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SIMULACION DE SISTEMAS
MEDIANTE PARTICULAS
UTILIZANDO GPU's

RESUMEN

El problema gravitatorio de los N cuerpos es, tal vez, el problema no resuelto mas
antiguo y a la vez mas fecundo en la historia de la ciencia. Su origen se remonta a la
necesidad del hombre antiguo de medir el paso del tiempo para anticipar migraciones de
animales y, posteriormente, los ciclos agricolas.

En este proyecto se ha creado un programa que implementa uno de los métodos de
resolucion que existen para el problema de los N cuerpos, concretamente, el método
Particula-Particula. Se ha abordado practicamente todo lo que OpenGL, libreria base del
proyecto, permite hacer sobre la tarjeta grafica, desde el computo de los calculos que
mueven cada planeta hasta la renderizacion de los mismos en un mundo 3D.

El objetivo de este proyecto consiste en estudiar el comportamiento de una GPU
trabajando con particulas. Se ha tomado como escenario los planetas y su gravitacion, y
se queria averiguar cudl era el nimero limite de planetas que se podian simular a la vez
manteniendo unos FPS aceptables y utilizando todo el potencial de la tarjeta grafica.

En las paginas de este documento se recoge todo el proceso de preparacion, desarrollo,
generacion de resultados y pruebas de rendimiento. Como se podra comprobar, los
resultados obtenidos se enmarcan dentro de lo que se esperaba tedricamente, por lo que
el objetivo ha sido cumplido.
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1. INTRODUCCION

1.1.0BJETIVOS

Este documento recoge la memoria del Proyecto Fin de Carrera de Adrian Pascual
Sancho. Este PFC se enmarca dentro del mundo de las tarjetas graficas y graficos 3D.

El objetivo principal del presente proyecto es el estudio del comportamiento de una
GPU trabajando con una carga grafica y computacional elevada. Para ello, se ha tomado
como escenario el problema gravitacional de los N cuerpos.

El problema gravitatorio de los N cuerpos es, tal vez, el problema no resuelto mas
antiguo y a la vez mas fecundo en la historia de la ciencia. Su origen se remonta a la
necesidad del hombre antiguo de medir el paso del tiempo para anticipar migraciones de
animales y, posteriormente, los ciclos agricolas.

En este proyecto, se va a implementar un algoritmo bésico de resolucién de este
problema. Se va a desarrollar una simulacién de la gravitacion universal, realizando
todos los calculos dentro de la GPU, y con la renderizacion, aunque bésica, de los
planetas involucrados. Estos puntos son independientes del modelo de GPU utilizado.

Como se podra comprobar a lo largo del trabajo, el algoritmo implementado presenta
una complejidad computacional elevada, del orden de complejidad cuadratico (O (n?)).
Para evitar que el tiempo de ejecucion se incremente demasiado, se van a aplicar ciertas
optimizaciones, tanto a las formulas con las que se actualizan los datos, como al nimero
de particulas que tiene que tratar en cada iteracion.

Se pretende partir del problema de los dos cuerpos y llegar hasta un sistema con un
nimero N de particulas, a partir de la cual, la GPU seleccionada no consiga alcanzar
unos FPS aceptables, entendiendo como aceptables, alrededor de 15 FPS. Este numero
N es depende del modelo de GPU utilizado. Para este proyecto, se va a utilizar la Nvidia
GeForce GTX 660M, por lo que todos los resultados seran especificos de esta tarjeta
grafica.

La metodologia a seguir consistira en:

- Analizar los algoritmos existentes para la resolucion del problema de los N
cuerpos.

- Realizar una implementacion en un entorno NVIDIA y analizar sus prestaciones
y resultados obtenidos.

- Integrar todo lo anterior en un programa en 3D escrito en C++ y utilizando la
libreria OpenGL 4.x.

- Obtener un limite maximo de particulas, a partir del cual, la GPU no consiga
obtener unos FPS minimos para la correcta visualizacion del programa.



1.2.DESCRIPCION DE LA ESTRUCTURA DE LA MEMORIA
e Mc¢todos de Resolucion del problema gravitacional de los N cuerpos (seccion 2):

Clasificacion y analisis de las diferentes aproximaciones existentes para la resolucion
del problema gravitacional de los N cuerpos y desarrollo del algoritmo principal de la
simulacion.

e La GPU (seccion 3):

Presentacion del funcionamiento de las tarjetas graficas actuales, asi como, de la libreria
OpenGL, encargada de los calculos y la generacion de la escena 3D.

e Preparacion de la simulacion (seccion 4):

Explicacion de todas las decisiones tomadas en relacion al disefio e implementacion del
algoritmo utilizado en la simulacion.

e Simulacion del Sistema Solar (seccion 5):

Recorrido por las diferentes versiones del algoritmo implementado, concluyendo con la
simulacion del Sistema Solar completo en la GPU. Presentacion y explicacion de los
resultados obtenidos.

e Simulacion aleatoria (seccion 6):

Explicacion de los cambios realizados sobre el algoritmo de la seccion anterior, asi
como de los resultados obtenidos.

e Conclusiones (seccion 7):

Valoracion del trabajo realizado, presentaciéon del diagrama temporal y opinion
personal.



2.METODO DE RESOLUCION PARTICULA-
PARTICULA

Para simplificar la simulacion, se considera una estrella como si fuera un punto de masa
cuyas Unicas propiedades a tener en cuenta son la masa y la atraccion gravitacional.
Teniendo esto en mente, se puede llamar al problema clasico gravitacional de N cuerpos
como el problema de determinar el comportamiento de una coleccion de N puntos de
masa cuando estdn en movimiento bajo fuerzas gravitacionales reciprocas de acuerdo
con las leyes de Newton del movimiento.

La evolucion de los grupos de estrellas o galaxias, considerados como puntos de masas,
y el desarrollo de estructuras de espiral y barril en una galaxia, son problemas que
pueden aproximarse con la simplificacion anterior.

En este capitulo, se van a presentan los tipos de aproximaciones al problema que
existen, asi como los métodos matematicos de resolucion de cada uno de ellos,
finalizando el apartado explicando, mas en detalle, el método de resolucion “Particula —
Particula”, que va a ser el que se va a utilizar para las simulaciones de este proyecto.

2.1.CLASIFICACION DE LAS APROXIMACIONES

El problema de los N cuerpos se puede dividir en 3 clases de aproximaciones,
dependiendo de la importancia que tengan las colisiones binarias en la evolucion del
sistema. Estas aproximaciones se denominan: collisional-dominated systems,
collisionaless systems y caumulo globular.

Si se define que la ratio de colision binaria (vp) (capitulo 11 de [1]) mide el alcance en
el que la drbita de una estrella situada en un campo gravitacional aparece perturbada por
la presencia de otra estrella cercana, entonces el tiempo de colisién binario (Tp = vp1)
en un sistema de puntos de masas en 3 dimensiones viene definido por:

173

Ip = 7 2.1
8mnG2m2H In (5; ) @D
m

n: densidad volumétrica

m:masa

v velocidad relativa

D:distancia

G: constante de gravitacion universal

H: constante que vale 0.4 aproximadamente

Sabiendo que n es proporcional a N~1y que m es proporcional N, se puede reducir la
anterior ecuacién a Tp & N, en consecuencia vp = Tp1 o« N71,



En grupos compuestos por pocos centenares de estrellas, la 6rbita de cualquiera de ellas
dependera principalmente de la posicion y masa precisas de las estrellas vecinas locales.
Este tipo de sistemas son llamados collisional-dominated systems (sistemas dominados
por las colisiones) debido a estas interacciones binarias.

Por otra parte, si el sistema estd compuesto por un numero N muy grande de estrellas,
como podria ser una galaxia, que cuenta con un N del orden de 10, el tiempo para que
una Orbita estelar sea perturbada un angulo de 9 grados en alguna direccion es del orden
de 100 rotaciones de la galaxia. Esto representa un limite de tiempo en torno al cual los
efectos de las colisiones pueden considerarse como insignificantes. Por este motivo, este
tipo de sistemas se denominan collisionaless systems (sistemas sin colisiones). La
evolucion de estos sistemas esta determinada por la densidad de masa de todo el sistema
y no por las masas individuales de cada estrella.

Existe una tercera agrupacion de estrellas, denominada cumulo globular, que esta
compuesto por un niimero de estrellas comprendido entre 10* y 10° estrellas. Este es el
grupo mas complicado de simular ya que N no es lo suficientemente grande como para
ignorar las colisiones ni tan pequefio como para calcular la orbita de cada estrella de
forma precisa.

2.2.METODOS DE RESOLUCION

Las técnicas de simulacion de particulas intentan modelar sistemas de muchos cuerpos
mediante la resolucion de las ecuaciones de movimiento de un conjunto de particulas
usadas para representar el sistema. Para cada uno de los tipos de aproximaciones citados
se puede definir un método de resolucion, como podemos observar en el capitulo 1 de
[1]. Para agrupaciones pequefias de estrellas, el método “Particula-Particula” (PP) es el
mas adecuado, para agrupaciones intermedias se usa el método “Particula-Particula —
Particula-Malla” (P°M o PPPM) y para agrupaciones grandes se emplea el método
“Particula-Malla” (PM).

La técnica PP para simular los collisional-dominated systems se ha utilizado muchos
desde los afios 60. La fuerza en una estrella se calcula mediante la suma de las
interacciones con las otras estrellas. Para obtener la fuerza en las N estrellas, son
necesarias entorno a 5N? operaciones. Hablando de agrupaciones menores a 4000
cuerpos, este método presenta importantes ventajas respecto a los demdas ya que cada
fuerza es tan precisa como la precision aritmética del ordenador utilizado.

El método PM, utilizado en la simulacion de los collisionaless systems, fue introducido
a finales de los afios 60 usando una modificacion de un programa disefiado para la
simulacion de gas plasma. Esta técnica trata a la fuerza como un campo cuya magnitud
se aproxima utilizando una malla, por tanto, no trabaja con la masa de cada particula en
concreto sino con una densidad de masa calculada a partir de varias particulas cercanas.
Es por este motivo que la principal caracteristica de este método es su velocidad. Con
estas densidades, se calculan los valores de la malla, los cuales permiten, mediante su
interpolacion, obtener las fuerzas y potencias en cada particula. Debido al uso de las
densidades, el método PM es inaceptable para el estudio de interacciones entre
particulas cercanas.



Por tltimo, el método P°M sirve para paliar el principal fallo de la técnica PM, el
calculo de fuerzas entre particulas cercanas. La fuerza se divide en dos partes, una de
variacion rapida y de corto alcance, que se calcula mediante la suma directa de fuerzas
usando el método PP, y otra de variacion lenta y de largo alcance, cuyo valor se obtiene
usando el método PM. El principal problema de un algoritmo P*M es que suele ocurrir
que la parte del sumatorio directo termine dominando sobre la otra, consiguiendo lo
contrario de lo que se buscaba.

2.3.ALGORITMO BASE DEL METODO PP

Como ya se ha comentado anteriormente, para el proyecto planteado, se ha elegido el
método “Particula-Particula”, que a pesar de ser el mas sencillo, tanto conceptual como
computacionalmente, es el que mas precision obtiene en un ambito de pocos cuerpos
como es el Sistema Solar.

En un algoritmo que implementa un método PP, el estado del sistema en un instante t
estd definido mediante la posicion y la velocidad de cada particula.

xl-(t),vi(t);i = 1Np (2,2)

Ny: nimero de particulas
X;:posicion en el instante i
v;:velocidad en el instante i

Dicho algoritmo, que podemos encontrar en el capitulo 1 de [1], consta de en un bucle
principal (ver imagen 2.1), que se denomina timestep loop, que actualiza los valores
indicados utilizando las ecuaciones de movimiento (ecuacion 2.2) y la fuerza de
interaccion entre particulas (ecuacion 2.3).

Timestep loop of PP method

1. Compute forces.
Clear force accumulators
E—far i=1toN, do
Fi:.=0
Accumulate forces
—for i=1toN,—1do
for j=i+1toN, do
Find force F; of particle j on particle i
Fi.=F+F;
- Fp=F-F,;
2. Integrate equations of motion.
—for i=110N, do
¥V = yold L DT
i . m;
L xM¥: =xPM4vDT

3. Update time counter.
t:=t+DT

Imagen 2.2.1 Algoritmo PP basico.
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En este proyecto, se va a usar este algoritmo para calcular la evolucion de los astros del
Sistema Solar, y posteriormente la evolucion de los planetas colocados de forma
aleatoria en un espacio determinado, partiendo de una posicion inicial elegida
manualmente. Por tanto, la fuerza de interaccion entre las particulas implicadas sera la
definida por la ley de gravitacion universal, la cual predice que la fuerza ejercida entre
dos cuerpos de masas m; y my separados una distancia r es proporcional al producto de
sus masas e inversamente proporcional al cuadrado de la distancia, es decir:

F=G 2,3)

F:médulo de la fuerza

G: constante de gravitacion universal = 6.6784 x 10~ Nm?Kg~?2
m;:masa del planeta i

r:distancia entre los planetas

Aplicando esta ley a nuestro caso de N particulas y simplificando la férmula (consultar
el capitulo 31 de [4]), la fuerza total F; en el cuerpo 1 vendra dada por la ecuacion 2.3.

—
mn,

7Ty = N T X 2.4)
LN (| + e2)

£2: factor de suavizado

yand ’ . ’ .
1,,: vector que va desde la particula i a la particula j
X;:posicion de la particula i

m;:masa de la particula i

2.4.0PTIMIZACIONES

Al bucle citado (timestep loop bésico) se le van a afiadir ciertos cambios de forma que la
precision en el célculo de la posicidon y velocidad se vea mejorada y admita el poder
ejecutarlo computacionalmente de forma paralela.

Para calcular la fuerza total en la particula 1, es necesario sumar todas las fuerzas que
cada una de las demas particulas ejercen sobre ella. La aproximacién mas bésica reside
en implementar un bucle anidado para recorrer todas las particulas, y por cada una,
recorrer todas las demads, calculando asi la fuerza total (imagen 2.2), lo cual genera un
algoritmo de orden de complejidad! O (n?).

"'El orden de complejidad mide la eficiencia de un algoritmo cuando el nimero de datos N tiende a
infinito.



| for i=1to N, do
Jor j=1to N, do
-if ji do
Find force F,; of particle j on particle i
Fi:=F+F;,

Imagen 2.2.2 Bucle sin optimizar para calcular las fuerzas.

El algoritmo definido en el timestep loop, a la vez que se calcula la fuerza total en la
particula i, se va acumulando la fuerza fj; en el sumatorio de la particula j, de esta forma,
se evita tener que calcular fji ya que fij = fji (imagen 2.3). Asi, se pasa de tener un
algoritmo del orden de complejidad O (n?) a uno de O (n*log n). Para hacer una idea de
la mejora lograda, teniendo 1000 particulas, el bucle sin optimizar tendria que realizar
1000000 iteraciones para poder calcular la fuerza en cada una de ellas, en cambio, el
bucle optimizado necesitaria solo ¥12%°(1000 — k) = 499500 iteraciones, menos de la
mitad que el anterior caso.

for i=1t0 N,—1 do
for j=i+1toN, do
Find force F; of particle j on particle i
Fi:=F+F,;
= Fp=F—-F,

Imagen 2.2.3 Bucle para calcular las fuerzas optimizado para una ejecucion secuencial.

Esta optimizacion es perfecta para una ejecucion secuencial del algoritmo. En cambio,
en una ejecucion en paralelo, en la que cada hilo o thread va a ejecutar este bucle para
calcular la fuerza neta sobre un tnico planeta, no es recomendable su uso. Los hilos se
ejecutan sin un orden determinado, por lo que el hilo que calcule la fuerza sobre la
particula i no tiene forma de saber si el hilo que calcula la fuerza sobre la particula j ha
incrementado ya sus respectivas fuerzas netas con fij o no. El querer ir actualizando la
fuerza de las particulas de los demés hilos conllevaria generar problemas de
concurrencia innecesarios?, en consecuencia, para la ejecucién paralela, el bucle
utilizado es el mostrado en la imagen 2.2.

Ahora que el algoritmo ya es paralelizable, se procede a afiadir mas exactitud en los
calculos. En el algoritmo clasico la forma en que se obtiene la nueva posicion y
velocidad en cada iteracion del bucle es muy simple y acaba provocando problemas de
precision. Como solucién, se ha utilizado el “método del salto de rana”, mas conocido
con su nombre en inglés Leapfrog Integration [3]. Con éste método, las ecuaciones de
movimiento quedan de la siguiente forma:

xNEW = x PP + QL0 DT + 1a?LDDT2 (2.5)

2 Como por ejemplo una condicion de carrera (race condition) ocurre cuando dos o mas procesos acceden
un recurso compartido sin control, de manera que el resultado combinado de este acceso depende del
orden de llegada



1
v = v+ o (aP'P + a*)DT (2.6)

Hay que resaltar que para el calculo de la nueva velocidad se necesita haber calculado
previamente la nueva aceleracion, es decir, la nueva fuerza en cada particula en base a
las nuevas posiciones. En consecuencia, es necesario variar el orden en que se ejecuta el
algoritmo, de forma que la fuerza se actualice después de que los planetas se hayan
movido y estén ya en sus nuevas localizaciones y antes de calcular la velocidad que les
hara avanzar en la siguiente iteracion.

En la imagen 2.4 ha sido modificada manualmente para anadir estos cambios
nombrados. En ella, se puede apreciar el bucle timestep loop final.

Timestep loop of PP method

1. Update pos.
—for i=lto N, do
L XP: = xP4 4 wPMpT 4 lz afdpT?

2. Compute forces.
Clear force accumulators

—for i=1ta N, do

| F:=0
Accumulate forces
—for i=110 N, do
for j=1to N, do

if j*i do

Find force F,; of particle j on particle i

Fi:=F+F;,

3. Update vel
—for i =1te N, do

v M : Caf® + a™ )pT

. Update time counter and ac.
i=t+DT

apd; = af™

Imagen 2.2.4 Algoritmo PP optimizado.



3.LA GPU

Las tarjetas graficas (GPUs) actuales, consisten en un gran nimero de procesadores
programables denominados shader cores, los cuales ejecutan programas llamados
shaders. Cada core tiene un rendimiento relativamente bajo: procesa una Unica
instruccion del shader en uno o mas ciclos de reloj y, normalmente, carecen de
caracteristicas de procesadores mas avanzados como podrian ser la ejecucion fuera de
orden, la prediccion de saltos, el superescalado...

Sin embargo, cada GPU cuenta con una gran cantidad de cores, que van desde unas
pocas decenas a unos pocos miles, y juntos pueden llevar a cabo una cantidad inmensa
de trabajo.

3.1.PIPELINE GRAFICA

La mayoria de los sistemas graficos siguen el paradigma de lo que se denomina pipeline
grdfica, que consiste en un numero de etapas, cada una representada bien por un shader,
o bien por funciones fijas (consultar el capitulo 3 de [2]). Existen dos tipos de pipeline:
la rendering pipeline y la compute pipeline.

La pipeline de renderizado es la pipeline clasica, cuya finalidad es la de renderizar o
visualizar objetos 3D (ver imagen 3.1). La compute pipeline ha sido integrada
recientemente en las tarjetas graficas y tiene como objetivo permitir al usuario ejecutar
cualquier operacion o calculo matematico usando los procesadores de la tarjeta.

3D mesh Triangles Fragments Fragments
with colors

7\ ] \ . \
// \ // \ / \ //
/
«/ \1 Vi \1 Zz \1 Vi
Vertex | | pasterization| | Te*ture & CRgmant
processing Lighting processing
ek,
HE
“SaEnm

Imagen 3.1 Proceso de renderizado desde que un objeto 3D entra a la pipeline hasta que se muestra en

la pantalla.



En este capitulo se van a presentar los distintos shaders que el programador tiene a su
disposicion (para un recorrido mas en detalle de las pipelines, ver el apéndice D):

A continuacion, se van a presentar las distintas etapas programables de ambas pipelines:

e JVertex shader (VS): Primera etapa programable de la pipeline de renderizado. El
objetivo de esta etapa es el de procesar cada vértice de forma individual.

o Tessellation Control Shader (TCS) y Tessellation Evaluation Shader (TES): La
teselacion es el proceso de romper primitivas de alto orden, en muchas
primitivas mas pequefias y simples por medio de subdivisiones recursivas.

o  Geometry shader (GS): Esta etapa permite obtener nueva geometria a partir de
la geometria original, agregando o sustrayendo vértices.

o Fragment shader (FS): Es la ultima etapa de la pipeline de renderizado. Su
funcion es la de aplicar color a los pixeles que se mostraran por pantalla.

o  Compute shader (CS): La compute pipeline es una pipeline relativamente nueva,
fue incorporada en la version 4.3 de OpenGL, cuya funcion es presentar la GPU
como una unidad de calculo matematico de cardcter general con una gran
potencia. Consta de tan solo un shader, denominado compute shader.

3.2.0PENGL

OpenGL (Open Graphics Library) > es una
especificacion estandar que define una API
(Application Programming Interface) escrita penG L
en C multilenguaje y multiplataforma para .
escribir aplicaciones que produzcan graficos
2D y 3D. La API consiste en varios
centenares de procedimientos y funciones diferentes que pueden usarse para
dibuja escenas tridimensionales complejas a partir de primitivas geométricas
simples siguiendo la pipeline explicada anteriormente. Fue desarrollada
inicialmente por Silicon Graphics Inc. (SIG) en 1992 y se usa ampliamente en
CAD, realidad virtual, representacién cientifica y desarrollo de videojuegos
entre otros campos.

El objetivo de OpenGL es el de proporcionar una capa de abstraccion entre la aplicacion
y el sistema grafico que se encuentra por debajo (ver imagen 3.2). Esta capa debe
ocultar las diferencias entre las GPUs y los rasgos especificos de cada sistema, como la
resolucion de la pantalla, la arquitectura del procesador, el sistema operativo instalado
entre otros. Por otro lado, el nivel de abstraccion debe ser lo suficientemente bajo como
para que el programador tenga el suficiente acceso al hardware que hay por debajo y
pueda aprovechar toda su potencia.

3 OpenGL: https://es.wikipedia.org/wiki/OpenGL, a fecha de septiembre 2016.
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Display hardware

Imagen 3.2 Situacion de la API de OpenGL en las capas del sistema.

3.1.1. PROGRAMACION CON OPENGL

Un programa tipico de OpenGL esta formado por tres partes bien diferenciadas: la
inicializacion del contexto* de OpenGL, la inicializacién de los recursos (explicados
seguidamente) y el bucle principal. La imagen 3.3 muestra un esquema de esta
estructura.

En primer lugar, hay que inicializar el contexto en el que se va a correr la aplicacion.
Dado que OpenGL es solo una biblioteca destinada a trabajar sobre la tarjeta grafica, es
necesario encontrar otra libreria que permita crearlo. Como minimo, ésta debe permitir
la creacidn y el manejo de ventanas, asi como proporcionar un método para procesar la
interaccion con el usuario. Existen varias librerias posibles, como Freeglut (obsoleta),
SFML, SDL... Para este proyecto se ha elegido GLFW, una libreria en C especialmente
disefiada para trabajar con OpenGL. A diferencia de las anteriores, esta solo cuenta con
lo absolutamente necesario: creacion de ventanas y la administracion de la entrada de
usuario. Ademas, ofrece un control bastante grande sobre la creacion del contexto
OpenGL.

En segundo lugar, hay que inicializar todos los recursos empezando por la librearia
GLEW, libreria multiplataforma escrita en C/C++ destinada a ayudar en la carga y
consulta de extensiones de OpenGL. Una vez inicializada, es necesario declarar las
variables y buffers que nuestra aplicacion utilizard para comunicarse con la GPU. En
este proyecto, se han creado hasta 4 programas, 2 de ellos destinados a ejecutar una
pipeline de renderizado y otros 2 a una compute pipeline. También se ha creado un
VAO (Vertex Array Object), un objeto de OpenGL que almacena toda la informacion
relativa a los datos necesaria para nutrir al vertex shader de vértices, y hasta 3 VBO
(Vertex Buffer Object) y 4 SSBO (Shader Storage Buffer Object), buffers que
almacenan los datos que van a ir leyendo los shaders a lo largo de la pipeline (los datos
que almacenen y la estructura delos buffers estdn descritos en el apartado 5.3). Ademas,
es en este punto en el que se escribe en los buffers los datos iniciales.

4 El contexto de OpenGL representa varias cosas. El contexto almacena todo el estado asociado a la
instancia de OpenGL que se estéd ejecutando, la ventana donde se va a renderizar los objetos 3D, la
interaccion con el usuario por teclado o raton, el framebuffer...
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Imagen 3.3 Estructura basica de un programa de OpenGL.

Por ultimo, es necesario construir el bucle principal de la aplicacion. Este bucle consta
de dos acciones: la primera, actualizar los datos almacenados en los buffers (si procede),
y la segunda, renderizar los objetos 3D en la ventana. Es en este momento cuando se
ejecutan las pipelines vistas anteriormente, la compute pipeline ya que su unico
proposito es el llevar a cabo calculos, esta ligada a la accion de actualizar, mientras que
la rendering pipeline esta ligada a la de renderizar. Este bucle hay que declararlo
explicitamente mediante alguna estructura de bucle como, por ejemplo, un do-while.
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4.PREPARACION DE LA SIMULACION

En este apartado se presentan todas las decisiones que se han tomado para la
construccion del programa que ha permitido alcanzar los objetivos de este proyecto, las
funciones implementadas y los resultados obtenidos para cada uno de las simulaciones
realizadas consistentes en un escenario conocido como es el del Sistema Solar y el otro
escenario consistente en sistema aleatorio desconocido.

4.1.PROGRAMAS UTILIZADOS

Como OpenGL es una API multilenguaje, ha sido necesario escoger el lenguaje en el
que implementar el proyecto. Se ha seleccionado C++ debido a la buena integracion con
OpenGL. Recuérdese que la librearia de OpenGL esta escrita en C, en caso de querer
utilizarla en otro lenguaje es necesario descargar un paquete para enlazar ese codigo en
al lenguaje seleccionado. Esta técnica es lo que se conoce como language binding. Para
evitarlo, se ha elegido C++, lenguaje que extiende a C y que, ademads, permite la
programacion orientada a objetos, con todas las ventajas que presenta como puede ser la
abstraccion o la reusabilidad.

Por la comodidad que supone, se ha querido desarrollar el proyecto en un IDE
(Integrated Development Environment) y de entre los que existen, se ha escogido el
Visual Studio 2013 (VS-2013) Community como entorno de desarrollo debido a que es
gratuito, viene con un compilador C++ y un debugger ya incluido, y cuenta ademas con
muchas funciones, plugins y utilidades que facilitan y agilizan la creacion de codigo.
Uno de los plugins a destacar es el NVIDIA Nsight, plugin que permite ver el
rendimiento de un programa de graficos, ver el contenido inicial de los buffers de la
GPU, detalles de la tarjeta grafica, entre otros aspectos.

Con el VS 2013 se puede crear el programa en si y visualizar todo el escenario en
movimiento en 3D. Para verificar si los resultados eran correctos’, se decidi6 utilizar
dos programas externos que han permitido comprobar el buen funcionamiento del
codigo de forma simple y visual. Estos programas son el MS Excel y el GNU Octave.
El MS Excel, de la suite ofimatica Microsoft Office, permite cargar datos en tablas y
representar éstos en graficos 2D. Ademas, ha sido el principal protagonista para el
desarrollo de los primeros algoritmos. EI GNU Octave es un programa libre para
realizar calculos numéricos, que cuenta con unos graficos 2D y 3D mucho mas potentes
que el Excel. Asimismo, admite la ejecucion de scripts permitiendo automatizar la
ejecucion de ciertas funciones.

4.2.ENTRADA Y SALIDA DEL ALGORITMO

Dado que el numero de particulas a simular no va a ser el mismo de una version a otra,
se ha pensado en almacenar los datos iniciales en un fichero externo al programa, de
forma que un cambio en las particulas de entrada no suponga modificacién alguna de
codigo.

> GNU Octave: https://www.gnu.org/software/octave/doc/v4.0.1/index.html
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Se ha elegido el tipo de fichero CSV como fichero tanto para almacenar los datos de
entrada como los resultados. Este presenta la ventaja de que es un formato abierto muy
sencillo cuyo propdsito es representar los datos en forma de tabla. Otro factor
importante a la hora de decidir usar este tipo de fichero es que tanto el lenguaje C++, el
MS Excel como Octave lo aceptan de forma nativa.

4.3.ESTRUCTURA DE LOS BUFFERS DE LA GPU

Para la realizacion de este proyecto se han utilizado tanto VBO como SSBO. En los
VBO se han almacenado datos que van a ser constantes a lo largo de toda la simulacion,
los cuales son los vértices de las esferas de los planetas, los vectores normales a esos
vértices, y el orden en que consumirlos. Estos buffers van al vertex shader como datos
de entrada y éste puede ir tratando los datos que contienen uno a uno conforme le
llegan.

Un caso especial es el del buffer que almacena el orden de los vértices, llamado index
buffer. No se puede acceder a su contenido dentro del shader. Su tinica funcion es la de
indicar al vertex fetching en qué orden debe enviar los vértices del buffer al vertex
shader para generar la geometria deseada.

Los SSBO son buffers de proposito general que utiliza el compute shader como entrada
y salida de datos. Los datos que almacenan son las posiciones, velocidades,
aceleraciones, masas, radios, grupo y el numero de planetas. Como ya se ha visto
anteriormente (ver imagen 4.13), estos buffers son accesibles desde ambas pipelines,
asi, todos los resultados del algoritmo PP ejecutado en el compute shader pueden ser
directamente leidos en la pipeline de renderizado. Este es el caso de las posiciones y los
radios.

En total, se han creado 4 VBOs y 2 SSBOs para la simulacion del Sistema Solar y 3
VBOs y 4 SSBOs para la simulacion aleatoria. La unica diferencia que entre ambas
simulaciones es que, en la primera, los radios son una constante durante todo el
programa, por eso son un VBO, en cambio, en la simulacién aleatoria se anade la
deteccion de colisiones y la posterior union de los planetas colisionados, por lo que el
radio puede variar (ver capitulo 6). Ademads, derivado también de este cambio, el
numero de planetas puede disminuir, por lo que se almacena en un nuevo buffer.

4.4.DIAGRAMA DE CLASES

La imagen 4.1 muestra el diagrama completo del sistema.
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Imagen 4.1 Diagrama completo del programa.

4.5.DECISIONES OPENGL

No todos los astros del Sistema Solar tienen la misma forma. Por lo general, su
geometria se aproxima a la de una esfera, aunque existen algunas excepciones como por
ejemplo Deimos, el satélite de Marte, que presenta una forma muy irregular. Dado que
el objetivo del proyecto no es el renderizado exacto de cada astro, se ha decidido
representar a cada uno de ellos por una esfera de mayor o menor tamafio en funcion del

radio medio del planeta.

Se ha decidido que las esferas fuesen de radio 1. Cada planeta tiene un radio medio
distinto a los demas, esto implica que habria que calcular una esfera diferente para cada
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uno de ellos y enviarla a los buffers definidos en la memoria de la GPU para que ésta
pudiera procesarlos. Ademas de la cantidad de espacio de memoria que haria falta para
poder almacenar todos esos vértices, hay que tener en cuenta que los célculos que
generan la esfera se realizan sobre la CPU, lo que generaria una carga computacional
muy grande que ralentizaria el programa. La solucion mds optima era definir una nica
esfera de radio 1, cuyo centro se situara en el origen de coordenadas, y enviarla a la
GPU, de forma que fuera el TES quien la adaptara a las caracteristicas de cada astro,
aplicando las matrices de transformacion adecuadas. Con esto se consigue no tener que
modificar la informacion relativa a los vértices (posicion, vectores normales y
coordenadas de textura, que en este proyecto no se utilizan) de los VBO con cada
planeta.

Ademas, como todos comparten la misma geometria, se puede utilizar un método
denominado Instanced Rendering, mediante el cual, se informa a OpenGL, en una unica
llamada de dibujado, que se desea dibujar varias copias de la misma geometria. Esto
evita el tener que realizar una llamada de dibujado por cada astro que se quiera
renderizar. De esta manera, se pasa de invertir la mayor parte del tiempo en llamadas a
funciones de dibujar de OpenGL a invertirlo en el renderizado en si.

Siguiendo esta filosofia de adaptar la geometria inicial en los shaders, se ha
implementado un método de LOD (Level of Detail) [2] de forma que la geometria que
recibe la pipeline grafica es una esfera con tan pocos vértices que pierde cualquier
caracteristica tipica de esfera. Esta geometria con tan pocos poligonos es ideal para
representar planetas tan lejanos que se muestran como si fueran puntos en la ventana de
visualizacion. Para los planetas mas cercanos, se utiliza el proceso de teselacion para
generar mas vértices con los que poder ir dando ese caracter esférico al objeto. La
imagen 4.2 muestra este LOD.

Tessellation Level = 1.0f
(Geometria original)

Tesellation Level = 20.0f

Imagen 4.2 LOD (Level of Detail) de los planetas (izquierda - planeta lejano, derecha - planeta cercano).

Dependiendo de la distancia a la que se situen los planetas de la cdmara tendrdn mas
vértices 0 menos, asi pues, se logra que aquellos planetas muy cercanos se vean como
esferas propiamente dichas y, conforme se alejen, irdn perdiendo definicion. Este
método tiene una influencia directa en los FPS (Frames Per Second) de la aplicacion,
otorgando una gran mejora de rendimiento.
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Otra decision tomada en relacion con OpenGL ha sido la de desactivar el depth test. El
depth test es uno delos test que aplica OpenGL practicamente al final de la rendering
pipeline, después de que el fragment shader se haya ejecutado. Resumiendo, el depth
test permite distinguir qué objetos estan situados mas cerca de la camara y cuales estan
mas lejos, de esta manera, si se da el caso que un objeto lejano quiere dibujarse en un
mismo pixel que un objeto cercano, serd el mas cercano el que terminara siendo
mostrado (ver el apéndice D para una informacion mas detallada).

El desactivar el depth test, se ha decidido después de observar que los planetas situados
muy lejos de la camara, dependiendo de su posicion, iban despareciendo y
reapareciendo. El problema radica en un fallo en la precision de los célculos que realiza
el depth test para determinar si un poligono se va a mostrar o no (ver apéndice C para
mas informacion).

4.6.CARACTERISTICAS DE LA TARJETA GRAFICA

Para la realizacion de todas las simulaciones se ha utilizado una tarjeta grafica Nvidia
GeForce GTX 660M con las siguientes caracteristicas:

Nucleos CUDA 384 nucleos
GPU Frecuencia del reloj 835 MHz
Tasa de relleno de texturas 30.4 GTexel/s
Frecuencia del reloj 2000 Mbps
Memoria Interfaz de memoria 128-bit GDDRS5
Ancho de banda maximo 64 GB/s

Cuadro 4.1 Caracteristicas tarjeta grdfica Nvidia GeForce GTX 660M.

Para poner en contexto la tarjeta grafica, Nvidia nombra las tarjetas graficas segun su
serie (en este caso es la serie 600 Mobile) y en cada generacion aumenta la serie. Nvidia
saca una nueva generacion cada afio. Actualmente, acaba de salir al mercado la serie
1000. En la imagen 4.3 se compara una de las tarjetas de serie 1000 con una tarjeta de
serie 600°. Se puede apreciar que desde que se empezo el proyecto han salido tarjetas
graficas mucho mas potentes (recordar que en este proyecto se estd usando una serie
600 Mobile, cuyas caracteristicas y prestaciones son peores que la serie 600 normal).

¢ Comparacion obtenida de http://hwbench.com/vgas/geforce-gtx-1060-vs-geforce-gtx-660, a fecha de
septiembre del 2016
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Imagen 4.3 Comparacion tarjetas graficas GeForce GTX 660 y GTX 1060.
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5.SIMULACION DEL SISTEMA SOLAR

5.1.0BJETIVO

La primera simulacidén que se va a realizar para verificar el correcto funcionamiento del
sistema disenado. Ha sido elegido el Sistema Solar, ya que cumple una serie de
requisitos relacionados todos con el conocimiento profundo que se tiene del mismo.

Las principales caracteristicas son: en primer lugar, es un sistema estable, es decir,
ninguna particula se aleja tanto como para anular las fuerzas que le ejercen todas las
demas y desplazarse hasta el infinito. Ademads, contiene una gran variedad de particulas,
variedad en tamafio, en masa y en el eje sobre el que describen su trayectoria. Por
ultimo, es un sistema del que se conoce abundante informacion, como las trayectorias
de cada particula, sus dimensiones, las fuerzas a las que se ven sometidas, las
velocidades a las que se mueven, etc.

Si el algoritmo implementado es capaz de reproducir el comportamiento de dicho
sistema, se considerard un algoritmo adecuado.

5.2.PROBLEMA DE LOS 2 CUERPOS

El objetivo de empezar por resolver el problema de los dos cuerpos reside en obtener un
algoritmo base que funcione correctamente. Por simplicidad, y dado que la carga
computacional no es muy grande al tener unicamente dos cuerpos, se ha elegido trabajar
directamente sobre MS Excel, utilizando el sistema de macros en Visual Basic que
viene con ¢l. De esta forma, se consigue tener una primera aproximacion del algoritmo
PP sin preocuparse de todo lo que un programa OpenGL conlleva (creacion de
ventanas, contexto, etc.).

Se ha elegido que uno de los cuerpos sea el Sol y el otro sea La Tierra. En este
algoritmo, los datos iniciales son conocidos y estan almacenados en una pagina del
mismo documento Excel, por tanto, no es necesario realizar ningun célculo previo para
obtenerlos.

El algoritmo utilizado para realizar la prueba es el algoritmo PP basico, sin utilizar el
integrador de Leapfrog, y los resultados que se obtienen son los esperados: La Tierra
logra dar una vuelta completa alrededor del Sol sin problema, describiendo una
trayectoria eliptica con las posiciones esperadas.

Una vez logrado lo mas basico, ahora hay que avanzar en la complejidad del sistema y
lograr que no solo La Tierra gire alrededor del Sol, sino que el sistema Sol — Tierra -
Luna sea un sistema estable y que sus trayectorias sean las esperadas. Una vez que esto
se ha conseguido, el evidente paso siguiente es lograr reproducir el comportamiento de
todo el Sistema Solar.

Para alcanzar los nuevos objetivos se afiadio el integrador de Leapfrog para evitar
posibles problemas de precision en los calculos. El resultado obtenido concuerda con lo
que la teoria indicaba.
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Tanto la Luna como La Tierra describen la misma trayectoria alrededor del Sol. Si se
acerca la vista a un tramo de esa trayectoria, se puede ver como la Luna no estd
superpuesta a La Tierra, sino que va oscilando alrededor de ella (ver imagen 5.1). Como
se puede apreciar, los resultados son todos correctos. Se procede a implementar un
programa que mueva el Sistema Solar completo.

Sol - Tierra - Luna
2E+11
1 SR

e

o~ 1E+11 '“\

SE+10

~ i o " —— XZ- TIERRA
“IF+11 \ -1E#11 1E+11 | 2E+11
_ . / XZ - SOL

1=}

Imagen 5.1 Sistema Sol - La Tierra — Luna.

5.3.SISTEMA SOLAR

El algoritmo “Particula - Particula” es un algoritmo de integracion temporal que
requiere las condiciones iniciales adecuadas para integrar una ecuacion diferencial
ordinaria de 2° orden, por lo tanto, es necesario nutrirle de unas posiciones y
velocidades iniciales a partir de las cuales calcular las siguientes.

Aunque se conoce perfectamente la trayectoria de la gran mayoria de los astros del
Sistema Solar, es necesario elegir un punto en concreto de la misma para utilizarlo
como inicio del algoritmo.

Se sabe que las trayectorias que describen los planetas alrededor del Sol (o de su planeta
en el caso de los satélites) son trayectorias elipticas con mas o menos excentricidad, asi
que se pueden usar las reglas matematicas de la elipse para hallar los datos necesarios
de cada uno. Tomando los apsides de cada planeta y la inclinacion de su trayectoria
respecto al plano de la ecliptica, se puede calcular cualquier posicion de su recorrido.
En este caso, se ha elegido tomar el punto mas alejado de su trayectoria (el apoapside)
como posicion inicial. En cuanto a su velocidad, se ha elegido que los planetas
describan una trayectoria anti horaria vista desde posiciones de Y positivas.

Las formulas serian las siguientes (ver apéndice A para ver como se han obtenido):
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_ Periapside + Apoapside

a > (5,1)

Vo= |26Mpje( e ) + Vi, 5.2)
Apoapside  2a

Vs = (0,0,—V,) (5.3)

Xo = (Apoapside  cos ¢ , Apoapside = sing,0) + Xgj, (5,4)

Mg j.: masa de su planeta eje
¢: inclinacion orbital

La cantidad de astros con los que se va a trabajar a partir de este punto hace que el
utilizar Excel para desarrollar el algoritmo ya no sea una opcion viable. Hay que
recordar que Excel, aunque disponga de herramientas para implementar programas, es
un sistema ideado para trabajar con hojas de célculo. La carga computacional que
supone el realizar todos los célculos del algoritmo PP a la vez que inserta los resultados
en tablas, hace que el programa se sature y el tiempo que tarda en terminar una iteracion
completa del timestep loop es muy elevado.

Se procedi6 a crear un programa OpenGL en C++ completo. Es en este momento
cuando al algoritmo PP se le anade el sistema de entrada y de salida de datos por medio
de un fichero CSV.

5.1.1.VERSION 1: CPU

En esta primera version, toda la carga computacional se concentraba en la CPU y la
GPU se limita a renderizar los resultados. La idea principal es crear un marco sobre el
que trabajar posteriormente.

Todas las funciones que implementan el algoritmo “Particula — Particula” se van a
ejecutar en el procesador. Esto permite realizar una ejecucion paso a paso con la que se
puede depurar facilmente el codigo. Ademads, se implementan las funciones que
controlan la ventana y sus eventos y se inicializan los recursos necesarios para trabajar
con OpenGL. Este paso es necesario para tener una base libre de errores con todos los
recursos que se van a necesitar.

5.1.2. VERSION 2: CPU-GPU

Con esta version, la tarjeta grafica adquiere mas protagonismo al implementar todos los
calculos dentro del compute shader. Aun asi, el procesador sigue manteniendo
considerable carga debido a que en cada iteracion se introducen los datos antiguos al
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SSBO, se devuelven los datos actualizados a la CPU vy, posteriormente, se vuelven a
enviar a la GPU como parametros de entrada del vertex shader para su renderizado.

Esta version no fue la definitiva, siguié siendo una version cuyo objetivo era comprobar
que todo funciona correctamente y que todos los calculos eran validos. El coste de sacar
los resultados de la GPU a la CPU en cada iteracion es muy elevado y repercute
enormemente en los FPS de la aplicacion, pero es el inico modo de comprobar que los
datos con los que trabaja la tarjeta grafica son correctos, ya que no se puede acceder
directamente desde el procesador a su memoria.

5.1.3. VERSION 3: GPU

Por ultimo, esta version concentra toda su actividad en la tarjeta grafica. El procesador
se limita a crear la ventana, tratar los eventos de teclado y raton y a realizar las llamadas
de las funciones de OpenGL en cada iteracion.

Toda la informacion necesaria para el algoritmo (posiciones, velocidades, aceleraciones,
masas y radios de los planetas) esta almacenada en los buffers de la tarjeta grafica, y son
estos buffers los que se van enlazando como entradas y/o salidas de los diferentes
shaders conforme se van necesitando. No es necesario llevar ninguna informacion a la
CPU, ya se sabe que los valores con los que trabaja el algoritmo son correctos gracias a
las versiones anteriores.

5.4.RESULTADOS OBTENIDOS

Desde el punto de vista de la ejecucion, el resultado alcanzado es bueno. A pesar de que
no se ha podido reproducir todas las trayectorias de los cuerpos de forma exacta, si que
se ha logrado que el sistema fuera estable en su mayor parte. De un total de 141 cuerpos
que estaban involucrados en la simulacion, 49 de ellos se pierden en el infinito, o lo que
es lo mismo, un 35% aproximadamente de los cuerpos no se estabilizan.

Se esta trabajando con nimeros muy grandes, valores del orden de 10'° en distancias y
de 10* en masas, por lo que es probable que algunos calculos no sean lo
suficientemente precisos. Ademas, las formulas para obtener la posicion y la velocidad,
a pesar de utilizar el integrador de Leapfrog, no son las mds exactas para este tipo de
calculos. Recordemos que la Mecanica Celeste trabaja en este tipo de problemas y los
observatorios astrondmicos, asi como la NASA, utilizan métodos numéricos bastante
sofisticados.

Otro dato a tener en cuenta son las condiciones iniciales del algoritmo. El algoritmo PP
es un algoritmo recursivo, necesita unas condiciones iniciales a partir de las cuales
iniciar el proceso. Dado que no se ha podido encontrar la posiciéon exacta, ni la
velocidad ni aceleracion, de todos los cuerpos para un instante i determinado, es posible
que la elegida para iniciar la simulacién en este proyecto no sea la adecuada y genere
fallos en los resultados. Por todo ello, el hecho de que el 35% delos cuerpos no se
consiga estabilizar, se puede considerar como un resultado indicativo de que el
algoritmo PP implementado es valido.

En las imagenes conseguidas con los graficos MS Excel (ver imagenes 5.2 y 5.3), se
puede ver como la trayectoria de los planetas es correcta casi perfectamente, y como la
trayectoria de los satélites, si bien no es la que debiera en muchos casos, por lo menos
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es estable. Aquellos satélites que no se estabilizaban se han decidido quitar de los
graficos por visibilidad.

Grafico Planetas

Imagen 5.2 Trayectoria recorrida por los planetas.

Grafico Satélites

-1,00E+13 -5 5, 00E+12 1,00E+13

Imagen 5.3 Trayectoria recorrida por los satélites.

La imagen 5.4 esta obtenida con Octave utilizando los mismos datos que para las
imagenes 5.2 y 5.3. Esta permite ver la evolucion del escenario de una forma mas
completa gracias a la vista 3D.

23



6e+012

A
o
-+
o}
<
8}
Ao
o
+
]
[aY]
o
oV}
~—
o
+
]
ol
1
ol
~—
o
+
]
b
o
™
o
+
j<b]
2
3V}
~—
o
+
0]
a @
o
+
2]
a ¥
—
o
e
&
o
A
-
o
-+
&
3V}
o)
o
/ / / / AR
2]
o <

2e+011

1e+011
-1e+011
-2e+011
6e+012

Imagen 5.4 Captura final de la simulacion del Sistema Solar.

Dado que la cantidad de planetas que se van a mover es relativamente pequefia, incluso
la version primera es capaz de renderizar todo con unos buenos FPS. A continuacion, se
presentan algunas capturas del renderizado 3D de este sistema.

Utilizando el plugin Nvidia Nsight, se consigue mostrar, ademas, algunos datos del
rendimiento de la simulacion. Como era de esperar, la version que utiliza la CPU (ver
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imagen 5.5) para realizar los célculos del algoritmo es algo més lenta que las demas,
aun asi, se estabiliza en unos 46 FPS, manteniéndose por encima de los 25 FPS que es
lo que define un renderizado en tiempo real’. La version final presenta una mejora
importante de rendimiento, llegando a las 60 FPS (ver imagen 5.6).

(A

Jupiter y satélites

Imagen 5.5 Captura de la ejecucion de la version CPU de la simulacion del Sistema Solar, en la que se
pueden ver varios planetas y satélites (a destacar el Sol y Jupiter rodeado de sus satélites). Se muestran

algunos datos del rendimiento como los FPS estabilizados en 46 FPS (derecha).

o 5y S sy restre iy

| 100

Japiter y satélites

oML s A WARAA AR AN g

Imagen 5.6 Captura de la ejecucion de la version final (GPU) de la simulacion del Sistema Solar, en la
que se pueden ver varios planetas y satélites (a destacar el Sol y Jupiter rodeado de sus satélites). Se

muestran algunos datos del rendimiento como los FPS estabilizados en 60 FPS (derecha).

7 La velocidad minima a la que una consecuciéon de iméagenes es considerada como un movimiento fluido
por el ojo humano es de 25 FPS aproximadamente.
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Es interesante observar en qué acciones se distribuye el trabajo de la GPU. En la imagen
5.7 se estan observando 4 medidas: Geom busy, shader busy, texture busy (este se puede
omitir ya que no se han utilizado texturas en todo el proyecto, por lo que siempre va a
ser nulo) y gpu idle.

100

o LA P A A A A

Version CPU Version final (GPU)

Imagen 5.7 Distribucion de las acciones de la GPU en la simulacion del Sistema Solar.

El geom busy mide la cantidad de trabajo que la GPU dedica a mover los vértices desde
la unidad que los distribuye hasta los shaders donde seran transformados. Llamadas de
dibujado con una larga ristra de vértices, o bien un gran nimero de llamadas
consecutivas con un pequefio numero de vértices, pueden ser causas potenciales de que
esta medida se incremente. En el caso de este proyecto, a pesar de que ambas versiones
presentan un geom busy pequeio, el de la version de la CPU es inferior que el de la
version final. Hay que recordar que, en la version final, todos los célculos se realizan en
el compute shader dentro de la GPU, limitando el uso de la CPU a la preparacion e
invocacion de las pipelines graficas, por lo tanto, la cantidad de datos que se tienen que
mover a la unidad que ejecuta los shaders es mucho mayor (no solo hay que mover los
vértices, sino también las posiciones, velocidades y aquellas caracteristicas necesarias
para ejecutar el algoritmo PP).

El shader busy mide la cantidad de trabajo que la GPU dedica a la ejecucion de todos
los shaders que se han definido en el programa. Para este proyecto, se ha definido un
shader adicional en la version final, el compute shader, de ahi que sea mayor que en la
version de CPU.

Por ultimo, el gpu idle, mide la cantidad de recursos que no estan siendo utilizados en la
GPU. En ambas versiones, aproximadamente la mitad de la GPU no estd siendo
utilizada. Esto quiere decir que la tarjeta grafica no ha llegado a su limite todavia, es
capaz de realizar simulaciones con un numero mayor de particulas. Al realizar la
simulacion aleatoria (capitulo 6), se ha establecido la condicion de que esta medida sea
practicamente nula.

Para finalizar, se presenta una captura que muestra la utilizacion tanto de la GPU como
de la CPU con la version final (ver imagen 5.8).
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OpenGL Overview
- [k

Summary of captured OpenGL actraty

Imagen 5.8 Rendimiento Sistema Solar.

Tal como se puede apreciar, y en concordancia con la medida gpu idle anteriormente
mencionada, la GPU utiliza aproximadamente la mitad de su potencial. Cabe destacar
los datos recopilados sobre la CPU. El tiempo que ha consumido en llamadas a la API
de OpenGL con respecto al tiempo total de la aplicacion es solo una cuarta parte.
Existen muchas llamadas a funciones de OpenGL, por ejemplo, las destinadas a
configurar funciones no programables de la pipeline, las destinadas a crear y manejar
los buffers y los shaders o las destinadas a enviar datos de la memoria del programa a la
GPU, que tienen que realizarse obligatoriamente. La implementacion de la técnica
Instanced Rendering (explicado ene 1 capitulo 4.5) ha permitido reducir
considerablemente el nimero de llamadas de dibujar que se hubieran hecho sin ella.
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6.SIMULACION DE UN SISTEMA ALEATORIO

6.1.0BJETIVO

Llegados a este punto, lo que se quiere lograr es conocer el limite de trabajo de la GPU
en este tipo de problemas, es decir, conocer cudl es la configuracién del problema que
hace que la representacion grafica baje de unos FPS aceptables, La velocidad a la que
una secuencia de imagenes deja de ser vista como un movimiento fluido por el ojo
humano es de entre 25 y 30 FPS, para este trabajo, se ha dado un poco de margen y se
ha considerado como aceptable una velocidad de alrededor de 15 FPS.

Partiendo del algoritmo implementado para el escenario anterior, se va a crear uno
ligeramente diferente, de forma que permita la simulacién de un nimero de planetas del
orden de 10°, ademas de una serie de mejoras que se van a detallar en el apartado
siguiente.

6.2.CAMBIOS EN EL ALGORITMO

Ademas de las mejoras con las que ya cuenta, se anaden las siguientes: deteccion de
colisiones entre planetas, fusionado de planetas colisionados y restringir el céalculo de
las fuerzas a los planetas cercanos.

Dado que cabia la posibilidad de que dos o més planetas chocasen, se ha implementado
un sistema para detectar colisiones y unificar aquellos planetas que colisionen. La gran
cantidad de planetas que se simulan no permite generar un sistema de colisiones que
recree fielmente la realidad, por ello se ha simplificado el problema teniendo en cuenta
solo las colisiones directas entre dos planetas.

La colision y posterior union de dos planetas si que se ha intentado hacer de una forma
realista, utilizando para ello, se han utilizado las siguientes férmulas que calculan la
nueva masa y el nuevo radio:

Mygw = My + M, (6,1)

4 5 4 ;4 5, 4 3
Vvew = Vi + V3 V = §7TR - §7T(RNEW) = §H(R1) + §H(R2) -

2
- Rypw = 3,/R13 + R’ (6.2)

V:volumen

Para obtener el nuevo vector velocidad simplemente se aplica una suma vectorial de las
velocidades de los dos planetas colisionados, y la nueva posicion sera el punto medio de
la linea que une sus posiciones. Uno de los planetas actualizard sus caracteristicas
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siguiendo estas férmulas, el otro en cambio, pondra su masa a 0 para dar a entender que
ha chocado contra otro y que ya no es valido. Estos planetas anulados se irdn moviendo
al final del buffer de la GPU para mantener un cierto orden. Ademas, habra que recorrer
el buffer para llevar la cuenta del nimero de planetas que siguen activos, dato necesario
a la hora de utilizar la funciéon de dibujado de OpenGl. Para evitar que este recuento
suponga una carga computacional adicional, sera realizada por los hilos que actualizan
planetas que ya han sido eliminados a la vez que los demas hilos estan ejecutando el
algoritmo PP.

Por ultimo, se ha implementado una organizacion estructural de los planetas realizando
agrupaciones dependiendo de la zona del espacio en la que se sithan. La idea es que
como la fuerza de la gravedad decrece con el cuadrado de la distancia (decrecimiento
muy rapido) no todos los planetas afectan a todos los demas de una manera intensa, por
ello se restringen los calculos de manera que el algoritmo solo se aplicard a aquellos
planetas que residan en el mismo grupo, siendo cada grupo independiente de los demas.

Una ultima modificacion, derivada de la agrupacion de los planetas es que éstos se
ordenan por grupo dentro del buffer. De esta forma, a la hora de calcular las fuerzas que
ejerce cada planeta sobre cada uno de los demas planetas de su grupo, el algoritmo no
tendra que recorrer todo el buffer para buscarlos.

Se espera que con estas optimizaciones se mejore el rendimiento general del programa y
se admitan mas planetas manteniendo la misma tasa de FPS que se hubiera encontrado
sin ellas.

6.3.POSICIONES ALEATORIAS

Uno de los factores clave para este escenario es que las posiciones de cada planeta se
recalculan con cada ejecucion del programa. Esto es una condicion necesaria porque el
algoritmo implementado no debe depender de unos datos iniciales determinados.
Existen librerias en C++ que ya cuentan con un generador de nimeros aleatorios, pero
dada la magnitud de los valores con los que se trabaja en este proyecto, no daba unos
resultados optimos, por lo que se ha construido un script para Octave que los calcula
utilizando las diferentes distribuciones numéricas que dispone, en concreto, para
generar las posiciones y los radios de los planetas se ha utilizado una distribucion
uniforme (ver imagenes 6.2 y 6.3), mientras que el calculo de las masas se ha realizado
siguiendo una distribucidn beta (ver imagen 6.1).

Para esto ultimo se ha elegido una distribucién no uniforme por el hecho de que, si
todos los planetas cuentan con una masa similar, la densidad de masa que rodea a cada
planeta sera mas o menos la misma en todas las direcciones, por lo que el planeta en
cuestion no se veria apenas perturbado. Con esta distribucion, nos aseguramos de que
haya muchos planetas con masas relativamente pequefias y pocos con masas grandes
evitando el efecto anterior.

Se ha tenido que ajustar los limites entre los que se sitian cada uno de estos valores para
llegar a un compromiso entre las distancias entre los planetas y las masas, de forma que,
las masas sean lo suficientemente grandes como para llegar a atraer a todos los planetas
independientemente de su posicion, pero no tanto como para generar una fuerza de tal
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magnitud que los lanzara fuera del volumen estudiado. En este sentido, la distancia
media entre planetas es de 1.9-10'” u.m. y la masa media se ha establecido en 10°° para
un espacio de tamafio 3-10'” x 3-10" x 3-10" u.m.

213081 H(H944 S4B A1 S48 57645077 343505 8 9@+ T

Imagen 6.1 Distribucion beta — Masas. Imagen 6.2 Distribucion uniforme — Radios.
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Imagen 6.3 Distribucion uniforme — Posiciones.

El script de Octave se invoca en dos pasos: primero, la ejecucion de un script de
Powershell®, y segundo, la ejecucion del script en cuestion. Esta forma de ejecucion no
es necesaria, pero se ha implementado con la intencion de que el script de Powershell
actiie a modo de switch, permitiendo al programa principal elegir qué script de Octave
lanzar y con qué parametros de entrada.

Los nuevos valores generados no se pueden devolver directamente al programa
principal, asi que, son almacenados en un fichero CSV para que éste los lea y pueda
iniciar la ejecucion el algoritmo PP.

8 La funcion system () permite la ejecucion de un comando en el procesador de comandos del sistema. A
través de ella, se puede lanzar el script de Powershell.

30



6.4.RESULTADOS OBTENIDOS

En primer lugar, se ha lanzado la simulacion con las opciones de deteccion de colisiones
y unioén de planetas colisionados, asi como la de division de los planetas por grupos,
desactivadas para poder comparar la ganancia de cada una. Con todo desactivado, los
planetas se comportan como se esperaba: a partir de su posicion inicial, se ven atraidos
hacia el centro, que es donde tiende a concentrarse la mayor parte de la masa, y pasadas
unas iteraciones, algunos planetas terminan estabilizandose describiendo orbitas entorno
a otros pocos planetas (ver imagen 6.4). Al igual que ocurre en el escenario del Sistema
Solar, no todos logran estabilizarse, también existen algunos que se desplazan hacia el
infinito, pero como se puede ver en las capturas, estos solo representan un pequefio
porcentaje.

Imagen 6.4 Inicio y fin planetas aleatorios.

Al activar las opciones de colision y unidn, se ha visto que, sobre todo en las primeras
iteraciones, cuando los planetas tienden a concentrarse en el centro del espacio, se
pueden producir colisiones y el numero de planetas en simulacion decae. Pero por lo
general, conforme pasa el tiempo, cada vez existen menos choques, asi que esta
optimizacion tampoco ha terminado siendo muy influyente en la ejecucion del
programa. Al activar la optimizacion de dividir los planetas en grupos en funcién de su
posicion, si que se ha notado como se gana una pequefia mejora de rendimiento, entorno
aunos 5 FPS, algo que no es muy relevante.

En conclusion, se puede decir que, al final, las mejoras implementadas no han
conseguido la ganancia esperada posiblemente debido a que el nimero de objetos y el
tamafio del universo recreado es pequeio (recuérdese que se estd trabajando con una
GPU con las caracteristicas especificadas en el apartado 4.4). A pesar de ello, el
algoritmo responde muy bien ante el enorme aumento en el nimero de planetas respecto
al escenario anterior. Se han conseguido unos FPS en torno a 30 simulando 1000
planetas, es decir, el nimero maximo que la GPU utilizada es capaz de renderizar en
tiempo real esta en 1000 aproximadamente (ver imagen 6.5).
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Imagen 6.5 Captura de la ejecucion de la simulacion aleatoria. Se muestran algunos datos del

rendimiento como los FPS estabilizados en 33 FPS (derecha).

Para ponerlo en contexto y poder tener una mejor idea de la potencia computacional con
la que se ha trabajado, el hecho de que el programa funcione a una velocidad de 30 FPS
quiere decir que esta generando un frame cada 30 ms, es decir, el programa realiza una
iteracion del timestep loop (por diferenciarla de otras iteraciones, se va a denominar
como itt) cada 0,03 segundos. En cada una de ellas, el programa mueve 1000 planetas,
lo que implica que estd calculando la fuerza neta en cada uno de ellos, es decir, esta
ejecutando el bucle que calcula la fuerza gravitatoria que ejercen todos los planetas
sobre cada uno de los demas (recuérdese el capitulo 2). Si tenemos 1000 planetas, para
calcular la fuerza sobre cada uno de ellos es necesario realizar 1000000 iteraciones del
bucle que calcula las fuerzas (itr). La duracion del parpadeo del ojo humano esta
registrada en unos 0.3 o 0.4 segundos, 10 veces mas que los segundos necesarios para
realizar una itr completa. En conclusion, el algoritmo es capaz de realizar 10 itt cada
una de ellas compuesta de 10 itr, haciendo un total de 10® iteraciones en el tiempo en
que dura un parpadeo.

El que se haya obtenido 30 FPS en la simulacién, no significa que la GPU haya llegado
a su limite, de hecho, como prueba final del proyecto, se ha incrementado dicho ntimero
hasta 2000 planetas y se han obtenido un rendimiento alrededor de los 10 FPS y una
utilizacion que ronda el 99% como se puede comprobar en la imagen 6.6.
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OpenGL Overview
s

summary of captured OpenGL activity.

API Time (%) Min Avg M Lititization (%5) Miny Avg Max
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Imagen 6.6 Rendimiento sistema aleatorio.

Es interesante fijarse en el tiempo que la CPU destina a hacer llamadas a la API de
OpenGL. Recordar que, en la simulacion del Sistema Solar, este valor era de entorno al
25%, en cambio, ahora nos encontramos con casi el 100% a pesar de que la estructura
del programa no se ha modificado, las funciones de OpenGL que son invocadas son
practicamente las mismas. El motivo de este aumento radica en el hecho de que, en esta
simulacion, la CPU tiene que mandar muchos mas datos a la GPU.

Para finalizar, la imagen 6.7 muestra 2000 planetas formando un sistema estable.

Imagen 6.7 Captura final sistema aleatorio.
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7.CONCLUSION

Como se expone en el apartado de la introduccion, el objetivo ultimo del trabajo era el
estudiar el comportamiento de una GPU trabajando con particulas. Se ha tomado como
escenario para el desarrollo el problema de los N cuerpos por su carga tanto grafica
como computacional.

El algoritmo elegido para la simulacion de dicho escenario ha sido el algoritmo
“Particula - Particula” que, tal y como se ha expuesto al principio del documento,
funciona bastante bien para un nimero de cuerpos pequefio, estableciendo el limite en
torno a los 4000 cuerpos.

Partiendo del algoritmo basico, optimizado para una ejecucidon secuencial, se ha
obtenido uno valido para ser ejecutado en paralelo, sin riesgo a que pueda generar
problemas de concurrencia de ninglin tipo. Ademas, se han mejorado las ecuaciones de
movimiento (posicion y velocidad) mediante el uso del integrador de Leapfrog,
logrando mas precision en los célculos.

Cabe resaltar de nuevo la elevada complejidad computacional que presenta el algoritmo
“Particula —Particula” implementado. Para cada iteracion del bucle principal, tiene que
calcular todas las fuerzas de cada uno de los cuerpos de la simulacion con todos los
demas. Se esta hablando de un algoritmo de orden de complejidad cuadratico (al
duplicar el nimero de cuerpos involucrados en los célculos, se cuadruplica el tiempo de
ejecucion). Con la intencién de intentar mejorar esta situacion, se han implementado
optimizaciones, como la de restringir el calculo de fuerzas de un cuerpo a los cuerpos
cercanos.

Se han desarrollado dos simulaciones: la simulacion del Sistema Solar y la simulacion
aleatoria. En la primera, el objetivo era integrar ese algoritmo en un programa de
OpenGL y poder visualizar, en un mundo 3D, los resultados que se iban generando.
Tras observar que todo funcionaba de forma correcta, y que las trayectorias de los
planetas y satélites involucrados en la simulacién eran, si bien no exactas, bastante
fieles a la realidad, se procedié a iniciar la segunda simulacion, cuyo objetivo era
incrementar el nimero de planetas hasta que la GPU no pudiera mantener unos FPS
minimos, estableciendo el limite alrededor de 15 FPS.

Una vez estudiados los resultados obtenidos en cada apartado, se puede afirmar que,
dentro de las limitaciones del proyecto, el objetivo tltimo de todo el trabajo se ha
cumplido. Utilizando una GPU modelo Nvidia GeForce GTX 660M, se ha logrado crear
un escenario con un maximo de 2000 cuerpos, manteniendo unos FPS alrededor de 10.

7.1.DIAGRAMA TEMPORAL

La realizacion del diagrama temporal supone un problema. Ha sido un proyecto muy
entrecortado por motivos laborales y personales, por lo que establecer unos limites en
horas y fechas supone una tarea complicada.
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De todas formas, aunque las fechas pueden no ser las exactas, la distribucion de la carga
si que es fiel a la realidad. La imagen 7.1 muestra el diagrama de Gantt de este
proyecto.

Desarrollo dela memaria i

Octave - Generacion de seripts ﬂ
Simulacidn aleatoria
Simulacidn Sistema Salar
Simulacian La Tierra - sol - Luna
Simulacidn La Tierra - Sol m
Primeras Pruebas Algoritmo PP inicial
Primeras Pruebas Compute shader m
Primeras Pruebas Renderizado deunaesfera i
Documentacion Octave E
Documentacion Datos del Sistema Solar
Documentacion Métodos de resolucion m

Documentacidn OpenGL 151 dias

Imagen 7.1 Diagrama de Gantt.

7.2.POSIBLES AMPLIACIONES

Como posibles mejores al trabajo realizado, se podrian mejorar, en primer lugar, las
formulas de movimiento (posicion y velocidad). Se ha visto que los célculos no son lo
suficientemente exactos y esto repercutia en que algunos cuerpos del Sistema Solar se
perdian en el infinito.

Por otro lado, los resultados obtenidos son especificos de la GPU Nvidia GeForce GTX
660M como ya se ha comentado. Seria recomendable apuntar como una posible
ampliacion, una comparacion entre esta GPU y una actual, como la GTX 1060. Es de
esperar que el tiempo de ejecucion mejore, y en consecuencia, que el niumero de
cuerpos N simulados se incremente.

Como aplicacion directa de este proyecto, se sitian las simulaciones en campos como la
astronomia, la mecanica de fluidos o la electroestatica entre otros. Otra posible
aplicacion son los videojuegos. Algunos juegos cuentan con explosiones, sistemas de
particulas o directamente, la base del juego es la atraccion gravitatoria entre los objetos,
para estos aspectos se podria aplicar el trabajo realizado también de forma directa.

7.3.0PINION PERSONAL

Ha sido un proyecto muy rico en conocimientos. Se ha tocado practicamente todo lo que
se podia tocar con OpenGL, permitiéndome aprender muchos aspectos que en la carrera
no me han presentado (o no han hecho demasiado hincapié) y que, de no ser por esto, no
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hubiera aprendido. Ademads, ha sido un proyecto muy amplio como se puede apreciar,
en el sentido de que abarca una gran variedad de tecnologias y programas aparte de
OpenGL (Excel, Octave, Powershell).

Hay que destacar la dificultad de ciertas partes. En primer lugar, programar en GLSL
(lenguaje utilizado en los shaders de OpenGL) es muy complicado. Hay que ver la GPU
como una caja negra, puedes conocer lo que entra y lo que sale, pero no hay una forma
sencilla de ver lo que ocurre por dentro. En el momento en el que algo falla dentro de un
shader, descubrir lo que ocurre y arreglarlo es una tarea compleja. La informacion que
recibes sobre el error es minima, insuficiente, en la mayoria de las ocasiones, para
hacerte una idea de lo que esta fallando. Tampoco se dispone de un debug con el que ir
ejecutandolo instruccidn a instruccion hasta dar con el fallo. También hay que tener en
cuenta, que la situacion laboral en la que estaba no me permitia dedicar las horas que el
proyecto necesitaba para llevarlo al dia. Todo esto ha influido en su duracion final.

A pesar de todos los problemas surgidos y la duracion del trabajo, ha merecido la pena
todo el esfuerzo. Es un trabajo que visualmente es bonito. Las simulaciones en 3D que
se crean (el Sistema Solar dando vueltas, el desplazamiento de los planetas al ser
atraidos por todos los demas, la agrupacion de los mismos en torno a unos pocos
planetas con masas, en comparacion, mas grandes) no se hubieran conseguido con otro
proyecto. Creo que esa es la principal caracteristica de un programa de graficos, no solo
construyes un programa que funciona, sino que, ademads, puedes verlo con tus propios
0jos.
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9.APENDICES

APENDICE A: OBTENCION DE LAS ECUACIONES DE MOVIMIENTO

Sabiendo los apsides de la trayectoria de un planeta y su inclinacion respecto de la
ecliptica, es posible calcular cualquier posicion de su recorrido. En este proyecto, se van
a calcular las posiciones en uno de sus apsides ya que los célculos se simplifican, en
concreto, se ha elegido el apoapside.

Dado que las trayectorias que se describen son elipticas, se van a utilizar las férmulas
matematicas de la elipse. Una elipse es una curva plana y cerrada, simétrica respecto a
dos ejes perpendiculares entre si: el semieje mayor y el semieje menor.

Imagen A.1 Elipse.

Las formulas que definen la posicion y la velocidad de un objeto que describe una
trayectoria eliptica son las siguientes:

(x = x0)* (= y0)?
az + bz =1 (A’l)
1 1
= zﬂ(;—%)wm (A2)
U= Gx* Mgj, (A3)
Nm?

G: constante de gravitacion universal = 6,67428 = 10711 Kg?

Mgj.: Masa del planeta eje
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r: Distancia entre el planeta en cuestion

(%0, ¥0): Centro de la elipse

Si se contrasta la elipse con la trayectoria de un planeta, se puede ver que las siguientes

formulas son validas:
E’jﬁx
Z

Peridpside

Apoapside

EjE

Imagen A.2 Trayectoria de un planeta.

_ Periapside + Apoapside

A4

a > (A4)
1 1

Vo = ZGMEje(W ~ 55 T Veje (A5)

Vs = (0,0,—V,) (A,6)

XApoépside = (ApOépSide; 0, 0) (A7)

Una vez conseguida la posicion en el apoapside del planeta en cuestion, se procede a
calcular su posicion inicial utilizando para ello la inclinacion de su orbita valiéndonos
de las reglas trigonométricas.

Xo = (Apoépside = cos ¢ , Apoapside = sing,0) + Xgj, (A,8)

¢: inclinacion orbital
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APENDICE B: INTEGRADOR DE LEAPFROG

En matematicas, el método del salto de rana o Leapfrog Integration [5] es un método
simple para la resolucion numérica de ecuaciones diferenciales de la forma:

% =F(x) (B,1)

O bien, expresado de otra manera, ecuaciones del tipo:

v=F(x),x=v (B.2)

El método consiste en actualizar las posiciones x(t) y velocidades v(t) = x(t) en
etapas intercaladas, es decir, la posicion se actualiza en el paso i mientras que la

. , . 1 . , .
velocidad lo hardenel i+ > De esta forma, el sistema quedaria expresado como sigue:

X; = Xj_1 + vi—l/zDT (B93)
a; = F(xl-) (Ba4)

x;: Posicién en el paso i
a;: Aceleracion en el paso i
viy1y,: Velocidad en el paso i + 1/

DT: Tiempo que transcurre entre cada paso

El hecho de que la posicion y la velocidad no se actualicen en el mismo paso anade una
dificultad a la hora de resolver el sistema. Se puede aplicar un cambio para que ambos
se actualicen a la vez siempre que el DT se mantenga constante. Con dicho cambio, el
sistema quedaria:

1
Xiy1 = X + Ul'DT + Eal’DTZ (Ba6)

1
Viy1 =V + E (Cll' + al-+1)DT (B97)
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El método Leapfrog Integration presenta importantes ventajas con respecto a otros
métodos de resolucion de ecuaciones diferenciales, como podrian ser los métodos de
Euler o Runge-Kutta, cuando es aplicado a problemas mecanicos.

El primero es que es reversible en el tiempo. El método permite avanzar n pasos hacia
adelante, retroceder otros n pasos y llegar al mismo punto inicial del sistema. El
segundo es su naturaleza simpléctica, la cual implica que conserva la energia de los
sistemas dinamicos, caracteristica especialmente importante a la hora de simular orbitas
dinamicas. Es por esto ultimo por lo que uno de los usos mas importantes de este
método sea en las simulaciones gravitacionales.
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APENDICE C: DEPTH TEST

El depth test es una operaciéon que se procesa por cada fragmento que el fragment
shader emite. Es un test cuya finalidad es la de, dada una serie de fragmentos que
quieren dibujarse sobre el mismo pixel, cual de ellos es el que se debe terminar
dibujando. Para ello, utiliza un recurso llamado Z-Buffer.

El Z-Buffer es un buffer que almacena informacion relativa a la profundidad de cada
fragmento. Este buffer se crea automaticamente al crear el contexto de ventanas y se
suelen almacenar en registros de 24 bits.

El depth test consiste en una comparacion entre el valor de profundidad (Z) del
fragmento actual y el valor que existe en el Z-Buffer. Si este fragmento falla el test, es
descartado y no llegaré a dibujarse, por el contrario, si lo pasa, el buffer se actualizara
con el valor del fragmento en cuestion. De esta forma, el programa es capaz de
determinar qué fragmento debe mostrar en cada caso.

Cuando el desarrollador establece una perspectiva, establece un volumen de
visualizacion delimitado por un plano mas cercano a la cdmara, denominado zNear, y
otro lejano, zFar (ver imagen C.1). Dependiendo de la diferencia que exista entre
ambos, se pueden dar casos en los que este depth test no funcione correctamente debido
a un fallo en la precision de los calculos.

Imagen C.91.1 Volumen de visualizacion con sus limites zNear y zFar.

Los valores de z van a estar representados entre zNear y zFar, Después de aplicar la
transformacion de perspectiva, el nuevo valor de z, ya normalizado, esta definido por’:

° Formulas Z-Buffer: https://en.wikipedia.org/wiki/Z-buffering, a fecha de septiembre de 2016.

42



V4

zFar + zNear 1 /—zFar = zNear 1
' ( )+ 3 C.1)

= + —
2% (zFar — zNear) z \ zFar — zNear

Multiplicando ahora por § = 2¢ — 1, donde d es el numero de bits que utiliza el Z-
buffer, que por lo general es de 24 bits, y redondeando el resultado, se obtiene la
ecuacion:

zFar + zNear + 1 —zFar x zNear ) 4 1
2 * (zFar — zNear) z ( zFar — zNear 2)

z' = floor((2% — 1) = ( (C2)

A partir de esta formula, se puede obtener la precision del Z-buffer, simplemente
invirtiendo y derivando, obteniendo:

_ —S *zFar * zZNear (C.3)
Z_z’*(zFar—zNear)—zFar*S ’

s=20-1

A través de ella, se establece una precision no lineal del Z-buffer. Entorno al plano més
proximo a la camara, la precision es muy alta, en cambio, cerca del plano lejano, la
precision es muy pequefia. Esta precision mantiene una relacion directa con la ratio

ZNear/ .
zFar>

precision a lo lejos. De hecho, el establecer un zNear muy cercano a la camara, es un
error muy comun que ocasiona un renderizado con errores.

de forma que, cuanto mas pequefio sea su valor, mas pequeia serd la
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Imagen C.2 Precision Z-buffer.

En este proyecto se ha sufrido este error. El plano cercano est4 situado muy cerca de la
camara, y el plano lejano se sitiia en un valor de z muy grande debido a las distancias
entre los planetas que se estan tratando, por lo que, a pesar de que en los planetas muy
cercanos no se aprecia problema alguno, en los mas lejanos se puede observar como
aparecen y desaparecen.

La solucion que se ha establecido en este proyecto ha sido la de desactivar el depth test,
priorizando la visibilidad de los célculos matematicos ante el renderizado exacto.
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APENDICE D: PIPELINE GRAFICA

En este apéndice, se realiza un recorrido por las pipelines que existen (rendering
pipeline y compute pipeline), asi como una explicaciéon mas detallada de las principales
etapas de las mismas.

RENDERING PIPELINE

La imagen D.1 muestra una pipeline de renderizado simplificada.

Toccallafion|
Tessellation

Vertex Data ‘ BERes Teé;er‘f:)(l)n ‘i;hesslellat'ion ‘
Shader o LlLELEE |
ooy Shader Shader
Geometry Fragment
Shader Assembly . Shader |

Frame Buffer |

Imagen D.1 Pipeline de renderizado.

Los bloques que se muestran en naranja indican las etapas que son programables. Estas
ejecutan el codigo que el programador les suministra a través de los shaders. Las etapas
que se muestran en azul indican funciones fijas. En la préctica, todas o la mayoria de
estas ultimas etapas terminan pudiendo ser implementadas en un shader, la diferencia es
que no es el programador quien lo suministra, sino mas bien el fabricante de la tarjeta
grafica a través de drivers, firmware u otro tipo de software similar.

e vertex fetching:

La pipeline empieza con una etapa no programable. Esta etapa dicta como seran
introducidos los vértices a la pipeline y los prepara para mandarselos a la primera etapa
programable, el vertex shader.

A pesar de ser una funcion fija y, por tanto, no programable, existen funciones'® que el
programador pude utilizar para elegir ciertos parametros.

o JVertex shading:

El vertex shader es la primera etapa programable en la pipeline y se distingue de los
demas shaders en que es el Unico que debe estar presente obligatoriamente, aunque si

10 a API de OpenGL ofrece, por ejemplo, las familias de funciones glVertexAttrib*() y glDraw*() que el
programador invoca para establecer en donde estan almacenados los datos, en qué modo (punto,
tridangulos o patches (poligonos de cualquier numero de vértices)), etc.
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no esta presenta el fragment shader, no se podra ver nada en la pantalla. Este shader se
alimenta de los datos que genera la fixed-function vertex fetching.

Recibe como entrada un flujo de vértices y es el encargado de manejar el procesamiento
de éstos de forma individual. Las tareas que suele desempefiar son el calculo de la
posicion de los vértices, el calculo de la iluminacidn per-vertex y cualquier otro calculo
necesario para las etapas posteriores. Como salida, genera un vértice por cada uno que
¢l recibe y los ensambla formando primitivas geométricas como el punto, segmentos de
lineas o poligonos (ver imagen D.2).

: Vertex
Vertices Shader
1
® ®
2
]
3
Y ® ®

Imagen D.2 Entrada y salida del vertex shader.

o Tessellation:

La teselacion es el proceso de romper primitivas de alto orden, denominadas patches, en
muchas primitivas mas pequeias y simples (ver imagen D.3). Estos patches estan
formados por varios vértices denominados puntos de control. Por lo general, suelen
estar formados por tres o cuatro.

Este proceso es opcional y consta de tres partes: fessellation control shader (TCS),
tessellation engine, la cual no es programable, y tessellation evaluation shader (TES).

El TCS es una etapa programable, situada inmediatamente después del vertex shader,
cuya finalidad es la de establecer el nivel de teselacion que sera utilizado por el
tessellation engine para generar los nuevos vértices.

El TES es la ultima etapa programable de este proceso. Recoge todos los vértices
generados por el tessellation engine, asi como todos los datos que le ha enviado el TCS,
y se encarga de dar los valores finales a esos vértices, como, por ejemplo, su posicion.
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Imagen D.3 Resultado del proceso de teselacion en diferentes niveles.

o  Geometry shading:

El geometry shader es también una etapa en la que se pueden modificar la geometria de
las primitivas generadas por el vertex shader o por el proceso de teselacion.

Su funcién es similar a la de fessellation, genera multiples primitivas a partir de una
inicial. La principal diferencia entre ambos procesos reside en que la teselacion
implementa una subdivision recursiva automadtica en funciéon de las opciones que se
hayan elegido en el TCS, en cambio, el geometry shader puede emitir o eliminar
vértices a deseo del programador.

La imagen D.4 muestra algunos ejemplos de lo que se puede lograr usando el geometry
shader.

Imagen D.4 Tomando como base una esfera, se utiliza el geometry shader para dibujar los vectores

normales (izquierda) y para generar caras nuevas y desplazarlas en la direccion de su vector normal

(derecha).

e Primitive assembly, clipping. culling vy rasterizacion:

En este punto se pasa a ejecutar unas etapas no programables de la pipeline que,
partiendo de la representacion en vértices de nuestra escena conseguida en etapas
anteriores, realizan un conjunto de tareas para obtener una serie de pixeles que necesitan
ser coloreados y pintados en la pantalla.

47



La primera de estas tareas es el ensamblado de primitivas. En esta etapa se agrupan los
vértices en lineas o triangulos (también ocurre si la salida deseada son puntos, pero ese
caso es trivial) (ver imagen D.5).

Primitives
Vertex [ Tessellation [ Geometry Shader Generation

Imagen D.5 Primitive assembly.

Una vez agrupados en primitivas, éstas inician el proceso de clipping. El clipping es el
proceso de determinar cuéles de las primitivas estan completa o parcialmente dentro del
viewport o region que se va a mostrar en pantalla y, por tanto, van a llegar a las etapas
posteriores de la pipeline, y cudles van a situarse fuera y no serdn mostradas. En
ocasiones, solo una porcion de la primitiva se situa dentro del viewport, en este caso, se
va a recortar de tal forma que la nueva primitiva este totalmente dentro del viewport
(ver imagen D.6).

&--

Imagen D.6 Triangulo recortado (clipped) por estar parcialmente fuera del viewport.

Opcionalmente, antes de pasar a la siguiente etapa, las primitivas pueden pasar por una
etapa denominada culling. En ella, se determina si la primitiva estd mirando a la camara
0 no, es decir, si el vector normal de la primitiva apunta en direccion a la camara. En
caso de que no esté mirando a la camara, la primitiva sera descartada con el culling (ver
imagen D.7).
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Céamara Camara

Imagen D.7 Efecto del backface culling, aquellas caras que no estan mirando a la camara se descartan

(izquierda - original, derecha - culling aplicado).

Por ultimo, las primitivas llegan a la etapa de rasterizacion. En este proceso se
determina qué conjunto de pixeles se encuentra cubierto por una primitiva geométrica
(ver imagen D.8).

Primitive Rastenzation

Imagen D.8 La primitiva esta formada por uno o mds vertices que no estan alineados con la malla de

pixeles. Con la rasterizacion se obtiene un fragmento que si que esta alineado.

e Fragment shading:

El fragment shader es la ultima etapa programable. Este shader recibe como entrada un
conjunto de pixeles o fragmentos a los que hay que especificar un color para poderlos
mostrar en pantalla (ver imagen D.9). Es en esta etapa donde se llevan a cabo todos los
calculos que van a determinar dicho color. El proceso puede ser tan sencillo como
especificar un color sélido para todo fragmento que entre, o tan complejo como el tener
que calcular las caracteristicas de la iluminacion o la aplicacion de texturas o materiales.
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Rasterizati
asterization e da

Imagen D.9 Entrada y salida del fragment shader.

e Depth, stencil and blending:

Para finalizar el proceso de renderizado, los fragmentos que se obtienen del fragment
shader van a pasar una serie de test y transformaciones antes de ser almacenados en el
framebuffer'! para ser mostrados por pantalla.

En primer lugar, se les aplica el llamado depth test. Existe la posibilidad de que dos o
mas fragmentos se quieran dibujar en la misma region de la pantalla, en tal caso, hay
que determinar cudl de ellos serd el que finalmente se muestre. Para ello estd el depth
test. En este, se comparan las coordenadas Z del espacio de coordenadas de la pantalla
de cada fragmento y en base a ella se selecciona uno u otro. Es el programador el que
puede elegir la regla mediante la que se compara, por defecto, pasan el test aquellos
fragmentos mas proximos a la camara (ver imagen D.10).

Depth Test Activado

Depth Test Desactivado

Imagen D.10 Con el depth test desactivado (izquierda), las caras del cubo se dibujan conforme van
siendo tratadas, sobrescribiendo las caras anteriores si se superponen. Con el depth test activado
(derecha), el cubo se dibuja correctamente, las caras que estan siendo tapadas por otras caras mas

cercanas, no se visualizan.

"1 El1 framebuffer es el buffer donde se almacena temporalmente una imagen (frame) a la espera de ser
enviada al monitor o a un dispositivo.
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Otro test que también puede ser aplicado es el stencil test. Su funcionamiento es similar
al del test de profundidad, pero, en esta ocasion, los fragmentos se comparan contra los
valores que residen en el stencil buffer, previamente establecidos por el usuario. Un
ejemplo podria ser el utilizar una imagen de mascara, con todo negro excepto una zona,
y cargarla en el stencil buffer. Bajo este caso, solo aquellos pixeles que residen en la
zona que no es negra pasaran el test y se mostraran en la pantalla, como se puede ver en
la imagen D.11.

Color buffer without stencil test Stencil buffer Color buffer with stencil test

Imagen D.11 Ejemplo de aplicacion del stencil test.

Por ultimo, entra en juego el proceso de blending, que determina el color final que se va
a mostrar utilizando para ello el color especificado en el fragment shader del pixel que
se esta procesando en ese momento y el color que ya habia almacenado en el
framebuffer. Dependiendo del alfa de cada color, se mezclaran ambos para obtener el
color final de dicho pixel (ver imagen 4.12).

Fragment Testing _
Shader Blending Framebuffer

Imagen D.12 Salida del fragment shader, aplicacion del blending, almacenamiento en el framebuffer y

renderizacion final en la pantalla.

COMPUTE PIPELINE

e  Compute shader:

Compute shader es el procedimiento que presentan las GPUs actuales para hacer uso de
todo su poder computacional al programador. A diferencia de las etapas de la pipeline
de renderizado, el compute shader puede ser considerado en si mismo como una
pipeline de una Unica etapa (ver imagen D.13).
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From Application

\ 4
Vertex Shader Dispatch Indirect Dispatch
Buffer _ v
Tessellation Control Shader |<-
Shader Storage -
Compute Shader

Tessellation Eval. Shader %-

Geometry Shader F

Fragment Shader }4-

Imagen D.13 Compute shader (derecha), buffer de la GPU (centro). Como se puede ver, el compute

shader puede comunicarse con todas las etapas programables de la rendering pipeline.

El shader no tiene ninguna entrada ni salida establecida. Toma como entrada los datos
que el programador previamente ha introducido en el shader storage buffer, y es el
programador el que debe explicitamente escribir los resultados en ese buffer antes de
finalizar el shader. Cabe destacar que la memoria es compartida entre el compute
shader y toda la rendering pipeline, por lo tanto, todos los resultados del compute
shader pueden ser utilizados como entrada en una etapa programable.

Cada compute shader trabaja en una tnica unidad de trabajo llamada work item. Estos
estan agrupados en grupos denominados local workgroups (ver imagen D.14). Cuando
se invoca el shader, el programador es quien indica la cantidad de estos workgroups que
va a utilizar. Cada shader se ejecuta en paralelo, si a esto unimos el gran poder
computacional de la GPU, la compute pipeline nos presenta un entorno ideal para
realizar cualquier tipo de célculo pesado como el calculo fisico, la inteligencia artificial
o el tratamiento de imagenes.

1
Compute dispatch Work group

P ‘ Shared Memory
Work Work Work . :
g!‘oup grﬂup gfcup . ‘ Thread | ‘ Thread | ‘ Thread

Thread Thread | Thread

Work Work Work Work-._ | | |
group group group group
Work Work Work Work
group group | | group group

Imagen D.14 Distribucion de los work items en el compute shader.
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