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SIMULACIÓN DE SISTEMAS MEDIANTE PARTÍCULAS UTILIZANDO GPU's 
 RESUMEN  

El problema gravitatorio de los N cuerpos es, tal vez, el problema no resuelto más 
antiguo y a la vez más fecundo en la historia de la ciencia. Su origen se remonta a la 
necesidad del hombre antiguo de medir el paso del tiempo para anticipar migraciones de 
animales y, posteriormente, los ciclos agrícolas. 
En este proyecto se ha creado un programa que implementa uno de los métodos de 
resolución que existen para el problema de los N cuerpos, concretamente, el método 
Partícula-Partícula. Se ha abordado prácticamente todo lo que OpenGL, librería base del 
proyecto, permite hacer sobre la tarjeta gráfica, desde el computo de los cálculos que 
mueven cada planeta hasta la renderización de los mismos en un mundo 3D. 
El objetivo de este proyecto consiste en estudiar el comportamiento de una GPU 
trabajando con partículas. Se ha tomado como escenario los planetas y su gravitación, y 
se quería averiguar cuál era el número límite de planetas que se podían simular a la vez 
manteniendo unos FPS aceptables y utilizando todo el potencial de la tarjeta gráfica.  
En las páginas de este documento se recoge todo el proceso de preparación, desarrollo, 
generación de resultados y pruebas de rendimiento. Como se podrá comprobar, los 
resultados obtenidos se enmarcan dentro de lo que se esperaba teóricamente, por lo que 
el objetivo ha sido cumplido. 
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1.  INTRODUCCIÓN 
1.1. OBJETIVOS 
Este documento recoge la memoria del Proyecto Fin de Carrera de Adrián Pascual 
Sancho. Este PFC se enmarca dentro del mundo de las tarjetas gráficas y gráficos 3D.  
El objetivo principal del presente proyecto es el estudio del comportamiento de una 
GPU trabajando con una carga gráfica y computacional elevada. Para ello, se ha tomado 
como escenario el problema gravitacional de los N cuerpos. 
El problema gravitatorio de los N cuerpos es, tal vez, el problema no resuelto más 
antiguo y a la vez más fecundo en la historia de la ciencia. Su origen se remonta a la 
necesidad del hombre antiguo de medir el paso del tiempo para anticipar migraciones de 
animales y, posteriormente, los ciclos agrícolas. 
En este proyecto, se va a implementar un algoritmo básico de resolución de este 
problema. Se va a desarrollar una simulación de la gravitación universal, realizando 
todos los cálculos dentro de la GPU, y con la renderización, aunque básica, de los 
planetas involucrados. Estos puntos son independientes del modelo de GPU utilizado.  
Cómo se podrá comprobar a lo largo del trabajo, el algoritmo implementado presenta 
una complejidad computacional elevada, del orden de complejidad cuadrático (O (n2)). 
Para evitar que el tiempo de ejecución se incremente demasiado, se van a aplicar ciertas 
optimizaciones, tanto a las fórmulas con las que se actualizan los datos, como al número 
de partículas que tiene que tratar en cada iteración.  
Se pretende partir del problema de los dos cuerpos y llegar hasta un sistema con un 
número N de partículas, a partir de la cual, la GPU seleccionada no consiga alcanzar 
unos FPS aceptables, entendiendo como aceptables, alrededor de 15 FPS. Este número 
N es depende del modelo de GPU utilizado. Para este proyecto, se va a utilizar la Nvidia 
GeForce GTX 660M, por lo que todos los resultados serán específicos de esta tarjeta 
gráfica. 
La metodología a seguir consistirá en: 

- Analizar los algoritmos existentes para la resolución del problema de los N 
cuerpos. 

- Realizar una implementación en un entorno NVIDIA y analizar sus prestaciones 
y resultados obtenidos. 

- Integrar todo lo anterior en un programa en 3D escrito en C++ y utilizando la 
librería OpenGL 4.x. 

- Obtener un límite máximo de partículas, a partir del cual, la GPU no consiga 
obtener unos FPS mínimos para la correcta visualización del programa. 
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1.2. DESCRIPCIÓN DE LA ESTRUCTURA DE LA MEMORIA 
 Métodos de Resolución del problema gravitacional de los N cuerpos (sección 2): 

Clasificación y análisis de las diferentes aproximaciones existentes para la resolución 
del problema gravitacional de los N cuerpos y desarrollo del algoritmo principal de la 
simulación. 

 La GPU (sección 3):  
Presentación del funcionamiento de las tarjetas gráficas actuales, así como, de la librería 
OpenGL, encargada de los cálculos y la generación de la escena 3D. 

 Preparación de la simulación (sección 4): 
Explicación de todas las decisiones tomadas en relación al diseño e implementación del 
algoritmo utilizado en la simulación. 

 Simulación del Sistema Solar (sección 5): 
Recorrido por las diferentes versiones del algoritmo implementado, concluyendo con la 
simulación del Sistema Solar completo en la GPU. Presentación y explicación de los 
resultados obtenidos. 

 Simulación aleatoria (sección 6): 
Explicación de los cambios realizados sobre el algoritmo de la sección anterior, así 
como de los resultados obtenidos. 

 Conclusiones (sección 7): 
Valoración del trabajo realizado, presentación del diagrama temporal y opinión 
personal. 
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2. MÉTODO DE RESOLUCIÓN PARTÍCULA-PARTÍCULA 
Para simplificar la simulación, se considera una estrella como si fuera un punto de masa 
cuyas únicas propiedades a tener en cuenta son la masa y la atracción gravitacional. 
Teniendo esto en mente, se puede llamar al problema clásico gravitacional de N cuerpos 
como el problema de determinar el comportamiento de una colección de N puntos de 
masa cuando están en movimiento bajo fuerzas gravitacionales recíprocas de acuerdo 
con las leyes de Newton del movimiento.  
La evolución de los grupos de estrellas o galaxias, considerados como puntos de masas, 
y el desarrollo de estructuras de espiral y barril en una galaxia, son problemas que 
pueden aproximarse con la simplificación anterior.  
En este capítulo, se van a presentan los tipos de aproximaciones al problema que 
existen, así como los métodos matemáticos de resolución de cada uno de ellos, 
finalizando el apartado explicando, más en detalle, el método de resolución “Partícula – 
Partícula”, que va a ser el que se va a utilizar para las simulaciones de este proyecto. 

2.1. CLASIFICACIÓN DE LAS APROXIMACIONES 
El problema de los N cuerpos se puede dividir en 3 clases de aproximaciones, 
dependiendo de la importancia que tengan las colisiones binarias en la evolución del 
sistema. Estas aproximaciones se denominan: collisional-dominated systems, 
collisionaless systems y cúmulo globular. 
Si se define que la ratio de colisión binaria (ݒ஽) (capítulo 11 de [1]) mide el alcance en 
el que la órbita de una estrella situada en un campo gravitacional aparece perturbada por 
la presencia de otra estrella cercana, entonces el tiempo de colisión binario ( ஽ܶ = ஽ିݒ  ଵ) 
en un sistema de puntos de masas en 3 dimensiones viene definido por:  

݊: :݉ ܽܿ݅ݎݐé݉ݑ݈݋ݒ ݀ܽ݀݅ݏ݊݁݀ :ܦ ܽݒ݅ݐ݈ܽ݁ݎ ݀ܽ݀݅ܿ݋݈݁ݒ ݒ ܽݏܽ݉ :ܪ ݈ܽݏݎ݁ݒ݅݊ݑ ݊݋݅ܿܽݐ݅ݒܽݎ݃ ݁݀ ݁ݐ݊ܽݐݏ݊݋ܿ :ܩ ܽ݅ܿ݊ܽݐݏ݅݀  ݁ݐ݊݁݉ܽ݀ܽ݉݅ݔ݋ݎ݌ܽ 0.4 ݈݁ܽݒ ݁ݑݍ ݁ݐ݊ܽݐݏ݊݋ܿ
Sabiendo que n es proporcional a ܰିଵ y que m es proporcional N, se puede reducir la 
anterior ecuación a ஽ܶ ∝ ܰ, en consecuencia ݒ஽ =  ஽ܶି ଵ  ∝  ܰିଵ. 

஽ܶ = ଷݒ 

ܪଶ݉ଶܩ݊ߨ8 ln ൬ ଶݒܦ
൰݉ܩ2

 (2,1) 
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En grupos compuestos por pocos centenares de estrellas, la órbita de cualquiera de ellas 
dependerá principalmente de la posición y masa precisas de las estrellas vecinas locales. 
Este tipo de sistemas son llamados collisional-dominated systems (sistemas dominados 
por las colisiones) debido a estas interacciones binarias.  
Por otra parte, si el sistema está compuesto por un número N muy grande de estrellas, 
como podría ser una galaxia, que cuenta con un N del orden de 10ଵଵ, el tiempo para que 
una órbita estelar sea perturbada un ángulo de 9 grados en alguna dirección es del orden 
de 100 rotaciones de la galaxia. Esto representa un límite de tiempo en torno al cual los 
efectos de las colisiones pueden considerarse como insignificantes. Por este motivo, este 
tipo de sistemas se denominan collisionaless systems (sistemas sin colisiones). La 
evolución de estos sistemas está determinada por la densidad de masa de todo el sistema 
y no por las masas individuales de cada estrella. 
Existe una tercera agrupación de estrellas, denominada cúmulo globular, que está 
compuesto por un número de estrellas comprendido entre 104 y 106 estrellas. Este es el 
grupo más complicado de simular ya que N no es lo suficientemente grande como para 
ignorar las colisiones ni tan pequeño como para calcular la órbita de cada estrella de 
forma precisa. 

2.2. MÉTODOS DE RESOLUCIÓN 
Las técnicas de simulación de partículas intentan modelar sistemas de muchos cuerpos 
mediante la resolución de las ecuaciones de movimiento de un conjunto de partículas 
usadas para representar el sistema. Para cada uno de los tipos de aproximaciones citados 
se puede definir un método de resolución, como podemos observar en el capítulo 1 de 
[1]. Para agrupaciones pequeñas de estrellas, el método “Partícula-Partícula” (PP) es el 
más adecuado, para agrupaciones intermedias se usa el método “Partícula-Partícula – 
Partícula-Malla” (P3M o PPPM) y para agrupaciones grandes se emplea el método 
“Partícula-Malla” (PM). 
La técnica PP para simular los collisional-dominated systems se ha utilizado muchos 
desde los años 60. La fuerza en una estrella se calcula mediante la suma de las 
interacciones con las otras estrellas. Para obtener la fuerza en las N estrellas, son 
necesarias entorno a 5N2 operaciones. Hablando de agrupaciones menores a 4000 
cuerpos, este método presenta importantes ventajas respecto a los demás ya que cada 
fuerza es tan precisa como la precisión aritmética del ordenador utilizado. 
El método PM, utilizado en la simulación de los collisionaless systems, fue introducido 
a finales de los años 60 usando una modificación de un programa diseñado para la 
simulación de gas plasma. Esta técnica trata a la fuerza como un campo cuya magnitud 
se aproxima utilizando una malla, por tanto, no trabaja con la masa de cada partícula en 
concreto sino con una densidad de masa calculada a partir de varias partículas cercanas. 
Es por este motivo que la principal característica de este método es su velocidad. Con 
estas densidades, se calculan los valores de la malla, los cuales permiten, mediante su 
interpolación, obtener las fuerzas y potencias en cada partícula. Debido al uso de las 
densidades, el método PM es inaceptable para el estudio de interacciones entre 
partículas cercanas. 
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Por último, el método P3M sirve para paliar el principal fallo de la técnica PM, el 
cálculo de fuerzas entre partículas cercanas. La fuerza se divide en dos partes, una de 
variación rápida y de corto alcance, que se calcula mediante la suma directa de fuerzas 
usando el método PP, y otra de variación lenta y de largo alcance, cuyo valor se obtiene 
usando el método PM. El principal problema de un algoritmo P3M es que suele ocurrir 
que la parte del sumatorio directo termine dominando sobre la otra, consiguiendo lo 
contrario de lo que se buscaba. 

2.3. ALGORITMO BASE DEL MÉTODO PP 
Como ya se ha comentado anteriormente, para el proyecto planteado, se ha elegido el 
método “Partícula-Partícula”, que a pesar de ser el más sencillo, tanto conceptual como 
computacionalmente, es el que más precisión obtiene en un ámbito de pocos cuerpos 
como es el Sistema Solar.  
En un algoritmo que implementa un método PP, el estado del sistema en un instante t 
está definido mediante la posición y la velocidad de cada partícula. 

௣ܰ: número de partículas 
:௜ݔ :௜ݒ ݅ ݁ݐ݊ܽݐݏ݊݅ ݈݁ ݊݁ ó݊݅ܿ݅ݏ݋݌  ݅ ݁ݐ݊ܽݐݏ݊݅ ݈݁ ݊݁ ݀ܽ݀݅ܿ݋݈݁ݒ

Dicho algoritmo, que podemos encontrar en el capítulo 1 de [1], consta de en un bucle 
principal (ver imagen 2.1), que se denomina timestep loop, que actualiza los valores 
indicados utilizando las ecuaciones de movimiento (ecuación 2.2) y la fuerza de 
interacción entre partículas (ecuación 2.3). 

 
Imagen 2.2.1 Algoritmo PP básico. 

,(ݐ)௜ݔ ;(ݐ)௜ݒ ݅ = 1. . ௣ܰ (2,2) 
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En este proyecto, se va a usar este algoritmo para calcular la evolución de los astros del 
Sistema Solar, y posteriormente la evolución de los planetas colocados de forma 
aleatoria en un espacio determinado, partiendo de una posición inicial elegida 
manualmente. Por tanto, la fuerza de interacción entre las partículas implicadas será la 
definida por la ley de gravitación universal, la cual predice que la fuerza ejercida entre 
dos cuerpos de masas m1 y m2 separados una distancia r es proporcional al producto de 
sus masas e inversamente proporcional al cuadrado de la distancia, es decir: 

:ܨ ݉ó݀ܩ ܽݖݎ݁ݑ݂ ݈ܽ ݁݀ ݋݈ݑ: ݈ܽݏݎ݁ݒ݅݊ݑ ó݊݅ܿܽݐ݅ݒܽݎ݃ ݁݀ ݁ݐ݊ܽݐݏ݊݋ܿ =  6.6784 ∗ 10ିଵ  ܰ݉ଶି݃ܭଶ ݉௜: :ݎ ݅ ܽݐ݈݁݊ܽ݌ ݈݁݀ ܽݏܽ݉  ݏܽݐ݈݁݊ܽ݌ ݏ݋݈ ݁ݎݐ݊݁ ܽ݅ܿ݊ܽݐݏ݅݀
Aplicando esta ley a nuestro caso de N partículas y simplificando la fórmula (consultar 
el capítulo 31 de [4]), la fuerza total Fi en el cuerpo i vendrá dada por la ecuación 2.3. 

:ଶߝ  పఫሬሬሬԦ: vector que va desde la partícula i a la partícula jݎ ݋݀ܽݖ݅ݒܽݑݏ ݁݀ ݎ݋ݐ݂ܿܽ
:௜ݔ :௜݉ ݅ ݈ܽݑíܿݐݎܽ݌ ݈ܽ ݁݀ ݊݋݅ܿ݅ݏ݋݌  ݅ ݈ܽݑíܿݐݎܽ݌ ݈ܽ ݁݀ ܽݏܽ݉

2.4. OPTIMIZACIONES 
Al bucle citado (timestep loop básico) se le van a añadir ciertos cambios de forma que la 
precisión en el cálculo de la posición y velocidad se vea mejorada y admita el poder 
ejecutarlo computacionalmente de forma paralela.   
Para calcular la fuerza total en la partícula i, es necesario sumar todas las fuerzas que 
cada una de las demás partículas ejercen sobre ella. La aproximación más básica reside 
en implementar un bucle anidado para recorrer todas las partículas, y por cada una, 
recorrer todas las demás, calculando así la fuerza total (imagen 2.2), lo cual genera un 
algoritmo de orden de complejidad1 O (n2).  

                                                 
1 El orden de complejidad mide la eficiencia de un algoritmo cuando el número de datos N tiende a 
infinito. 

ܨ = ܩ  ݉ଵ݉ଶ
ଶݎ  (2,3) 

పሬሬԦܨ = ௜݉ܩ ෍ ௝݉ݎపఫሬሬሬԦ
ቀฮݎ௜௝ฮଶ + ଶቁଶߝ  ଷൗଵ ஸ௝ ஸ ே

 ; పఫሬሬሬԦݎ  = ௝ݔ  −  ௜ (2,4)ݔ 
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Imagen 2.2.2 Bucle sin optimizar para calcular las fuerzas. 

El algoritmo definido en el timestep loop, a la vez que se calcula la fuerza total en la 
partícula i, se va acumulando la fuerza fij en el sumatorio de la partícula j, de esta forma, 
se evita tener que calcular fji ya que fij = fji (imagen 2.3). Así, se pasa de tener un 
algoritmo del orden de complejidad O (n2) a uno de O (n*log n). Para hacer una idea de 
la mejora lograda, teniendo 1000 partículas, el bucle sin optimizar tendría que realizar 
1000000 iteraciones para poder calcular la fuerza en cada una de ellas, en cambio, el 
bucle optimizado necesitaría solo ∑ (1000 − ݇)ଵ଴଴଴௞ୀଵ  = 499500 iteraciones, menos de la 
mitad que el anterior caso. 

 
Imagen 2.2.3 Bucle para calcular las fuerzas optimizado para una ejecución secuencial. 

Esta optimización es perfecta para una ejecución secuencial del algoritmo. En cambio, 
en una ejecución en paralelo, en la que cada hilo o thread va a ejecutar este bucle para 
calcular la fuerza neta sobre un único planeta, no es recomendable su uso. Los hilos se 
ejecutan sin un orden determinado, por lo que el hilo que calcule la fuerza sobre la 
partícula i no tiene forma de saber si el hilo que calcula la fuerza sobre la partícula j ha 
incrementado ya sus respectivas fuerzas netas con fij o no. El querer ir actualizando la 
fuerza de las partículas de los demás hilos conllevaría generar problemas de 
concurrencia innecesarios 2 , en consecuencia, para la ejecución paralela, el bucle 
utilizado es el mostrado en la imagen 2.2.  
Ahora que el algoritmo ya es paralelizable, se procede a añadir más exactitud en los 
cálculos. En el algoritmo clásico la forma en que se obtiene la nueva posición y 
velocidad en cada iteración del bucle es muy simple y acaba provocando problemas de 
precisión. Como solución, se ha utilizado el “método del salto de rana”, más conocido 
con su nombre en inglés Leapfrog Integration [3]. Con éste método, las ecuaciones de 
movimiento quedan de la siguiente forma: 

                                                 
2 Como por ejemplo una condición de carrera (race condition) ocurre cuando dos o más procesos acceden 
un recurso compartido sin control, de manera que el resultado combinado de este acceso depende del 
orden de llegada 

௜ோௐݔ ≔ ௜ை௅஽ݔ + ܶܦ௜ை௅஽ݒ +  12 ܽ௜ை௅஽ܶܦଶ (2,5) 
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Hay que resaltar que para el cálculo de la nueva velocidad se necesita haber calculado 
previamente la nueva aceleración, es decir, la nueva fuerza en cada partícula en base a 
las nuevas posiciones. En consecuencia, es necesario variar el orden en que se ejecuta el 
algoritmo, de forma que la fuerza se actualice después de que los planetas se hayan 
movido y estén ya en sus nuevas localizaciones y antes de calcular la velocidad que les 
hará avanzar en la siguiente iteración.  
En la imagen 2.4 ha sido modificada manualmente para añadir estos cambios 
nombrados. En ella, se puede apreciar el bucle timestep loop final. 

 
Imagen 2.2.4 Algoritmo PP optimizado.

௜ோௐݒ ≔ ௜ை௅஽ݒ + 1
2 ൫ܽ௜ை௅஽ + ܽ௜ோௐ൯(2,6) ܶܦ 
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3. LA GPU 
Las tarjetas gráficas (GPUs) actuales, consisten en un gran número de procesadores 
programables denominados shader cores, los cuales ejecutan programas llamados 
shaders. Cada core tiene un rendimiento relativamente bajo: procesa una única 
instrucción del shader en uno o más ciclos de reloj y, normalmente, carecen de 
características de procesadores más avanzados como podrían ser la ejecución fuera de 
orden, la predicción de saltos, el superescalado…  
Sin embargo, cada GPU cuenta con una gran cantidad de cores, que van desde unas 
pocas decenas a unos pocos miles, y juntos pueden llevar a cabo una cantidad inmensa 
de trabajo. 

3.1. PIPELINE GRÁFICA 
La mayoría de los sistemas gráficos siguen el paradigma de lo que se denomina pipeline 
gráfica, que consiste en un número de etapas, cada una representada bien por un shader, 
o bien por funciones fijas (consultar el capítulo 3 de [2]). Existen dos tipos de pipeline: 
la rendering pipeline y la compute pipeline.  
La pipeline de renderizado es la pipeline clásica, cuya finalidad es la de renderizar o 
visualizar objetos 3D (ver imagen 3.1). La compute pipeline ha sido integrada 
recientemente en las tarjetas gráficas y tiene como objetivo permitir al usuario ejecutar 
cualquier operación o cálculo matemático usando los procesadores de la tarjeta. 

 
Imagen 3.1 Proceso de renderizado desde que un objeto 3D entra a la pipeline hasta que se muestra en 

la pantalla. 
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En este capítulo se van a presentar los distintos shaders que el programador tiene a su 
disposición (para un recorrido más en detalle de las pipelines, ver el apéndice D): 
A continuación, se van a presentar las distintas etapas programables de ambas pipelines: 

 Vertex shader (VS): Primera etapa programable de la pipeline de renderizado. El 
objetivo de esta etapa es el de procesar cada vértice de forma individual. 

 Tessellation Control Shader (TCS) y Tessellation Evaluation Shader (TES): La 
teselación es el proceso de romper primitivas de alto orden, en muchas 
primitivas más pequeñas y simples por medio de subdivisiones recursivas. 

 Geometry shader (GS): Esta etapa permite obtener nueva geometría a partir de 
la geometría original, agregando o sustrayendo vértices. 

 Fragment shader (FS): Es la última etapa de la pipeline de renderizado. Su 
función es la de aplicar color a los píxeles que se mostrarán por pantalla. 

 Compute shader (CS): La compute pipeline es una pipeline relativamente nueva, 
fue incorporada en la versión 4.3 de OpenGL, cuya función es presentar la GPU 
como una unidad de cálculo matemático de carácter general con una gran 
potencia. Consta de tan solo un shader, denominado compute shader. 

3.2. OPENGL 
OpenGL (Open Graphics Library) 3  es una 

especificación estándar que define una API 
(Application Programming Interface) escrita 
en C multilenguaje y multiplataforma para 
escribir aplicaciones que produzcan gráficos 
2D y 3D. La API consiste en varios 
centenares de procedimientos y funciones diferentes que pueden usarse para 
dibuja escenas tridimensionales complejas a partir de primitivas geométricas 
simples siguiendo la pipeline explicada anteriormente. Fue desarrollada 
inicialmente por Silicon Graphics Inc. (SIG) en 1992 y se usa ampliamente en 
CAD, realidad virtual, representación científica y desarrollo de videojuegos 
entre otros campos.  

El objetivo de OpenGL es el de proporcionar una capa de abstracción entre la aplicación 
y el sistema gráfico que se encuentra por debajo (ver imagen 3.2). Esta capa debe 
ocultar las diferencias entre las GPUs y los rasgos específicos de cada sistema, como la 
resolución de la pantalla, la arquitectura del procesador, el sistema operativo instalado 
entre otros. Por otro lado, el nivel de abstracción debe ser lo suficientemente bajo como 
para que el programador tenga el suficiente acceso al hardware que hay por debajo y 
pueda aprovechar toda su potencia.  

                                                 
3 OpenGL: https://es.wikipedia.org/wiki/OpenGL, a fecha de septiembre 2016. 
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Imagen 3.2 Situación de la API de OpenGL en las capas del sistema. 

3.1.1. PROGRAMACIÓN CON OPENGL 
Un programa típico de OpenGL está formado por tres partes bien diferenciadas: la 
inicialización del contexto4 de OpenGL, la inicialización de los recursos (explicados 
seguidamente) y el bucle principal. La imagen 3.3 muestra un esquema de esta 
estructura. 
En primer lugar, hay que inicializar el contexto en el que se va a correr la aplicación. 
Dado que OpenGL es solo una biblioteca destinada a trabajar sobre la tarjeta gráfica, es 
necesario encontrar otra librería que permita crearlo. Como mínimo, ésta debe permitir 
la creación y el manejo de ventanas, así como proporcionar un método para procesar la 
interacción con el usuario. Existen varias librerías posibles, como Freeglut (obsoleta), 
SFML, SDL… Para este proyecto se ha elegido GLFW, una librería en C especialmente 
diseñada para trabajar con OpenGL. A diferencia de las anteriores, está solo cuenta con 
lo absolutamente necesario: creación de ventanas y la administración de la entrada de 
usuario. Además, ofrece un control bastante grande sobre la creación del contexto 
OpenGL. 
En segundo lugar, hay que inicializar todos los recursos empezando por la librearía 
GLEW, librería multiplataforma escrita en C/C++ destinada a ayudar en la carga y 
consulta de extensiones de OpenGL. Una vez inicializada, es necesario declarar las 
variables y buffers que nuestra aplicación utilizará para comunicarse con la GPU. En 
este proyecto, se han creado hasta 4 programas, 2 de ellos destinados a ejecutar una 
pipeline de renderizado y otros 2 a una compute pipeline. También se ha creado un 
VAO (Vertex Array Object), un objeto de OpenGL que almacena toda la información 
relativa a los datos necesaria para nutrir al vertex shader de vértices, y hasta 3 VBO 
(Vertex Buffer Object) y 4 SSBO (Shader Storage Buffer Object), buffers que 
almacenan los datos que van a ir leyendo los shaders a lo largo de la pipeline (los datos 
que almacenen y la estructura delos buffers están descritos en el apartado 5.3). Además, 
es en este punto en el que se escribe en los buffers los datos iniciales.  
 
                                                 
4 El contexto de OpenGL representa varias cosas. El contexto almacena todo el estado asociado a la 
instancia de OpenGL que se está ejecutando, la ventana donde se va a renderizar los objetos 3D, la 
interacción con el usuario por teclado o ratón, el framebuffer… 
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Imagen 3.3 Estructura básica de un programa de OpenGL. 

Por último, es necesario construir el bucle principal de la aplicación. Este bucle consta 
de dos acciones: la primera, actualizar los datos almacenados en los buffers (si procede), 
y la segunda, renderizar los objetos 3D en la ventana. Es en este momento cuando se 
ejecutan las pipelines vistas anteriormente, la compute pipeline ya que su único 
propósito es el llevar a cabo cálculos, está ligada a la acción de actualizar, mientras que 
la rendering pipeline está ligada a la de renderizar. Este bucle hay que declararlo 
explícitamente mediante alguna estructura de bucle como, por ejemplo, un do-while. 
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4. PREPARACIÓN DE LA SIMULACIÓN 
En este apartado se presentan todas las decisiones que se han tomado para la 
construcción del programa que ha permitido alcanzar los objetivos de este proyecto, las 
funciones implementadas y los resultados obtenidos para cada uno de las simulaciones 
realizadas consistentes en un escenario conocido como es el del Sistema Solar y el otro 
escenario consistente en sistema aleatorio desconocido. 

4.1. PROGRAMAS UTILIZADOS 
Como OpenGL es una API multilenguaje, ha sido necesario escoger el lenguaje en el 
que implementar el proyecto. Se ha seleccionado C++ debido a la buena integración con 
OpenGL. Recuérdese que la librearía de OpenGL está escrita en C, en caso de querer 
utilizarla en otro lenguaje es necesario descargar un paquete para enlazar ese código en 
al lenguaje seleccionado. Esta técnica es lo que se conoce como language binding. Para 
evitarlo, se ha elegido C++, lenguaje que extiende a C y que, además, permite la 
programación orientada a objetos, con todas las ventajas que presenta como puede ser la 
abstracción o la reusabilidad. 
Por la comodidad que supone, se ha querido desarrollar el proyecto en un IDE 
(Integrated Development Environment) y de entre los que existen, se ha escogido el 
Visual Studio 2013 (VS-2013) Community como entorno de desarrollo debido a que es 
gratuito, viene con un compilador C++ y un debugger ya incluido, y cuenta además con 
muchas funciones, plugins y utilidades que facilitan y agilizan la creación de código. 
Uno de los plugins a destacar es el NVIDIA Nsight, plugin que permite ver el 
rendimiento de un programa de gráficos, ver el contenido inicial de los buffers de la 
GPU, detalles de la tarjeta gráfica, entre otros aspectos. 
Con el VS 2013 se puede crear el programa en sí y visualizar todo el escenario en 
movimiento en 3D. Para verificar si los resultados eran correctos5, se decidió utilizar 
dos programas externos que han permitido comprobar el buen funcionamiento del 
código de forma simple y visual. Estos programas son el MS Excel y el GNU Octave. 
El MS Excel, de la suite ofimática Microsoft Office, permite cargar datos en tablas y 
representar éstos en gráficos 2D. Además, ha sido el principal protagonista para el 
desarrollo de los primeros algoritmos. El GNU Octave es un programa libre para 
realizar cálculos numéricos, que cuenta con unos gráficos 2D y 3D mucho más potentes 
que el Excel. Asimismo, admite la ejecución de scripts permitiendo automatizar la 
ejecución de ciertas funciones. 

4.2. ENTRADA Y SALIDA DEL ALGORITMO 
Dado que el número de partículas a simular no va a ser el mismo de una versión a otra, 
se ha pensado en almacenar los datos iniciales en un fichero externo al programa, de 
forma que un cambio en las partículas de entrada no suponga modificación alguna de 
código.  
                                                 
5 GNU Octave: https://www.gnu.org/software/octave/doc/v4.0.1/index.html 
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Se ha elegido el tipo de fichero CSV como fichero tanto para almacenar los datos de 
entrada como los resultados. Éste presenta la ventaja de que es un formato abierto muy 
sencillo cuyo propósito es representar los datos en forma de tabla. Otro factor 
importante a la hora de decidir usar este tipo de fichero es que tanto el lenguaje C++, el 
MS Excel como Octave lo aceptan de forma nativa. 

4.3. ESTRUCTURA DE LOS BUFFERS DE LA GPU 
Para la realización de este proyecto se han utilizado tanto VBO como SSBO. En los 
VBO se han almacenado datos que van a ser constantes a lo largo de toda la simulación, 
los cuales son los vértices de las esferas de los planetas, los vectores normales a esos 
vértices, y el orden en que consumirlos. Estos buffers van al vertex shader como datos 
de entrada y éste puede ir tratando los datos que contienen uno a uno conforme le 
llegan. 
 
Un caso especial es el del buffer que almacena el orden de los vértices, llamado index 
buffer. No se puede acceder a su contenido dentro del shader. Su única función es la de 
indicar al vertex fetching en qué orden debe enviar los vértices del buffer al vertex 
shader para generar la geometría deseada.  
 
Los SSBO son buffers de propósito general que utiliza el compute shader como entrada 
y salida de datos. Los datos que almacenan son las posiciones, velocidades, 
aceleraciones, masas, radios, grupo y el número de planetas. Como ya se ha visto 
anteriormente (ver imagen 4.13), estos buffers son accesibles desde ambas pipelines, 
así, todos los resultados del algoritmo PP ejecutado en el compute shader pueden ser 
directamente leídos en la pipeline de renderizado. Este es el caso de las posiciones y los 
radios. 
 
En total, se han creado 4 VBOs y 2 SSBOs para la simulación del Sistema Solar y 3 
VBOs y 4 SSBOs para la simulación aleatoria. La única diferencia que entre ambas 
simulaciones es que, en la primera, los radios son una constante durante todo el 
programa, por eso son un VBO, en cambio, en la simulación aleatoria se añade la 
detección de colisiones y la posterior unión de los planetas colisionados, por lo que el 
radio puede variar (ver capítulo 6). Además, derivado también de este cambio, el 
número de planetas puede disminuir, por lo que se almacena en un nuevo buffer. 

4.4. DIAGRAMA DE CLASES 
La imagen 4.1 muestra el diagrama completo del sistema. 
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Imagen 4.1 Diagrama completo del programa.  

4.5. DECISIONES OPENGL 
No todos los astros del Sistema Solar tienen la misma forma. Por lo general, su 
geometría se aproxima a la de una esfera, aunque existen algunas excepciones como por 
ejemplo Deimos, el satélite de Marte, que presenta una forma muy irregular. Dado que 
el objetivo del proyecto no es el renderizado exacto de cada astro, se ha decidido 
representar a cada uno de ellos por una esfera de mayor o menor tamaño en función del 
radio medio del planeta. 
Se ha decidido que las esferas fuesen de radio 1. Cada planeta tiene un radio medio 
distinto a los demás, esto implica que habría que calcular una esfera diferente para cada 
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uno de ellos y enviarla a los buffers definidos en la memoria de la GPU para que ésta 
pudiera procesarlos. Además de la cantidad de espacio de memoria que haría falta para 
poder almacenar todos esos vértices, hay que tener en cuenta que los cálculos que 
generan la esfera se realizan sobre la CPU, lo que generaría una carga computacional 
muy grande que ralentizaría el programa. La solución más óptima era definir una única 
esfera de radio 1, cuyo centro se situara en el origen de coordenadas, y enviarla a la 
GPU, de forma que fuera el TES quien la adaptara a las características de cada astro, 
aplicando las matrices de transformación adecuadas. Con esto se consigue no tener que 
modificar la información relativa a los vértices (posición, vectores normales y 
coordenadas de textura, que en este proyecto no se utilizan) de los VBO con cada 
planeta.  
Además, como todos comparten la misma geometría, se puede utilizar un método 
denominado Instanced Rendering, mediante el cual, se informa a OpenGL, en una única 
llamada de dibujado, que se desea dibujar varias copias de la misma geometría. Esto 
evita el tener que realizar una llamada de dibujado por cada astro que se quiera 
renderizar. De esta manera, se pasa de invertir la mayor parte del tiempo en llamadas a 
funciones de dibujar de OpenGL a invertirlo en el renderizado en sí. 
Siguiendo esta filosofía de adaptar la geometría inicial en los shaders, se ha 
implementado un método de LOD (Level of Detail)  [2] de forma que la geometría que 
recibe la pipeline gráfica es una esfera con tan pocos vértices que pierde cualquier 
característica típica de esfera. Esta geometría con tan pocos polígonos es ideal para 
representar planetas tan lejanos que se muestran como si fueran puntos en la ventana de 
visualización. Para los planetas más cercanos, se utiliza el proceso de teselación para 
generar más vértices con los que poder ir dando ese carácter esférico al objeto. La 
imagen 4.2 muestra este LOD. 

 
Imagen 4.2 LOD (Level of Detail) de los planetas (izquierda - planeta lejano, derecha - planeta cercano). 

Dependiendo de la distancia a la que se sitúen los planetas de la cámara tendrán más 
vértices o menos, así pues, se logra que aquellos planetas muy cercanos se vean como 
esferas propiamente dichas y, conforme se alejen, irán perdiendo definición. Éste 
método tiene una influencia directa en los FPS (Frames Per Second) de la aplicación, 
otorgando una gran mejora de rendimiento.  
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Otra decisión tomada en relación con OpenGL ha sido la de desactivar el depth test. El 
depth test es uno delos test que aplica OpenGL prácticamente al final de la rendering 
pipeline, después de que el fragment shader se haya ejecutado. Resumiendo, el depth 
test permite distinguir qué objetos están situados más cerca de la cámara y cuales están 
más lejos, de esta manera, si se da el caso que un objeto lejano quiere dibujarse en un 
mismo pixel que un objeto cercano, será el más cercano el que terminará siendo 
mostrado (ver el apéndice D para una información más detallada). 
El desactivar el depth test, se ha decidido después de observar que los planetas situados 
muy lejos de la cámara, dependiendo de su posición, iban despareciendo y 
reapareciendo. El problema radica en un fallo en la precisión de los cálculos que realiza 
el depth test para determinar si un polígono se va a mostrar o no (ver apéndice C para 
más información). 

4.6. CARACTERÍSTICAS DE LA TARJETA GRÁFICA 
Para la realización de todas las simulaciones se ha utilizado una tarjeta gráfica Nvidia 
GeForce GTX 660M con las siguientes características: 
 

GPU 
Núcleos CUDA 384 núcleos 

Frecuencia del reloj 835 MHz 
Tasa de relleno de texturas 30.4 GTexel/s 

Memoria 
Frecuencia del reloj 2000 Mbps 
Interfaz de memoria 128-bit GDDR5 

Ancho de banda máximo 64 GB/s 
Cuadro 4.1 Características tarjeta gráfica Nvidia GeForce GTX 660M. 

Para poner en contexto la tarjeta gráfica, Nvidia nombra las tarjetas gráficas según su 
serie (en este caso es la serie 600 Mobile) y en cada generación aumenta la serie. Nvidia 
saca una nueva generación cada año. Actualmente, acaba de salir al mercado la serie 
1000. En la imagen 4.3 se compara una de las tarjetas de serie 1000 con una tarjeta de 
serie 6006. Se puede apreciar que desde que se empezó el proyecto han salido tarjetas 
gráficas mucho más potentes (recordar que en este proyecto se está usando una serie 
600 Mobile, cuyas características y prestaciones son peores que la serie 600 normal). 
 

                                                 
6 Comparación obtenida de http://hwbench.com/vgas/geforce-gtx-1060-vs-geforce-gtx-660, a fecha de 
septiembre del 2016 



 

18 
 

 
Imagen 4.3 Comparación tarjetas gráficas GeForce GTX 660 y GTX 1060. 
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5. SIMULACIÓN DEL SISTEMA SOLAR 
5.1. OBJETIVO 
La primera simulación que se va a realizar para verificar el correcto funcionamiento del 
sistema diseñado. Ha sido elegido el Sistema Solar, ya que cumple una serie de 
requisitos relacionados todos con el conocimiento profundo que se tiene del mismo.  
Las principales características son: en primer lugar, es un sistema estable, es decir, 
ninguna partícula se aleja tanto como para anular las fuerzas que le ejercen todas las 
demás y desplazarse hasta el infinito. Además, contiene una gran variedad de partículas, 
variedad en tamaño, en masa y en el eje sobre el que describen su trayectoria. Por 
último, es un sistema del que se conoce abundante información, como las trayectorias 
de cada partícula, sus dimensiones, las fuerzas a las que se ven sometidas, las 
velocidades a las que se mueven, etc.  
Si el algoritmo implementado es capaz de reproducir el comportamiento de dicho 
sistema, se considerará un algoritmo adecuado. 

5.2. PROBLEMA DE LOS 2 CUERPOS 
El objetivo de empezar por resolver el problema de los dos cuerpos reside en obtener un 
algoritmo base que funcione correctamente. Por simplicidad, y dado que la carga 
computacional no es muy grande al tener únicamente dos cuerpos, se ha elegido trabajar 
directamente sobre MS Excel, utilizando el sistema de macros en Visual Basic que 
viene con él. De esta forma, se consigue tener una primera aproximación del algoritmo 
PP sin preocuparse de todo lo que un programa OpenGL conlleva (creación de 
ventanas, contexto, etc.).   
Se ha elegido que uno de los cuerpos sea el Sol y el otro sea La Tierra. En este 
algoritmo, los datos iniciales son conocidos y están almacenados en una página del 
mismo documento Excel, por tanto, no es necesario realizar ningún cálculo previo para 
obtenerlos.  
El algoritmo utilizado para realizar la prueba es el algoritmo PP básico, sin utilizar el 
integrador de Leapfrog, y los resultados que se obtienen son los esperados: La Tierra 
logra dar una vuelta completa alrededor del Sol sin problema, describiendo una 
trayectoria elíptica con las posiciones esperadas. 
Una vez logrado lo más básico, ahora hay que avanzar en la complejidad del sistema y 
lograr que no solo La Tierra gire alrededor del Sol, sino que el sistema Sol – Tierra - 
Luna sea un sistema estable y que sus trayectorias sean las esperadas. Una vez que esto 
se ha conseguido, el evidente paso siguiente es lograr reproducir el comportamiento de 
todo el Sistema Solar. 
Para alcanzar los nuevos objetivos se añadió el integrador de Leapfrog para evitar 
posibles problemas de precisión en los cálculos. El resultado obtenido concuerda con lo 
que la teoría indicaba. 
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Tanto la Luna como La Tierra describen la misma trayectoria alrededor del Sol. Si se 
acerca la vista a un tramo de esa trayectoria, se puede ver como la Luna no está 
superpuesta a La Tierra, sino que va oscilando alrededor de ella (ver imagen 5.1). Como 
se puede apreciar, los resultados son todos correctos. Se procede a implementar un 
programa que mueva el Sistema Solar completo. 

 
Imagen 5.1 Sistema Sol - La Tierra – Luna. 

5.3. SISTEMA SOLAR 
El algoritmo “Partícula - Partícula” es un algoritmo de integración temporal que 
requiere las condiciones iniciales adecuadas para integrar una ecuación diferencial 
ordinaria de 2º orden, por lo tanto, es necesario nutrirle de unas posiciones y 
velocidades iniciales a partir de las cuales calcular las siguientes.  
Aunque se conoce perfectamente la trayectoria de la gran mayoría de los astros del 
Sistema Solar, es necesario elegir un punto en concreto de la misma para utilizarlo 
como inicio del algoritmo.  
Se sabe que las trayectorias que describen los planetas alrededor del Sol (o de su planeta 
en el caso de los satélites) son trayectorias elípticas con más o menos excentricidad, así 
que se pueden usar las reglas matemáticas de la elipse para hallar los datos necesarios 
de cada uno. Tomando los ápsides de cada planeta y la inclinación de su trayectoria 
respecto al plano de la eclíptica, se puede calcular cualquier posición de su recorrido. 
En este caso, se ha elegido tomar el punto más alejado de su trayectoria (el apoápside) 
como posición inicial. En cuanto a su velocidad, se ha elegido que los planetas 
describan una trayectoria anti horaria vista desde posiciones de Y positivas. 
Las fórmulas serían las siguientes (ver apéndice A para ver cómo se han obtenido): 
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 ா௝௘: masa de su planeta ejeܯ
 ϕ: inclinación orbital 

La cantidad de astros con los que se va a trabajar a partir de este punto hace que el 
utilizar Excel para desarrollar el algoritmo ya no sea una opción viable. Hay que 
recordar que Excel, aunque disponga de herramientas para implementar programas, es 
un sistema ideado para trabajar con hojas de cálculo. La carga computacional que 
supone el realizar todos los cálculos del algoritmo PP a la vez que inserta los resultados 
en tablas, hace que el programa se sature y el tiempo que tarda en terminar una iteración 
completa del timestep loop es muy elevado.  
Se procedió a crear un programa OpenGL en C++ completo. Es en este momento 
cuando al algoritmo PP se le añade el sistema de entrada y de salida de datos por medio 
de un fichero CSV. 
5.1.1. VERSIÓN 1: CPU 

En esta primera versión, toda la carga computacional se concentraba en la CPU y la 
GPU se limita a renderizar los resultados. La idea principal es crear un marco sobre el 
que trabajar posteriormente.  
Todas las funciones que implementan el algoritmo “Partícula – Partícula” se van a 
ejecutar en el procesador. Esto permite realizar una ejecución paso a paso con la que se 
puede depurar fácilmente el código. Además, se implementan las funciones que 
controlan la ventana y sus eventos y se inicializan los recursos necesarios para trabajar 
con OpenGL. Este paso es necesario para tener una base libre de errores con todos los 
recursos que se van a necesitar.  
5.1.2. VERSIÓN 2: CPU-GPU 

Con esta versión, la tarjeta gráfica adquiere más protagonismo al implementar todos los 
cálculos dentro del compute shader. Aun así, el procesador sigue manteniendo 
considerable carga debido a que en cada iteración se introducen los datos antiguos al 

ܽ = ݁݀݅ݏ݌á݅ݎ݁ܲ  + ݁݀݅ݏ݌á݋݌ܣ
2  (5,1) 

଴ܸ =  ඨ2ܯܩா௝௘( 1
݁݀݅ݏ݌á݋݌ܣ −  1

2ܽ ) + ாܸ௝௘ (5,2) 

଴ܸሬሬሬԦ = (0, 0, − ଴ܸ) (5,3) 

ܺ଴ = ݁݀݅ݏ݌á݋݌ܣ) ∗ cos ߮ , ݁݀݅ݏ݌á݋݌ܣ ∗  sin ߮ , 0) +  ܺா௝௘ (5,4) 
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SSBO, se devuelven los datos actualizados a la CPU y, posteriormente, se vuelven a 
enviar a la GPU como parámetros de entrada del vertex shader para su renderizado. 
Esta versión no fue la definitiva, siguió siendo una versión cuyo objetivo era comprobar 
que todo funciona correctamente y que todos los cálculos eran válidos. El coste de sacar 
los resultados de la GPU a la CPU en cada iteración es muy elevado y repercute 
enormemente en los FPS de la aplicación, pero es el único modo de comprobar que los 
datos con los que trabaja la tarjeta gráfica son correctos, ya que no se puede acceder 
directamente desde el procesador a su memoria. 
5.1.3. VERSIÓN 3: GPU 

Por último, esta versión concentra toda su actividad en la tarjeta gráfica. El procesador 
se limita a crear la ventana, tratar los eventos de teclado y ratón y a realizar las llamadas 
de las funciones de OpenGL en cada iteración.  
Toda la información necesaria para el algoritmo (posiciones, velocidades, aceleraciones, 
masas y radios de los planetas) está almacenada en los buffers de la tarjeta gráfica, y son 
estos buffers los que se van enlazando como entradas y/o salidas de los diferentes 
shaders conforme se van necesitando. No es necesario llevar ninguna información a la 
CPU, ya se sabe que los valores con los que trabaja el algoritmo son correctos gracias a 
las versiones anteriores.  

5.4. RESULTADOS OBTENIDOS 
Desde el punto de vista de la ejecución, el resultado alcanzado es bueno. A pesar de que 
no se ha podido reproducir todas las trayectorias de los cuerpos de forma exacta, sí que 
se ha logrado que el sistema fuera estable en su mayor parte. De un total de 141 cuerpos 
que estaban involucrados en la simulación, 49 de ellos se pierden en el infinito, o lo que 
es lo mismo, un 35% aproximadamente de los cuerpos no se estabilizan.  
Se está trabajando con números muy grandes, valores del orden de 1010 en distancias y 
de 1025 en masas, por lo que es probable que algunos cálculos no sean lo 
suficientemente precisos. Además, las fórmulas para obtener la posición y la velocidad, 
a pesar de utilizar el integrador de Leapfrog, no son las más exactas para este tipo de 
cálculos. Recordemos que la Mecánica Celeste trabaja en este tipo de problemas y los 
observatorios astronómicos, así como la NASA, utilizan métodos numéricos bastante 
sofisticados.  
Otro dato a tener en cuenta son las condiciones iniciales del algoritmo. El algoritmo PP 
es un algoritmo recursivo, necesita unas condiciones iniciales a partir de las cuales 
iniciar el proceso. Dado que no se ha podido encontrar la posición exacta, ni la 
velocidad ni aceleración, de todos los cuerpos para un instante i determinado, es posible 
que la elegida para iniciar la simulación en este proyecto no sea la adecuada y genere 
fallos en los resultados. Por todo ello, el hecho de que el 35% delos cuerpos no se 
consiga estabilizar, se puede considerar como un resultado indicativo de que el 
algoritmo PP implementado es válido. 
En las imágenes conseguidas con los gráficos MS Excel (ver imágenes 5.2 y 5.3), se 
puede ver cómo la trayectoria de los planetas es correcta casi perfectamente, y cómo la 
trayectoria de los satélites, si bien no es la que debiera en muchos casos, por lo menos 
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es estable. Aquellos satélites que no se estabilizaban se han decidido quitar de los 
gráficos por visibilidad. 

 
Imagen 5.2 Trayectoria recorrida por los planetas. 

  
Imagen 5.3 Trayectoria recorrida por los satélites. 

La imagen 5.4 está obtenida con Octave utilizando los mismos datos que para las 
imágenes 5.2 y 5.3. Ésta permite ver la evolución del escenario de una forma más 
completa gracias a la vista 3D. 
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Imagen 5.4 Captura final de la simulación del Sistema Solar. 

Dado que la cantidad de planetas que se van a mover es relativamente pequeña, incluso 
la versión primera es capaz de renderizar todo con unos buenos FPS. A continuación, se 
presentan algunas capturas del renderizado 3D de este sistema.  
Utilizando el plugin Nvidia Nsight, se consigue mostrar, además, algunos datos del 
rendimiento de la simulación. Como era de esperar, la versión que utiliza la CPU (ver 
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imagen 5.5) para realizar los cálculos del algoritmo es algo más lenta que las demás, 
aun así, se estabiliza en unos 46 FPS, manteniéndose por encima de los 25 FPS que es 
lo que define un renderizado en tiempo real7. La versión final presenta una mejora 
importante de rendimiento, llegando a las 60 FPS (ver imagen 5.6). 

 
Imagen 5.5 Captura de la ejecución de la versión CPU de la simulación del Sistema Solar, en la que se 
pueden ver varios planetas y satélites (a destacar el Sol y Júpiter rodeado de sus satélites). Se muestran 

algunos datos del rendimiento como los FPS estabilizados en 46 FPS (derecha).  

 
Imagen 5.6 Captura de la ejecución de la versión final (GPU) de la simulación del Sistema Solar, en la 
que se pueden ver varios planetas y satélites (a destacar el Sol y Júpiter rodeado de sus satélites). Se 

muestran algunos datos del rendimiento como los FPS estabilizados en 60 FPS (derecha). 
                                                 
7 La velocidad mínima a la que una consecución de imágenes es considerada como un movimiento fluido 
por el ojo humano es de 25 FPS aproximadamente. 
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Es interesante observar en qué acciones se distribuye el trabajo de la GPU. En la imagen 
5.7 se están observando 4 medidas: Geom busy, shader busy, texture busy (este se puede 
omitir ya que no se han utilizado texturas en todo el proyecto, por lo que siempre va a 
ser nulo) y gpu idle. 

 
Imagen 5.7 Distribución de las acciones de la GPU en la simulación del Sistema Solar.  

El geom busy mide la cantidad de trabajo que la GPU dedica a mover los vértices desde 
la unidad que los distribuye hasta los shaders donde serán transformados. Llamadas de 
dibujado con una larga ristra de vértices, o bien un gran número de llamadas 
consecutivas con un pequeño número de vértices, pueden ser causas potenciales de que 
esta medida se incremente. En el caso de este proyecto, a pesar de que ambas versiones 
presentan un geom busy pequeño, el de la versión de la CPU es inferior que el de la 
versión final. Hay que recordar que, en la versión final, todos los cálculos se realizan en 
el compute shader dentro de la GPU, limitando el uso de la CPU a la preparación e 
invocación de las pipelines gráficas, por lo tanto, la cantidad de datos que se tienen que 
mover a la unidad que ejecuta los shaders es mucho mayor (no solo hay que mover los 
vértices, sino también las posiciones, velocidades y aquellas características necesarias 
para ejecutar el algoritmo PP). 
El shader busy mide la cantidad de trabajo que la GPU dedica a la ejecución de todos 
los shaders que se han definido en el programa. Para este proyecto, se ha definido un 
shader adicional en la versión final, el compute shader, de ahí que sea mayor que en la 
versión de CPU. 
Por último, el gpu idle, mide la cantidad de recursos que no están siendo utilizados en la 
GPU. En ambas versiones, aproximadamente la mitad de la GPU no está siendo 
utilizada. Esto quiere decir que la tarjeta gráfica no ha llegado a su límite todavía, es 
capaz de realizar simulaciones con un número mayor de partículas. Al realizar la 
simulación aleatoria (capítulo 6), se ha establecido la condición de que esta medida sea 
prácticamente nula. 
Para finalizar, se presenta una captura que muestra la utilización tanto de la GPU como 
de la CPU con la versión final (ver imagen 5.8). 
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Imagen 5.8 Rendimiento Sistema Solar. 

Tal como se puede apreciar, y en concordancia con la medida gpu idle anteriormente 
mencionada, la GPU utiliza aproximadamente la mitad de su potencial. Cabe destacar 
los datos recopilados sobre la CPU. El tiempo que ha consumido en llamadas a la API 
de OpenGL con respecto al tiempo total de la aplicación es solo una cuarta parte. 
Existen muchas llamadas a funciones de OpenGL, por ejemplo, las destinadas a 
configurar funciones no programables de la pipeline, las destinadas a crear y manejar 
los buffers y los shaders o las destinadas a enviar datos de la memoria del programa a la 
GPU, que tienen que realizarse obligatoriamente. La implementación de la técnica 
Instanced Rendering (explicado ene l capítulo 4.5) ha permitido reducir 
considerablemente el número de llamadas de dibujar que se hubieran hecho sin ella. 
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6. SIMULACIÓN DE UN SISTEMA ALEATORIO 
6.1. OBJETIVO 
Llegados a este punto, lo que se quiere lograr es conocer el límite de trabajo de la GPU 
en este tipo de problemas, es decir, conocer cuál es la configuración del problema que 
hace que la representación gráfica baje de unos FPS aceptables, La velocidad a la que 
una secuencia de imágenes deja de ser vista como un movimiento fluido por el ojo 
humano es de entre 25 y 30 FPS, para este trabajo, se ha dado un poco de margen y se 
ha considerado como aceptable una velocidad de alrededor de 15 FPS. 
Partiendo del algoritmo implementado para el escenario anterior, se va a crear uno 
ligeramente diferente, de forma que permita la simulación de un número de planetas del 
orden de 103, además de una serie de mejoras que se van a detallar en el apartado 
siguiente. 

6.2. CAMBIOS EN EL ALGORITMO 
Además de las mejoras con las que ya cuenta, se añaden las siguientes: detección de 
colisiones entre planetas, fusionado de planetas colisionados y restringir el cálculo de 
las fuerzas a los planetas cercanos. 
Dado que cabía la posibilidad de que dos o más planetas chocasen, se ha implementado 
un sistema para detectar colisiones y unificar aquellos planetas que colisionen. La gran 
cantidad de planetas que se simulan no permite generar un sistema de colisiones que 
recree fielmente la realidad, por ello se ha simplificado el problema teniendo en cuenta 
solo las colisiones directas entre dos planetas. 
La colisión y posterior unión de dos planetas sí que se ha intentado hacer de una forma 
realista, utilizando para ello, se han utilizado las siguientes fórmulas que calculan la 
nueva masa y el nuevo radio: 

ܸ:  ݊݁݉ݑ݈݋ݒ
Para obtener el nuevo vector velocidad simplemente se aplica una suma vectorial de las 
velocidades de los dos planetas colisionados, y la nueva posición será el punto medio de 
la línea que une sus posiciones. Uno de los planetas actualizará sus características 

ோௐܯ = ଵܯ  +  ଶ (6,1)ܯ 

ேܸாௐ =  ଵܸ + ଶܸ;  ܸ =  4
3 ଷܴߨ →  4

3 ଷ(ோௐܴ)ߨ =  4
3 ଷ(ଵܴ)ߨ + 4

3 ଷ(ଶܴ)ߨ  →
→ ܹܧܴܰ  =  ටܴ13 + ܴ233  (6,2) 
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siguiendo estas fórmulas, el otro en cambio, pondrá su masa a 0 para dar a entender que 
ha chocado contra otro y que ya no es válido. Estos planetas anulados se irán moviendo 
al final del buffer de la GPU para mantener un cierto orden. Además, habrá que recorrer 
el buffer para llevar la cuenta del número de planetas que siguen activos, dato necesario 
a la hora de utilizar la función de dibujado de OpenGl. Para evitar que este recuento 
suponga una carga computacional adicional, será realizada por los hilos que actualizan 
planetas que ya han sido eliminados a la vez que los demás hilos están ejecutando el 
algoritmo PP. 
Por último, se ha implementado una organización estructural de los planetas realizando 
agrupaciones dependiendo de la zona del espacio en la que se sitúan. La idea es que 
como la fuerza de la gravedad decrece con el cuadrado de la distancia (decrecimiento 
muy rápido) no todos los planetas afectan a todos los demás de una manera intensa, por 
ello se restringen los cálculos de manera que el algoritmo solo se aplicará a aquellos 
planetas que residan en el mismo grupo, siendo cada grupo independiente de los demás.  
Una última modificación, derivada de la agrupación de los planetas es que éstos se 
ordenan por grupo dentro del buffer. De esta forma, a la hora de calcular las fuerzas que 
ejerce cada planeta sobre cada uno de los demás planetas de su grupo, el algoritmo no 
tendrá que recorrer todo el buffer para buscarlos. 
Se espera que con estas optimizaciones se mejore el rendimiento general del programa y 
se admitan más planetas manteniendo la misma tasa de FPS que se hubiera encontrado 
sin ellas. 

6.3. POSICIONES ALEATORIAS 
Uno de los factores clave para este escenario es que las posiciones de cada planeta se 
recalculan con cada ejecución del programa. Esto es una condición necesaria porque el 
algoritmo implementado no debe depender de unos datos iniciales determinados. 
Existen librerías en C++ que ya cuentan con un generador de números aleatorios, pero 
dada la magnitud de los valores con los que se trabaja en este proyecto, no daba unos 
resultados óptimos, por lo que se ha construido un script para Octave que los calcula 
utilizando las diferentes distribuciones numéricas que dispone, en concreto, para 
generar las posiciones y los radios de los planetas se ha utilizado una distribución 
uniforme (ver imágenes 6.2 y 6.3), mientras que el cálculo de las masas se ha realizado 
siguiendo una distribución beta (ver imagen 6.1).  
Para esto último se ha elegido una distribución no uniforme por el hecho de que, si 
todos los planetas cuentan con una masa similar, la densidad de masa que rodea a cada 
planeta será más o menos la misma en todas las direcciones, por lo que el planeta en 
cuestión no se vería apenas perturbado. Con esta distribución, nos aseguramos de que 
haya muchos planetas con masas relativamente pequeñas y pocos con masas grandes 
evitando el efecto anterior. 
Se ha tenido que ajustar los límites entre los que se sitúan cada uno de estos valores para 
llegar a un compromiso entre las distancias entre los planetas y las masas, de forma que, 
las masas sean lo suficientemente grandes como para llegar a atraer a todos los planetas 
independientemente de su posición, pero no tanto como para generar una fuerza de tal 
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magnitud que los lanzara fuera del volumen estudiado. En este sentido, la distancia 
media entre planetas es de 1.9·1019 u.m. y la masa media se ha establecido en 1050 para 
un espacio de tamaño 3·1019 x 3·1019 x 3·1019 u.m. 

      
 Imagen 6.1 Distribución beta – Masas. Imagen 6.2 Distribución uniforme – Radios. 

 
Imagen 6.3 Distribución uniforme – Posiciones. 

El script de Octave se invoca en dos pasos: primero, la ejecución de un script de 
Powershell8, y segundo, la ejecución del script en cuestión. Esta forma de ejecución no 
es necesaria, pero se ha implementado con la intención de que el script de Powershell 
actúe a modo de switch, permitiendo al programa principal elegir qué script de Octave 
lanzar y con qué parámetros de entrada. 
Los nuevos valores generados no se pueden devolver directamente al programa 
principal, así que, son almacenados en un fichero CSV para que éste los lea y pueda 
iniciar la ejecución el algoritmo PP. 
                                                 
8 La función system () permite la ejecución de un comando en el procesador de comandos del sistema. A 
través de ella, se puede lanzar el script de Powershell. 
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6.4. RESULTADOS OBTENIDOS 
En primer lugar, se ha lanzado la simulación con las opciones de detección de colisiones 
y unión de planetas colisionados, así como la de división de los planetas por grupos, 
desactivadas para poder comparar la ganancia de cada una. Con todo desactivado, los 
planetas se comportan como se esperaba: a partir de su posición inicial, se ven atraídos 
hacia el centro, que es donde tiende a concentrarse la mayor parte de la masa, y pasadas 
unas iteraciones, algunos planetas terminan estabilizándose describiendo órbitas entorno 
a otros pocos planetas (ver imagen 6.4).  Al igual que ocurre en el escenario del Sistema 
Solar, no todos logran estabilizarse, también existen algunos que se desplazan hacia el 
infinito, pero como se puede ver en las capturas, estos solo representan un pequeño 
porcentaje. 

 
Imagen 6.4 Inicio y fin planetas aleatorios. 

Al activar las opciones de colisión y unión, se ha visto que, sobre todo en las primeras 
iteraciones, cuando los planetas tienden a concentrarse en el centro del espacio, se 
pueden producir colisiones y el número de planetas en simulación decae. Pero por lo 
general, conforme pasa el tiempo, cada vez existen menos choques, así que esta 
optimización tampoco ha terminado siendo muy influyente en la ejecución del 
programa. Al activar la optimización de dividir los planetas en grupos en función de su 
posición, sí que se ha notado como se gana una pequeña mejora de rendimiento, entorno 
a unos 5 FPS, algo que no es muy relevante.  
En conclusión, se puede decir que, al final, las mejoras implementadas no han 
conseguido la ganancia esperada posiblemente debido a que el número de objetos y el 
tamaño del universo recreado es pequeño (recuérdese que se está trabajando con una 
GPU con las características especificadas en el apartado 4.4). A pesar de ello, el 
algoritmo responde muy bien ante el enorme aumento en el número de planetas respecto 
al escenario anterior. Se han conseguido unos FPS en torno a 30 simulando 1000 
planetas, es decir, el número máximo que la GPU utilizada es capaz de renderizar en 
tiempo real está en 1000 aproximadamente (ver imagen 6.5).  
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Imagen 6.5 Captura de la ejecución de la simulación aleatoria. Se muestran algunos datos del 

rendimiento como los FPS estabilizados en 33 FPS (derecha).  

Para ponerlo en contexto y poder tener una mejor idea de la potencia computacional con 
la que se ha trabajado, el hecho de que el programa funcione a una velocidad de 30 FPS 
quiere decir que está generando un frame cada 30 ms, es decir, el programa realiza una 
iteración del timestep loop (por diferenciarla de otras iteraciones, se va a denominar 
como itT) cada 0,03 segundos. En cada una de ellas, el programa mueve 1000 planetas, 
lo que implica que está calculando la fuerza neta en cada uno de ellos, es decir, está 
ejecutando el bucle que calcula la fuerza gravitatoria que ejercen todos los planetas 
sobre cada uno de los demás (recuérdese el capítulo 2). Si tenemos 1000 planetas, para 
calcular la fuerza sobre cada uno de ellos es necesario realizar 1000000 iteraciones del 
bucle que calcula las fuerzas (itF). La duración del parpadeo del ojo humano está 
registrada en unos 0.3 o 0.4 segundos, 10 veces más que los segundos necesarios para 
realizar una itT completa. En conclusión, el algoritmo es capaz de realizar 10 itT cada 
una de ellas compuesta de 106 itF, haciendo un total de 108 iteraciones en el tiempo en 
que dura un parpadeo. 
El que se haya obtenido 30 FPS en la simulación, no significa que la GPU haya llegado 
a su límite, de hecho, como prueba final del proyecto, se ha incrementado dicho número 
hasta 2000 planetas y se han obtenido un rendimiento alrededor de los 10 FPS y una 
utilización que ronda el 99% como se puede comprobar en la imagen 6.6. 
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Imagen 6.6 Rendimiento sistema aleatorio. 

Es interesante fijarse en el tiempo que la CPU destina a hacer llamadas a la API de 
OpenGL. Recordar que, en la simulación del Sistema Solar, este valor era de entorno al 
25%, en cambio, ahora nos encontramos con casi el 100% a pesar de que la estructura 
del programa no se ha modificado, las funciones de OpenGL que son invocadas son 
prácticamente las mismas. El motivo de este aumento radica en el hecho de que, en esta 
simulación, la CPU tiene que mandar muchos más datos a la GPU.  
Para finalizar, la imagen 6.7 muestra 2000 planetas formando un sistema estable. 

 
Imagen 6.7 Captura final sistema aleatorio. 
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7. CONCLUSIÓN 
Como se expone en el apartado de la introducción, el objetivo último del trabajo era el 
estudiar el comportamiento de una GPU trabajando con partículas. Se ha tomado como 
escenario para el desarrollo el problema de los N cuerpos por su carga tanto gráfica 
como computacional.  
El algoritmo elegido para la simulación de dicho escenario ha sido el algoritmo 
“Partícula - Partícula” que, tal y como se ha expuesto al principio del documento, 
funciona bastante bien para un número de cuerpos pequeño, estableciendo el límite en 
torno a los 4000 cuerpos.  
Partiendo del algoritmo básico, optimizado para una ejecución secuencial, se ha 
obtenido uno válido para ser ejecutado en paralelo, sin riesgo a que pueda generar 
problemas de concurrencia de ningún tipo. Además, se han mejorado las ecuaciones de 
movimiento (posición y velocidad) mediante el uso del integrador de Leapfrog, 
logrando más precisión en los cálculos.  
Cabe resaltar de nuevo la elevada complejidad computacional que presenta el algoritmo 
“Partícula –Partícula” implementado. Para cada iteración del bucle principal, tiene que 
calcular todas las fuerzas de cada uno de los cuerpos de la simulación con todos los 
demás. Se está hablando de un algoritmo de orden de complejidad cuadrático (al 
duplicar el número de cuerpos involucrados en los cálculos, se cuadruplica el tiempo de 
ejecución). Con la intención de intentar mejorar esta situación, se han implementado 
optimizaciones, como la de restringir el cálculo de fuerzas de un cuerpo a los cuerpos 
cercanos. 
Se han desarrollado dos simulaciones: la simulación del Sistema Solar y la simulación 
aleatoria. En la primera, el objetivo era integrar ese algoritmo en un programa de 
OpenGL y poder visualizar, en un mundo 3D, los resultados que se iban generando. 
Tras observar que todo funcionaba de forma correcta, y que las trayectorias de los 
planetas y satélites involucrados en la simulación eran, si bien no exactas, bastante 
fieles a la realidad, se procedió a iniciar la segunda simulación, cuyo objetivo era 
incrementar el número de planetas hasta que la GPU no pudiera mantener unos FPS 
mínimos, estableciendo el límite alrededor de 15 FPS. 
Una vez estudiados los resultados obtenidos en cada apartado, se puede afirmar que, 
dentro de las limitaciones del proyecto, el objetivo último de todo el trabajo se ha 
cumplido. Utilizando una GPU modelo Nvidia GeForce GTX 660M, se ha logrado crear 
un escenario con un máximo de 2000 cuerpos, manteniendo unos FPS alrededor de 10.  

7.1. DIAGRAMA TEMPORAL 
La realización del diagrama temporal supone un problema. Ha sido un proyecto muy 
entrecortado por motivos laborales y personales, por lo que establecer unos límites en 
horas y fechas supone una tarea complicada. 
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De todas formas, aunque las fechas pueden no ser las exactas, la distribución de la carga 
sí que es fiel a la realidad. La imagen 7.1 muestra el diagrama de Gantt de este 
proyecto. 

 
Imagen 7.1 Diagrama de Gantt. 

7.2. POSIBLES AMPLIACIONES 
Como posibles mejores al trabajo realizado, se podrían mejorar, en primer lugar, las 
fórmulas de movimiento (posición y velocidad). Se ha visto que los cálculos no son lo 
suficientemente exactos y esto repercutía en que algunos cuerpos del Sistema Solar se 
perdían en el infinito. 
 
Por otro lado, los resultados obtenidos son específicos de la GPU Nvidia GeForce GTX 
660M como ya se ha comentado. Sería recomendable apuntar como una posible  
ampliación, una comparación entre esta GPU y una actual, como la GTX 1060. Es de 
esperar que el tiempo de ejecución mejore, y en consecuencia, que el número de 
cuerpos N simulados se incremente. 
 
Como aplicación directa de este proyecto, se sitúan las simulaciones en campos como la 
astronomía, la mecánica de fluidos o la electroestática entre otros. Otra posible 
aplicación son los videojuegos. Algunos juegos cuentan con explosiones, sistemas de 
partículas o directamente, la base del juego es la atracción gravitatoria entre los objetos, 
para estos aspectos se podría aplicar el trabajo realizado también de forma directa. 

7.3. OPINIÓN PERSONAL 
Ha sido un proyecto muy rico en conocimientos. Se ha tocado prácticamente todo lo que 
se podía tocar con OpenGL, permitiéndome aprender muchos aspectos que en la carrera 
no me han presentado (o no han hecho demasiado hincapié) y que, de no ser por esto, no 
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hubiera aprendido. Además, ha sido un proyecto muy amplio como se puede apreciar, 
en el sentido de que abarca una gran variedad de tecnologías y programas aparte de 
OpenGL (Excel, Octave, Powershell). 
Hay que destacar la dificultad de ciertas partes. En primer lugar, programar en GLSL 
(lenguaje utilizado en los shaders de OpenGL) es muy complicado. Hay que ver la GPU 
como una caja negra, puedes conocer lo que entra y lo que sale, pero no hay una forma 
sencilla de ver lo que ocurre por dentro. En el momento en el que algo falla dentro de un 
shader, descubrir lo que ocurre y arreglarlo es una tarea compleja. La información que 
recibes sobre el error es mínima, insuficiente, en la mayoría de las ocasiones, para 
hacerte una idea de lo que está fallando. Tampoco se dispone de un debug con el que ir 
ejecutándolo instrucción a instrucción hasta dar con el fallo. También hay que tener en 
cuenta, que la situación laboral en la que estaba no me permitía dedicar las horas que el 
proyecto necesitaba para llevarlo al día. Todo esto ha influido en su duración final. 
A pesar de todos los problemas surgidos y la duración del trabajo, ha merecido la pena 
todo el esfuerzo. Es un trabajo que visualmente es bonito. Las simulaciones en 3D que 
se crean (el Sistema Solar dando vueltas, el desplazamiento de los planetas al ser 
atraídos por todos los demás, la agrupación de los mismos en torno a unos pocos 
planetas con masas, en comparación, más grandes) no se hubieran conseguido con otro 
proyecto. Creo que esa es la principal característica de un programa de gráficos, no solo 
construyes un programa que funciona, sino que, además, puedes verlo con tus propios 
ojos. 
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9. APENDICES 
APENDICE A: OBTENCIÓN DE LAS ECUACIONES DE MOVIMIENTO 
Sabiendo los ápsides de la trayectoria de un planeta y su inclinación respecto de la 
eclíptica, es posible calcular cualquier posición de su recorrido. En este proyecto, se van 
a calcular las posiciones en uno de sus ápsides ya que los cálculos se simplifican, en 
concreto, se ha elegido el apoápside. 
Dado que las trayectorias que se describen son elípticas, se van a utilizar las fórmulas 
matemáticas de la elipse. Una elipse es una curva plana y cerrada, simétrica respecto a 
dos ejes perpendiculares entre sí: el semieje mayor y el semieje menor. 

 
Imagen A.1 Elipse. 

Las fórmulas que definen la posición y la velocidad de un objeto que describe una 
trayectoria elíptica son las siguientes: 

:ܩ ݈ܽݏݎ݁ݒ݅݊ݑ ݊݋݅ܿܽݐ݅ݒܽݎ݃ ݁݀ ݁ݐ݊ܽݐݏ݊݋ܿ =  6,67428 ∗ 10ିଵଵ ܰ݉ଶ
ଶ݃ܭ  

:ா௝௘ܯ  ݆݁݁ ܽݐ݈݁݊ܽ݌ ݈݁݀ ܽݏܽܯ

ݔ) ଴)ଶݔ −
ܽଶ + ݕ)  − ଴)ଶݕ 

ܾଶ = 1 (A,1) 

ݒ =  ඨ2ߤ ൬ 1ݎ −  1
2ܽ ൰ +  ா௝௘ (A,2)ݒ

ߤ = ܩ ∗  ா௝௘ (A,3)ܯ
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r: Distancia entre el planeta en cuestión 
,଴ݔ) :(଴ݕ Centro de la elipse 

Si se contrasta la elipse con la trayectoria de un planeta, se puede ver que las siguientes 
fórmulas son válidas: 

 
Imagen A.2 Trayectoria de un planeta. 

Una vez conseguida la posición en el apoápside del planeta en cuestión, se procede a 
calcular su posición inicial utilizando para ello la inclinación de su órbita valiéndonos 
de las reglas trigonométricas.  

ϕ: inclinación orbital 

ܽ = ݁݀݅ݏ݌á݅ݎ݁ܲ  + ݁݀݅ݏ݌á݋݌ܣ
2  (A,4) 

଴ܸ =  ඨ2ܯܩா௝௘( 1
݁݀݅ݏ݌á݋݌ܣ −  1

2ܽ ) + ாܸ௝௘ (A,5) 

଴ܸሬሬሬԦ = (0, 0, − ଴ܸ) (A,6) 

஺ܺ௣௢á௣௦௜ௗ௘ = ,݁݀݅ݏ݌á݋݌ܣ) 0, 0) (A,7) 

ܺ଴ = ݁݀݅ݏ݌á݋݌ܣ) ∗ cos ߮ , ݁݀݅ݏ݌á݋݌ܣ ∗  sin ߮ , 0) +  ܺா௝௘ (A,8) 
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APENDICE B: INTEGRADOR DE LEAPFROG 
En matemáticas, el método del salto de rana o Leapfrog Integration [5] es un método 
simple para la resolución numérica de ecuaciones diferenciales de la forma: 

O bien, expresado de otra manera, ecuaciones del tipo:  

El método consiste en actualizar las posiciones (ݐ)ݔ  y velocidades (ݐ)ݒ = (ݐ)ሶݔ  en 
etapas intercaladas, es decir, la posición se actualiza en el paso i mientras que la 
velocidad lo hará en el  ݅ + ଵ

ଶ. De esta forma, el sistema quedaría expresado como sigue: 

:௜ݔ :௜ܽ ݅ ݋ݏܽ݌ ݈݁ ݊݁ ó݊݅ܿ݅ݏ݋ܲ  ݅ ݋ݏܽ݌ ݈݁ ݊݁ ó݊݅ܿܽݎ݈݁݁ܿܣ
௜ାଵݒ ଶൗ : ݅ ݋ݏܽ݌ ݈݁ ݊݁ ݀ܽ݀݅ܿ݋݈ܸ݁ +  1 2ൗ  
 Tiempo que transcurre entre cada paso :ܶܦ

El hecho de que la posición y la velocidad no se actualicen en el mismo paso añade una 
dificultad a la hora de resolver el sistema. Se puede aplicar un cambio para que ambos 
se actualicen a la vez siempre que el DT se mantenga constante. Con dicho cambio, el 
sistema quedaría:  

ሷݔ =  (B,1) (ݔ)ܨ

ሶݒ = ,(ݔ)ܨ ሶݔ ≡  (B,2) ݒ

௜ݔ = ௜ିଵݔ + ௜ିଵݒ ଶൗ  (B,3) ܶܦ

ܽ௜ =  (B,4) (௜ݔ)ܨ

௜ାଵݒ ଶൗ = ௜ିଵݒ ଶൗ + ܽ௜ܶܦ (B,5) 

௜ାଵݔ = ௜ݔ + ܶܦ௜ݒ +  12 ܽ௜ܶܦଶ (B,6) 

௜ାଵݒ = ௜ݒ + 1
2 (ܽ௜ + ܽ௜ାଵ)ܶܦ (B,7) 



 

41 
 

El método Leapfrog Integration presenta importantes ventajas con respecto a otros 
métodos de resolución de ecuaciones diferenciales, como podrían ser los métodos de 
Euler o Runge-Kutta, cuando es aplicado a problemas mecánicos.  
El primero es que es reversible en el tiempo. El método permite avanzar n pasos hacia 
adelante, retroceder otros n pasos y llegar al mismo punto inicial del sistema. El 
segundo es su naturaleza simpléctica, la cual implica que conserva la energía de los 
sistemas dinámicos, característica especialmente importante a la hora de simular órbitas 
dinámicas. Es por esto último por lo que uno de los usos más importantes de este 
método sea en las simulaciones gravitacionales. 
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APENDICE C: DEPTH TEST 
El depth test es una operación que se procesa por cada fragmento que el fragment 
shader emite. Es un test cuya finalidad es la de, dada una serie de fragmentos que 
quieren dibujarse sobre el mismo pixel, cuál de ellos es el que se debe terminar 
dibujando. Para ello, utiliza un recurso llamado Z-Buffer. 
El Z-Buffer es un buffer que almacena información relativa a la profundidad de cada 
fragmento. Este buffer se crea automáticamente al crear el contexto de ventanas y se 
suelen almacenar en registros de 24 bits. 
El depth test consiste en una comparación entre el valor de profundidad (Z) del 
fragmento actual y el valor que existe en el Z-Buffer. Si este fragmento falla el test, es 
descartado y no llegará a dibujarse, por el contrario, si lo pasa, el buffer se actualizará 
con el valor del fragmento en cuestión. De esta forma, el programa es capaz de 
determinar qué fragmento debe mostrar en cada caso. 
Cuando el desarrollador establece una perspectiva, establece un volumen de 
visualización delimitado por un plano más cercano a la cámara, denominado zNear, y 
otro lejano, zFar (ver imagen C.1). Dependiendo de la diferencia que exista entre 
ambos, se pueden dar casos en los que este depth test no funcione correctamente debido 
a un fallo en la precisión de los cálculos. 

 
Imagen C.91.1 Volumen de visualización con sus límites zNear y zFar. 

Los valores de z van a estar representados entre zNear y zFar, Después de aplicar la 
transformación de perspectiva, el nuevo valor de z, ya normalizado, está definido por9: 

                                                 
9 Fórmulas Z-Buffer: https://en.wikipedia.org/wiki/Z-buffering, a fecha de septiembre de 2016. 
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Multiplicando ahora por ܵ =  2ௗ − 1, donde d es el número de bits que utiliza el Z-
buffer, que por lo general es de 24 bits, y redondeando el resultado, se obtiene la 
ecuación: 

A partir de esta fórmula, se puede obtener la precisión del Z-buffer, simplemente 
invirtiendo y derivando, obteniendo: 

 
ܵ = 2ௗ − 1 

A través de ella, se establece una precisión no lineal del Z-buffer. Entorno al plano más 
próximo a la cámara, la precisión es muy alta, en cambio, cerca del plano lejano, la 
precisión es muy pequeña. Esta precisión mantiene una relación directa con la ratio ݎܽ݁ܰݖ ൗݎܽܨݖ , de forma que, cuanto más pequeño sea su valor, más pequeña será la 
precisión a lo lejos. De hecho, el establecer un zNear muy cercano a la cámara, es un 
error muy común que ocasiona un renderizado con errores. 

ᇱݖ = ݎܽܨݖ  + ݎܽ݁ܰݖ
2 ∗ ݎܽܨݖ) − (ݎܽ݁ܰݖ + ݖ1  ൬−ݎܽܨݖ ∗ ݎܽ݁ܰݖ

ݎܽܨݖ − ݎܽ݁ܰݖ ൰ +  12 (C,1) 

ᇱݖ = 2ௗ))ݎ݋݋݈݂ − 1) ∗ ൬ ݎܽܨݖ + ݎܽ݁ܰݖ 
2 ∗ ݎܽܨݖ) − (ݎܽ݁ܰݖ + 1

ݖ ݎܽܨݖ−) ∗ ݎܽ݁ܰݖ
ݎܽܨݖ − ݎܽ݁ܰݖ )൰ + 1

2) (C,2) 

ݖ = −ܵ ∗ ݎܽܨݖ ∗ ݎܽ݁ܰݖ
ᇱݖ ∗ ݎܽܨݖ) − (ݎܽ݁ܰݖ − ݎܽܨݖ ∗ ܵ (C,3) 



 

44 
 

 
Imagen C.2 Precisión Z-buffer. 

En este proyecto se ha sufrido este error. El plano cercano está situado muy cerca de la 
cámara, y el plano lejano se sitúa en un valor de z muy grande debido a las distancias 
entre los planetas que se están tratando, por lo que, a pesar de que en los planetas muy 
cercanos no se aprecia problema alguno, en los más lejanos se puede observar como 
aparecen y desaparecen. 
La solución que se ha establecido en este proyecto ha sido la de desactivar el depth test, 
priorizando la visibilidad de los cálculos matemáticos ante el renderizado exacto.
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APENDICE D: PIPELINE GRÁFICA 
En este apéndice, se realiza un recorrido por las pipelines que existen (rendering 
pipeline y compute pipeline), así como una explicación más detallada de las principales 
etapas de las mismas. 
RENDERING PIPELINE 
La imagen D.1 muestra una pipeline de renderizado simplificada. 

 
Imagen D.1 Pipeline de renderizado. 

Los bloques que se muestran en naranja indican las etapas que son programables. Éstas 
ejecutan el código que el programador les suministra a través de los shaders. Las etapas 
que se muestran en azul indican funciones fijas. En la práctica, todas o la mayoría de 
estas últimas etapas terminan pudiendo ser implementadas en un shader, la diferencia es 
que no es el programador quien lo suministra, sino más bien el fabricante de la tarjeta 
gráfica a través de drivers, firmware u otro tipo de software similar. 

 vertex fetching: 
La pipeline empieza con una etapa no programable. Esta etapa dicta cómo serán 
introducidos los vértices a la pipeline y los prepara para mandárselos a la primera etapa 
programable, el vertex shader. 
A pesar de ser una función fija y, por tanto, no programable, existen funciones10 que el 
programador pude utilizar para elegir ciertos parámetros. 

 Vertex shading:  
El vertex shader es la primera etapa programable en la pipeline y se distingue de los 
demás shaders en que es el único que debe estar presente obligatoriamente, aunque si 
                                                 
10 La API de OpenGL ofrece, por ejemplo, las familias de funciones glVertexAttrib*() y glDraw*() que el 
programador invoca para establecer en donde están almacenados los datos, en qué modo (punto, 
triángulos o patches (polígonos de cualquier número de vértices)), etc. 
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no está presenta el fragment shader, no se podrá ver nada en la pantalla. Este shader se 
alimenta de los datos que genera la fixed-function vertex fetching.  
Recibe como entrada un flujo de vértices y es el encargado de manejar el procesamiento 
de éstos de forma individual. Las tareas que suele desempeñar son el cálculo de la 
posición de los vértices, el cálculo de la iluminación per-vertex y cualquier otro cálculo 
necesario para las etapas posteriores. Como salida, genera un vértice por cada uno que 
él recibe y los ensambla formando primitivas geométricas como el punto, segmentos de 
líneas o polígonos (ver imagen D.2). 
 

 
Imagen D.2 Entrada y salida del vertex shader. 

 Tessellation: 
La teselación es el proceso de romper primitivas de alto orden, denominadas patches, en 
muchas primitivas más pequeñas y simples (ver imagen D.3). Estos patches están 
formados por varios vértices denominados puntos de control. Por lo general, suelen 
estar formados por tres o cuatro.  
Este proceso es opcional y consta de tres partes: tessellation control shader (TCS), 
tessellation engine, la cual no es programable, y tessellation evaluation shader (TES). 
El TCS es una etapa programable, situada inmediatamente después del vertex shader, 
cuya finalidad es la de establecer el nivel de teselación que será utilizado por el 
tessellation engine para generar los nuevos vértices.  
El TES es la última etapa programable de este proceso. Recoge todos los vértices 
generados por el tessellation engine, así como todos los datos que le ha enviado el TCS, 
y se encarga de dar los valores finales a esos vértices, como, por ejemplo, su posición. 
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Imagen D.3 Resultado del proceso de teselación en diferentes niveles. 

 Geometry shading: 
El geometry shader es también una etapa en la que se pueden modificar la geometría de 
las primitivas generadas por el vertex shader o por el proceso de teselación.  
Su función es similar a la de tessellation, genera múltiples primitivas a partir de una 
inicial. La principal diferencia entre ambos procesos reside en que la teselación 
implementa una subdivisión recursiva automática en función de las opciones que se 
hayan elegido en el TCS, en cambio, el geometry shader puede emitir o eliminar 
vértices a deseo del programador.  
La imagen D.4 muestra algunos ejemplos de lo que se puede lograr usando el geometry 
shader. 

 
Imagen D.4 Tomando como base una esfera, se utiliza el geometry shader para dibujar los vectores 

normales (izquierda) y para generar caras nuevas y desplazarlas en la dirección de su vector normal 
(derecha). 

 Primitive assembly, clipping, culling y rasterización: 
En este punto se pasa a ejecutar unas etapas no programables de la pipeline que, 
partiendo de la representación en vértices de nuestra escena conseguida en etapas 
anteriores, realizan un conjunto de tareas para obtener una serie de pixeles que necesitan 
ser coloreados y pintados en la pantalla. 
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La primera de estas tareas es el ensamblado de primitivas. En esta etapa se agrupan los 
vértices en líneas o triángulos (también ocurre si la salida deseada son puntos, pero ese 
caso es trivial) (ver imagen D.5).  

 
Imagen D.5 Primitive assembly. 

Una vez agrupados en primitivas, éstas inician el proceso de clipping. El clipping es el 
proceso de determinar cuáles de las primitivas están completa o parcialmente dentro del 
viewport o región que se va a mostrar en pantalla y, por tanto, van a llegar a las etapas 
posteriores de la pipeline, y cuáles van a situarse fuera y no serán mostradas. En 
ocasiones, solo una porción de la primitiva se sitúa dentro del viewport, en este caso, se 
va a recortar de tal forma que la nueva primitiva este totalmente dentro del viewport 
(ver imagen D.6). 

 
Imagen D.6 Triángulo recortado (clipped) por estar parcialmente fuera del viewport. 

Opcionalmente, antes de pasar a la siguiente etapa, las primitivas pueden pasar por una 
etapa denominada culling. En ella, se determina si la primitiva está mirando a la cámara 
o no, es decir, si el vector normal de la primitiva apunta en dirección a la cámara. En 
caso de que no esté mirando a la cámara, la primitiva será descartada con el culling (ver 
imagen D.7). 
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Imagen D.7 Efecto del backface culling, aquellas caras que no están mirando a la cámara se descartan 

(izquierda - original, derecha - culling aplicado). 

Por último, las primitivas llegan a la etapa de rasterización. En este proceso se 
determina qué conjunto de pixeles se encuentra cubierto por una primitiva geométrica 
(ver imagen D.8). 

 
Imagen D.8 La primitiva está formada por uno o más vértices que no están alineados con la malla de 

pixeles. Con la rasterización se obtiene un fragmento que sí que está alineado. 

 Fragment shading: 
El fragment shader es la última etapa programable. Este shader recibe como entrada un 
conjunto de pixeles o fragmentos a los que hay que especificar un color para poderlos 
mostrar en pantalla (ver imagen D.9). Es en esta etapa donde se llevan a cabo todos los 
cálculos que van a determinar dicho color. El proceso puede ser tan sencillo como 
especificar un color sólido para todo fragmento que entre, o tan complejo como el tener 
que calcular las características de la iluminación o la aplicación de texturas o materiales. 
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Imagen D.9 Entrada y salida del fragment shader. 

 Depth, stencil and blending: 
Para finalizar el proceso de renderizado, los fragmentos que se obtienen del fragment 
shader van a pasar una serie de test y transformaciones antes de ser almacenados en el 
framebuffer11 para ser mostrados por pantalla.  
En primer lugar, se les aplica el llamado depth test. Existe la posibilidad de que dos o 
más fragmentos se quieran dibujar en la misma región de la pantalla, en tal caso, hay 
que determinar cuál de ellos será el que finalmente se muestre. Para ello está el depth 
test. En este, se comparan las coordenadas Z del espacio de coordenadas de la pantalla 
de cada fragmento y en base a ella se selecciona uno u otro. Es el programador el que 
puede elegir la regla mediante la que se compara, por defecto, pasan el test aquellos 
fragmentos más próximos a la cámara (ver imagen D.10).  

 
Imagen D.10 Con el depth test desactivado (izquierda), las caras del cubo se dibujan conforme van 
siendo tratadas, sobrescribiendo las caras anteriores si se superponen. Con el depth test activado 

(derecha), el cubo se dibuja correctamente, las caras que están siendo tapadas por otras caras más 
cercanas, no se visualizan. 

                                                 
11 El framebuffer es el buffer donde se almacena temporalmente una imagen (frame) a la espera de ser 
enviada al monitor o a un dispositivo. 
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Otro test que también puede ser aplicado es el stencil test. Su funcionamiento es similar 
al del test de profundidad, pero, en esta ocasión, los fragmentos se comparan contra los 
valores que residen en el stencil buffer, previamente establecidos por el usuario. Un 
ejemplo podría ser el utilizar una imagen de máscara, con todo negro excepto una zona, 
y cargarla en el stencil buffer. Bajo este caso, solo aquellos pixeles que residen en la 
zona que no es negra pasarán el test y se mostrarán en la pantalla, como se puede ver en 
la imagen D.11. 

 
Imagen D.11 Ejemplo de aplicación del stencil test. 

Por último, entra en juego el proceso de blending, que determina el color final que se va 
a mostrar utilizando para ello el color especificado en el fragment shader del pixel que 
se está procesando en ese momento y el color que ya había almacenado en el 
framebuffer. Dependiendo del alfa de cada color, se mezclarán ambos para obtener el 
color final de dicho pixel (ver imagen 4.12). 

 
Imagen D.12 Salida del fragment shader, aplicación del blending, almacenamiento en el framebuffer y 

renderización final en la pantalla. 

COMPUTE PIPELINE 
 Compute shader: 

Compute shader es el procedimiento que presentan las GPUs actuales para hacer uso de 
todo su poder computacional al programador. A diferencia de las etapas de la pipeline 
de renderizado, el compute shader puede ser considerado en sí mismo como una 
pipeline de una única etapa (ver imagen D.13).  
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Imagen D.13 Compute shader (derecha), buffer de la GPU (centro). Como se puede ver, el compute 

shader puede comunicarse con todas las etapas programables de la rendering pipeline. 

El shader no tiene ninguna entrada ni salida establecida. Toma como entrada los datos 
que el programador previamente ha introducido en el shader storage buffer, y es el 
programador el que debe explícitamente escribir los resultados en ese buffer antes de 
finalizar el shader. Cabe destacar que la memoria es compartida entre el compute 
shader y toda la rendering pipeline, por lo tanto, todos los resultados del compute 
shader pueden ser utilizados como entrada en una etapa programable. 
Cada compute shader trabaja en una única unidad de trabajo llamada work ítem. Éstos 
están agrupados en grupos denominados local workgroups (ver imagen D.14). Cuando 
se invoca el shader, el programador es quien indica la cantidad de estos workgroups que 
va a utilizar. Cada shader se ejecuta en paralelo, si a esto unimos el gran poder 
computacional de la GPU, la compute pipeline nos presenta un entorno ideal para 
realizar cualquier tipo de cálculo pesado como el cálculo físico, la inteligencia artificial 
o el tratamiento de imágenes.  

 
Imagen D.14 Distribución de los work items en el compute shader. 

 


