTART_TAG, MPI_COMM_WORLD);

void MultiHostManager: :workReceiver (FrameBuffer& f)

{
// f.blank();

_work.assign(DMP::csize(),0.0f);

for (int n=0; n<_chunks; n++)
{
MPI_Status status;
int ise[2];
MPI_Recv(&ise, 2, MPI_INT, MPI_ANY_SOURCE, CHNKTOJOIN_TAG, MPI_COMM_WORLD, &status);
int is = ise[0];
int ie = ise[1];
int nr = ie-is+1;
_work[status.MPI_SOURCE] += nr;

if (DMP::slave(status.MPI_SOURCE))
{

int sz = nr*f.width()*SDF::nsamples;

float* buffer = new float[sz];

MPI_Recv(buffer, sz, MPI_FLOAT, status.MPI_SOURCE, DATAMATRIX_TAG,MPI_COMM_WORLD, &status);
// row
for (int i=0; i<nr; i++)
{
// col

74

vector<SDF>& row = f[is+i];

for (int j=0; j<f.width(); j++)

{
float* buf = buffer + (i*f.width()+j)*SDF::nsamples;
row[j] = buf;

}
delete[] buffer;
}
#if o
logger::lock();
logger::cinfo() << "Buf received [" << n << "/" << realChunks << "]" << endl;
logger::unlock();
#endif

3

for (auto& w : _work)

w /= float(f.height());

int MultiHostManager: :chunks() const

{

return _chunks;

void MultiHostManager::chunks(int n)

{
_chunks = (_dist==EQUALLY || _dist==SPEED_PROPORTIONAL) ? DMP::csize() : n;

if (_chunks==0) _chunks = DMP::csize();

void MultiHostManager::set_speeds()

{
MPI_Status status;

if (DMP::master())
{

_speed.resize(DMP::csize(),0.0);
_sSpeed[DMP: :rank()] = _myspeed;
for (int i=1; 1i<DMP::csize();i++)

{

75

float nspd;

MPI_Recv(&nspd,1,MPI_FLOAT,MPI_ANY_SOURCE, NODESPD_TAG, MPI_COMM_WORLD, &status);
_sSpeed[status.MPI_SOURCE] = nspd;

_wspeed = 0.0;
for (auto s : _speed)

_wspeed += s;

_rspeed.resize(DMP::csize());
for (int r=0; r<int(_speed.size()); r++)

_rspeed[r] = _speed[r]/_wspeed;

else

MPI_Send(& myspeed, 1, MPI_FLOAT,DMP: :masterid(), NODESPD_TAG, MPI_COMM_WORLD);
}
// MPI_Bcast(& wspeed,1,MPI_FLOAT,DMP: ::masterid(),MPI_COMM_WORLD);
}

void MultiHostManager::render(const Camera& c,FrameBuffer& f)

{

Timer mtmr;

mtmr.start();

set_speeds();

if (DMP::master())
{
mtmr.stop();
logger::lock();
logger::cinfo() << endl;
logger::cinfo() << "World speed: " << setw(3) << int(_wspeed) << endl;
logger::cinfo() << "Node speeds:" << endl;

for (int r=0; r<int(_speed.size()); r++)

{
logger::cinfo() << " node " << setw(3) << r
<< ": " << setw(3) << int(_speed[r])
<< " (" << setw(2) << int(100*_rspeed[r]) << "%)"<< endl;
}

76

logger::cinfo() << endl;

// logger::cinfo() << "Number of processes: " << DMP::csize() << endl;

logger::cinfo() << "World: "

<< "[" << setw(5) << B << " -" << setw(5) << f.height()-1 << "]"
<< " " << setw(5) << f.height()
<< endl;

logger::cinfo() << endl;

logger::unlock();
mtmr.start();

}
#if 1
mtmr.stop();
MPI_Barrier (MPI_COMM_WORLD);
mtmr.start();

#endif

std::thread queueserver, receiver;

if (DMP::master())
{

receiver = std::thread(&MultiHostManager: :workReceiver, this,std::ref(f));
if (_dist==WORK_QUEUE)

gueueserver = std::thread(&MultiHostManager::queueManager, this, f.height());

Timer tmr;

tmr.start();

vector<Duration> engrd(engines.size(),0);

f.blank();

bool more;

while (split(f.height(),more))

{
logger::lock();

logger::cinfo() << "Node " << setw(3) << DMP::rank() << ": "

77

<< "[" << setw(5) << myis << " -" << setw(5) << myie << "]"
<< " " << setw(5) << myie-myis+1
<< endl;

logger::unlock();

#if 1

vector<thread> pool;

int h

myie-myis+1;

f.width();

int w
int is = myis;

int ie = myis-1;

for (int i=0; i<int(engines.size()); i++)

{
is = ie + 1;
ie = is + int(res[i]*(h-1));
if (ie > (myis+h-1)) ie = myis+h-1;
Job job(is,ie,0,w-1);
#if o
tmr.stop();
logger::lock();
logger::cinfo() << "Job for <" << engines[i]->name()
<< "> [node " << setw(2) << DMP::rank() << "]: "
<< job << " " << job.size() << endl;
logger::unlock();
tmr.start();
#endif
pool.push_back(engines[i]->render(c,f, job));
}

for (auto& t : pool)

t.join();

for (int i=0; i<int(engines.size()); i++)

{

engrd[i] += engines[i]->rd;

join(f);

78

#endif
if (!more)

break;

tmr.stop();

if (DMP::master())
{
if (_dist==WORK_QUEUE)
queueserver.join();
receiver.join();

}
mtmr.stop();

stats(tmr.runtime(), mtmr.runtime(), engrd);

// f.check();
}

void MultiHostManager::join(FrameBuffer& f)
{
int buf[2];
buf[0]= myis;
buf[1]= myie;
MPI_Send(&buf,2,MPI_INT,DMP: :masterid(), CHNKTOJOIN_TAG, MPI_COMM_WORLD);
if (DMP::slave())
{
int nr = myie-myis+1;
int sz = nr*f.width()*SDF::nsamples;
float* buffer = new float[sz];
// row
for (int i=0; i<nr; i++)
{
const vector<SDF>& row = f[myis+i];
// col
for (int j=0; j<f.width(); j++)
{
float* buf = buffer + (i*f.width()+j)*SDF::nsamples;
for (int k=0; Kk<SDF::nsamples; k++)
buf[k] = row[j][k];

79

b
MPI_Send(buffer, sz, MPI_FLOAT,DMP: :masterid(), DATAMATRIX_TAG, MPI_COMM_WORLD);

delete[] buffer;

void MultiHostManager::stats(const Duration& et, const Duration& met,
const vector<Duration>& engrd) const

{
#if 1

float mx,mn,sd;

#if ©
mx = 0.0;
mn = 0.0;

for (const auto& e : engines)

{
logger::cinfo() << "[perf]"
<< "[node " << setw(2) << DMP::rank() << "]"
<< "[" << e->name() << "]"
<< " " << e->rd.ms()
<< endl;
if (e->rd.ms()>mx)
mx = e->rd.ms();
mn += e->rd.ms();
}
mn /= float(engines.size());
sd = 0.0;

for (const auto& e : engines)
{
float d = e->rd.ms() - mn;
sd += d*d;
}
sd /= float(engines.size());

sd = sqrt(sd);

#else
mx = 0.0;
mn = 0.0;

for (int i=0; i<int(engines.size()); i++)
{

if (engrd[i].ms()>mx)

80

mx = engrd[i].ms();

mn += engrd[i].ms();

}
mn /= float(engines.size());
sd = 0.0;

for (const auto& d : engrd)
{
float dm = d.ms() - mn;
sd += dm*dm;
}
sd /= float(engrd.size());
sd = sqrt(sd);
#endif
logger::lock();
logger::cinfo() << "[perf]"
<< "[node " << setw(2) << DMP::rank() << "]"
<< "[all]"
<< " " << int(et.ms()) << endl;
for (int i=0; i<int(engines.size()); i++)
{
logger::cinfo() << "[perf]"
<< "[node " << setw(2) << DMP::rank() << "]"
<< "[" << engines[i]->name() << "]"
<< " " << int(engrd[i].ms())

<< endl;

logger::cinfo() << "[perf]"

<< "[node " << setw(2) << DMP::rank() << "]"

<< "[bal]"

<< " " << fixed << setw(5) << setprecision(3) << mx/float(et.ms())
<< " " << fixed << setw(5) << setprecision(3) << mn/float(et.ms())
<< " " << fixed << setw(5) << setprecision(3) << sd/float(et.ms())
<< endl;

logger::unlock();

#if 1
MPI_Barrier (MPI_COMM_WORLD);
#endif

if (DMP::master())
{

81

vector<float> durations(DMP::csize(),0);
durations[DMP::rank()] = et.ms();
for (int i=1; i<DMP::csize();i++)
{
MPI_Status status;
float received;
MPI_Recv(&received, 1, MPI_FLOAT, MPI_ANY_SOURCE, DURATION_TAG, MPI_COMM_WORLD, &status);
durations[status.MPI_SOURCE] = received;

}
mx = 0.0;
mn = 0.0;

for (int i=0; 1i<DMP::csize();i++)
{
if (durations[i]>mx)
mx = durations[i];

mn += durations[i];

}
mn /= float(DMP::csize());
sd = 0.0;

for (auto nd : durations)
{

float d = nd - mn;

sd += d*d;
}
sd /= float(DMP::csize());
sd = sqrt(sd);

logger::lock();

logger::cinfo() << endl;

for (int i=0; i<DMP::csize(); i++)

{

logger::cinfo() << "[perf]"

<< "[cluster]"
<< "[work]"
<< "[node " << setw(2) << i << "]"
<< " "
<< setw(2) << int(100*_rspeed[i])
<< " /"
<< setw(2) << int(100*_work[i])

<< endl;

82

logger::cinfo() << endl;
logger::cinfo() << "[perf]"
<< "[cluster]"
<< "[all 1"
<< " " << int(met.ms())
<< endl;
for (int i=0; i<DMP::csize(); i++)
{
logger::cinfo() << "[perf]"
<< "[cluster]"
<< "[node " << setw(2) << 1 << "]"
<< " " << int(durations[i])

<< endl;

logger::cinfo() << "[perf]"
<< "[cluster]"

<< "[bal]Il

<< " " << fixed << setw(5) << setprecision(3) << mx/float(met.ms())
<< " " << fixed << setw(5) << setprecision(3) << mn/float(met.ms())
<< " " << fixed << setw(5) << setprecision(3) << sd/float(met.ms())
<< endl;

logger::unlock();
else

float nd = et.ms();
MPI_Send(&nd, 1, MPI_FLOAT,DMP: :masterid(), DURATION_TAG, MPI_COMM_WORLD);

#endif

#endif

2.2 Otros codigos

2.2.1 base/math.cc
#include "ftl/base/math.h"

83

#include <limits>
#include <cfloat>

#include <numeric>

namespace FTL {

namespace base {

const float eps = 10*numeric_limits<float>::epsilon();

const float bigeps = 100*numeric_limits<float>::epsilon();

const float inf numeric_limits<float>::max();

vector<int> split(int n,int k)

{

vector<int> r(Kk);

int 1k = n/k;

int 1x = n%k;

for (int i=0; i<k; i++)
r[i] = 1k;

for (int i=0; i<lx; i++)

ri]++;

// int sum = std::accumulate(begin(r),end(r),0);

return r;

vector<int> spliti(int n,int k)

{

vector<int> r(k+1);

vector<int> s = split(n,k);

rrel=e;

partial_sum(begin(s),end(s),begin(r)+1);

return r;

} // namespace base

} // namespace FTL

84

	1 Introducción
	1.1 Alcance del documento
	1.2 Contexto de desarrollo
	1.3 Motivación del proyecto
	1.4 Objetivos y alcance
	1.5 Trabajo del autor
	1.6 Contenido de la documentación

	2 Estado del Arte
	2.1 Síntesis de imagen por computador
	2.1.1 Proceso general: Pipeline gráfica
	2.1.2 Iluminación
	2.1.2.1 Ecuación integral de la radiancia
	2.1.2.2 Trazado de rayos inverso
	Trazado de rayos simple
	Trazado de rayos distribuido
	Métodos de Monte Carlo

	2.1.2.3 Radiosidad
	2.1.2.4 Métodos híbridos
	2.1.2.5 Métodos directos

	2.1.3 Path Tracing
	2.1.3.1 Primera capa: trazado de rayos simple
	2.1.3.2 Segunda capa: cálculo de la iluminación indirecta
	2.1.3.3 Complejidad

	2.2 Computación paralela
	2.2.1 CPUs
	2.2.2 GPUs
	2.2.2.1 GPGPU

	2.2.3 Clústeres
	2.2.4 Paralelización
	2.2.4.1 Memoria compartida
	2.2.4.2 Memoria distribuida
	2.2.4.3 Comunicación
	2.2.4.4 Tecnologías de paralelización
	OpenMP
	MPI
	Hadoop

	2.3 Path tracer sobre un cluster heterogéneo de CPUs y GPUs

	3 Descripción del sistema
	3.1 Hardware
	3.1.1 Computadoras

	3.2 Software
	3.2.1 C++ 11
	3.2.2 OpenMPI

	3.3 Recursos
	3.4 Control y monitorización

	4 Diseño y paralelización del trazador de rayos
	4.1 Trazador de rayos ALEPH
	4.1.1 Descripción
	4.1.2 Algoritmo simplificado

	4.2 Paralelización
	4.2.1 Nivel de unidad de proceso
	4.2.2 Nivel de nodo
	4.2.3 Nivel de cluster
	4.2.3.1 Reparto de trabajo
	Equitativo
	Proporcional a la capacidad
	Cola de trabajos

	4.2.3.2 Puesta en común de resultados

	4.2.4 Implementación

	5 Pruebas y experimentos
	5.1 Escenas
	5.1.1 Objeto simple
	5.1.2 Cornell box
	5.1.3 Atrio del Palacio Sponza

	5.2 Entornos de ejecución
	5.3 Parámetros
	5.4 Pruebas
	5.4.1 Medidas de rendimiento
	5.4.1.1 Eficiencia
	5.4.1.2 Balanceo de carga

	6 Resultados
	6.1 CPU
	6.2 GPU – CPU
	6.3 Cluster homogéneo
	6.3.1 Cola de trabajos

	6.4 Cluster heterogéneo
	6.4.1 Desbalanceado

	6.5 Escenas

	7 Conclusiones y trabajo futuro
	7.1 Cumplimiento de objetivos
	7.2 Problemas e incidencias
	7.3 Valoración del autor
	7.4 Trabajo futuro

	8 Diagrama Temporal
	1 Apéndice: Referencias
	2 Apéndice: Código fuente
	2.1 Clase MultiHostManager
	2.1.1 render/multihostmanager.h
	2.1.2 render/multihoshmanager.cc

	2.2 Otros códigos
	2.2.1 base/math.cc

