
Proyecto Fin de Carrera
Ingeniería en Informática

Comportamiento de un cluster heterogéneo de
CPUs y GPUs para el trazado de rayos

Autor

Daniel Martínez Cucalón

Directores

Francisco José Serón Arbeloa
Juan Antonio Magallón Lacarta

Escuela de Ingeniería y Arquitectura de la Universidad de Zaragoza
2016

2

RESUMEN
El objetivo de este PFC es realizar la adaptación de un trazador de rayos al cálculo en
paralelo sobre varias computadoras conectadas en red y estudiar su comportamiento y el
rendimiento conseguido.

En el texto se describe la motivación del proyecto, que nace de simular de manera
matemática el fenómeno de la iluminación y como es interpretada de forma humana por
medio de la visión.

A continuación, en el capítulo 2, se hace un recorrido por el estado de la tecnología con
respecto a la síntesis de imágenes por computador, con las técnicas más relevantes sobre
la simulación de la iluminación y los trazadores de rayos. En el mismo capítulo, se describen
las tecnologías actuales en cuanto a materia de paralelización, tanto en hardware como en
el software necesario para hacerlo funcionar.

En el capítulo 3, se describe el sistema hardware concreto sobre el que se despliega el
cluster de pruebas, así como las tecnologías con las que se ha desarrollado el proyecto.

En el cuarto capítulo se presenta el sistema ALEPH/FTL, que es el trazador de rayos que se
ha usado para realizar este estudio, haciendo un recorrido por su estructura.

En ese mismo capítulo se encuentra la explicación de como se ha afrontado el diseño de la
adaptación al cálculo en paralelo del software trazador de rayos, y se detalla la
implementación de la solución adoptada. Con respecto a este punto, se añade como
apéndice el código en C++ de la clase que dota al motor de estas características y que es
aportado por el alumno al código del motor ALEPH/FTL.

El siguiente capítulo esta dedicado a la presentación de lo necesario para realizar las
pruebas: escenas, diseño de pruebas, medidas de rendimiento…

El sexto capítulo es una continuación del anterior, ya que su contenido consiste en la
presentación y análisis de las pruebas realizadas.

Por último, se encuentra un capítulo con conclusiones y se indican líneas de trabajo futuro.

3

4

Agradecimientos
A mis padres, Félix y María Carmen, por hacer todo lo que ha estado en su mano para
darme las oportunidades y facilidades para formarme de la mejor manera posible, tanto
como ingeniero como persona.

A Francisco José Serón, por todas las oportunidades, el apoyo, la ayuda aportada en estos
últimos años de la carrera y por haber confiado en mi para este PFC y otros proyectos.
También por haberme hecho ver, desde la primera vez que fui su alumno, que el mundo
universitario no es tan frío y que la excelencia no está reñida con el carácter humano y la
cercanía.

A Juan Antonio Magallón, por su colaboración y dedicación en la puesta en marcha de todo
el cluster, el código del trazador ALEPH, y su evolución FTL, los parches imposibles cuando
no había manera de ver el problema, y por toda su ayuda para la realización técnica del
proyecto.

Al ISAAC, al GIGA, y a los compañeros con los que he compartido laboratorio: Carlos,
Tomás, Manuel, David, Eduardo...; a los otros que aún no habiendo estado en el mismo
laboratorio han sido grandes compañeros durante tantos años de carrera: Andrés, Adrián,
Javier, Jaime, Jorge... y de igual manera a los demás que sin haber compartido tanto tiempo
también me han apoyado en momentos puntuales.

A mis amigos: Cristina, Jorge, Ana Pilar, María, y mi hermana Beatriz, por ayudarme a
superar los momentos difíciles, tanto en el marco académico como en el personal.

A Jessica, por el aguante y la paciencia que tiene cuando hablo de ordenadores y demás
cacharros raros; pero sobre todo por su amistad, su apoyo, su cariño y ayuda en el
momento crítico... y resumiendo, por todos los momentos que hemos compartido desde
hace tanto tiempo.

GRACIAS a todos, con mayúsculas.

5

6

Índice General
1 Introducción..13

1.1 Alcance del documento..13
1.2 Contexto de desarrollo..13
1.3 Motivación del proyecto..13
1.4 Objetivos y alcance..14
1.5 Trabajo del autor..14
1.6 Contenido de la documentación...15

2 Estado del Arte...16
2.1 Síntesis de imagen por computador...16

2.1.1 Proceso general: Pipeline gráfica...16
2.1.2 Iluminación..17

2.1.2.1 Ecuación integral de la radiancia..18
2.1.2.2 Trazado de rayos inverso..19

 Trazado de rayos simple...20
 Trazado de rayos distribuido..20
 Métodos de Monte Carlo..20

2.1.2.3 Radiosidad...21
2.1.2.4 Métodos híbridos..21
2.1.2.5 Métodos directos..22

2.1.3 Path Tracing..22
2.1.3.1 Primera capa: trazado de rayos simple..22
2.1.3.2 Segunda capa: cálculo de la iluminación indirecta...23
2.1.3.3 Complejidad..24

2.2 Computación paralela..25
2.2.1 CPUs...25
2.2.2 GPUs..26

2.2.2.1 GPGPU...27
2.2.3 Clústeres...28
2.2.4 Paralelización..29

2.2.4.1 Memoria compartida..31
2.2.4.2 Memoria distribuida..31
2.2.4.3 Comunicación..32
2.2.4.4 Tecnologías de paralelización...32

 OpenMP..32
 MPI...32
 Hadoop..32

2.3 Path tracer sobre un cluster heterogéneo de CPUs y GPUs..33
3 Descripción del sistema...34

3.1 Hardware...34
3.1.1 Computadoras..34

3.2 Software..35
3.2.1 C++ 11..35
3.2.2 OpenMPI..35

7

3.3 Recursos..36
3.4 Control y monitorización...36

4 Diseño y paralelización del trazador de rayos...37
4.1 Trazador de rayos ALEPH...37

4.1.1 Descripción..37
4.1.2 Algoritmo simplificado...37

4.2 Paralelización..38
4.2.1 Nivel de unidad de proceso...39
4.2.2 Nivel de nodo..39
4.2.3 Nivel de cluster...40

4.2.3.1 Reparto de trabajo...40
 Equitativo..41
 Proporcional a la capacidad..41
 Cola de trabajos...41

4.2.3.2 Puesta en común de resultados...42
4.2.4 Implementación..42

5 Pruebas y experimentos..49
5.1 Escenas..49

5.1.1 Objeto simple..49
5.1.2 Cornell box..50
5.1.3 Atrio del Palacio Sponza..51

5.2 Entornos de ejecución..52
5.3 Parámetros..53
5.4 Pruebas..54

5.4.1 Medidas de rendimiento..54
5.4.1.1 Eficiencia..54
5.4.1.2 Balanceo de carga..55

6 Resultados...56
6.1 CPU..56
6.2 GPU – CPU..56
6.3 Cluster homogéneo..57

6.3.1 Cola de trabajos..59
6.4 Cluster heterogéneo..60

6.4.1 Desbalanceado..61
6.5 Escenas..61

7 Conclusiones y trabajo futuro..63
7.1 Cumplimiento de objetivos..63
7.2 Problemas e incidencias...63
7.3 Valoración del autor...64
7.4 Trabajo futuro...64

8 Diagrama Temporal..66
1 Apéndice: Referencias..67
2 Apéndice: Código fuente...68

2.1 Clase MultiHostManager...68
2.1.1 render/multihostmanager.h..68
2.1.2 render/multihoshmanager.cc..69

8

 MultiHostManager::split...71
 MultiHostManager::queueManager..73
 MultiHostManager::workReceiver..74
 MultiHostManager::render...76
 MultiHostManager::join..79
 MultiHostManager::stats..80

2.2 Otros códigos...83
2.2.1 base/math.cc...83

 spliti(int n,int k)...84

Índice de ilustraciones
 Ilustración 1: Esquema conceptual de un trazador de rayos..20
 Ilustración 2: (a) Método de Monte Carlo, path-tracing. (b) Trazado de rayos distribuido. 21
 Ilustración 3: (a) Modelo físico, photon-tracing. (b) Trazado de rayos inverso simple........23
 Ilustración 4: Imagen sintetizada del objeto simple...49
 Ilustración 5: Imagen sintetizada de la caja de Cornell...50
 Ilustración 6: Imagen sintetizada del atrio del Palacio Sponza..52

Índice de tablas
 Tabla 1: Características de las computadoras del sistema...34
 Tabla 2: Resultados en función del número de núcleos en una misma CPU..........................56
 Tabla 3: Resultados en función de la máquina con el balanceo CPU-GPU.............................57
 Tabla 4: Resultados en función del número de máquinas para la estrategia de raparto
equitativa..58
 Tabla 5: Resultados en función del número de máquinas para la estrategia de reparto por
cola de trabajos con 80 fragmentos..58
 Tabla 6: Resultados en función del número de fragmentos para la estrategia de reparto por
cola de trabajos..59
 Tabla 7: Tiempos por nodo del C. heterogéneo...60
 Tabla 8: Resultados para el cluster heterogéneo en función de la estrategia de reparto....60
 Tabla 9: Tiempos por nodo del C. heterogéneo desbalanceado..61
 Tabla 10: Resultados para el cluster desbalanceado en función de la estrategia de reparto
..61
 Tabla 11: Resultados en función de las escenas para los clusteres homogéneo y
heterogéneo...62

9

10

11

MEMORIA

12

1 Introducción
1.1 Alcance del documento
El presente documento describe el trabajo realizado por el alumno Daniel Martínez Cucalón
como Proyecto de Fin de Carrera, titulado “Comportamiento de un cluster heterogéneo de
CPUs y GPUs para el trazado de rayos”.

Este PFC consiste en la paralelización de un sistema de trazado de rayos, su despliegue en
un cluster de varias computadoras y el análisis de su comportamiento.

1.2 Contexto de desarrollo
El Grupo de Informática Gráfica Avanzada (GIGA) inició su andadura en la Universidad de
Zaragoza a principios de los 90, desde entonces ha sido coordinado por el Dr. Francisco
José Serón, en estos momentos profesor Catedrático de Universidad. El grupo pertenece al
Instituto de Investigación de Ingeniería de Aragón,y está considerado como grupo
consolidado por el Gobierno de Aragón.

Su enfoque inicial se centró en la realización de actividades de I+D+i en las áreas típicas de
la Informática Gráfica tradicional. En el momento actual el grupo está formado por
profesores de universidad estables alrededor de los cuales se aglutinan varios doctorandos
y colaboradores del grupo cuyo número fluctúa a lo largo del tiempo en función de la
financiación de que se dispone en cada momento.

El grupo tiene experiencia probada en la realización de proyectos mediante convocatoria
pública competitiva a nivel regional, nacional e internacional, y ha realizado transferencia
tecnológica a numerosas empresas e instituciones.

La simulación de la interacción de la luz con los materiales para generar imágenes por
ordenador es una de esas áreas típicas en las que el grupo históricamente ha estado
trabajando.

1.3 Motivación del proyecto
Desde hace algún tiempo se viene usando la tecnología informática para simular aspectos y
comportamientos físicos del mundo natural, basándose en modelos matemáticos extraídos
del ámbito científico.

Uno de estos aspectos es la interacción de los rayos de luz sobre los materiales y la
percepción humana que tenemos de este fenómeno a través de la visión.

En el mundo natural, existen fuentes de luz que la irradian en todas las direcciones sobre
los materiales, los cuales, al poseer distintas propiedades, interaccionan con esa radiación

13

bien absorbiéndola calentándose, o bien reflejándola o transmitiéndola, pudiendo a su vez
cambiar sus propiedades como dirección, intensidad u otras. El hecho de reflejar esta
radiación, convierte a su vez a los materiales en fuentes emisoras de luz en todas las
direcciones, interactuando con los materiales del entorno de manera recursiva, y nuestros
ojos, o más bien sus células receptoras (conos y bastones) al encontrarse en el camino de
esa radiación, se ven estimulados por ella y nuestro cerebro lo interpreta como una imagen.
Este comportamiento es el que se pretende simular mediante los trazadores de rayos.

Para comprender la magnitud del problema al que nos enfrentamos, además de tener en
cuenta la recursión generada en los rebotes, sería preciso reparar también en el hecho de
que la radiación puede incidir desde cualquier dirección, lo que es imposible de tratar de
manera computacional, y fuerza a recurrir a la discretización de esas radiaciones y tratarlas
en forma de rayos, de manera que la complejidad y la precisión de la simulación se puede
ajustar de manera infinitesimal, pareciendo claro que a mayor número de rayos e
interacciones sean calculadas, más preciso será el resultado, más costoso será su cálculo y
por ende, más capacidad computacional será necesaria para obtener los resultados en una
cantidad de tiempo menor.

La capacidad de comunicación de computadoras entre sí hace pensar en que problemas
como el citado se pueden abordar en conjunto por un numero de computadoras
coordinadas para resolverlos, además, estas computadoras pueden contar con diferentes
características y capacidades, lo que extiende el problema a la optimización de la
distribución del trabajo y la medida del rendimiento de estos sistemas heterogéneos.

1.4 Objetivos y alcance
El objetivo principal de este PFC es estudiar las posibles ventajas que aporta la capacidad
del cálculo en paralelo distribuido en varias máquinas, sobre el rendimiento y los tiempos
de cálculo de los software de síntesis de imágenes mediante el trazado de rayos.

Indirectamente, el código necesario para la paralelización en varias máquinas escrito para la
realización de este estudio, pasa a formar parte del motor de renderizado que se ha
modificado, y supone una aportación que si bien pudiera no ser definitiva, si que amplía las
posibilidades del desarrollo y la evolución de este motor hacia otros aspectos y
características que inicialmente no estaban contempladas.

1.5 Trabajo del autor
El trabajo del autor para estudiar el comportamiento de un cluster heterogéneo de CPUs y
GPUs para el trazado de rayos ha sido el siguiente:

• Repaso de conocimientos en técnicas de programación paralela e informática gráfica
adquiridas durante el transcurso de la carrera, así como otros conocimientos sobre

14

programación orientada a objetos, administración de sistemas y redes.

• Estudio de la implementación del motor de trazado de rayos ALEPH disponible en el
GIGA, entendiendo su estructura y preparando conocimientos sobre las tecnologías
usadas en el desarrollo de ese motor, en especial el lenguaje de programación C+
+11.

• Elección de las herramientas y bibliotecas a usar para la implementación de la
adaptación del anterior motor al procesamiento en paralelo, así como el
entrenamiento, documentación y pruebas prácticas enfocadas en la adquisición de
conocimientos sobre estas.

• Implementación de la adaptación, con las distintas técnicas de comunicación entre
las unidades de proceso del cluster, del motor de trazado de rayos al cálculo en
paralelo.

• Diseño e implementación de pruebas para evaluar el comportamiento del sistema.

• Medición de resultados y extracción de conclusiones al respecto.

1.6 Contenido de la documentación
Este documento consta de:

• Memoria: que contiene los siguientes apartados:

◦ Introducción: El presente capítulo, donde se detalla el contexto, la motivación y
los objetivos del proyecto.

◦ Estado del arte: Capítulo 2, que contiene una descripción general del estado de
la tecnología con respecto a la síntesis de imagen por computador y al
procesamiento de datos en paralelo.

◦ Descripción, diseño e implementación del trazador de rayos: Capítulos 3 y 4,
donde se describe la arquitectura y las características del sistema mediante el
que se ha llevado a cabo este estudio. En el capítulo 4 se detalla como se ha
implementado la adaptación del motor de trazado de rayos al cálculo en paralelo.

◦ Pruebas y resultados: Capítulos 5 y 6, con descripción y resultados de las
pruebas realizadas para la validación de la solución adoptada, así como el análisis
de los resultados obtenidos.

◦ Conclusiones: Capítulo final con las conclusiones y valoraciones finales.

15

2 Estado del Arte
2.1 Síntesis de imagen por computador
2.1.1 Proceso general: Pipeline gráfica
La síntesis de imágenes por computador es un proceso que consta de varias etapas,
partiendo de la definición de la geometría, hasta llegar a la propia visualización de la
imagen.

Como etapa inicial de este proceso, se lleva a cabo el modelado de la escena, definiendo la
geometría de cada objeto.

Una vez definida la geometría de los objetos con respecto a unas coordenadas locales, se
les aplica a estos unas transformaciones tridimensionales (posicionamiento, escala), con lo
cual se obtienen las coordenadas globales del mundo, en esta etapa se posicionan las
fuentes de luz, cuales poseen también unas propiedades asociadas.

Como las caras ocultas de los objetos no formarán parte de la imagen sintetizada, en este
punto del proceso se eliminan de forma independiente para cada objeto.

A continuación, se procede al cálculo de la iluminación de la escena, que según los métodos
empleados, se realizará de una manera o de otra, y que al ser especialmente relevante para
los objetivos de este PFC se detallará en otras secciones más extensas que esta
introducción.

Con la iluminación de la escena calculada, se establece un sistema de referencia visual,
donde se define la posición del observador y las características ópticas de la cámara.
Teniendo estas propiedades definidas, se calcula el volumen de visualización (cono de
visión), y se descartan todos los polígonos, o las partes de ellos, que no están contenidos
en este volumen.

Después se hace una proyección de la escena al espacio en dos dimensiones de la pantalla
plana y con ello se conoce la relación de las coordenadas en el espacio plano con las
globales de la escena, pertenecientes al espacio tridimensional.

Como proceso integrador de todas las etapas anteriores, se llega a la etapa de
rasterización, donde se triangularizan las mallas de los objetos para asegurarse de que
todos los triángulos son planos, se eliminan las superficies ocultas (cuando se encuentran
otros objetos entre el plano de la imagen y las superficies), y se calcula el “color shading”
para cada uno de los píxeles de la pantalla.

El color shading consiste en calcular, conociendo el modelo de iluminación y las
propiedades del triángulo al que corresponde un píxel, el color para éste, así pues, las

16

operaciones de sombreado, coloreado y testeado, son necesarias debido a que según con
que técnicas de iluminación no se calculan las intensidades para todos y cada uno de los
píxeles del plano de la imagen, siendo necesaria la aplicación de tratamientos posteriores al
propio cálculo de la iluminación, como pudiera ser la interpolación entre vértices, para los
que sí que se ha realizado ese cálculo de manera real.

Al buscar una imagen calculada de la manera más precisa posible, para la realización de
este PFC se ha enfocado en técnicas de iluminación completas en las que se calcula esta
para todos y cada uno de los puntos de la imagen, no solo en los vértices de los triángulos,
sin recurrir a estas técnicas de interpolación, a cambio, evidentemente, de un mayor coste
computacional.

Por último, y también como parte resultante de todo el proceso descrito anteriormente, se
realiza la propia visualización de la imagen.

2.1.2 Iluminación
En el proceso descrito en el punto anterior, teniendo una escena definida, y habiendo
elegido un punto de vista desde el cual observarla, el problema de la síntesis de la imagen
se reduce a conocer como están iluminados los puntos visibles de esta.

Así pues, uno de los aspectos que más relevancia tiene dentro del cálculo de imágenes por
computador, sin tener en cuenta temas artísticos, como podría ser el propio modelado de
las formas, son los modelos de iluminación, pues la simulación de esta, con todos los
detalles que engloba, es la que va a dar como resultado una imagen, que será más o menos
comparable a su equivalente en el mundo físico dependiendo de lo fidedigno que resulte el
modelo de iluminación.

Un modelo de iluminación define analíticamente la interacción de la luz con los materiales
de la escena. Para cada punto de la escena se tiene el equivalente a dos fuentes de
iluminación, la directa, proveniente de las fuentes de luz, y la indirecta, que resulta de la
reflejada por otros elementos de la escena.

Los materiales que componen los objetos de la escena poseen distintas propiedades, que
les transfieren distintos comportamientos ópticos, como la reflexión, compuesta por las
componentes especular, difusa y ambiental, que definen de que manera la luz es reflejada
al llegar al material; o la refracción, que determina como cambia la dirección de la luz al
transmitirse hacia el interior de un material que posea cierta transparencia. También se
puede entender como una propiedad de este estilo la capacidad que algunos materiales
tienen en la naturaleza, de brillar (emitir radiación lumínica por si mismo) cuando son
excitados por una corriente eléctrica, calor, o radiación, y en tal caso, estos objetos
pasarían a ser fuentes de luz. Este comportamiento se modela a través de la BDRF
(Bidirectional Reflectance Distribution Function) [Hal88].

17

Conociendo el comportamiento de las superficies (dado por su BDRF) y los modelos
matemáticos de las fuentes de luz, para llegar al objetivo de calcular la iluminación de la
escena, es necesario aplicar algún modelo de transporte de luz, los cuales están basados
en la ecuación integral de la radiancia.

2.1.2.1Ecuación integral de la radiancia
El proceso de iluminación de la escena puede ser descrito con la Ecuación Integral de la
Radiancia, que simplificada para tener en cuenta únicamente la reflexión toma la siguiente
forma:

donde:

• L(P , d⃗) es la radiancia total saliente de un punto P , en una dirección
determinada d⃗ .

• Le(P , d⃗) es la radiancia emitida por la superficie desde el punto P de manera
independiente al resto del entorno.

• Lr(P , d⃗) es la radiancia proveniente del resto del entorno y que es reflejada desde
el punto P en la dirección d⃗ .

La radiancia reflejada por la superficie depende de la radiancia total que incide sobre el
punto P , saliendo desde todos los puntos de todas las superficies que componen todos
los objetos de la escena; de las propiedades ópticas del material y la superficie donde está
situado el punto P ; y de la posición relativa de cada elemento de la escena respecto al
punto P , ya que puede darse el caso de que unos puntos estén ocultos con respecto a
otros. La radiancia reflejada Lr(P , d⃗) se puede calcular mediante la integral:

donde:

• S representa el conjunto de superficies de la escena.

• Li(P , d⃗i) es la radiancia que incide sobre el punto P en una dirección
determinada d⃗ .

• ρ(P ,d⃗ , d⃗ i) es la reflectividad bidireccional de la superficie, la proporción de luz que
llega desde la dirección d⃗ i y es reflejada en una dirección d⃗ .

• n⃗ es la normal a la superficie en el punto P .

18

L(P , d⃗)=Le(P , d⃗)+Lr (P , d⃗)

Lr(P , d⃗)=∫
S

ρ(P , d⃗ , d⃗ i)Li(P , d⃗i)(n⃗⋅d⃗ i)dS

Lr(P , d⃗)=∫
S

ρ(P , d⃗ , d⃗ i)h(P , P')L(P ' , d⃗ i)(n⃗⋅⃗d i)dS

Entonces, la ecuación integral de la radiancia puede expresarse como:

A partir de la ecuación anterior, para cada punto de la escena es necesario determinar la
integral del segundo miembro, que a su vez depende del valor de la función en otro punto
del dominio. Además se debe de determinar la ocultación entre el punto P y cada uno de
los puntos P’ pertenecientes al dominio de integración.

Se puede utilizar como dominio de integración, en vez de las superficies de la escena, el
ángulo sólido Ωi que comprende a todas las posibles direcciones de incidencia.
Normalmente este ángulo comprenderá toda la semiesfera de incidencia, o bien, si se
incluyen en la ecuación los efectos de transmisión, la esfera completa. Entonces, la
ecuación tomará la siguiente forma:

Entonces, la variable de integración pasa a ser d⃗ i , y es necesario determinar que punto
P’ es visible en esa dirección.

Esta ecuación refleja todos los posibles comportamientos de la luz con la materia: difusa-
difusa, difusa-especular, especular-difusa, y especular-especular.

La integración completa y exacta de la ecuación resulta inviable en tiempo necesario de
cálculo y necesidades de almacenamiento, y han surgido varios algoritmos con el objetivo
de abordarla basándose en introducir ciertas simplificaciones.

2.1.2.2Trazado de rayos inverso
Esta técnica para el cálculo de la iluminación global se basa en las leyes de la óptica
geométrica.

Los trazadores de rayos trabajan disparando rayos desde el punto de vista hacia la escena a
través del plano de la imagen a sintetizar, que al incidir sobre las superficies de los objetos
que la componen, estos se vuelven a lanzar de manera desde ese punto de incidencia hasta
un nivel arbitrario de profundidad, con esto se consiguen simular los efectos de reflexión y
refracción.

Los cálculos con estos métodos dependen del punto de vista del observador, ya que las
trayectorias de los rayos tiene como origen este mismo punto.

Aunque el cálculo de la iluminación directa se realiza de manera similar en todos, el cálculo
de la iluminación indirecta permite distinguir entre distintos métodos.

19

L(P , d⃗)=Le(P , d⃗)+ ∫
P '∈S

ρ(P , d⃗ , d⃗ i)h(P , P ')L(P ' , d⃗ i)(n⃗⋅d⃗ i)dS

L(P , d⃗)=Le(P , d⃗)+ ∫
d⃗i∈Ωi

ρ(P , d⃗ , d⃗i)L(P ' , d⃗ i)(n⃗⋅d⃗ i)dΩi

Trazado de rayos simple
Estos métodos únicamente tienen en cuenta uno de los comportamientos de la iluminación
indirecta, el especular-especular y permiten capturar la iluminación directa especular y
difusa, pero no las interacciones de tipo difuso-difuso o especular-difuso entre objetos, en
los que se recibe luz de todas las direcciones.

Trazado de rayos distribuido
[CPC84] Con respecto a los anteriores, estos métodos añaden al cálculo simple el cálculo
de toda la iluminación, tanto directa como indirecta, mediante la integración local de la
ecuación de iluminación en un punto de la superficie.

Son muy costosos en tiempo de cálculo, ya en cada rebote de un rayo se debe evaluar una
integral y por tanto, la complejidad de este cálculo crece de manera exponencial.

Métodos de Monte Carlo
Buscando reducir el elevado coste de los métodos anteriores, aparecieron métodos que
tratan de resolver la ecuación integral de la radiancia de forma global a lo largo del camino
de un rayo, integrando todos los rebotes en el mismo cálculo.

A este grupo pertenecen los algoritmos de path-tracing, como el usado por el motor
elegido para realizar este estudio.

20

Ilustración 1: Esquema conceptual de un trazador
de rayos

2.1.2.3Radiosidad
Radiosidad [CGIB86] es una técnica de iluminación global que trata de resolver el problema
de la síntesis de imágenes de la forma más real, basándose en la teoría física de la
transferencia de calor para simular la iluminación indirecta en escenas con superficies
difusas.

La teoría de la transferencia de calor describe a la radiación como la transferencia de
energía desde una superficie cuando esta ha sido excitada térmicamente. Esto incluye tanto
a las superficies emisoras de energía, como las fuentes de luz, como a las que reciben
energía de otras superficies y por lo tanto tienen energía para transferir.

Estos métodos, también denominados métodos de elementos de contorno, obtienen la
interacción difusa-difusa y los resultados obtenidos son independientes del punto de vista
del observador.

2.1.2.4Métodos híbridos
Existen métodos de cálculo de iluminación que buscan integrar lo mejor de los dos ya
descritos anteriormente, resultando en los llamados métodos híbridos o de doble pasada.

Estos métodos calculan la iluminación difusa haciendo uso de un algoritmo de radiosidad y
adicionalmente se realiza una pasada de trazado de rayos simplificada, con lo que
consiguen calcular las interacciones difusa-difusa y especular-especular, pero no obtienen
los resultados de los otros dos modos de interacción de la luz con la materia.

21

Ilustración 2: (a) Método de Monte Carlo, path-tracing. (b) Trazado de rayos
distribuido.

2.1.2.5Métodos directos
Otros métodos modelan la luz desde el punto de vista de la naturaleza cuántica de la luz y
simular el comportamiento de los fotones que viajan desde las fuentes de luz e
interaccionan con los materiales de los que se componen los objetos.

Los métodos mas representativos de este tipo son los de mapas de fotones: La iluminación
se distribuye sobre los objetos en función de la cantidad de fotones que llegan a cada
superficie y se almacena en los llamados mapas de fotones [Jen01].

2.1.3 Path Tracing
Los algoritmos de path-tracing, como el utilizado como base de este estudio, pueden verse
como un trazador de rayos simple, al que se le han añadido capacidades de un trazador de
rayos distribuido, pero de manera simplificada, por lo que se puede considerar que estos
trazadores tienen varias capas.

Estos algoritmos integran sobre toda la iluminancia que llega a cada punto de la superficie
de un objeto y a tal resultado se le aplica una función de reflectancia (BRDF), que
determina cuanta de esta iluminación llega a la cámara, y que por tanto, forma parte de la
imagen sintetizada.

Este tipo de trazado de rayos aporta algunas ventajas sobre la simulación mediante
trazadores de rayos tradicionales, consiguiendo que la iluminación global sea más fiel a la
realidad, simulando efectos como las sombras suaves o la iluminación indirecta, entre
otros, de manera natural, al contrario de lo que ocurre con los trazadores de rayos
tradicionales, donde estos efectos tienen que ser añadidos específicamente.

Si se cuenta con modelos exactos y precisos de las fuentes de luz, óptica de la cámara, de
las superficies y de las propiedades de los materiales, este tipo de simuladores pueden
sintetizar imágenes prácticamente indistinguibles de las fotografías, y de hecho, se usan
para generar imágenes de referencia con las que comparar las generadas por otros
algoritmos de renderizado.

2.1.3.1Primera capa: trazado de rayos simple
La finalidad de un software trazador de rayos es simular la interacción de la luz con los
materiales de la escena que se trata de sintetizar, dando como resultado una imagen.

Si se descompone el plano donde se va a sintetizar la imagen en puntos (o píxeles), se
puede encontrar una correspondencia de coordenadas entre el mundo en tres dimensiones
de la escena y el plano en dos dimensiones de la imagen interpretada por nuestro cerebro,
con lo que se pueden trazar líneas rectas entre esas correspondencias, estas líneas
constituyen el camino de lo que llamaremos rayos.

22

En la naturaleza, las cámaras, o nuestros ojos, se ven afectadas por la radiación lumínica
que proviene del exterior, directamente de las fuentes de luz, o reflejada por los objetos
del entorno, esta radiación es la que se modela simplificándola en forma de rayos.

Sin embargo, sintetizar imágenes siguiendo cada rayo desde la fuente carece de sentido
debido a que gran parte de los rayos calculados no incidirían en la cámara, y por tanto no
formarían parte de la imagen. En un algoritmo típico de trazado de rayos, estos se
“disparan” a través del plano de la imagen, en sentido contrario a como lo harían en la
naturaleza, por lo que estos métodos se dice que están basados en el trazado de rayos
inverso.

Para cada rayo que se dispara, se calculan las incidencias de estos con los objetos, y se
determina cuanta luz, proveniente del resto de la escena, incide en el punto.

2.1.3.2Segunda capa: cálculo de la iluminación indirecta
Una vez calculada la iluminación directa, mediante una función probabilística basada en el
método de Monte Carlo, se calcula aleatoriamente hacia que dirección disparar el rayo
reflejado desde el punto de incidencia con las superficies de los objetos de la escena, y se
determina si estos llegan al vacío, a otra superficie (que a su vez reflejaría un nuevo rayo
reflejado, hasta un nivel arbitrario de profundidad), o a una fuente de luz.

El método de Monte Carlo es un método estadístico numérico, que se usa para aproximar
expresiones matemáticas complejas muy costosas de evaluar con exactitud. Consiste en
resolver un problema mediante procesos aleatorios, cuyo comportamiento simula un

23

Ilustración 3: (a) Modelo físico, photon-tracing. (b) Trazado de rayos inverso simple.

fenómeno real gobernado por una distribución de probabilidad o para realizar cálculos
costosos, como por ejemplo, en el caso que nos interesa aplicado a este proyecto, evaluar
una integral. El uso de estos métodos simplifica el cálculo de las trayectorias de los rayos
de luz, consiguiendo que las muestras seleccionadas de manera aleatoria por este método
tengan más relevancia en el resultado del cálculo final. La función probabilística usada se
determina por las propiedades ópticas de los materiales y las superficies de los objetos de
la escena.

Este proceso se repite recursivamente hasta un nivel arbitrario de profundidad, y la
iluminancia resultante del píxel por el que se ha disparado el rayo será la suma de las
iluminancias calculadas en los rebotes, multiplicadas en cada nivel por un factor menor que
la unidad, con lo que se consigue calcular la pérdida de energía en cada rebote.

2.1.3.3Complejidad
Debido a la naturaleza discreta de las computadoras, se hace imposible de abordar el
problema de evaluar completamente una integral de manera exacta, por lo que se debe de
discretizar el espacio.

En el caso de la radiación lumínica, esto se consigue tomando muestras en forma de rayos,
y es esta la primera de las simplificaciones que se van a llevar a cabo en este tipo de
métodos para el cálculo de la iluminación. Evidentemente, cuanto más cerca se esté de
calcular estas muestras de manera infinitesimal, más cerca se estará del resultado exacto, y
por tanto de la evaluación completa de la integral.

Entonces, como una primera base para conocer la magnitud del problema, se tiene el
tamaño o resolución de la imagen a generar, ya que, como se ha explicado en puntos
anteriores, estos trazadores de rayos disparan los rayos a través de los píxeles de la
imagen. Con la profundidad o nivel se definirá cual es el número de rebotes que se van a
calcular para cada rayo, este nivel es arbitrario, de la misma manera que el tamaño de la
imagen, pero también se debe de tener en cuenta al estudiar la cantidad de operaciones
necesarias para el cálculo de la imagen.

Cada vez que uno de los rayos incide en una superficie, habría que conocer la suma infinita
de toda la iluminación, teniendo como dominio de integración todo el hemisferio exterior
(recordemos que el punto está situado en una superficie) alrededor del punto, y por las
mismas razones descritas anteriormente, esto resulta computacionalmente inabordable. La
solución adoptada aquí por los trazadores de rayos distribuidos es, de igual manera que a
la hora de simplificar la radiación, muestrear de manera discreta sobre el hemisferio, lo
cual, aunque simplifica el cálculo, no lo hace de manera eficiente, ya que al distribuir las
muestras sobre el dominio integrador de manera regular no necesariamente todas esas
muestras tendrán el mismo peso ni relevancia en el resultado del cálculo.

24

En cambio, los algoritmos de path-tracing encaran este problema haciendo uso de una
función probabilística para calcular hacia dónde trazar un único rayo rebotado, de manera
que sea más probable que la iluminancia que llega de esa dirección sea la más relevante en
el cálculo final, haciendo que el número necesario de rayos a trazar para obtener el mismo
resultado se vea disminuido considerablemente.

En ambos casos, a mayor número de muestras, mayor precisión del cálculo, pero si se
comparan, a mismo número de muestras en ambos métodos, estadísticamente es más
probable que el de path-tracing sea más preciso, ya que estas muestras han sido
estadísticamente mejor elegidas.

Debido a esta manera probabilística de calcular los rayos reflejados, cada vez que se lanza
un mismo rayo el resultado no es exactamente el mismo, por lo que repetir el cálculo y
realizar el cálculo de la media de resultados, nos dará un resultado más preciso, con lo que
este número de repeticiones también será una magnitud a tener en cuenta para hacerse a la
idea del tamaño del cálculo.

Todavía, después de aplicar estas simplificaciones, la cantidad de operaciones a realizar es
enorme, y resulta lógico estudiar formas de tratar ya directamente este cálculo, ya que
estos cálculos aunque abordables, siguen teniendo un coste en tiempo elevado. Sin
embargo, las computadoras actuales reúnen una serie de características que permiten
recurrir a ciertas estrategias para obtener el resultado del cálculo en una cantidad de
tiempo menor, entre ellas, la capacidad de realizar varios cálculos de manera concurrente.

2.2 Computación paralela
2.2.1 CPUs
La unidad central de procesamiento o CPU (del inglés: Central Processing Unit), hace
referencia al elemento de un computador que interpreta las instrucciones y procesa los
datos de los programas.

Esencialmente, están constituidas por: registros, unidad de control, unidad aritmético-
lógica, y posiblemente una unidad de cálculo en coma flotante (conocida como
coprocesador). Aunque las arquitecturas de las CPUs actuales tienden a ser mucho más
complejas, ya que han sufrido una de las evoluciones más impresionantes y rápidas en la
historia de la tecnología.

Los microprocesadores actuales poseen uno o varios niveles de la conocida como memoria
caché, que se usa como almacén intermedio entre las CPUs y la memoria principal del
sistema, y es mucho más rápida que esta, aunque más pequeña, de hecho, a mayor nivel:
mayor tamaño, menor velocidad, y mayor tiempo de acceso. Por ello, se suele usar para
que la CPU tenga al alcance directamente ciertos datos que probablemente vaya a usar con

25

más asiduidad o de forma más inmediata, priorizando por niveles.

Las subunidades que componen los procesadores realizan cálculos a nivel de palabra, es
decir, un conjunto de bits a los que se les aplica la misma operación. Entonces el nivel más
bajo de paralelización simplemente lo define el ancho de palabra, o número de bits que la
componen. Actualmente el tamaño de palabra más común se trata del de 64 bits, aunque
históricamente se han usado palabras de 32, 16, 8 y las primeras unidades de proceso lo
hacían con palabras de 4 bits.

Aprovechando la independencia existente entre las distintas subunidades que componen los
microprocesadores, los hilos de ejecución se diseñan conforme al concepto de
segmentación. Esta técnica consiste en que las instrucciones se descomponen en varias
etapas, en cada una de las cuales cada instrucción hace un uso exclusivo de una subunidad
dejando libres las restantes, pudiendo ser utilizadas por otras etapas de otras instrucciones.
Esto supone otro nivel de paralelización, pues se puede ver que, aunque es cierto que no
acaban a la vez, hay varias instrucciones ejecutándose de manera concurrente. Este tipo de
paralelismo viene dado por la propia arquitectura del procesador, y los compiladores
recientes tienen la capacidad de aplicar ciertas técnicas para optimizar el código máquina
que generan, aprovechando las posibilidades de la arquitectura para la que están
generando ese código. A este nivel se puede encontrar todo un mundo, perteneciente al
ámbito de la arquitectura y diseño de computadores, que mezcla a la vez hardware y
software de bajo nivel, con mucho por explorar y de gran interés, pero tan extenso que se
escapa de los límites de este estudio.

Los microprocesadores de las computadoras modernas integran varios núcleos, por lo que
en realidad se trata de multiprocesadores, y por tanto, ya presentan cierta capacidad de
realizar cálculos en paralelo, compartiendo la memoria principal del sistema, por lo tanto
presentan un paralelismo de memoria compartida, si bien habría que tener en cuenta la
coherencia de caches entre unidades.

Una solo núcleo también puede tener la capacidad de ejecutar múltiples hilos de ejecución,
esta característica, conocida como multithreading simultáneo, o mediante la denominación
comercial de Intel, Hyperthreading, no se trata de varios hilos de cálculo completamente
independientes, ya que, aunque virtualmente se tengan varios procesadores, en este caso la
totalidad de la unidad de proceso no se encuentra físicamente replicada de forma completa
sino solo partes específicas de esta.

2.2.2 GPUs
La unidad de proceso gráfico o GPU (Graphics Processor Unit) es un coprocesador dedicado
al procesamiento de gráficos u operaciones de coma flotante, en principio usado para
aligerar la carga de trabajo del procesador central de un sistema en aplicaciones como

26

videojuegos. Al liberar de esta carga a la CPU, la capacidad de esta puede dedicarse a otro
tipo de cálculos simultáneos de utilidad para esas aplicaciones, como cálculos de la
mecánica o la inteligencia artificial en el mundo del videojuego.

Las GPUs actuales son muy potentes, y pueden llegar a frecuencias de reloj comparables a
las alcanzadas por las CPUs, aunque no es reemplazable una por otra, debido a la alta
especialización de las GPUs. De hecho, esta especialización es la razón de su alta potencia,
ya que al estar pensadas para realizar una tarea en concreto, es posible dedicar más
espacio físico, en el silicio, para componentes con los que llevar a cabo esa tarea de manera
más eficiente.

Las aplicaciones gráficas conllevan un alto grado de paralelismo inherente, al ser sus
unidades fundamentales de cálculo completamente independientes, por lo que las GPUs
suelen consistir en cientos de procesadores shader unificados, que son capaces de actuar
como vertex shaders, pixel shaders, o fragment shaders. Adicionalmente, en las GPUs se
encuentra una cantidad de memoria RAM usada por las propias unidades de cálculo.

En el pipeline gráfico, los vertex shaders tendrían el papel de calcular las operaciones que
se deben aplicar a los vértices de los triángulos que componen los objetos, y una vez
aplicado esto y hecha la traslación a píxeles, los pixel shaders se encargan de calcular
texturas, iluminación, etc., también es en esta etapa cuando se aplican efectos como el
antialiasing o efectos ópticos propios de la lente de la cámara sintética. Una vez realizado,
se almacena temporalmente en la caché, desde la cual otras unidades, llamadas ROP,
preparan los píxeles para su visualización.

Debido a las diferentes arquitecturas de GPUs, en un inicio estas se programaban en un
lenguaje ensamblador específico para cada arquitectura, más tarde la tecnología evolucionó
creando APIs específicas para gráficos, de las cuales cabe destacar el estándar abierto
OpenGL, o la biblioteca propietaria DirectX.

2.2.2.1GPGPU
Con el objetivo de aprovechar la potencia de cálculo de las GPUs para realizar cálculos
fuera del ámbito de los gráficos, nace el concepto de la computación de propósito general
en unidades de proceso gráfico, o GPGPU (del inglés: General-Purpose Computing on
Graphics Processing Units).

Las características especiales de cálculo de las GPUs, tales como la especialización en coma
flotante, o la manera masivamente paralela de trabajar, las hacen idóneas, además que para
su utilización en la generación de gráficos, para los cálculos científicos en diversos campos,
como por ejemplo la simulación.

Precisamente, debido a estas características, los algoritmos se deben de programar

27

pensando en su ejecución en estos sistemas, y para ello se han creado ciertos lenguajes o
extensiones de lenguajes ya existentes, como por ejemplo y la más extendida, CUDA, que
es una extensión para el lenguaje C, diseñada para codificar programas con cálculos de
propósito general para las GPUs de nVidia. AMD (antes ATI), creó su propia versión de esta
tecnología y la denominó Close to Metal.

También en este aspecto habría que nombrar el lenguaje e interfaz, OpenCL, que persigue
la creación de una tecnología con la que ser capaz de codificar programas paralelos de
manera independiente a la arquitectura de las máquinas donde se ejecuten, pudiendo
mezclar CPUs y GPUs de diversas arquitecturas, independientemente de que se traten de
un fabricante u otro.

2.2.3 Clústeres
Las unidades de cálculo, que se han descrito en puntos anteriores, unidas a una memoria
principal, unidades de almacenamiento, y capacidad de entrada/salida consisten una
computadora. A su vez estas computadoras, dotadas con capacidad de comunicación en
red, pueden agruparse para formar un grupo de computadoras interconectadas, que
programadas y coordinadas de la manera oportuna forman un cluster. El papel de cada
computadora en una formación de este tipo recibe el nombre de nodo.

La agrupación de este modo, permite crear sistemas con características que no serían que
una computadora por separado no sería capaz de proveer, habitualmente, estas
características son las de: alto rendimiento, alta disponibilidad y alta eficiencia.

Mientras que las características relativas a la eficiencia y rendimiento del sistema hacen
referencia a las capacidades que tiene para realizar cálculos en el menor tiempo posible, la
disponibilidad denomina a la capacidad de hacer frente a fallos, ya que por ejemplo, el fallo
de uno de estos nodos no comprometería el funcionamiento del sistema y este seguiría
operativo apoyándose en el funcionamiento del resto de nodos.

Adicionalmente a los nodos, un cluster de computadoras no es nada sin una buena red de
interconexión, un almacenamiento, y un middleware.

Con respecto a la red de interconexión, ésta directamente puede tratarse desde una red
ethernet básica, hasta soluciones más avanzadas tecnológicamente, como infiniband o
mirinet. Evidentemente, cuanto más ancho de banda y menos latencia tenga la red, menos
impacto negativo tendrá en el rendimiento del sistema.

El almacenamiento es un tema crítico si la finalidad del cluster es el análisis o la generación
de gran cantidad de datos. Existen sistemas de ficheros específicos para su uso en
clústeres, como GlusterFS, o LUSTRE, hasta soluciones más avanzadas, pero que ya
suponen un cluster en sí únicamente para el servicio de almacenamiento, como las basadas

28

en Ceph. Los sistemas de ficheros desplegados en un cluster suelen tratarse de sistemas de
ficheros distribuidos, y algunos de los middleware o frameworks para la computación
masiva se aprovechan de esta característica analizando la localidad de los datos.

El middleware es una pieza de software que proporciona la capacidad de ver a un cluster
como una máquina completa, en vez de como varias máquinas independientes, aunque la
realidad física sea esa. Este software se encarga de balancear la carga entre nodos,
migración de procesos, gestión de colas de trabajo, y la asignación de prioridades a
procesos, entre otras acciones.

Se puede hacer una distinción en cuanto a estos sistemas, ya que inicialmente se buscaba
realmente dar la imagen de un sistema operativo único, con un kernel distribuido, ejemplos
de esto podrían ser OpenSSI, u OpenMosix.

Sin embargo, la tendencia actual es dotar a los nodos de capacidad de cálculo en paralelo,
aun sin perder su sistema operativo local, soluciones de este tipo son las que proporcionan,
por ejemplo, los proyectos Apache Hadoop o Condor. También es posible que una forma
básica de middleware esté en el propio algoritmo de cálculo, y no tener que recurrir a
soluciones a nivel de sistema, como por ejemplo haciendo uso de técnicas de paso de
mensajes.

2.2.4 Paralelización
La idea básica detrás del concepto de paralelización de algoritmos es la realización de
varios cálculos de manera concurrente. No obstante, hay que tener en cuenta varios
aspectos y consideraciones a la hora de paralelizar los cálculos, ya que aunque la idea es
sencilla, en la práctica se encuentran problemas debido a la propia arquitectura de memoria
de los sistemas capaces de realizar estos cálculos en paralelo, las dependencias de los
resultados, la localidad de los datos, o la propia capacidad de paralelización del algoritmo,
entre otros, que hacen que la paralelización en sí misma sea otro campo más a estudiar e
investigar.

Partimos de la base de que un hilo de ejecución hardware, únicamente se aprovecha en su
totalidad si está realizando cálculo activamente y no esperando, el tiempo desaprovechado
decimos que es tiempo ocioso. Esta afirmación de base que resulta tan trivial en el caso de
una ejecución secuencial, no es tan evidente en el ámbito de la computación paralela,
aunque un ejemplo nos permitirá visualizar este hecho: si tenemos dos unidades de cálculo,
estaremos aprovechando totalmente la capacidad de cálculo cuando ambas unidades estén
realizando cálculos activamente, ya que si una de ellas sólo estuviera realizando cálculos la
mitad del tiempo, la carga de trabajo recaería únicamente sobre la otra unidad,
desperdiciando “un cuarto” de la capacidad total de cálculo, por supuesto este ejemplo es
extrapolable a N unidades de cómputo.

29

El uso del entrecomillado en el ejemplo anterior no es casual, ya que la teoría nos marca
unos límites de rendimiento. Parece claro que lo ideal sería que la aceleración conseguida
por la paralelización fuese la lineal, es decir, que duplicar el número de unidades de
procesamiento reduzca el tiempo de procesado a la mitad y duplicarlo una segunda vez lo
reduciría a la cuarta parte. Sin embargo muy pocos algoritmos logran esa aceleración ideal,
la mayoría aceleran de manera lineal para un número pequeño de unidades de proceso y
pasa a ser constante para un número más elevado de unidades.

Este fenómeno queda plasmado en la teoría por la ley de Amdahl, que establece:

“La mejora obtenida en el rendimiento de un sistema debido a la alteración de
uno de sus componentes está limitada por la fracción de tiempo que se utiliza
dicho componente.” [Amd67]

Y se aplica particularmente al caso de la paralelización debido a que existen secciones de
los algoritmos que son paralelizables y otras que no lo son, las cuales necesariamente han
de ser secuenciales, entonces, aunque se consiguiera reducir el tiempo de las secciones
paralelizables de manera infinita (tiempo de ejecución nulo), el límite lo marcaría el tiempo
necesario para calcular las secciones secuenciales.

Formalmente, si α es la fracción de tiempo que un algoritmo invierte en secciones no
paralelizables, y P el número de unidades de proceso, tenemos que la máxima
aceleración alcanzable viene dada por:

S=
1
α =lim

P→∞

1
1−α

P
+α

Es interesante recalcar el hecho de que la paralelización se puede presentar en varios
niveles:

• Paralelización a nivel de datos: aplicar el mismo algoritmo a fragmentos del total de
datos, actuando cada unidad de proceso sobre un fragmento diferente.

• Paralelización a nivel de tareas: aplicar distintos algoritmos al total de los datos,
donde cada unidad de proceso realiza un cálculo diferente.

• Paralelización a nivel de instrucción: haciendo uso de la segmentación de
instrucciones apoyada en la independencia que poseen las distintas subunidades que
componen las unidades de proceso.

• Paralelización a nivel de bit: ampliando el tamaño de palabra con el que trabaja una
unidad de proceso.

El paralelismo conseguido tanto a nivel de instrucción como a nivel de bit vienen

30

determinados por la arquitectura y el diseño de cada unidad de proceso, y por tanto
cambian con la máquina, en cambio, el paralelismo a los otros dos niveles lo define el
propio algoritmo a afrontar. La forma de tratar esos tipos de paralelismo es diferente y hay
que estudiar que características posee el problema a solucionar de manera específica, ya
que resulta imposible establecer soluciones globales que funcionen universalmente para
todos los algoritmos. Aunque se describirá en una sección dedicada, se puede precisar que
el algoritmo usado para llevar a cabo este estudio, posee un paralelismo a nivel de datos.

Existe una distinción clara entre las organizaciones de memoria usadas por los sistemas con
capacidad de procesamiento en paralelo: en un lado el uso de un espacio de
direccionamiento común, y en el otro, uno privado a cada unidad de proceso. Esta distinción
fuerza también a tener en cuenta la capacidad de comunicación entre estas, ya sea para
obtener los datos de entrada para los cálculos, o bien para el almacenamiento de los
resultados.

2.2.4.1Memoria compartida
En los sistemas de memoria compartida, cada unidad de proceso tiene acceso a toda la
memoria, ya que cuentan con un espacio de direccionamiento compartido, común a todas
las unidades.

Físicamente, esta memoria puede estar centralizada o repartida (distribuida) entre las
unidades de proceso.

Las grandes ventajas que aporta esta arquitectura son la simplicidad de las
implementaciones de los algoritmos que hacen uso de ellas, y que no se hace necesario
especificar en el código la comunicación para el traspaso de datos entre unidades de
proceso, de hecho, en el caso de arquitecturas con acceso a una única memoria física, esa
comunicación es inexistente. En cambio tiene una serie de inconvenientes, como podría ser
la coherencia de caches, en el caso de la memoria compartida-distribuida, y sobre todo en
la limitada escalabilidad de ambos sistemas.

2.2.4.2Memoria distribuida
Las unidades de proceso que forman parte de los sistemas basados en memoria distribuida
tienen su propia memoria local.

Para que una unidad de proceso pueda operar con datos que otra unidad tiene en su
memoria local, es necesaria una transmisión de esta información de una a otra, ya que no
tienen acceso a la misma memoria, y este aspecto es uno de los inconvenientes de esta
arquitectura. En cambio, este sistema ofrece una escalabilidad mucho mayor, que no sería
posible desde el enfoque de la arquitectura de memoria compartida.

31

2.2.4.3Comunicación
Necesariamente, las unidades de proceso que llevan a cabo un cálculo en paralelo se tienen
que comunicar de algún modo, pues necesitan o bien traspasar datos de una unidad a otra,
si estas no comparten un direccionamiento común, o en el caso de las arquitecturas de
memoria compartida para indicar a otra unidad de proceso la posición de memoria del
resultado calculado por una unidad; o bien por el simple hecho de coordinarse: indicar la
finalización de un cálculo por parte de una unidad cuyo resultado es requerido como
entrada para los cálculos de otra, para señalar y coordinar el inicio de los cálculos, o para
otros aspectos.

Según la naturaleza del algoritmo a paralelizar, y a las estrategias para repartir el trabajo
entre las unidades de proceso, esta comunicación será más o menos intensiva, por lo que el
medio (hardware) por el que se van a transmitir estas comunicaciones también tendrá un
impacto en la eficiencia de estos algoritmos.

2.2.4.4Tecnologías de paralelización
OpenMP
OpenMP es una interfaz para la programación de aplicaciones multiproceso en plataformas
de memoria compartida y permite añadir concurrencia a los programas escritos en C, C++ y
Fortran con un modelo de ejecución fork-join, este modelo de ejecución consiste en bifurcar
un proceso en varios hilos y después agregar el resultado de todos ellos mediante una
función que los integra.

MPI
MPI (del inglés: Message Passing Interface), es un estándar que define la sintaxis y la
semántica de las funciones contenidas en una biblioteca de paso de mensajes diseñada para
usarse en programas que explotan las características de los sistemas capaces de realizar
cálculos en de forma concurrente. El paso de mensajes es una técnica que aporta
sincronización entre procesos y que permite la exclusión mutua, de manera similar a la
utilización de semáforos o monitores. La implementación más relevante de este estándar es
OpenMPI.

Hadoop
Apache Hadoop es un framework creado en el lenguaje Java para soportar aplicaciones
distribuidas y que permite escalar al nivel de miles de nodos y a petabytes de datos, por lo
que se usa para analizar cantidades enormes de datos, o lo que se denomina Big Data.

La arquitectura de este sistema consiste en dos partes diferenciadas, en un lado se tiene un
sistema de ficheros, HDFS, que hace el trabajo de replicar y localizar los bloques de datos
para hacerlos accesibles de forma concurrente a la otra parte, la encargada del cálculo,
MapReduce.

32

2.3 Path tracer sobre un cluster heterogéneo de CPUs y GPUs
Como último punto de este capítulo, y habiendo presentado las distintas tecnologías y
técnicas anteriores, se puede pensar en unirlas para un fin común.

Así pues, para este proyecto de fin de carrera, se plantea el estudio del rendimiento al
generar imágenes sintéticas simulando la interacción de la luz con los materiales mediante
un software de trazado de rayos basado en path tracing, con capacidad de realizar cálculos
en paralelo y desplegado sobre un cluster de varias computadoras, disponiendo, cada una
de ellas, tanto de CPUs con varios núcleos, como GPUs.

33

3 Descripción del sistema
3.1 Hardware
El sistema en el que se ha desplegado el proyecto consiste en un cluster de computadoras
conectadas en red, el software de trazado de rayos y otros software que permiten la
comunicación coordinación y tráfico de datos entre ellas. Este cluster se compone de
máquinas propias del Grupo de Informática Gráfica Avanzada y de equipos de los
laboratorios docentes del departamento de informática e ingeniería de sistemas.

Estas computadoras tienen distintas características y unidades de proceso, en las cuales se
incluyen a las CPUs y/o las GPUs, que a su vez pueden pertenecer a distintas arquitecturas,
debido a esto, se considera que el sistema de trazado de rayos desplegado en este entorno
es heterogéneo.

3.1.1 Computadoras
En esta sección se presentan las computadoras que han formado parte del sistema
desplegado para la realización de este estudio junto a sus características principales.

Nombre
CPU GPU

S.O.
Modelo Núcleos Hilos Memoria Modelo Núcleos Hilos Memoria

Equipos del
laboratorio

0.01
Core i5-3470 4 4 4 GB N/A N/A N/A N/A

CentOS
6.7

Annwn Core i7-4790 4 8 8 GB N/A N/A N/A N/A
Mageia

6

Beatrix Core i7-4770 4 8 8 GB
GeForce GTX

660
5 960 2GB

Mageia
6

Amelia Core i7-2600 4 8 6 GB
 GeForce GTX

570
15 480 1280MB

Mageia
6

Grendel
Core2 Quad

Q9450
4 4 4 GB

Tesla C1060 30 240 4GB

CentOS
7.2

Tesla C1060 30 240 4GB

Tesla C1060 30 240 4GB

Tesla C1060 30 240 4GB

Wargo
Core2 Quad

Q9450
4 4 4 GB

Tesla C1060 30 240 4GB CentOS
7.2Tesla C1060 30 240 4GB

Lugh Pentium 4 1 2 3 GB N/A N/A N/A N/A
Mageia

6

Bran Pentium 4 1 2 3 GB N/A N/A N/A N/A
Mageia

6

 Tabla 1: Características de las computadoras del sistema

Estas computadoras se encuentran interconectadas mediante la red ethernet institucional

34

de la Universidad de Zaragoza.

3.2 Software
Además de las máquinas, se utiliza el propio software de trazado de rayos, el cual se
detalla más adelante, y que se ha modificado para repartir la carga de trabajo paralelizando
los cálculos, para este fin se ha utilizado la biblioteca OpenMPI, que es una implementación
de código abierto de MPI (Message Passing Interface) [MPI]. El motor trazador de rayos y
la adaptación al cálculo en paralelo usados en este proyecto están escritos en el lenguaje
de programación C++11, aunque en la adaptación del código para realizar la paralelización
se han utilizado los bindings de MPI para C, ya que los de C++ se consideran obsoletos por
el MPI Forum, la organización que redacta el estándar MPI, al no aportar ventajas sobre los
de C y a que el compilador de C++ es totalmente compatible con estos.

Los sistemas operativos que gestionan las máquinas del sistema están basados en Linux,
aunque no se trata en todos los casos de la misma distribución, ya que se han usado los
sistemas con los que ya contaban, encontrándose entre ellos: Debian, Ubuntu, Mageia y
CentOS. Esto permite que las rutas de acceso tengan la misma estructura, que se puedan
conectar entre ellos mediante las tecnologías NFS (Network File System) para la
compartición del directorio de trabajo, SSH para el acceso a una shell remota, y que tengan
disponibles las herramientas y bibliotecas de OpenMPI.

3.2.1 C++ 11
C++ 11 es la revisión del lenguaje de programación C++ aprobada en agosto de 2011
sobre la revisión anterior, C++03, y añade ciertas evoluciones con respecto a este, entre
otras y la que más ha convenido en la concepción de este motor de renderizado es la
inclusión del modelo de hilos para la ejecución concurrente de código en la biblioteca
estándar.

C++ es un conocido lenguaje de programación que ofrece los paradigmas de programación
orientada a objetos y programación estructurada, que surge como evolución del lenguaje C.

3.2.2 OpenMPI
Esta biblioteca se ha usado para escribir el código de las tareas de sincronización y
comunicación entre procesos del sistema, es decir, para el desarrollo de las funciones
esenciales que han permitido la paralelización del código en varias máquinas.

Se trata de una implementación libre y de código abierto del estándar de paso de mensajes
MPI. Este estándar define la sintaxis y la semántica de las funciones que componen la
biblioteca, entre las que se hallan las propias para envío y/o recepción de mensajes y datos,
identificación y sincronización de los procesos. También se definen los tipos de datos y
estructuras diseñadas para su correcto funcionamiento.

35

Las características principales de esta tecnología son la estandarización, la portabilidad
(posibilidad de implementaciones en distintas arquitecturas, lenguajes y sistemas), el
rendimiento, la amplia funcionalidad y la existencia de implementaciones libres.

Esta biblioteca es usada por la mayor parte de los supercomputadores pertenecientes a la
lista de los 500 más rápidos del mundo, la TOP500, en su mayoría concebidos para ayudar
en el cálculo de aplicaciones científicas de alto rendimiento enfocadas a la investigación y
estudio por universidades y otras instituciones.

3.3 Recursos
El acceso a los datos necesarios para generar la escena, tales como: modelos, texturas,
mallas de puntos, etc... se realiza a través un directorio de trabajo compartido por todas las
máquinas del sistema mediante NFS, haciendo que todos los nodos tengan un espacio de
almacenamiento común, aunque este únicamente se usa como fuente de recursos y
almacenamiento final del resultado, nunca como almacén de intercambio de datos de
cálculo entre los nodos, esto, aunque probablemente más sencillo de gestionar, tendría un
impacto negativo en el rendimiento del sistema, debido a ello, estas transmisiones de datos
se llevan a cabo mediante las funciones propias de MPI para esta finalidad.

Con el objetivo de simplificar la gestión de las rutas de acceso a estos recursos se ha
optado por mantener el mismo punto de montaje en todas las máquinas.

3.4 Control y monitorización
Las mediciones de tiempos y el seguimiento de la ejecución de los programas se ha
realizado usando las herramientas típicas de los entornos Linux, tales como top, htop, time;
o bien mediante la instrumentación del propio software desarrollado.

Se han escrito funciones dedicadas a extraer tiempos y calcular datos estadísticos para
facilitar la tarea de la realización de pruebas y experimentos, y la extracción de
conclusiones al respecto.

36

4 Diseño y paralelización del trazador de rayos
4.1 Trazador de rayos ALEPH
4.1.1 Descripción
El software ALEPH [Mag03] es un sistema de simulación física de la iluminación y
generación de imágenes sintéticas realistas desarrollado en el GIGA como herramienta de
investigación.

El sistema utiliza modelos físicos en todas las etapas de la simulación, por lo que los
resultados se pueden utilizar de forma predictiva y fiable, no solo a nivel de imagen, sino a
nivel de resultados numéricos de la iluminación en un entorno. El algoritmo utilizado está
basado en el trazado de rayos distribuido, utilizando BRDFs físicas y con especial incidencia
en la corrección no solo visual, sino física, de los resultados.

En la actualidad el sistema está en fase de rediseño e implementación de ciertos algoritmos,
originando un nuevo sistema denominado ALEPH/FTL (Faster Than Light).

Los motivos para ese rediseño son entre otros:

• La mejora del rendimiento general, aumentando la velocidad de render.

• La utilización del algoritmo de path-tracing, en lugar de trazado de rayos distribuido.

• La implementación del uso de GPUs para realizar la simulación en paralelo con la
CPU del sistema.

• La conversión de partes del sistema a la nueva funcionalidad estándar aparecida en
C++11 (gestión de multiproceso simétrico, hilos, mutexes, temporizadores...) que
permiten que sea más portable y la simplificación del código.

Hasta el momento se ha dedicado el esfuerzo de reimplementación a la mejora de los
tiempos de intersección y trazado de rayos, y la implementación de los modelos de
iluminación, dejando pendientes temas como el texturado, efectos volumétricos, etc, que
mejorarían el aspecto visual de la imagen.

4.1.2 Algoritmo simplificado
 Color TracePath(Ray r, depth) {

 if (depth == MaxDepth) {

 return Black; // Suficientes rebotes.

 }

 r.FindNearestObject();

 if (r.hitSomething == false) {

37

 return Black; // No hubo intersección.

 }

 Material m = r.thingHit->material;

 Color emittance = m.emittance;

 // Escoger dirección aleatoria y continuar.

 Ray newRay;

 newRay.origin = r.pointWhereObjWasHit;

 newRay.direction = RandomUnitVectorInHemisphereOf(r.normalWhereObjWasHit);

 // Calcular la BRDF para este rayo (asumir reflección difusa)

 float cos_theta = DotProduct(newRay.direction, r.normalWhereObjWasHit);

 Color BDRF = 2 * m.reflectance * cos_theta;

 Color reflected = TracePath(newRay, depth + 1);

 // Aplicar la ecuación de renderizado aqui.

 return emittance + (BDRF * reflected);

 }

4.2 Paralelización
Como se ha tratado en apartados anteriores, la idea detrás del aprovechamiento de las
capacidades computacionales del cluster reside en la posibilidad de realizar cálculos de
forma concurrente.

Para que la capacidad de cálculo se aproveche de manera eficiente, el objetivo a conseguir
es repartir el trabajo de tal manera que las unidades de proceso estén realizando
activamente trabajo de cálculo durante todo el tiempo que dure el cálculo completo,
evitando en lo posible los tiempos ociosos de alguna de ellas.

Analizando el problema de síntesis de imagen y su algoritmo, vemos que presenta un
paralelismo de datos, con lo que la forma de repartir el trabajo será dividiendo
directamente la imagen a calcular, por simplicidad, esta división se ha realizado en franjas
horizontales.

El trabajo resulta tan sencillo de dividir debido a la independencia de los resultados de los
cálculos, ya que cada muestra (rayo) no necesita ningún otro resultado de otro cálculo para
ser procesada, y ya que los rayos se disparan una o varias veces para cada píxel de la
imagen, podemos asignar píxeles a trabajos, y por simplicidad, estos píxeles han sido
seleccionados por franjas horizontales que suponen un área, que consiste un fragmento de
imagen.

38

El sistema hardware sobre el que se ha realizado el estudio, posee la capacidad de realizar
cálculos en paralelo a varios niveles: a nivel de unidad de proceso, de nodo, o de cluster;
así que en los siguientes subcapítulos se explicarán las distintas técnicas empleadas.

4.2.1 Nivel de unidad de proceso
El motor de trazado de rayos que se ha usado como base para este proyecto presentaba ya
una paralelización a nivel de hilos, que originalmente se lanzaban a razón de uno por núcleo
de la CPU, repartiendo la imagen de manera equitativa dividiéndola en tantas franjas iguales
como hilos de ejecución soporta nativamente el procesador. Esto resulta relativamente
sencillo debido al hecho de que las subunidades de una misma unidad de proceso, los
núcleos, suelen ser prácticamente idénticas y por tanto tienen un rendimiento similar.

No obstante, en la evolución de este estudio y al comprobar las ventajas de un reparto de
trabajo más dinámico, que se detallará en el apartado dedicado a la paralelización a nivel de
cluster y llamaremos cola de trabajos, se ha terminado por adaptar este tipo de reparto
también entre los núcleos de una unidad de proceso, con el pretexto de conseguir un
reparto de trabajo mejor balanceado (más equilibrado).

4.2.2 Nivel de nodo
A nivel de una máquina completa, se puede disponer de varias unidades capaces de realizar
cálculos, por lo que el sistema también debe de repartir el trabajo entre estas unidades.

El objetivo en este reparto de trabajo sería asignar a cada unidad de proceso una cantidad
de trabajo proporcional a la capacidad relativa con respecto a la capacidad total de
unidades que tiene el nodo.

La estimación de esa capacidad relativa supone un problema en sí misma, y se han
desarrollado (y descartado) varios procedimientos enfocados a tal fin. Esta estimación se
podría realizar conociendo los datos de las propias unidades de proceso, como la
frecuencia, el número de núcleos y/o hilos de procesamiento; o de una manera secundaria
haciendo un pequeño benchmark. Todas estas técnicas tienen sus ventajas e
inconvenientes, pero ninguna de las desarrolladas ha dado unos resultados realmente
satisfactorios.

En la implementación actual del software trazador la velocidad de cada CPU corresponde al
número de hilos de proceso totales: suma de todos los hilos de todos los núcleos. En
cambio para la estimación de la potencia de la GPU, se toma el propio número de núcleos
de la GPU y un factor multiplicativo dependiente de la generación de la arquitectura de
esta.

Aunque es una técnica sencilla y que obtiene unos resultados proporcionales, esta no llega
a hacer un reparto eficiente del trabajo y provoca desbalanceos en la carga de trabajo que

39

penalizan el tiempo de cálculo, como se pone de manifiesto en las pruebas llevadas a cabo
para la realización de este estudio.

4.2.3 Nivel de cluster
Interconectando varios nodos, tenemos un cluster, lo que supone otro nivel de paralelismo,
donde también se deben de definir las estrategias para la gestión de esos cálculos
concurrentes.

Tomando la paralelización de los niveles más bajos como referencia, teniendo en cuenta las
necesidades de la paralelización a nivel de nodos a través de la red, y que al no tener una
memoria compartida se hace necesaria una comunicación adicional, se ha construido una
capa de control dentro de la biblioteca, por encima de las capas ya existentes, donde entre
otros métodos, se definen los esenciales para repartir el trabajo y la puesta en común de
resultados.

En esta fase del desarrollo es donde se han usado las funciones de la biblioteca MPI, junto
con las ya usadas en el código de base relativas a la ejecución concurrente mediante hilos
de ejecución de la biblioteca estándar de C++11.

4.2.3.1Reparto de trabajo
Debido a la naturaleza del problema, y de los métodos empleados, nos encontramos que
para paralelizar el trabajo simplemente se ha de dividir la imagen, pudiendo procesar con
cualquier unidad cualquier segmento de esa imagen como si se tratase de una imagen
completa, sin tener dependencias de resultados de unas a otras, además, debido a que el
sistema de ficheros del que se extraen los datos relativos a los componentes de la escena
es el mismo (montado en todas las máquinas por medio de NFS), únicamente se hace
necesaria la comunicación entre las unidades para la puesta en común del resultado y para
comunicar a cada unidad de proceso los límites en los que debe de trabajar, aunque esto
último no es necesario en todos los casos.

Los datos necesarios para generar la escena, tales como modelos de objetos, mapas de
entorno de iluminación y otros, son accesibles por todos los nodos, y cada uno de ellos
genera la escena de forma local en su propia memoria, de manera que esta queda replicada
en cada uno de los nodos que forman el cluster, aunque el cálculo de la imagen no se
realice enteramente en cada uno de ellos, sino que cada nodo calcula el área de la imagen
que le ha sido asignada mediante las distintas estrategias implementadas.

En la adaptación se ha considerado que el proceso que hace de maestro, al ejecutarse
también en un nodo con capacidad de cálculo, además de ejercer los papeles de director de
reparto de trabajo y de receptor de resultados provenientes de los demás nodos, también
aporta resultados de cálculo como cualquier otro proceso integrante del sistema.

40

Por simplicidad, la división de la imagen se realiza en franjas horizontales y se han
considerado tres estrategias para el reparto de trabajo entre las unidades de proceso:
equitativa, proporcional a la capacidad y mediante una cola de trabajos.

Equitativo
La estrategia más sencilla de todas es la del reparto equitativo, la estrategia es simple y no
es necesaria ninguna comunicación para el reparto de trabajo, ya que cada unidad de
proceso dispone de los datos necesarios para poder calcular cual es su segmento a
procesar con las siguientes formulas:

inicio=identificador del proceso⋅
altura total de laimagen

numerode procesos

final=inicio+
altura total de laimagen

numerode procesos
−1

Proporcional a la capacidad
Otra estrategia que se pensó útil es la del reparto proporcional a la capacidad de cada
máquina, pero para ello se necesita algo de comunicación, ya que los procesos que se
trabajan en cada máquina deben enviar la capacidad de esta a uno de los procesos que
actúa como encargado de calcular la capacidad relativa de cada máquina respecto a la total
del sistema, con estos datos, el proceso maestro calcula el tamaño de las franjas a procesar
y se envía el inicio y el final de cada una a los demás procesos, que se han quedado a la
espera de recibir tales datos para poder comenzar a realizar el trabajo de cálculo, no
obstante, la eficiencia de este método depende de la exactitud a la hora de medir o estimar
la velocidad de las unidades de proceso.

Las funciones con las que se estima la capacidad total de cada nodo tienen como base las
mismas que se usan para el reparto entre unidades de proceso a nivel de nodo, de hecho, la
capacidad total de una máquina que se envía al proceso maestro es la suma de las
velocidades de todas sus unidades de proceso. Por tanto, los problemas experimentados en
cuanto a ese reparto son también patentes a este nivel de reparto.

Cola de trabajos
La estrategia más elaborada que se ha implementado es una cola de trabajo. Usando esta
estrategia, la imagen se divide en un numero arbitrario de franjas y se arranca un hilo
concurrente en uno de los procesos, que será el encargado de repartir el trabajo y hará las
veces de maestro, este hilo escucha peticiones y responde a ellas con el inicio y final de la
siguiente franja a calcular. Los hilos principales de todos los procesos se encargan de
realizar esas peticiones, y conociendo los límites de la franja a calcular comienza con el
trabajo de cálculo.

41

4.2.3.2Puesta en común de resultados
La otra parte necesaria de la comunicación está en la puesta en común del resultado a
través de mensajes entre procesos, pues se ha considerado que uno de los procesos es el
que debe de tener la imagen calculada por completo en memoria, para después escribirla en
disco o realizar las acciones que fueran pertinentes. Se puede pensar también en realizar
esta puesta en común de resultados directamente escribiendo cada unidad de proceso sus
resultados en el directorio de trabajo, ya que éste está compartido por todas las máquinas,
pero esto implicaría un tratamiento posterior volviendo a leer cada uno de estos resultados
para su utilización u obtención de la imagen completa. Por el poco interés que tiene esta
opción debido a la pérdida de rendimiento al pasar los datos por el almacenamiento físico,
se ha optado únicamente por la anterior.

En la solución adoptada, el proceso que tiene el papel de maestro arranca un hilo
concurrente que queda a la escucha y recibe los resultados de los cálculos de los demás
procesos, esto permite que el proceso maestro pueda seguir calculando su parte de trabajo
en el hilo principal.

Cuando una unidad de proceso termina de realizar el trabajo de cálculo, esta envía al
proceso encargado la linea inicial y la linea final de este, y si no es el mismo proceso
maestro, también el buffer de resultados, esto permite al maestro conocer cual es el
tamaño de la franja y su posición, pudiendo así introducir tales resultados en la matriz de
resultados para su volcado en la memoria. En el caso especial del proceso maestro, no se
requiere el envío del buffer de resultados (ni su recepción), ya que estos ya se encuentran
en la matriz de resultados, ahorrando así comunicaciones innecesarias.

El hilo de recepción de resultados, en el proceso maestro, cada vez que recibe un resultado
comprueba cual es el proceso que se lo ha enviado, y si el remitente no es él mismo, recibe
el buffer de resultados y lo integra en la matriz de resultados.

Después de esta puesta en común de los resultados, según la estrategia de reparto, los
procesos o bien terminan su ejecución, si sólo han de calcular un único segmento de la
imagen como en el reparto proporcional a la velocidad o en el equitativo, o bien vuelven a
solicitar, calcular y enviar más trabajos, hasta que reciben un trabajo vacío (tamaño
negativo o nulo), tras lo cual termina su ejecución.

4.2.4 Implementación
El motor del trazador de rayos ALEPH se encuentra escrito en el lenguaje de programación
C++, y presentaba el código necesario para realizar cálculos tanto en CPU, mediante uso
de hilos de la biblioteca estándar; como en GPU, implementados en CUDA. Pero no
presentaba capacidad de cálculos de forma distribuida a través de red, debido a ello, con el
fin de usar dicha funcionalidad para este estudio, esta se ha tenido que desarrollar.

42

Este código está dividido en tres bloques:

• Base: clases que definen el nivel más bajo del motor, con inicializaciones, funciones
básicas e interfaces de comunicación con el sistema.

• Core: clases que consisten el motor de manejo de objetos, formatos de salida de
imagen.

• Render: clases de gestión del cálculo, generación de escenas, manejo de la cámara.

El trabajo de implementación de la funcionalidad de cálculo en paralelo distribuido por red
se ha llevado a cabo en el bloque render, dentro de este, en el código original del motor, se
hallaba una clase encargada de lanzar los cálculos y gestionar tiempos, resultados etc.
llamada Manager.

Aprovechando el mecanismo de herencia del lenguaje C++, se ha creado una clase
MultiHostManager, que hereda de la propia clase Manager. El uso de esta técnica permite
reutilizar el código ya existente, y solo desarrollar los métodos y propiedades que son
necesarias específicamente para el cálculo distribuido. Esta clase es la que contiene los
métodos descritos en el punto anterior.

A continuación se muestra una explicación de la codificación de los métodos más relevantes
para la paralelización del motor, y su esquema en pseudocódigo. La implementación real en
C++ se puede consultar en el apéndice de esta memoria correspondiente al código fuente.

El método MultiHostManager::workReceiver(FrameBuffer& f) define el hilo de recepción
de resultados y su estructura consiste en un bucle que queda a la espera de mensajes MPI
etiquetados como resultados, provinientes de cualquiera de los nodos integrantes del
comunicador de MPI. Al recibir uno de estos mensajes, este lleva las acciones oportunas
para integrar el resultado en la matriz final.
desde 0 hasta numero_de_fragmentos

{

 inicio_final = recibir_de_cualquier_proceso(ETIQUETA_FRAGMENTO_A_JUNTAR,remitente);

 si es_proceso_esclavo(remitente);

 {

 buffer = recibir(ETIQUETA_MATRIZ_RESULTADOS,remitente);

 inicio = inicio_final[0];

 final = inicio_final[1];

 copiar(buffer,matriz_de_resultados,inicio,final);

}

MultiHostManager::join(FrameBuffer& f) es la parte que se encuentra enfrente del
método del hilo de recepción de resultados, es decir, es el método mediante el que cada
nodo envía sus resultados. Su código es simplemente un envío de mensaje MPI con los

43

límites del trabajo con el proceso maestro como destinatario, y un envío con el buffer de
resultados, en caso de que el propio proceso no sea el nodo maestro.
enviar(inicio_final,maestro,ETIQUETA_FRAGMENTO_A_JUNTAR);

si soy_proceso_esclavo

{

 buffer = generar_buffer_para_enviar(imagen);

 enviar(buffer,maestro,ETIQUETA_MATRIZ_RESULTADOS);

}

El método MultiHostManager::queueManager(int h) contiene el código del hilo que hace
de director en la estrategia de reparto por cola de trabajo. Es un bucle que recibe mensajes
MPI solicitando un nuevo trabajo de cálculo, al que responde con una tupla que contiene el
inicio y el final de la franja que el nodo esclavo debe de calcular.

Una vez se ha llegado a la altura completa de la imagen (y por tanto, se han repartido
todos los trabajos), se envía un trabajo erróneo, haciendo uso de la técnica de la píldora
envenenada, y los procesos interpretan como que ya no existen más trabajos.
particiones = partir_bien(altura,fragmentos);

desde 0 hasta fragmentos

{

 inicio_final = { particiones[i], particiones[i+1]-1 };

 recibir_de_cualquier_proceso(ETIQUETA_PETICION,demandante);

 enviar(inicio_final,demandante,ETIQUETA_INICIO);

}

veneno = { -1,-1 };

desde 1 hasta numero_de_procesos

{

 recibir_de_cualquier_proceso(ETIQUETA_PETICION,demandante);

 enviar(veneno,demandante,ETIQUETA_INICIO);

}

Con el objetivo de realizar una partición de la mejor manera posible, y debido a los
problemas acarreados por realizar la división de manera entera, se ha diseñado la función
que en este pseudocódigo se ha llamado partir_bien y que está definida en otra clase
(base/math.h), pero por el interés que tiene debido al reflejo de la solución adoptada, se
considera comentarla en este capítulo. Concretamente hace una gestión de los restos de un
cociente, logrando que aunque las divisiones no logren ser exactamente iguales, sean lo
más semejante posible.
lk = n/k;

lx = n mod k;

inicializar(s, lk);

44

sumar_desde_hasta(s,0,lx,1);

devuelve suma_parcial(s);

El método MultiHostManager::split(int h,bool& more) es la principal función que se
encarga del reparto de trabajo. A esta función se le llama tantas veces sea necesaria (hasta
que la variable mas tome el valor de falso, que indica que ya no se le debe de volver a
invocar, ya que todo el trabajo ya está repartido) desde el método render.
mas = false;

conmutar (estrategia_de_reparto)

{

 caso EQUITATIVO:

 {

 particiones = partir_bien(altura_total,numero_de_procesos);

 inicio = particiones[identificador_proceso];

 final = particiones[identificador_proceso+1]-1;

 mas = false;

 devuelve true;

 }

 parar;

 caso PROPORCIONAL:

 {

 si soy_proceso_maestro

 {

 para r desde 0 hasta numero_de_procesos

 {

 lr[r] = velocidades_relativas(r)*altura_total;

 }

 lw = suma_componentes(lr);

 lm = altura_total - lw;

 suma_a_todos_componentes(lr,1);

 li=suma_parcial(lr);

 para r desde 0 hasta numero_de_procesos

 {

 inicio_final = { li[r], li[r+1]-1 };

 si es_proceso_esclavo(r)

 {

 enviar(inicio_final,r,ETIQUETA_INICIO);

 }

 si_no

 {

45

 inicio=inicio_final[0];

 final=inicio_final[1];

 }

 }

 }

 si_no //soy proceso esclavo

 {

 inicio_final = recibir(ETIQUETA_INICIO,maestro);

 }

 mas = false;

 devuelve true;

 }

 parar;

 caso COLA_DE_TRABAJOS:

 {

 enviar(maestro,ETIQUETA_PETICION);

 inicio_final = recibir(ETIQUETA_INICIO,maestro);

 si inicio_final[0]<0

 {

 mas = false;

 devuelve false;

 }

 inicio = inicio_final[0];

 final = inicio_final[1];

 mas = true;

 devuelve true;

 }

 parar;

}

devuelve false;

La función MultiHostManager::render(const Camera& c,FrameBuffer& f) es la que lanza
los hilos de ejecución hacia las unidades de cálculo del propio nodo, marcando los límites
que obtiene de la llamada a la función split.

También se encarga de arrancar y parar los hilos de manejo de cola de trabajos y recepción
de los mismos en el nodo maestro.
arrancar(temporizador_maestro);

set_speeds();

si soy_proceso_maestro

{

46

 arranca_hilo_concurrente(workReceiver);

 si estrategia_de_reparto=COLA_DE_TRABAJOS

 {

 arranca_hilo_concurrente(queueManager);

 }

}

arrancar(temporizador);

mientras que split(altura_total,mas)=true

{

 h = final-inicio+1;

 w = ancho(imagen);

 is = inicio;

 ie = final-1;

 para cada unidad en vector_unidades

 {

 is = ie + 1;

 ie = is + int(res[i]*(h-1));

 si (ie > (inicio+h-1))

 {

 ie = inicio+h-1;

 }

 arrancar_hilo_en_unidad(unidad,is,ie,0,w-1);

 }

 esperar_hilos_en_unidades();

 join(f);

 si !mas parar;

}

congelar(temporizador);

si soy_proceso_maestro

{

 si estrategia_de_reparto=COLA_DE_TRABAJOS

 {

 esperar_hilo(queueManager);

 }

 esperar_hilo(workReceiver);

}

congelar(temporizador_maestro);

stats(temporizador,temporizador_maestro);

En la función MultiHostManager::set_speeds() se realiza el intercambio de datos de
velocidad entre los nodos, haciendo que el maestro conozca las velocidades del resto.

47

si soy_proceso_maestro

{

 velocidades[identificador_de_proceso] = mi_velocidad;

 desde 1 hasta numero_de_procesos

 {

 velocidad = recibir_de_cualquier_proceso(ETIQUETA_VELOCIDAD,remitente);

 velocidades[remitente] = velocidad;

 }

 velocidad_total = suma_componentes(velocidades);

 para cada vel en velocidades_relativas

 {

 vel = velocidades[r]/velocidad_total;

 }

 }

si_no //soy proceso esclavo

{

 enviar(mi_velocidad,maestro,ETIQUETA_VELOCIDAD);

}

48

5 Pruebas y experimentos
Con el objetivo de medir y analizar el rendimiento así como validar las características y el
funcionamiento del sistema se han seleccionado una serie de escenas y entornos de
ejecución, de tal forma que podamos extraer conclusiones de la comparación de los
resultados medidos en las distintas combinaciones de estos.

5.1 Escenas
Existen escenas típicas que, por sus características, por el conocimiento que se tiene sobre
ellas, o simplemente por razones históricas, se usan tradicionalmente para realizar pruebas
sobre sistemas de generación de imágenes por computador, ya sea como en este caso, de
manera similar a la que la generaría la luz natural, o bien mediante otros procedimientos. Se
ha considerado que alguna de estas escenas eran las indicadas para poner a prueba el
sistema.

5.1.1 Objeto simple
Esta escena simplemente se trata de un objeto en medio de un mapa de entorno de
iluminación, la razón de su inclusión en las pruebas no es otra que estudiar la manera en
que afecta, o no, la complejidad de la escena en la eficiencia del cálculo de la simulación de
la interacción de la luz con los materiales.

Además, también existe una pequeña razón, más personal que técnica, y es que este tipo de

49

Ilustración 4: Imagen sintetizada del objeto simple

escenas simples se usaron en las primeras pruebas de las etapas preliminares del código
empleado para la adaptación del software al cálculo en paralelo, con lo que parecía un
poco injusto dejar fuera de este trabajo estas escenas que tan útiles (y motivadoras) fueron
al comienzo, para comprobar que el trabajo iba por el buen camino.

Cabe destacar la complejidad geométrica del modelo del objeto que se sitúa en el centro de
la escena, en este caso un coche, con mucho detalle y por tanto un número de triángulos
elevado, por lo que el cálculo de las intersecciones tendrá un peso importante en el cálculo
total.

Por otro lado, la simplicidad de la escena, ya que únicamente existe un objeto, provoca que
el número de rebotes sea reducido, ya que la mayor parte de los rayos saldrán hacia afuera
de la escena y no deberán de continuar siendo calculados. Por este motivo, la iluminación
indirecta va a tener muy poca influencia en esta escena, al contrario que la iluminación
directa, que va a suponer casi la totalidad de la iluminación de la misma.

5.1.2 Cornell box
La caja de Cornell es un test que determina la precisión de los software de síntesis de
imágenes que fue creado en el Program of Computer Graphics de la Universidad Cornell en
1984, para un paper titulado: Modeling the Interaction of Light Between Diffuse Surfaces.

Se creó un modelo físico, se fotografió con una cámara CCD y se midieron con exactitud las
variables de la escena, tales como: posiciones de los objetos, características del foco y de

50

Ilustración 5: Imagen sintetizada de la caja de Cornell

los materiales etc. Con estos datos se recreó el modelo en el software de síntesis y los
resultados de la simulación digital se comparaban con la fotografía.

El modelo es muy simple y consiste en una caja, donde la pared izquierda es de color rojo,
la derecha verde y la de atrás blanca. Suelo y techo blancos, donde en el centro este último
se encuentra el foco que ilumina la escena. En el interior de esta caja se disponen objetos
como cajas, esferas, u otras que se consideren útiles para comprobar las características del
software de síntesis.

La geometría de esta escena es básica y se puede modelar con un número muy bajo de
triángulos. En cambio, al haber objetos de diferentes colores, son necesarias un número
elevado de muestras para que el color-bleeding (cambio de color de la luz al rebotar en un
objeto de color), se haga patente en la escena. El número alto de muestras también facilita
que los rayos rebotados en la caja especular (caja grande), incidan sobre el techo de la caja,
ya que si este número es bajo solo una parte muy pequeña de los rayos lo harían y
visualmente se apreciarían puntos aislados en vez de una “mancha” de luz proyectada.

En cambio, no serían necesarios gran número de rebotes ya que la geometría es muy
simple, pero aún así el peso de la iluminación indirecta es comparable al que tiene la
iluminación directa.

5.1.3 Atrio del Palacio Sponza
El Palacio Sponza está situado en la ciudad croata de Dubrovnik y alberga en su interior un
atrio que debido a sus pasillos perimetrales, columnas y apertura central; se trata de un
escenario idóneo para experimentar con simulaciones de modelos de iluminación, sombras y
rebotes.

El modelo digital de este patio permite definir determinadas posiciones de cámara donde
poder observar de forma visual la validez del modelo, analizando la precisión de las
sombras, o el número de reflejos necesarios para que la luz llegue a los recovecos de la
escena. El disponer de varios puntos de vista también permite observar las diferencias de la
complejidad de los cálculos y su eficiencia de manera analítica.

La geometría de esta escena es muy compleja y por tanto está descrita por un número muy
alto de triángulos. Además, la luz incidente en la propia escena proviene de la apertura
central del atrio, por lo que el peso de la iluminación directa es bastante más pequeño que
el de la indirecta, que es la que ilumina los pasillos perimetrales.

Debido a ello, el número de rebotes necesarios para simular de manera correcta la
iluminación en esta escena es elevado, y al ser la geometría compleja también el número de
muestras tendrá que ser elevado para obtener un resultado preciso.

51

5.2 Entornos de ejecución
La forma en la que está escrito el código del software trazador de rayos permite
seleccionar las unidades de proceso que van a llevar a cabo el trabajo de cálculo de manera
arbitraria, por lo que aunque una CPU tenga varios cores y/o hilos de proceso, se puede
forzar a que solo se utilicen las necesarias, de la misma manera, si en una unidad de
proceso se encuentran mas de una CPU y/o GPU, también existe la posibilidad de indicar si
usar o dejar de usar estas. Adicionalmente, y ya en la capa de computación distribuida,
evidentemente es posible especificar que máquinas o nodos van a formar parte de este
sistema. Esto nos da tres niveles de selección de las unidades que finalmente llevarán a
cabo el cálculo, y por tanto permiten definir los entornos de ejecución que se usan para
realizar las pruebas.

Otro aspecto a tener en cuenta es que al utilizar las bibliotecas de MPI en el código, para
que los programas hagan uso de las funciones de comunicación de esa biblioteca, se deben
lanzar con las herramientas de OpenMPI destinadas a tal efecto, y son estas las que
permiten especificar qué máquinas forman parte del cluster de cálculo.

Para verificar el comportamiento del sistema, y disponiendo de las máquinas ya descritas en
el apartado correspondiente al hardware, se han definido los siguientes entornos:

• 1 equipo del laboratorio, limitado a 1 solo núcleo.

• 1 equipo del laboratorio, CPU completa.

• 4, 8, o 16 equipos del laboratorio.

• Annwn + Beatrix + Amelia + Grendel + Wargo, o cada una de ellas por separado.

52

Ilustración 6: Imagen sintetizada del atrio del Palacio Sponza

• Annwn + Beatrix + Amelia + Grendel + Wargo + Lugh + Bran.

5.3 Parámetros
La síntesis de imágenes puede depender de gran cantidad de variables, las cuales se pueden
ajustar para escalar la complejidad (y exactitud) de la imagen a generar. Con esto se
consigue variar el número de cálculos necesario para generar la imagen, y de forma
consecuente, el tiempo necesario para calcularla.

Los parámetros principales a ajustar serían: el tamaño de la imagen que denotamos con un
multiplicador ‘k’, la profundidad del cálculo (número de rebotes de un mismo rayo, de forma
que se simula la luz reflejada) ‘b’, o el número de muestras calculadas (rayos) para cada
píxel de la imagen ‘s’.

Los parámetros usados para cada escena son:

• Objeto simple: k=8 b=8 s=256 que da como resultado una imagen cuadrada de
1080 píxeles de lado.

• Cornell Box: k=8 b=3 s=256 que también tiene como resultado una imagen
cuadrada de 1080 píxeles de lado.

• Palacio Sponza: k=8 b=4 s=256 que da como resultado una imagen de tamaño 1920
píxeles de ancho y 1080 píxeles de alto.

La razón de la elección de estos parámetros y no otros cualesquiera únicamente radica en
que se buscaba conseguir una imagen que tuviera carga importante de trabajo, pero que
permitiese hacer varias pruebas a lo largo del día, evitando así cálculos de excesiva
duración que además no aportarían valor adicional al estudio, ya que los tiempos obtenidos
ya permiten extraer datos lo suficientemente relevantes como para sacar conclusiones al
respecto.

Adicionalmente, la estrategia de reparto de trabajo a emplear también se trata de un
parámetro ajustable, y que en el caso de la cola de trabajo, introduce otra variable, el
número de fragmentos en que se divide la imagen. Como la teoría nos dice que el reparto
de trabajo influye directamente en el rendimiento del sistema resulta interesante estudiar
varios casos, y debido a ello no se han definido fijos por escena, sino que se han aplicado
varios valores para ellos en todas las escenas.

En este aspecto cabe destacar que las estrategias de cola de trabajos y equitativa se tratan
esencialmente de la misma cuando el número de segmentos en los que se divide coincide
con el número de nodos del sistema. También, aunque se ha implementado la estrategia de
reparto proporcional a la velocidad, esta prácticamente coincide con la equitativa en los
casos en que las máquinas tienen características similares, debido a que el motor está en

53

desarrollo y no dispone de los recursos para medir la velocidad efectiva de cada máquina,
teniendo en cuenta solo el número de unidades de proceso de cada máquina y no las
capacidades reales de estas.

5.4 Pruebas
Con la realización de las pruebas, además de validar el correcto funcionamiento del
sistema, se ha buscado estudiar aspectos propios de la paralelización, de las máquinas o
del propio algoritmo.

Concretamente, se ha estudiado el comportamiento del sistema con respecto a los
siguientes aspectos.

• Paralelización a nivel de CPU

• Paralelización a nivel de nodo

• Paralelización en un sistema homogéneo

• Comparación de estrategias de reparto

• Paralelización en un sistema heterogéneo

• Influencia de la escena

5.4.1 Medidas de rendimiento
5.4.1.1Eficiencia
Se define la eficiencia conseguida mediante la siguiente fórmula:

E=
T 1

T n⋅n

Donde n es el número de unidades de proceso, y T n el tiempo empleado para calcular
la imagen completa con n unidades.

El dato de la eficiencia no resulta tan sencillo de calcular en los sistemas heterogéneos
donde las computadoras no son similares en cuanto a capacidad de cálculo, debido a que
no se cuenta con un tiempo de referencia que pueda ser tomado para sustituir al tiempo
que en el caso del cluster homogéneo era del de una máquina.

Si se desarrolla el cálculo de la eficiencia para el caso de máquinas similares:

E=
T 1

T n⋅n
=

T1/n

T n

, y se define T r=T 1/n que denota el tiempo ideal en paralelo.

Tomando la potencia de cada máquina, Pi , siendo el trabajo W , como:

54

Pi=
W
T i

Se puede escribir T r , de la siguiente manera:

T r=
W
Pn

=
W

∑
1

n

Pi

=
W

∑
1

n
W
T i

=
1

∑
1

n
1
T i

Dado que la media armónica, H , que siendo n el número de máquinas, y x i el tiempo
empleado por la máquina i está definida como:

H=
n

∑
i=1

n
1
x i

y dado que T r=
H
n

,

se puede usar H para sustituir el tiempo de referencia, y entonces, la eficiencia para
estos casos se toma como:

E=
T r

T n

=
H /n
T n

=
H

T n⋅n

5.4.1.2Balanceo de carga
Es interesante introducir un dato estadístico que pueda dar idea de como de balanceada
está la carga de trabajo entre las unidades. Se ha optado por usar la desviación típica que
denotaremos con σ y que, siendo n el número de muestras, x i la propia muestra y

x̄ la media aritmética de todas las muestras, se define como:

σ=√ 1
n
∑
i=1

n

(x i− x̄)
2

Para poder comparar esta magnitud de forma independiente a los tiempos en las distintas
pruebas, ya que estos pueden ser muy diferentes, se puede recurrir a escalarla dividiéndola
entre la media aritmética x̄ de las muestras, lo que resulta en un factor entre 0 y 1, que
denominaremos factor de desbalanceo, y notaremos como δ . Al restar de la unidad esta
magnitud, obtendremos su complementario, que nos dará información sobre el equilibrio de
la carga de trabajo, y le denominaremos factor de balanceo, β .

δ=σ
x̄

1−δ=β

Esta magnitud puede tomar valores entre 0 y 1, y cuanto más cercana sea a 1, menos
dispersión existirá entre las muestras ya que estas tendrán menos diferencias entre sí, y por
tanto mejor balanceado estará el trabajo entre las unidades.

El valor de este dato se calcula en tiempo de ejecución del programa trazador de rayos.

55

6 Resultados
6.1 CPU
Todas las CPU de las computadoras que han formado parte de este estudio poseen varios
núcleos, con lo que es posible realizar cálculos de manera paralela en la propia CPU.

Se han tomado como referencia los tiempos obtenidos por una computadora del
laboratorio 0.01 del edificio Ada Byron de la EINA.

En esta prueba se ha sintetizado la imágenes de las escenas de prueba y se han medido los
tiempos con un único núcleo de la CPU, y con todos ellos (la CPU usada en esta prueba
dispone de 4 núcleos).

La siguiente tabla muestra el tiempo, en milisegundos y la eficiencia conseguida con una
CPU para las tres escenas de prueba:

Se puede apreciar que la eficiencia alcanzada con los 4 núcleos en paralelo se queda en un
valor alrededor de 0.75.

Este fenómeno puede estar debido a las colisiones de caché, ya que al calcularse distintas
áreas de la imagen de manera concurrente la caché puede aprovechar menos la localidad de
los datos que si se calculase de manera secuencial.

6.2 GPU – CPU
Continuando con las pruebas y verificaciones a nivel de nodo, nos encontramos que las
máquinas que cuentan con GPUs tienen capacidad de realizar cálculos tanto con sus CPUs
como con sus GPUs al mismo tiempo, con lo que resulta interesante analizar que
rendimiento se obtiene al ponerlas a trabajar a la vez.

En esta prueba, se ha calculado la imagen del palacio Sponza en las máquinas que disponen
de GPU, se han medido los tiempos de cálculo y el balanceo que medimos mediante β .

56

Escena Núcleos Tiempo Eficiencia

Simple
1 386631 1,00
4 133605 0,72

Cbox
1 1219451 1,00
4 418904 0,73

Sponza
1 6875196 1,00
4 2320158 0,74

Tabla 2: Resultados en función del número de
núcleos en una misma CPU

El desequilibrio que se aprecia puede tener varias lecturas: una de ellas es que puede
deberse a la problemática descrita en el punto donde se describe la paralelización a nivel de
nodo, es decir, la limitada capacidad para comparar las velocidades relativas de una unidad
de proceso frente a otra (CPU frente a GPU).

Por otro lado, debido a la experimentalidad del código, y que este se encuentra en una fase
de desarrollo, todavía hay segmentos en el código de las funciones donde la GPU realiza el
trabajo de cálculo, que no se encuentran migrados a CUDA, y que se tienen que apoyar en
la capacidad de la CPU para poder llevarse a cabo. El más significativo de estos segmentos
de código está en la propia evaluación de la función de Monte Carlo que obtiene la
dirección del rayo rebotado en una superficie.

6.3 Cluster homogéneo
A partir de esta prueba es donde se procede a validar el entorno distribuido por red.
Aunque más adelante en este estudio se analiza el comportamiento del cluster heterogéneo
(con máquinas de diferentes capacidades), se ha querido dedicar un apartado a validar las
capacidades de computación masivamente paralela realizando las pruebas con una cantidad
considerable de máquinas, por ello, se ha configurado un cluster con los equipos del
laboratorio 0.01 del edificio Ada Byron de la EINA.

Estas computadoras cuentan con una CPU de 4 núcleos, y no disponen de GPU. Todas
estas máquinas son de idénticas características y por ello, para este caso, denominaremos
esta formación como cluster homogéneo. Intuitivamente se puede pensar que al tratarse de
máquinas iguales el reparto de la carga de trabajo resulta sencillo pero la solución a este
problema veremos que no resulta tan evidente.

Se ha querido usar este cluster homogéneo con varios objetivos: en una mano validar la
escalabilidad del sistema, analizando el rendimiento conseguido al añadir nodos al sistema;
y en la otra, verificar las diferencias entre las diferentes estrategias de reparto de trabajo.

A tal fin se ha lanzado el cálculo de la escena del palacio Sponza con 1, 4, 8 y 16 máquinas
del laboratorio 0.01, con las estrategias de reparto equitativa y cola de trabajos (con un
número de trabajos fijado a 80). La razón de no incluir en esta prueba la estrategia
proporcional a la capacidad se debe a que al ser las máquinas de similares características el
reparto realizado por dicha estrategia seria el mismo que el que realiza la equitativa.

57

Máquina Tiempo β
Beatrix 1208840 0,918
Amelia 1394664 0,882
Grendel 3325563 0,890
Wargo 3293219 0,891

Tabla 3: Resultados en función de la
máquina con el balanceo CPU-GPU

Estos resultados son los esperados, ya que aumentando el número de máquinas, aunque el
balanceo se mantiene en valores alrededor de 0.90, la eficiencia se ve disminuida. La razón
de esta pérdida de eficiencia puede explicarse por la razón de que son necesarias más
comunicaciones, y además, el tiempo dedicado a estas es relativamente mayor al del
cálculo que con un menor número de máquinas, ya que el tamaño del fragmento a calcular
por cada máquina en la estrategia de reparto equitativa es inversamente proporcional al
número de máquinas.

58

Máquinas Tiempo Eficiencia β
1 2320158 1,00 1
4 588651 0,99 0,879
8 315513 0,92 0,903
16 162500 0,89 0,922

Tabla 4: Resultados en función del número de
máquinas para la estrategia de raparto equitativa

Máquinas Tiempo Eficiencia β
1 2320158 1,00 1
4 534979 1,08 0,998
8 298794 0,97 0,969
16 163933 0,88 0,965

Tabla 5: Resultados en función del número de
máquinas para la estrategia de reparto por cola de
trabajos con 80 fragmentos

1 4 8 16
0,80

0,85

0,90

0,95

1,00

1,05

Número de máquinas

E
fic

ie
n

ci
a

1 4 8 16
0,8

0,85

0,9

0,95

1

1,05

Número de máquinas
β

1 4 8 16
0,00

0,20

0,40

0,60

0,80

1,00

1,20

Número de máquinas

E
fic

ie
n

ci
a

1 4 8 16
0,94
0,95
0,96
0,97
0,98
0,99

1
1,01

Número de máquinas

β

Con 80 fragmentos en la cola de trabajos, la eficiencia llega hasta ser mayor que la unidad,
esto, aparentemente imposible, puede explicarse mediante el funcionamiento correcto de la
memoria caché de las CPU, que hacen uso de la localidad de datos pero son limitadas en
capacidad, por lo que deben ir cargándose y descargándose para contener a los espacios de
memoria con los que trabajar, en cambio, al estar replicado y esta caché no ser compartida,
este intercambio de información con la memoria principal no es necesario. Aún así, este
fenómeno no se manifiesta con tanta intensidad cuando el número de máquinas se
incrementa, ya que, como en el caso del reparto equitativo, las comunicaciones pasan a
tener más peso en el tiempo total y por consiguiente, la eficiencia del sistema cae.

Con respecto al balanceo se aprecia que es prácticamente idóneo aunque decrece
ligeramente cuando aumenta el número de máquinas, esto principalmente se debe a la
diferencia de carga entre unos fragmentos y otros de la imagen.

Comparando ambas estrategias de reparto se ve una considerable mejora del tiempo
conseguida con la cola de trabajos, de mayor manera cuando existen más fragmentos por
máquina, ya que de esta manera el sistema se autobalancea mucho mejor.

6.3.1 Cola de trabajos
Tomando las conclusiones del punto anterior, y viendo las ventajas de la estrategia de
reparto mediante cola de trabajos, es preciso realizar la comparativa con el parámetro
ajustable de este método de reparto, el número de trabajos o fragmentos en los que se
divide la imagen.

En esta prueba se ha lanzado el cálculo de la escena del palacio Sponza contra el cluster
homogéneo de 16 máquinas del laboratorio 0.01, variando el número de trabajos entre 12,
40, 160 y 280.

Para la confección de la tabla, como tiempo de referencia para el cálculo de la eficiencia se
ha tomado el de una sola máquina (2320158 ms.).

Configurando el número de fragmentos a 12, siendo el cluster de 16 máquinas se ha
querido forzar el que hubiera máquinas sin trabajos para realizar, y de hecho esto se pone
de manifiesto al conseguir de esta manera una eficiencia más baja que las normalmente
alcanzadas por esta estrategia de reparto.

59

Fragmentos Tiempo Eficiencia β
12 165631 0,88 0,919
40 147267 0,98 0,865
80 163933 0,88 0,965
160 150856 0,96 0,976
280 128948 1,12 0,989

Tabla 6: Resultados en función del número de
fragmentos para la estrategia de reparto por cola de
trabajos

Las demás configuraciones, ponen de manifiesto la importancia de la elección de un número
de fragmentos razonable y consecuente tanto con el número de máquinas que componen el
clúster como con el propio tamaño de la imagen, pues la eficiencia conseguida puede
depender en gran medida de esta elección.

6.4 Cluster heterogéneo
El objetivo principal de este estudio es crear un sistema de trazado de rayos sobre un
cluster heterogéneo, donde las computadoras que formen parte de él contengan CPUs y
GPUs. Para ello, se ha configurado el cluster para hacer uso de 5 máquinas situadas en los
laboratorios del GIGA: Amelia, Annwn, Beatrix, Grendel y Wargo, que han sido presentadas
junto a sus características en la sección donde se describe el sistema.

Al existir diferencias de características y capacidades entre las máquinas, en esta prueba
toma aún más relevancia el dato del factor de balanceo, pues va a dar una visión de la
capacidad de adaptación de cada estrategia de reparto, y del aprovechamiento de la
capacidad total de cálculo del sistema completo.

La prueba se trata de la síntesis de la imagen de la escena del palacio Sponza, con las
distintas estrategias de reparto: equitativa, proporcional a la capacidad y cola de trabajos.
En el caso del reparto por cola de trabajos, se ha fijado el número de fragmentos en 80.

Analizando los datos de esta prueba llama la atención la baja eficiencia conseguida con el
reparto equitativo, y es de esperar, debido a la diferencia de rendimiento entre máquinas y
a la diversidad de carga de trabajo de los fragmentos de la imagen: dependiendo de a qué
máquina le toque procesar según que fragmento esto puede suponer un desbalanceo
todavía mayor que el propio generado por las diferencias entre las máquinas. La diferencia
de tiempos para el trabajo completo entre el más rápido, Beatrix, y el más lento, Grendel,
es de 2.75 veces mayor para el más lento.

Para aliviar este desbalanceo, se opta por probar las otras estrategias de raparto de
trabajo, y se verifica en los resultados, que la estrategia que consigue mejor equilibrio y
también más eficiencia es la del reparto por cola de trabajos.

60

Estrategia Tiempo Eficiencia β
Equitativa 631268 0,55 0.727

Proporcional 553753 0,63 0.812
Cola trabaj. 400479 0,87 0.974

Tabla 8: Resultados para el cluster heterogéneo en
función de la estrategia de reparto

Máquina Tiempo
Beatrix 1208840
Amelia 1394664
Grendel 3325563
Wargo 3293219
Annwn 1368327

M. Armónica 1736453,2121

Tabla 7: Tiempos por
nodo del C. heterogéneo

6.4.1 Desbalanceado
Como prueba adicional, y para hacer el cluster más desbalanceado, al cluster heterogéneo
de las máquinas del GIGA, se le han añadido dos nodos: lugh y bran, con una capacidad
mucho más limitada que los del punto anterior. Para evidenciar esta diferencia, disponemos
de los datos de los tiempos que invierte en el cálculo la computadora que más rápido ha
obtenido el resultado: Beatrix, en 1208840 ms., mientras que la mas lenta, lugh, ha
invertido 28011752 ms., nótese que el tiempo de lugh es más de 23 veces mayor que el de
Beatrix.

Con este deajuste se ha buscado probar el impacto que tiene la coordinación entre los
nodos, y como varía dependiendo de la estrategia de reparto.

En estos resultados se pueden apreciar los mismos efectos que con el cluster del punto
anterior, pero mucho más acusados, debido a la extrema diferencia de potencias entre la
computadora más rápida y la más lenta. Se ponen especialmente de manifiesto con el uso
de la estrategia de reparto equitativa, ya que las máquinas más potentes deben de esperar
a que las más lentas terminen de procesar el fragmento que se les ha asignado.

Aunque en esta prueba se ha fijado el número de fragmentos a 80 con el objetivo de poder
comparar los dos cústeres con los mismos parámetros en las pruebas, se puede prever que
con un mayor número de fragmentos, el balanceo se habría realizado de mejor manera y la
eficiencia hubiera sido mayor. Teóricamente, dada la diferencia de 23:1. es previsible que un
número de fragmentos de 23 * 7, debido a la diferencia y al número de máquinas daría
mejores resultados, ya que la máquina más veloz realizaría 23 trabajos en el tiempo que la
más lenta haría 1.

6.5 Escenas
Es interesante incidir en el hecho de que en el equilibrio del reparto del trabajo no solo
influye la capacidad de los nodos, o de las unidades de cálculo de las que disponen, sino
que otro factor a tener en cuenta es la propia complejidad de la escena.

61

Estrategia Tiempo Eficiencia β
Equitativa 2726194 0,12 0.610

Proporcional 701738 0,48 0.742
Cola trabaj. 505869 0,67 0.875

Tabla 10: Resultados para el cluster desbalanceado
en función de la estrategia de reparto

Máquina Tiempo
Beatrix 1208840
Amelia 1394664
Grendel 3325563
Wargo 3293219
Annwn 1368327
Lugh 28011752
Bran 27764628

M. Armónica 2371957,5309

Tabla 9: Tiempos por
nodo del C. heterogéneo
desbalanceado

Esta complejidad, puede no estar repartida uniformemente en todo el área de la imagen, y
según la estrategia de reparto utilizada, o las capacidades de la máquina a la que se asigne
según que fragmento de imagen, los resultados pueden variar.

En esta prueba se ha lanzado el cálculo de las tres escenas, sobre el cluster heterogéneo y
sobre el cluster homogéneo, usando la estrategia de reparto por cola de trabajos, con un
número de trabajos de 80.

62

Cluster homogéneo Cluster heterogéneo
Escena Tiempo Eficiencia β Tiempo Eficiencia β
Simple 8326 1,00 0.979 58384 0,51 0.870
Cbox 23532 1,11 0.953 97053 0,78 0.970

Sponza 163933 0,88 0.965 400479 0,87 0.974

Tabla 11: Resultados en función de las escenas para los clusteres homogéneo y
heterogéneo

7 Conclusiones y trabajo futuro
7.1 Cumplimiento de objetivos
El objetivo principal de este proyecto, que consistía en la adaptación del software de
simulación de la interacción luz-material al cálculo en paralelo y el estudio de su
comportamiento.

Se ha implementado una solución basada en MPI para dotar al motor trazador de rayos
ALEPH/FTL, la capacidad de realizar cálculos de manera concurrente en varios equipos
conectados por red.

Se ha estudiado la problemática del reparto de trabajo en un cluster que no tiene por qué
estar balanceado, proponiendo tres estrategias de reparto: equitativa, proporcional a la
capacidad y mediante cola de trabajos.

Una vez propuestas, se han comparado, quedando evidenciada la mejora de rendimiento y
aprovechamiento de la capacidad potencial del sistema mediante la estrategia de cola de
trabajos.

El objetivo secundario consistente en la aportación del código para esta adaptación al
motor de renderizado ALEPH desarrollado en el GIGA, queda validado también con los
resultados anteriores, quedando disponible en el repositorio de código de tal proyecto para
futuras revisiones y adaptaciones, o bien sirviendo de base para la implementación de
nuevas características. Este código también abre posibilidades de estudio del código en sí
mismo y de las tecnologías usadas para su desarrollo.

7.2 Problemas e incidencias
En el transcurso de la realización de este proyecto de fin de carrera han ocurrido ciertos
problemas y dificultades que se han logrado solventar bien adquiriendo conocimientos
técnicos, aplicando mejoras y herramientas, o adoptando soluciones fruto del ingenio del
alumno o de los directores.

Los principales problemas se han debido a la forma de sincronizar recepción de trabajos,
comunicación entre nodos, etc. que se han solucionado implementando nuevos métodos, o
bien reestructurando los ya existentes, después de muchas pruebas erróneas y potenciales
soluciones hasta que se ha llegado a las definitivas.

También se han solventado tanto problemas como tareas repetitivas con la creación de
pequeños scripts que facilitaban dichas tareas, entre otras, conocer qué equipos se
encontraban encendidos (o directamente encenderlos por red, por medio de wake on lan),
para poder lanzar las simulaciones en ellos, o para encontrar la ruta precisa a las

63

bibliotecas y añadirlas a las variables de entorno para que el software no tuviera problemas
en localizarlas, ya que debido a la heterogeneidad entre los sistemas operativos de las
máquinas, estas pueden no coincidir en todos los casos.

Como en cualquier tipo de proyecto, la gestión del tiempo, disponibilidad, y recursos ha
supuesto un reto que, aunque al final se ha sido capaz de controlar, ha traído retrasos y
situaciones no idóneas.

7.3 Valoración del autor
La valoración de la realización de este PFC resulta muy satisfactoria, ya que ha permitido al
alumno adentrarse más en el conocimiento de la programación paralela y la computación de
alto rendimiento.

También le ha supuesto conocer las técnicas de simulación de la luz, tema con el que no
había tratado antes, así como la física que existe detrás de todos esos cálculos que son
llevados a cabo por la simulación.

Este proyecto, también ha traído consigo la oportunidad de trabajar con tecnologías propias
de los mayores supercomputadores del mundo, así como solventar problemas y adquirir
conocimientos que de otra manera difícilmente se hubiera dado el caso.

El alumno ha tenido que profundizar en el conocimiento de estas tecnologías, como por
ejemplo OpenMPI, que aunque presentadas en algunas de las asignaturas cursadas en el
transcurso de la carrera, se han tenido que adaptar al problema concreto de la síntesis de
imágenes.

Otro aspecto a valorar es el reto que ha supuesto a la capacidad del alumno al enfrentarse
a nuevos problemas, a demostrar y a aplicar los conocimientos adquiridos durante la
carrera.

7.4 Trabajo futuro
Al tratarse de un software experimental y en fases iniciales de desarrollo, este cuenta con
muchas posibles mejoras, tanto en el software que se ha tomado como base, como en el
perfeccionamiento del código para la paralelización que se ha aportado mediante la
realización de este proyecto.

Un aspecto interesante a mejorar en la paralelización es la capacidad de estimar la
velocidad de una determinada máquina, probablemente con un microbenchmark al arrancar
el software, con una medida de la velocidad fiable, se optimizaría el reparto de trabajo
proporcional a la velocidad.

Gracias a la batería de pruebas llevadas a cabo en este estudio, se ha evidenciado el
problema de reparto entre las unidades de un nodo (CPU – GPU), por lo que se ha abierto

64

un camino en el desarrollo del propio motor para implementar un reparto de trabajo
mediante cola de trabajos también a este nivel.

También se encuentra en vías de desarrollo la migración del cálculo de un rayo de forma
completa en la GPU, y esto supondrá el aislamiento completo de los cálculos que se
realizan en la GPU con respecto a los que se hacen en la CPU, lo que hará que esos
cálculos sean independientes y que el rendimiento no se vea afectado por las otras
unidades de proceso de la misma máquina.

65

8 Diagrama Temporal
El trabajo de este proyecto de fin de carrera se ha estimado en 650 horas, repartidas según
el esquema temporal.

66

1 Apéndice: Referencias
[CGIB86] Cohen M.F., Greenberg D.P., Immel D.S. y Brock P.J.: An efficient radiosity

approach for realistic image synthesis. IEEE Computer Graphics and
Applications, tomo 6(3), págs 26-35 (1986) ISSN 0272-1716.

[CPC84] Cook R.L., Porter T. y CarpenterL.: Distributed Ray Tracing. En Computer
Graphics (ACM SIGGRAPH ‘84 Proceedings), tomo 18, págs. 137-148 (1984).

[Amd67] Gene Amdahl, "Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities", 1967.

[Gre91] Green S.: Parallel Processing for Computer Graphics (Pitman Publishing, 1991).

[Hal88] Hall R.: Illumination and Color in Computer Generated Imagery (Springer,
Berlin, 1988).

[Jen01] Jensen H.: Realistic image synthesis using photon mapping (A.K. Peters, Natick,
Massachusets, 2001).

[Mag03] Magallón, J. A.: ALEPH. Simulación realista de la iluminación global mediante
técnicas de MonteCarlo y Procesado paralelo. Tesis doctoral de ingeniería
industrial, Universidad de Zaragoza, 2003.

[MPI] The message passing interface (mpi) standard. http://mpi-forum.org/docs/

67

http://mpi-forum.org/docs/

2 Apéndice: Código fuente
Si bien resulta imposible la inclusión de todo el código fuente del trazador de rayos usado
para este estudio, si que se ha estimado que resulta útil y esclarecedor hacerlo con la clase
que realiza las tareas de paralelización MultiHostManager, ya que contiene el código fuente
que se ha tenido que desarrollar para poder llevar a cabo este estudio.

2.1 Clase MultiHostManager
2.1.1 render/multihostmanager.h
#pragma once

#include <ftl/render/manager.h>

#include <ftl/base/dmp.h>

#ifdef CONFIG_HAS_MPI

namespace FTL {

namespace render {

using namespace FTL::base;

using namespace FTL::core;

enum distribution_t {EQUALLY, SPEED_PROPORTIONAL, WORK_QUEUE};

#define NODESPD_TAG 1

#define WORLDSPD_TAG 2

#define CHNKSTART_TAG 3

#define CHNKEND_TAG 4

#define CHNKTOJOIN_TAG 5

#define DATAMATRIX_TAG 6

#define WQREQUEST_TAG 7

#define WQCHNKSTART_TAG 8

#define DURATION_TAG 9

class __public_render MultiHostManager : public Manager

{

private:

 int _dist;

 int _chunks;

68

 float _myspeed;

 vector<float> _speed;

 vector<float> _rspeed;

 float _wspeed;

 vector<float> _work;

 int myis;

 int myie;

 float myspeed();

 void set_speeds();

 void queueManager(int h);

 void workReceiver(FrameBuffer& f);

 bool split(int h,bool& more);

 void init();

 void fini();

 void join(FrameBuffer& f);

protected:

 void stats(const Duration& et, const Duration& met,

 const vector<Duration>& eng) const;

public:

 MultiHostManager(int dist=SPEED_PROPORTIONAL, int chunks = 0);

 MultiHostManager(bool uc, bool ug, int dist=SPEED_PROPORTIONAL, int chunks = 0);

 MultiHostManager(int nc,int kc,int ng,int kg, int dist=SPEED_PROPORTIONAL, int chunks
= 0);

 ~MultiHostManager();

 int chunks() const;

 void chunks(int n);

 void render(const Camera& c,FrameBuffer& f);

};

}

}

#endif

2.1.2 render/multihoshmanager.cc
#include "ftl/render/manager.h"

#include "ftl/render/multihostmanager.h"

69

#include "ftl/base/sysinfo.h"

#include "ftl/base/dmp.h"

#include "ftl/base/logger.h"

#include "ftl/core/tonemap.h"

#include "ftl/core/png.h"

#include "ftl/render/shader.h"

#ifdef CONFIG_HAS_MPI

namespace FTL {

namespace render {

using namespace FTL::base;

using namespace FTL::core;

MultiHostManager::MultiHostManager(int dist, int chunks)

 : Manager()

{

 _dist = dist;

 _chunks = (_dist==EQUALLY || _dist==SPEED_PROPORTIONAL) ? DMP::csize() : chunks;

 if (_chunks<DMP::csize()) _chunks = DMP::csize();

 _myspeed = myspeed();

 _wspeed = 0;

}

MultiHostManager::MultiHostManager(bool uc, bool ug, int dist, int chunks)

 : Manager(uc,ug)

{

 _dist = dist;

 _chunks = (_dist==EQUALLY || _dist==SPEED_PROPORTIONAL) ? DMP::csize() : chunks;

 if (_chunks<DMP::csize()) _chunks = DMP::csize();

 _myspeed = myspeed();

 _wspeed = 0;

}

MultiHostManager::MultiHostManager(int nc,int kc,int ng,int kg, int dist, int chunks)

 : Manager(nc,kc,ng,kg)

{

 _dist = dist;

 _chunks = (_dist==EQUALLY || _dist==SPEED_PROPORTIONAL) ? DMP::csize() : chunks;

70

 if (_chunks<DMP::csize()) _chunks = DMP::csize();

 _myspeed = myspeed();

 _wspeed = 0;

}

MultiHostManager::~MultiHostManager()

{

 fini();

}

void MultiHostManager::fini()

{

// logger::lock();

// logger::cinfo() << "Process " << DMP::rank()

// << " ending [on " << SysInfo::name() << "]" << endl;

// logger::unlock();

}

float MultiHostManager::myspeed()

{

 float tes = 0.0f;

 for (const auto& e : engines)

 tes += e->speed();

 return tes;

}

bool MultiHostManager::split(int h,bool& more)

{

 more = false;

 MPI_Status status;

 switch (_dist)

 {

 case EQUALLY:

 {

 vector<int> lk = spliti(h,DMP::csize());

 myis = lk[DMP::rank()];

 myie = lk[DMP::rank()+1]-1;

 more = false;

 return true;

 }

71

 break;

 case SPEED_PROPORTIONAL:

 {

 if (DMP::master())

 {

 vector<int> lr(DMP::csize());

 for (int r=0; r<DMP::csize(); r++)

 lr[r] = int(_rspeed[r]*h);

 int lw = accumulate(begin(lr),end(lr),0);

 int lm = h - lw;

 for (int r=0; r<lm; r++)

 lr[r]++;

 vector<int> li(DMP::csize()+1,0);

 partial_sum(begin(lr),end(lr),begin(li)+1);

 for (int r=0; r<DMP::csize(); r++)

 {

 int ise[2] = { li[r], li[r+1]-1 };

 if (DMP::slave(r))

 {

#if 0

 MPI_Send(&ise[0],1,MPI_INT,r,CHNKSTART_TAG,MPI_COMM_WORLD);

 MPI_Send(&ise[1],1,MPI_INT,r,CHNKEND_TAG,MPI_COMM_WORLD);

#else

 MPI_Send(ise,2,MPI_INT,r,CHNKSTART_TAG,MPI_COMM_WORLD);

#endif

 }

 else

 {

 myis=ise[0];

 myie=ise[1];

 }

 }

 }

 else

 {

#if 0

 MPI_Recv(&myis,1,MPI_INT,DMP::masterid(),CHNKSTART_TAG,MPI_COMM_WORLD,&status);

 MPI_Recv(&myie,1,MPI_INT,DMP::masterid(),CHNKEND_TAG,MPI_COMM_WORLD,&status);

#else

 int ise[2];

72

 MPI_Recv(ise,2,MPI_INT,DMP::masterid(),CHNKSTART_TAG,MPI_COMM_WORLD,&status);

 myis=ise[0];

 myie=ise[1];

#endif

 }

 more = false;

 return true;

 }

 break;

 case WORK_QUEUE:

 {

 int buff = 0;

 MPI_Send(&buff,1,MPI_INT,DMP::masterid(),WQREQUEST_TAG,MPI_COMM_WORLD);

 int ise[2];

 MPI_Recv(&ise,2,MPI_INT,DMP::masterid(),WQCHNKSTART_TAG,MPI_COMM_WORLD,&status);

 if (ise[0]<0)

 {

 more = false;

 return false;

 }

 myis = ise[0];

 myie = ise[1];

 more = true;

 return true;

 }

 break;

 }

 return false;

}

void MultiHostManager::queueManager(int h)

{

 MPI_Status status;

 int buff=0;

 vector<int> lk = spliti(h,_chunks);

 for (int i=0; i<_chunks; i++)

 {

 int ise[2] = { lk[i], lk[i+1]-1 };

73

 MPI_Recv(&buff,1,MPI_INT,MPI_ANY_SOURCE,WQREQUEST_TAG,MPI_COMM_WORLD,&status);

 MPI_Send(&ise,2,MPI_INT,status.MPI_SOURCE,WQCHNKSTART_TAG,MPI_COMM_WORLD);

 }

 logger::lock();

 logger::cinfo() << "QueueMGR: No jobs left" << endl;

 logger::unlock();

 static const int done[2] = { -1,-1 };

 for (int i=0; i<DMP::csize(); i++)

 {

 MPI_Recv(&buff,1,MPI_INT,MPI_ANY_SOURCE,WQREQUEST_TAG,MPI_COMM_WORLD,&status);

 MPI_Send(&done,2,MPI_INT,status.MPI_SOURCE,WQCHNKSTART_TAG,MPI_COMM_WORLD);

 }

}

void MultiHostManager::workReceiver(FrameBuffer& f)

{

// f.blank();

 _work.assign(DMP::csize(),0.0f);

 for (int n=0; n<_chunks; n++)

 {

 MPI_Status status;

 int ise[2];

 MPI_Recv(&ise,2,MPI_INT,MPI_ANY_SOURCE,CHNKTOJOIN_TAG,MPI_COMM_WORLD,&status);

 int is = ise[0];

 int ie = ise[1];

 int nr = ie-is+1;

 _work[status.MPI_SOURCE] += nr;

 if (DMP::slave(status.MPI_SOURCE))

 {

 int sz = nr*f.width()*SDF::nsamples;

 float* buffer = new float[sz];

MPI_Recv(buffer,sz,MPI_FLOAT,status.MPI_SOURCE,DATAMATRIX_TAG,MPI_COMM_WORLD,&status);

 // row

 for (int i=0; i<nr; i++)

 {

 // col

74

 vector<SDF>& row = f[is+i];

 for (int j=0; j<f.width(); j++)

 {

 float* buf = buffer + (i*f.width()+j)*SDF::nsamples;

 row[j] = buf;

 }

 }

 delete[] buffer;

 }

#if 0

 logger::lock();

 logger::cinfo() << "Buf received [" << n << "/" << realChunks << "]" << endl;

 logger::unlock();

#endif

 }

 for (auto& w : _work)

 w /= float(f.height());

}

int MultiHostManager::chunks() const

{

 return _chunks;

}

void MultiHostManager::chunks(int n)

{

 _chunks = (_dist==EQUALLY || _dist==SPEED_PROPORTIONAL) ? DMP::csize() : n;

 if (_chunks==0) _chunks = DMP::csize();

}

void MultiHostManager::set_speeds()

{

 MPI_Status status;

 if (DMP::master())

 {

 _speed.resize(DMP::csize(),0.0);

 _speed[DMP::rank()] = _myspeed;

 for (int i=1; i<DMP::csize();i++)

 {

75

 float nspd;

 MPI_Recv(&nspd,1,MPI_FLOAT,MPI_ANY_SOURCE,NODESPD_TAG,MPI_COMM_WORLD,&status);

 _speed[status.MPI_SOURCE] = nspd;

 }

 _wspeed = 0.0;

 for (auto s : _speed)

 _wspeed += s;

 _rspeed.resize(DMP::csize());

 for (int r=0; r<int(_speed.size()); r++)

 _rspeed[r] = _speed[r]/_wspeed;

 }

 else

 {

 MPI_Send(&_myspeed,1,MPI_FLOAT,DMP::masterid(),NODESPD_TAG,MPI_COMM_WORLD);

 }

// MPI_Bcast(&_wspeed,1,MPI_FLOAT,DMP::masterid(),MPI_COMM_WORLD);

}

void MultiHostManager::render(const Camera& c,FrameBuffer& f)

{

 Timer mtmr;

 mtmr.start();

 set_speeds();

 if (DMP::master())

 {

 mtmr.stop();

 logger::lock();

 logger::cinfo() << endl;

 logger::cinfo() << "World speed: " << setw(3) << int(_wspeed) << endl;

 logger::cinfo() << "Node speeds:" << endl;

 for (int r=0; r<int(_speed.size()); r++)

 {

 logger::cinfo() << " node " << setw(3) << r

 << ": " << setw(3) << int(_speed[r])

 << " (" << setw(2) << int(100*_rspeed[r]) << "%)"<< endl;

 }

76

 logger::cinfo() << endl;

// logger::cinfo() << "Number of processes: " << DMP::csize() << endl;

 logger::cinfo() << "World: "

 << "[" << setw(5) << 0 << " -" << setw(5) << f.height()-1 << "]"

 << " " << setw(5) << f.height()

 << endl;

 logger::cinfo() << endl;

 logger::unlock();

 mtmr.start();

 }

#if 1

 mtmr.stop();

 MPI_Barrier(MPI_COMM_WORLD);

 mtmr.start();

#endif

 std::thread queueserver, receiver;

 if (DMP::master())

 {

 receiver = std::thread(&MultiHostManager::workReceiver,this,std::ref(f));

 if (_dist==WORK_QUEUE)

 queueserver = std::thread(&MultiHostManager::queueManager,this,f.height());

 }

 Timer tmr;

 tmr.start();

 vector<Duration> engrd(engines.size(),0);

 f.blank();

 bool more;

 while (split(f.height(),more))

 {

 logger::lock();

 logger::cinfo() << "Node " << setw(3) << DMP::rank() << ": "

77

 << "[" << setw(5) << myis << " -" << setw(5) << myie << "]"

 << " " << setw(5) << myie-myis+1

 << endl;

 logger::unlock();

#if 1

 vector<thread> pool;

 int h = myie-myis+1;

 int w = f.width();

 int is = myis;

 int ie = myis-1;

 for (int i=0; i<int(engines.size()); i++)

 {

 is = ie + 1;

 ie = is + int(res[i]*(h-1));

 if (ie > (myis+h-1)) ie = myis+h-1;

 Job job(is,ie,0,w-1);

#if 0

 tmr.stop();

 logger::lock();

 logger::cinfo() << "Job for <" << engines[i]->name()

 << "> [node " << setw(2) << DMP::rank() << "]: "

 << job << " " << job.size() << endl;

 logger::unlock();

 tmr.start();

#endif

 pool.push_back(engines[i]->render(c,f,job));

 }

 for (auto& t : pool)

 t.join();

 for (int i=0; i<int(engines.size()); i++)

 {

 engrd[i] += engines[i]->rd;

 }

 join(f);

78

#endif

 if (!more)

 break;

 }

 tmr.stop();

 if (DMP::master())

 {

 if (_dist==WORK_QUEUE)

 queueserver.join();

 receiver.join();

 }

 mtmr.stop();

 stats(tmr.runtime(),mtmr.runtime(),engrd);

// f.check();

}

void MultiHostManager::join(FrameBuffer& f)

{

 int buf[2];

 buf[0]= myis;

 buf[1]= myie;

 MPI_Send(&buf,2,MPI_INT,DMP::masterid(),CHNKTOJOIN_TAG,MPI_COMM_WORLD);

 if (DMP::slave())

 {

 int nr = myie-myis+1;

 int sz = nr*f.width()*SDF::nsamples;

 float* buffer = new float[sz];

 // row

 for (int i=0; i<nr; i++)

 {

 const vector<SDF>& row = f[myis+i];

 // col

 for (int j=0; j<f.width(); j++)

 {

 float* buf = buffer + (i*f.width()+j)*SDF::nsamples;

 for (int k=0; k<SDF::nsamples; k++)

 buf[k] = row[j][k];

79

 }

 }

 MPI_Send(buffer,sz,MPI_FLOAT,DMP::masterid(),DATAMATRIX_TAG,MPI_COMM_WORLD);

 delete[] buffer;

 }

}

void MultiHostManager::stats(const Duration& et, const Duration& met,

 const vector<Duration>& engrd) const

{

#if 1

 float mx,mn,sd;

#if 0

 mx = 0.0;

 mn = 0.0;

 for (const auto& e : engines)

 {

 logger::cinfo() << "[perf]"

 << "[node " << setw(2) << DMP::rank() << "]"

 << "[" << e->name() << "]"

 << " " << e->rd.ms()

 << endl;

 if (e->rd.ms()>mx)

 mx = e->rd.ms();

 mn += e->rd.ms();

 }

 mn /= float(engines.size());

 sd = 0.0;

 for (const auto& e : engines)

 {

 float d = e->rd.ms() - mn;

 sd += d*d;

 }

 sd /= float(engines.size());

 sd = sqrt(sd);

#else

 mx = 0.0;

 mn = 0.0;

 for (int i=0; i<int(engines.size()); i++)

 {

 if (engrd[i].ms()>mx)

80

 mx = engrd[i].ms();

 mn += engrd[i].ms();

 }

 mn /= float(engines.size());

 sd = 0.0;

 for (const auto& d : engrd)

 {

 float dm = d.ms() - mn;

 sd += dm*dm;

 }

 sd /= float(engrd.size());

 sd = sqrt(sd);

#endif

 logger::lock();

 logger::cinfo() << "[perf]"

 << "[node " << setw(2) << DMP::rank() << "]"

 << "[all]"

 << " " << int(et.ms()) << endl;

 for (int i=0; i<int(engines.size()); i++)

 {

 logger::cinfo() << "[perf]"

 << "[node " << setw(2) << DMP::rank() << "]"

 << "[" << engines[i]->name() << "]"

 << " " << int(engrd[i].ms())

 << endl;

 }

 logger::cinfo() << "[perf]"

 << "[node " << setw(2) << DMP::rank() << "]"

 << "[bal]"

 << " " << fixed << setw(5) << setprecision(3) << mx/float(et.ms())

 << " " << fixed << setw(5) << setprecision(3) << mn/float(et.ms())

 << " " << fixed << setw(5) << setprecision(3) << sd/float(et.ms())

 << endl;

 logger::unlock();

#if 1

 MPI_Barrier(MPI_COMM_WORLD);

#endif

 if (DMP::master())

 {

81

 vector<float> durations(DMP::csize(),0);

 durations[DMP::rank()] = et.ms();

 for (int i=1; i<DMP::csize();i++)

 {

 MPI_Status status;

 float received;

 MPI_Recv(&received,1,MPI_FLOAT,MPI_ANY_SOURCE,DURATION_TAG,MPI_COMM_WORLD,&status);

 durations[status.MPI_SOURCE] = received;

 }

 mx = 0.0;

 mn = 0.0;

 for (int i=0; i<DMP::csize();i++)

 {

 if (durations[i]>mx)

 mx = durations[i];

 mn += durations[i];

 }

 mn /= float(DMP::csize());

 sd = 0.0;

 for (auto nd : durations)

 {

 float d = nd - mn;

 sd += d*d;

 }

 sd /= float(DMP::csize());

 sd = sqrt(sd);

 logger::lock();

 logger::cinfo() << endl;

 for (int i=0; i<DMP::csize(); i++)

 {

 logger::cinfo() << "[perf]"

 << "[cluster]"

 << "[work]"

 << "[node " << setw(2) << i << "]"

 << " "

 << setw(2) << int(100*_rspeed[i])

 << " / "

 << setw(2) << int(100*_work[i])

 << endl;

82

 }

 logger::cinfo() << endl;

 logger::cinfo() << "[perf]"

 << "[cluster]"

 << "[all]"

 << " " << int(met.ms())

 << endl;

 for (int i=0; i<DMP::csize(); i++)

 {

 logger::cinfo() << "[perf]"

 << "[cluster]"

 << "[node " << setw(2) << i << "]"

 << " " << int(durations[i])

 << endl;

 }

 logger::cinfo() << "[perf]"

 << "[cluster]"

 << "[bal]"

 << " " << fixed << setw(5) << setprecision(3) << mx/float(met.ms())

 << " " << fixed << setw(5) << setprecision(3) << mn/float(met.ms())

 << " " << fixed << setw(5) << setprecision(3) << sd/float(met.ms())

 << endl;

 logger::unlock();

 }

 else

 {

 float nd = et.ms();

 MPI_Send(&nd,1,MPI_FLOAT,DMP::masterid(),DURATION_TAG,MPI_COMM_WORLD);

 }

#endif

}

}

}

#endif

2.2 Otros códigos
2.2.1 base/math.cc
#include "ftl/base/math.h"

83

#include <limits>

#include <cfloat>

#include <numeric>

namespace FTL {

namespace base {

const float eps = 10*numeric_limits<float>::epsilon();

const float bigeps = 100*numeric_limits<float>::epsilon();

const float inf = numeric_limits<float>::max();

vector<int> split(int n,int k)

{

 vector<int> r(k);

 int lk = n/k;

 int lx = n%k;

 for (int i=0; i<k; i++)

 r[i] = lk;

 for (int i=0; i<lx; i++)

 r[i]++;

// int sum = std::accumulate(begin(r),end(r),0);

 return r;

}

vector<int> spliti(int n,int k)

{

 vector<int> r(k+1);

 vector<int> s = split(n,k);

 r[0]=0;

 partial_sum(begin(s),end(s),begin(r)+1);

 return r;

}

} // namespace base

} // namespace FTL

84

	1 Introducción
	1.1 Alcance del documento
	1.2 Contexto de desarrollo
	1.3 Motivación del proyecto
	1.4 Objetivos y alcance
	1.5 Trabajo del autor
	1.6 Contenido de la documentación

	2 Estado del Arte
	2.1 Síntesis de imagen por computador
	2.1.1 Proceso general: Pipeline gráfica
	2.1.2 Iluminación
	2.1.2.1 Ecuación integral de la radiancia
	2.1.2.2 Trazado de rayos inverso
	Trazado de rayos simple
	Trazado de rayos distribuido
	Métodos de Monte Carlo

	2.1.2.3 Radiosidad
	2.1.2.4 Métodos híbridos
	2.1.2.5 Métodos directos

	2.1.3 Path Tracing
	2.1.3.1 Primera capa: trazado de rayos simple
	2.1.3.2 Segunda capa: cálculo de la iluminación indirecta
	2.1.3.3 Complejidad

	2.2 Computación paralela
	2.2.1 CPUs
	2.2.2 GPUs
	2.2.2.1 GPGPU

	2.2.3 Clústeres
	2.2.4 Paralelización
	2.2.4.1 Memoria compartida
	2.2.4.2 Memoria distribuida
	2.2.4.3 Comunicación
	2.2.4.4 Tecnologías de paralelización
	OpenMP
	MPI
	Hadoop

	2.3 Path tracer sobre un cluster heterogéneo de CPUs y GPUs

	3 Descripción del sistema
	3.1 Hardware
	3.1.1 Computadoras

	3.2 Software
	3.2.1 C++ 11
	3.2.2 OpenMPI

	3.3 Recursos
	3.4 Control y monitorización

	4 Diseño y paralelización del trazador de rayos
	4.1 Trazador de rayos ALEPH
	4.1.1 Descripción
	4.1.2 Algoritmo simplificado

	4.2 Paralelización
	4.2.1 Nivel de unidad de proceso
	4.2.2 Nivel de nodo
	4.2.3 Nivel de cluster
	4.2.3.1 Reparto de trabajo
	Equitativo
	Proporcional a la capacidad
	Cola de trabajos

	4.2.3.2 Puesta en común de resultados

	4.2.4 Implementación

	5 Pruebas y experimentos
	5.1 Escenas
	5.1.1 Objeto simple
	5.1.2 Cornell box
	5.1.3 Atrio del Palacio Sponza

	5.2 Entornos de ejecución
	5.3 Parámetros
	5.4 Pruebas
	5.4.1 Medidas de rendimiento
	5.4.1.1 Eficiencia
	5.4.1.2 Balanceo de carga

	6 Resultados
	6.1 CPU
	6.2 GPU – CPU
	6.3 Cluster homogéneo
	6.3.1 Cola de trabajos

	6.4 Cluster heterogéneo
	6.4.1 Desbalanceado

	6.5 Escenas

	7 Conclusiones y trabajo futuro
	7.1 Cumplimiento de objetivos
	7.2 Problemas e incidencias
	7.3 Valoración del autor
	7.4 Trabajo futuro

	8 Diagrama Temporal
	1 Apéndice: Referencias
	2 Apéndice: Código fuente
	2.1 Clase MultiHostManager
	2.1.1 render/multihostmanager.h
	2.1.2 render/multihoshmanager.cc

	2.2 Otros códigos
	2.2.1 base/math.cc

