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Medida de tamaño de partícula por difractometría laser: un nuevo 

método de cálculo de la matriz de transferencia. 

RESUMEN 

La granulometría por difractometría láser es una técnica de medida de tamaños de partícula 

basado en el análisis de la luz difractada por la muestra a medir. Es una técnica ampliamente usada 

para la medida de distribuciones de tamaños de partículas esféricas (gotas), ofreciendo resultados 

razonables cuando las partículas son no esféricas pero tienen relaciones de aspecto cercanas a la 

unidad. 

Para obtener la distribución de tamaños a partir de la medida de la luz difractada, es preciso 

realizar la deconvolución de dicho patrón de difracción. La técnica de deconvolución más habitual (y 

que mejor se adapta a la construcción de difractómetros comerciales) pasa por la discretización de 

los tamaños de partículas en varias clases y en la descomposición de la función de densidad de 

probabilidad de los tamaños de partícula en una combinación lineal de un conjunto de funciones 

base. Dicha base está formada por deltas de Dirac. Con esta aproximación se obtiene una matriz de 

transferencia que relaciona la distribución de tamaños de la muestra con el patrón de difracción 

medido. 

Este proyecto pretende generalizar esta deconvolución definiendo una nueva base de 

funciones. La aproximación propuesta genera funciones de distribución continuas, permitiendo una 

deconvolución más precisa. La nueva base tiene asociada una matriz de transferencia diferente que 

se va a calcular en el presente proyecto. También se van a estudiar y proponer nuevos criterios para 

una adecuada elección de las clases de tamaños de partícula. Con el fin de conseguir estos objetivos, 

se va a realizar una revisión de los principios físicos de funcionamiento y de la constitución del 

aparato.  

Finalmente, se realizará una evaluación del funcionamiento del método de deconvolución 

propuesto, mediante los oportunos test diseñados para esto. 
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1. INTRODUCCIÓN 

1.1. Antecedentes y contexto actual 

El Área de Mecánica de Fluidos de la Universidad de Zaragoza ha trabajado, desde los años 

80, en el ámbito de los flujos bifásicos particulados (gotas líquidas en gas, partículas sólidas en gas o 

líquido, etc). Este campo de trabajo debe su importancia a la gran cantidad de aplicaciones técnicas 

y su presencia en flujos naturales (atomización, combustión, transporte neumático, transporte de 

sedimentos, física de nubes…). Debido a la complejidad del problema, se requieren tanto una 

aproximación teórica como experimental. 

Uno de los principales parámetros de interés en este tipo de flujos es el tamaño de las 

partículas. Existen diversos tipos de instrumentos para medir esta magnitud. Uno de ellos es el 

granulómetro por difractometría láser. Esta técnica es ampliamente usada y de referencia debido a 

sus ventajas. Es un aparato óptico, no intrusivo (no altera el flujo como lo haría la inserción de sonda 

sólida en el mismo), puede emplearse “en línea” y casi “en tiempo real” (salvo el tiempo necesario 

para procesar los datos con un ordenador), lo cual permite medir de forma cómoda el tamaño de las 

gotas de un spray líquido (tarea imposible para métodos de recolección de partículas) y determinar 

el comportamiento temporal del spray. Su única desventaja es la necesidad de un acceso óptico al 

flujo, cosa en ocasiones complicada. 

Esta instrumento caracteriza, con ayuda de un conjunto discreto de fotodetectores (unos 30 

de forma habitual) el patrón de difracción de campo lejano generado por las partículas a medir 

cuando sobre ellas incide un haz láser colimado. Este patrón de difracción es función de la 

distribución de tamaños de las partículas existentes dentro de la trayectoria del haz. Por tanto, una 

vez caracterizada la difracción producida, el aparato calcula qué distribución de tamaños genera este 

patrón. 

Para calcular la distribución de tamaños a partir de la intensidad medidas por los 

fotodetectores, se clasifican las partículas en diferentes clases de tamaños Di. El objetivo es conocer 

la cantidad de partículas contenida en cada clase de diámetro. Asumiendo que la intensidad que 

incide en cada detector es la suma de las intensidades difractadas por cada partícula, se llega a un 

sistema de ecuaciones lineales, donde una matriz de transferencia relaciona la distribución de 

tamaños con la intensidad luminosa medida por cada detector. Su inversión permite obtener la 

distribución de tamaños discretizada. 

El Área de Mecánica de Fluidos dispone de un difractómetro Malvern mod. HSM 2600 desde 

mediados de los 80, aunque con posterioridad, se han adquirido otros instrumentos modernizados. 

El instrumento fue en su momento sometido a un detallado proceso de ingeniería inversa (PFC de JL 

Lagranja & FJ Vecino, 1986 [7]). Este trabajo permitió conocer totalmente su funcionamiento 

interno, así como su control y comunicación con un ordenador externo y el detalle de los algoritmos 

de inversión para la obtención de la distribución de tamaños. Estos algoritmos están también 

parcialmente explicados por Swithenbank (1977), De hecho, el instrumento de Malvern está basado 

en los estudios de este investigador. 
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Sobre esta base, se pudo cambiar el obsoleto ordenador de control y procesamiento (un 

Commodore CBM 8296) por un PC, con ayuda de una tarjeta PCI de comunicación digital de bajo 

nivel. Además, se amplió la resolución del instrumento de 16 a 31 clases de tamaño de partícula, 

algo en principio factible, ya que el difractómetro fue fabricado con 31 sensores para caracterizar el 

patrón de difracción. Para ello, fue necesario calcular una nueva matriz de transferencia, de acuerdo 

a lo explicado con anterioridad Este trabajo se llevó a cabo en el Proyecto Fin de Carrera de D. 

Agustín Esbec, 1997 [8]. 

Un tiempo después, se cambió la tarjeta PCI de comunicación de bajo nivel PC - 

difractómetro por un dispositivo USB, de uso más cómodo, y migrando las rutinas de control a C#. 

Sin embargo, los algoritmos de inversión no se modificaron, salvo para corregir errores menores. 

Este trabajo fue el objeto del PFC de Dña. María Victoria Ferruz, 2014 [9]. 

1.2. Metodología empleada 

A raíz de esta última modificación, se planteó la posibilidad de refinar el cálculo de la 

distribución de tamaños, generalizando el tratamiento clásico explicado en los párrafos anteriores. 

Así, la función de densidad de probabilidad de los tamaños de partícula se descompone en una 

combinación lineal de un conjunto de funciones base (o funciones de distribución elementales). El 

tratamiento clásico (originalmente implementado en el citado Malvern HSM 2600) se recupera 

cuando la base de funciones es un conjunto de deltas de Dirac. 

Para este proyecto, se elige una base formada por funciones triangulares. Esta base permite 

generar funciones de distribución de tamaños lineales a trozos y continuas. Esta nueva base tiene 

asociada una matriz de transferencia diferente, que es preciso formular y calcular. Se espera que la 

nueva matriz de transferencia evalúe de forma más precisa las energías que llegan a cada 

fotodetector, ya que se tiene en cuenta la luz difractada por un continuo de tamaños (la distribución 

de tamaños discretizada es continua) en vez de por un conjunto discreto de diámetros. Por tanto, se 

espera que el método sea de un orden de precisión superior. 

Por otra parte, también se van a estudiar y proponer nuevos criterios para una adecuada 

elección de las clases de tamaños de partícula que mejore el comportamiento del sistema de 

ecuaciones obtenido. 

Finalmente, se comprobará el funcionamiento de la nueva metodología. Para ello, se 

calculará, por integración numérica precisa, las energías luminosas medidas por los fotodetectores 

cuando está presente una población de partículas con una distribución de tamaños prescrita (que se 

tomará con la distribución de tamaños “real”). Partiendo de estas energías simuladas (que se 

tomarán como energías medidas por el aparato), se solucionará el sistema de ecuaciones lineales 

generado por la discretización matemática antes explicada, obteniendo así la distribución de 

tamaños “medida” por el instrumento. Finalmente, se comparará la distribución de tamaños 

“medida” con la “real”. Si la nueva inversión propuesta en este PFC funciona, se realizará (en un 

futuro) su implementación en el citado Malvern HSM 2600. Como se ha explicado, este intrumento 

(por la labor de ingeniería inversa realizada) puede ser usado como banco de pruebas práctico de la 

difractometría láser. 
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Para realizar esta tarea, debe de recopilarse y consultarse documentación acerca de teoría 

óptica, difracción y descripción de la granulometría de un material pulverulento. Puesto que la 

realización de la labor descrita requiere un intenso trabajo de cálculo numérico, se empleará 

software de cálculo numérico y matricial, como MatLab y Excel. 

1.3. Contenido de la memoria 

El presente trabajo se estructura en cinco capítulos principales. En el capítulo 1, meramente 

introductorio, se pone en contexto al lector exponiendo que trabajos relacionados se han llevado a 

cabo anteriormente y como se va a estructurar el trabajo aquí realizado. 

En el capítulo 2 se explican los principios físicos de funcionamiento de un granulómetro por 

difractometría, su diseño básico y unas pinceladas de teoría óptica, difracción y caracterización de 

aerosoles que se completarán con los anexos 1 y 2. Posteriormente, aunque dentro del capítulo 2, se 

expondrá la discretización convencional del problema desarrollada en base a una combinación lineal 

de funciones base deltas de Dirac. También se expondrán otros criterios de discretización que 

utilizan esa misma base de funciones. El anexo 3 proporciona información matemática útil para 

comprender los procesos de discretización. 

El capítulo 3 aborda la discretización alternativa del problema clásico en la que se utilizará 

una base de funciones constituida por combinación lineal de funciones triangulares solapadas entre 

sí. Tanto la discretización alternativa del problema como la convencional se han llevado a cabo con 

software matemático cuyo código se puede consultar en el anexo 8. Además, los anexos 4 a 7 

proporcionan datos importantes tanto del difractómetro como del proceso de discretización. 

El capítulo 4 de este proyecto final de carrera se reserva para la exposición de resultados y 

su comparación. Finalmente, en el capítulo 5 se encuentran las conclusiones obtenidas del 

desarrollo de este trabajo. La bibliografía usada puede verse en el capítulo 6. 
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2. REVISIÓN Y ESTUDIO DE LOS PRINCIPIOS DE OPERACIÓN  DE UN 

DIFRACTÓMETRO LÁSER 
2.1. Principios físicos de funcionamiento 

Un granulómetro por difractometría láser pretende medir el diámetro de una población de 

partículas esféricas gracias a la interacción de estas partículas con un haz de luz coherente y 

colimada (láser). Más específicamente, usa el patrón de dispersión luminosa en el infinito generado 

por la población de partículas a medir y, en direcciones de dispersión cercanas a la de propagación 

del haz láser incidente. La teoría de difracción es adecuada para modelar este fenómeno, dentro de 

este rango de direcciones cercanas a la de incidencia de la fuente luminosa. En este apartado se 

bosqueja su principio de funcionamiento. 

El electromagnetismo clásico proporciona una descripción adecuada del comportamiento de 

la luz en problemas donde los efectos cuánticos son despreciables. Así, las ecuaciones de Maxwell 

describen a la luz como una onda, compuesta por un campo eléctrico que, al variar, genera un 

campo magnético y viceversa. Ambos vectores son ortogonales entre si y perpendiculares a su vez a 

la dirección de propagación de la onda (Figura 1). 

 

Figura 1. Representación de una onda electromagnética 

Por su naturaleza ondulatoria, la luz experimenta los fenómenos de interferencia, de 

difracción, de refracción o de reflexión entre otros. Los granulómetros por difractometría láser 

hacen uso de la difracción, tal y como indica su nombre. Para explicar este fenómeno, se hace 

preciso hacer uso del principio de Fresnel-Huygens. 

2.1.1. Principio de Fresnel-Huygens 

Este principio enunciado por el físico neerlandés Christiaan Huygens y el físico francés 

Augustin-Jean Fresnel es un método de análisis aplicado a los problemas de propagación y difracción 

de ondas tanto de campo lejano como de campo cercano, y podría resumirse del siguiente modo: 

Todo punto de un frente de onda inicial puede considerarse como una fuente de ondas 

esféricas secundarias que se extienden en todas las direcciones con la misma velocidad, frecuencia y 

longitud de onda que el frente de onda del que proceden. 
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2.1.2. Difracción: Simplificación de Fresnel y de Fraunhofer 

El principio de Fresnel – Huygens establece que todo punto alcanzado por una onda se 

convierte, a su vez, en un reemisor de una onda esférica con la misma frecuencia y longitud de onda. 

No obstante, aunque este principio es consustancial a cualquier fenómeno ondulatorio, para 

aplicarlo a un sistema concreto (el medio electromagnético en este caso) es necesaria 

complementarlo con información adicional. Por ejemplo, la amplitud de la onda reemitida no es la 

misma en todas las direcciones, siendo más intensa la onda propagada hacia adelante que hacia los 

laterales. Esto se tiene en cuenta mediante el factor de oblicuidad, el cual es función de la dirección 

de reemisión. Estos detalles dependen de la naturaleza concreta del problema ondulatiorio y deben 

ser deducidos a partir de ecuaciones más fundamentales del problema tratado (en este caso, de las 

ecuaciones de Maxwell). 

 

Figura 2.a. Representación del fenómeno de difracción de 

una onda propagándose a través de una rendija 
Figura 2.b. Representación del fenómeno de difracción de 

una onda rodeando un obstáculo 

Esto implica que al incidir una onda sobre una apertura practicada en una pared, la onda la 

atravesará, dispersándose después tanto frontal como transversalmente (Figura 2.a). Y si incide 

sobre un obstáculo (Figura 2.b), lo rodeará. Por tanto, la onda electromagnética detrás de la 

apertura (o el obstáculo) puede calcularse como la suma de las ondas reemitidas por cada uno de los 

puntos de la apertura (o externos al obstáculo). 

Para calcular el patrón de difracción que puede observarse en una pantalla colocada tras una 

apertura, usaremos la aproximación escalar de óptica ondulatoria y el teorema de Kirchhoff 

(deducido de las ecuaciones de Maxwell). Ambos son válidos para ondas polarizadas 

transversalmente. Si la luz incidente sobre la apertura corresponde una onda plana de amplitud 

compleja de campo eléctrico constante E0, la amplitud compleja de la onda EC en el punto P tras la 

apertura se calcula particularizando el teorema de Kirchhoff a esta situación, obteniendo: 

𝐸𝐶(𝑥, 𝑦, 𝑧) =
𝑖𝑘𝐸0
4𝜋

∬ (1 + cos𝜒)
exp(−𝑖𝑘𝑟)

𝑟
𝑑𝑥′𝑑𝑦′

𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑎

 

 con 𝑟 = √(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2 + 𝑧2 y 𝐸 = 𝐸𝐶𝑒𝑥𝑝(𝑖𝜔𝑡) 

Ecuación 1. Ecuación de onda en el plano de imagen 
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En la anterior expresión, el factor exp( – ikr) / r describe la propagación de una onda esférica, 

k = 2π/λ es el número de ondas de la luz con λ su longitud de onda y (1+cosχ) es el citado factor de 

oblicuicidad. Por tanto, la integral es la transcripción matemática del principio de Huygens. Los 

sistema de coordenadas usados, así como la definición del punto P del radio r y el ángulo χ aparecen 

en la Figura 3. 

 

Figura 3. Representación de la difracción de Fresnel, plano de apertura u objeto difractor y plano de imagen 

Bajo ciertas condiciones, la anterior ecuación puede simplificarse, llegándose a la integral de 

Fresnel (Ecuación 2). 

𝐸(𝑥, 𝑦, 𝑧) =
𝑖𝑘𝐸0exp(−𝑖𝑘𝑧)

2𝜋𝑧
∬ exp {−

𝑖𝑘

2𝑧
[(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2]} 𝑑𝑥′𝑑𝑦′

𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑎

 

válido para {

𝛿 𝑧⁄ < 0.3

𝛿4

𝑧3𝜆
≪ 8

 

Ecuación 2. Integral de Fresnel 

Aquí, δ es un tamaño característico del orificio. Si, además, el punto P está ubicado casi en el 

infinito, la integral de Fresnel puede simplificarse aún más, obteniendo la integral de Fraunhofer 

(Ecuación 3). 

𝐸(𝑥, 𝑦, 𝑧) =
𝑖𝑘𝐸0exp [−𝑖𝑘𝑧 (1 +

𝑥2 + 𝑦2

𝑧2
)]

2𝜋𝑧

⏞                    
𝐶

∬ exp{𝑖𝑘(𝛼𝑥′ + 𝛽𝑦′)}𝑑𝑥′𝑑𝑦′
𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑎

 

con 𝛼 = 𝑥 𝑧, 𝛽 = 𝑦 𝑧⁄⁄ , válido para 
𝛿2

𝑧𝜆
≪ 2 

Ecuación 3. Integral de Fraunhofer 

 
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α y β son las direcciones donde se ubica el punto P del infinito. Dada una coordenada z 

(ubicada muy lejos), el factor C que hay delante de la integral puede tomarse como constante para 

valores de x e y pequeños, cercanos al eje y mucho menores que z → ∞. En cualquier caso, solo 

modificaría la fase del campo eléctrico y no su amplitud ni la intensidad luminosa. Como puede 

verse, la difracción de Fraunhofer o de campo lejano presenta la estructura de una transformada de 

Fourier. 

2.1.3. Diseño y funcionamiento del difractómetro: generación del campo lejano 

Estrictamente hablando, la integral de Fraunhofer es la solución asintótica de la difracción 

cuando el plano de observación tiende al infinito. Conviene usar la difracción de campo lejano, ya 

que se elimina como parámetro a conocer la distancia que media entre las partículas a medir y el 

plano de observación (los detectores), simplificando bastante el problema. Por desgracia, los 

detectores no pueden colocarse en el infinito (o a una distancia lo suficiente lejana) por motivos 

prácticos: el instrumento sería demasiado grande, los detectores no pueden confinarse dentro de 

una cámara opaca y la débil luz difractada quedaría ocultada por cualquier fuente luminosa parásita 

del laboratorio. 

Debido a estos inconvenientes,  los granulómetros por difractometría láser cuentan con un 

montaje óptico diseñado para generar el patrón de difracción de campo lejano sobre un plano 

ubicado a distancias finitas. Es en este plano donde se ubican los detectores luminosos, responsables 

que caracterizar el patrón de difracción. 

 

Figura 4. Disposición práctica del sistema de medida para utilizar la difracción de Fraunhofer en la medida de tamaños 
de partícula 

En la Figura 4 se muestra de forma esquemática el sistema de medida formado por un haz 

láser colimado, una lente convergente colectora y un conjunto de anillos fotodetectores ubicados en 

el plano focal de la lente. Los haces paralelos dispersados por las partículas con dirección α y β (y 

que se cortarían e interferirían en el infinito) son enviados por la lente al mismo punto P, 

interfiriendo entre sí: así se logra proyectar la difracción Fraunhofer desde el infinito sobre el plano 

focal de la lente   Figura 5. Los anillos fotodetectores (con centro en el eje óptico del 

sistema) se ubican en este plano focal. 

 

PLANO FOCAL 

P=(x, y)   
X   
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  Figura 5. Difracción de campo lejano producido en el plano focal de una lente convergente 

En este montaje, la relación entre las direcciones de dispersión α y β y el punto P=(x, y) del 

plano focal donde incide el haz dispersado es: 

𝑥 = 𝛼𝑓, 𝑦 = 𝛽𝑓 

Así, el patrón de difracción generado en el plano focal se evalúa como: 

𝐸𝐶(𝑥, 𝑦) = 𝐶∬ exp {𝑖𝑘 (
𝑥

𝑓
𝑥′ +

𝑦

𝑓
𝑦′)} 𝑑𝑥′𝑑𝑦′

𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑎

 

Ecuación 4. Patrón de difracción en el plano focal 

Nótese que en las expresiones anteriores, las coordenadas (x, y) son coordenadas físicas 

extendidas sobre el plano focal de la lente, no en el infinito. La constante C la ajustaremos más 

adelante. 

Con este montaje óptico, el conjunto de anillos detectores caracterizan el patrón de 

difracción de campo lejano generado por las partículas. Esta distribución de intensidad difractada va 

a depender de la geometría de las partículas. Si estas son esféricas, cosa que ocurre en ocasiones 

(gotas de líquido, partículas de vidrio para pulido, etc.), su geometría queda fijada por su diámetro. 

Así, una vez medido el patrón de difracción, el instrumento calcula el tamaño de las partículas que 

ha generado este patrón. 

La mayoría de espráis de líquidos y materiales pulverulentos no contienen partículas de un 

solo tamaño. En realidad, hay un continuo de diámetros y su distribución se describe por medio de la 

función de densidad de probabilidad (fdp) de tamaños f(D). Esta describe la probabilidad de que una 

partícula dada tenga un tamaño D. Un difractómetro láser obtiene este tipo de información: la 

distribución de tamaños de una muestra de partículas a caracterizar. Para una mayor información 

sobre las distribuciones de tamaños, puede consultarse el ANEXO 2. 

Como se ha indicado con anterioridad, el Área de Mecánica de Fluidos dispone de un 

difractómetro Malvern HSM 2600. Para este aparto en particular, sus detectores luminosos son 

semianillos, es decir, cubren un ángulo de 180o, y no de 360o como lo haría un anillo completo. Las 

expresiones matemáticas que siguen se calcularán teniendo en cuenta este hecho. 
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2.1.4. La difracción de campo lejano de una esfera. 

El principio de Babinet resulta útil para el cálculo práctico de la difracción de Fraunhofer. 

Este principio dice que una abertura y un obstáculo, de la misma forma geométrica y las mismas 

dimensiones e iluminados por una onda plana de la misma intensidad, producen el mismo patrón de 

difracción. Esto es así porque la suma de los campos eléctricos generados por la abertura y el 

obstáculo debe de volver a generar la onda plana original. Por tanto, en un punto P en el plano focal 

de la lente recolectora, pero fuera del eje óptico, la suma de los campos eléctricos de ambos 

(abertura y obstáculo) debe de ser nula. 

 

0 = 𝐶∬ exp {𝑖𝑘 (
𝑥

𝑓
𝑥′ +

𝑦

𝑓
𝑦′)} 𝑑𝑥′𝑑𝑦′

𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑎

+ 𝐶∬ exp {𝑖𝑘 (
𝑥

𝑓
𝑥′ +

𝑦

𝑓
𝑦′)} 𝑑𝑥′𝑑𝑦′

𝑜𝑏𝑠𝑡á𝑐𝑢𝑙𝑜

 

Ecuación 5. Principio de Babinet 

Como los campos eléctricos calculados con las integrales extendidas a la “apertura” y al 

“obstáculo” tienen la misma amplitud (aunque presenten un desfase de 180o), el patrón de 

intensidad luminosa es el mismo para ambos casos. Así, para calcular el patrón de difracción de una 

esfera, supondremos que está producida por una apertura circular del mismo diámetro. 

Lente Lente 

Apertura 
Obstáculo 

X X 

X’ X’ 

Y Y 

Y’ Y’ 

Plano 
focal 

Plano 
focal 

· P=(X,Y) · P=(X,Y) 
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Figura 6. Cambio de coordenadas cartesianas a cilíndricas 

Ya que el problema presenta simetría de revolución, usaremos dos sistemas de coordenadas 

cilíndricas sobre apertura (coordenadas x’ e y’) y plano focal (coordenadas x e y. Figura 6). 

{
𝑥′ = 𝜌′ cos𝜓′

𝑦′ = 𝜌′ sin𝜓′
 {
𝑥 = 𝜌 cos𝜓
𝑦 = 𝜌 sin𝜓

 

Además, el patrón de difracción solo es función del radio ρ, por lo que se evalúa para ψ = 0. 

Sustituyendo en la Ecuación 4 se obtiene: 

𝐸𝐶 = 𝐶∫ ∫ exp(𝑖𝑘
𝜌′𝜌

𝑓
cos𝜓)𝜌′𝑑𝜓𝑑𝜌′

2𝜋

0

𝑅

0

= 𝜋𝑅2𝐶
2𝐽1(𝑧)

𝑧
 con 𝑧 =

𝜋𝐷𝜌

𝜆𝑓
 

Ecuación 6. Patrón de difracción en coordenadas cilíndricas 

siendo, J1 la función de Bessel de primera especia y primer orden, R y D el radio y el diámetro 

de la esfera y z el parámetro de forma de la partícula. z compara el tamaño de la partícula con la 

longitud de onda de la luz incidente. Por coherencia con la literatura existente sobre difractometría, 

z deja de ser una coordenada espacial a partir de aquí. 

Con la amplitud compleja del campo eléctrico obtenemos la distribución de intensidad 

luminosa sobre los fotodetectores. 

𝐼(𝑥, 𝑦) =
1

2
√
𝜀

𝜇
𝐸𝐶𝐸𝐶

∗ = 𝐼𝑒𝑗𝑒 (
2𝐽1(𝑧)

𝑧
)

2

 

Ecuación 7. Intensidad luminosa 

Lente 

Apertura 

X 

X’ 

Y 

Y’ 

Plano 
focal 

· P=(X,Y)  

 

’ 
’ 
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La distribución de energía se grafica en la Figura 7 y es el clásico disco de Airy. El factor Ieje se 

evalúa igualando la energía total difractada a lo ancho del plano focal tiene con la energía incidente 

sobre la apertura  y que pasa íntegra hasta el plano focal de la lente. Finalmente, se obtiene: 

𝐼(𝑥, 𝑦) = 𝑊0
𝜋𝐷2

𝜆2𝑓2
(
𝐽1(𝑧)

𝑧
)

2

 con 𝑊0 = 𝐼0
𝜋

4
𝐷2, 𝑧 =

𝜋𝐷𝜌

𝜆𝑓
 

Ecuación 8. Intensidad luminosa 

En la anterior expresión, I0 es la intensidad del haz láser y W0 es la potencia luminosa 

incidente sobre la esfera. 

 

Figura 7. Distribución de intensidad para el patrón de difracción de una partícula esférica 

La contribución de la intensidad debida a la difracción obtenida en la ecuación 8, será 

asumida como la intensidad total dispersada por la partícula despreciando las contribuciones de 

reflexión y refracción. Esta simplificación puede asumirse dado que para ángulos pequeños (o más 

exactamente, para factores z → 0) la intensidad procedente de la difracción es mucho mayor que las 

otras dos componentes. Este es el rango de ángulos que se usa en un difractómetro. La 

simplificación es tanto más válida cuanto mayor sea la partícula. 

2.1.5. Luz difundida por una población de partículas esféricas. 

A partir de la Ecuación 8, la energía recibida por el i-ésimo semi-anillo detector (π radianes 

de extensión angular) ubicado en el plano focal difractada por una partícula aislada se calcula como: 

𝑤𝑖 =∬ 𝐼𝑑𝑆
𝑠𝑢𝑝.𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

= ∫ 𝑊0
𝜋𝐷2

𝜆2𝑓2
(
𝐽1(𝑧)

𝑧
)

2

𝜋𝜌𝑑𝜌
𝑟𝑒𝑥𝑡𝑖

𝑟𝑖𝑛𝑡𝑖

 con 𝑊0 = 𝐼0
𝜋

4
𝐷2, 𝑧 =

𝜋𝐷𝜌

𝜆𝑓
 

Ecuación 9. Energía recibida en el detector i debido a la partícula de tamaño j 

ρ es la coordenada radial en el plano focal. Realizando un cambio de variable, se obtiene: 
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c.v: 𝑧 =
𝜋𝐷𝜌

𝜆𝑓
⇒ 𝑤𝑖 = 𝑊0∫

𝐽1
2(𝑧)

𝑧
𝑑𝑧

𝑧𝑒𝑥𝑡𝑖

𝑧𝑖𝑛𝑡𝑖

= −
𝑊0
2
[𝐽0

2(𝑧) + 𝐽1
2(𝑧)]

𝑧𝑖𝑛𝑡𝑖

𝑧𝑒𝑥𝑡𝑖  con 𝑧𝑒𝑥𝑡𝑖 =
𝜋𝐷𝜌𝑒𝑥𝑡𝑖
𝜆𝑓

 

Ecuación 10. Cambio de variable 

zint i se define de forma análoga. La integración viene definida en el ANEXO 3. Si las partículas 

están aleatoria e incorreladamente dispuestas en el espacio (condición habitual en un spray) y la 

atenuación óptica del medio es baja (con lo que las difracciones múltiples son despreciables) la 

intensidad media de luz incidente sobre un detector puede evaluarse como la suma de las 

intensidades aportadas por cada partícula a ese detector. Para realizar este cálculo, es necesario 

conocer la distribución de tamaños de las partículas ubicadas dentro del haz láser del difractómetro 

fN(D). Matemáticamente: 

𝑊𝑖 = 𝑁∫ 𝑓𝑁(𝐷)𝑤𝑖(𝐷)𝑑𝐷
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

 

Ecuación 11. Energía total recibida en un detector 

Con wi calculada con la Ecuación 9. Aquí aparece la distribución numérica de tamaños 

descrita por la función de densidad de probabilidad de tamaño de partícula fN(D) (fdp), que describe 

la distribución. El número de partículas con tamaño (D, D+dD) se calcula como NfN(D)dD, con N el 

número total de partículas dentro del haz láser. 

En atomización, es más habitual usar la distribución de tamaño en volumen y su fdp en 

asociada fV(D). Con esta función, el volumen de materia contenido en partículas de tamaño (D, 

D+dD) se calcula como VfV(D)dD , siendo V el volumen total ocupado por las partículas (véase el 

ANEXO 2). Por tanto el número de gotas con tamaño (D, D+dD) se calcula como VfV(D)dD / (π / 6 D3r. 

Así, la energía recogida por el semianillo i-ésimo se evalúa: 

𝑊𝑖 = 𝑉∫
𝑓𝑉(𝐷)
𝜋
6 𝐷

3
𝑤𝑖(𝐷)𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

⇒ 

⇒ 𝑊𝑖 =
3

4
𝐼0𝑉∫ 𝑓𝑉(𝐷)

1

𝐷
[𝐽0

2(𝑧) + 𝐽1
2(𝑧)]

𝑧𝑒𝑥𝑡𝑖=
𝜋𝜌𝑒𝑥𝑡𝑖𝐷

𝜆𝑓

𝑧𝑖𝑛𝑡𝑖=
𝜋𝜌𝑖𝑛𝑡𝑖𝐷

𝜆𝑓
𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

 

Ecuación 12. Energía total recibida en un detector con fdp expresada en volumen 

Ambas descripciones fN(D), fV(D) de distribución de tamaños contienen la misma 

información. Como se indica en el ANEXO 2, es fácil demostrar: 

𝑓𝑁(𝐷) =

𝑓𝑉(𝐷)
𝐷3

∫
𝑓𝑉(𝐷)
𝐷3

𝑑𝐷
∞

0

 ; 𝑓𝑉(𝐷) =
𝐷3𝑓𝑁(𝐷)

∫ 𝐷3𝑓𝑁(𝐷)𝑑𝐷
∞

0

 

Ecuación 13. Función de densidad de probabilidad en número de partículas y en volumen 
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2.2. Discretización convencional del problema 

La inversión de la Ecuación 12 permite obtener la distribución de tamaños a partir del patrón 

de difracción detectado. El principal problema para hacer esto es que las energías medidas por cada 

detector {Wi} es un conjunto de datos discreto, mientras que la pdf de tamaños fV(D) es continua. 

Para solventar este problema se discretiza la ecuación Ecuación 12. Por un lado, la pdf fV(D) 

se descompone en una suma de funciones base elementales (discretización de la función de 

densidad de probabilidad). Como cada función de la base se extiende a lo largo de un rango de 

tamaños, los tamaños de partícula D también deben discretizarse. Todo esto desemboca en un 

tratamiento matricial del problema, que es el usualmente implementado en los difractómetros 

comerciales, siguiendo la filosofía de los trabajos de Swithenbank et al. (1976). 

2.2.1. Discretización de la pdf de tamaños. 

La descomposición más elemental de la pdf de tamaños en volumen fV es una combinación 

lineal de deltas de Dirac, cada una de ellas asociada a una clase de tamaños: 

𝑓𝑉(𝐷) =∑ 𝑣𝑖𝑓𝑖
𝑁

𝑖=1
 con 𝑓𝑖 = 𝛿(𝐷 − 𝐷𝑖) 

Ecuación 14. Descomposición de la pdf de tamaños en base delta de Dirac 

Como se ve en la expresión anterior, cada delta de la función base está asociada a un 

tamaño de partícula Di. Físicamente, las diferentes partículas se clasifican en varias clases de 

tamaños Di contabilizándose el tanto por uno de volumen de materia vi (líquida o sólida) contenida 

en las partículas de cada clase de tamaño. Por definición de función de densidad de probabilidad, 

debe de cumplirse Σvi = 1. 

Por tanto, este tratamiento requiere una discretización Di de los tamaños de partícula. Se 

adelanta que el número de clases (igual al número de funciones base N) es igual al número de 

semianillos fotodetectores, existiendo una relación estrecha entre los tamaños Di y su i-ésimo 

semianillo fotodetector asociado. 

La delta de Dirac no es una función en sentido estricto. Por tanto, esta tipo de discretización 

solo tiene sentido si se aplica la integral. La función de distribución acumulada se descompone en: 

𝐹𝑉(𝐷) =∑ 𝑣𝑖∫ 𝛿(𝜁 − 𝐷𝑖)𝑑𝜁
𝐷

0

𝑁

𝑖=1
=∑ 𝑣𝑖ℎ𝑖(𝐷 − 𝐷𝑖)

𝑁

𝑖=1
 con ℎ𝑖 = {

1 si 𝐷 > 𝐷𝑖
1 2 si 𝐷⁄ = 𝐷𝑖
0 si 𝐷 < 𝐷𝑖

 

hi es la función escalón unitario centrada sobre el tamaño Di. Por tanto, los coeficientes vi es 

el volumen de fase dispersa (partículas) contenido en partículas de tamaño Di. Las pdf y cdf 

continuas y discretizadas se ilustran en la Figura 8.a y Figura 8.b respectivamente. 
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Figura 8.a. Función de densidad de probabilidad en sus 
versiones continua y discreta 

Figura 8.b. Función de probabilidad acumulativa en sus 
versiones continua y discreta 

 

2.2.2. Discretización de los tamaños de partícula: criterio de máxima densidad radial de 

intensidad 

Para completar la discretización hay que construir un criterio para la elección de las clases de 

tamaño Di. Swithenbank (1976) diseñó un criterio con el objetivo de que cada semianillo 

fotodetector fuera especialmente sensible a un cierto tamaño de partícula. Así, se establece una 

asociación entre el semianillo i-ésimo y su clase de tamaño Di. 

A partir de la Ecuación 9 se demuestra que la densidad de energía incidente en los 

detectores por unidad de radio y difractada por una partícula de diámetro D es igual a: 

𝑑𝑤

𝑑𝜌
= 𝑊0

𝜋𝐷2

𝜆2𝑓2
(
𝐽1(𝑧)

𝑧
)

2

2𝜋𝜌 = 𝐼0(

𝜋
2 𝐷

2

𝜆𝑓
)

2

2
𝐽1
2(𝑧)

𝑧

𝜆𝑓

𝐷
 

Ecuación 15. Densidad de energía por unidad de radio 

Swithenbank busca que el máximo de esta densidad de energía se sitúe dentro del anillo, 

matemáticamente: 

𝑑

𝑑𝜌
(
𝐽1
2(𝑧)

𝑧
) =

𝜋𝐷

𝜆𝑓

𝑑

𝑑𝑧
(
𝐽1
2(𝑧)

𝑧
) = 0 ⇒ 𝑧 =

𝜋𝐷𝜌

𝜆𝑓
= 1.356  

La expresión recuadrada puede obtenerse aplicando las propiedades de las funciones de 

Bessel recogidas en el ANEXO 3. Esta expresión proporciona para cada radio de anillo ρi un tamaño 

de partícula Di. Despejando: 

𝐷𝑖 = 1.356
𝜆𝑓

𝜋𝜌𝑖
 

Ecuación 16. Condición de máximo de densidad de energía dentro de semianillo detector 
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De esta forma, se definen N tamaños, siendo N el número de semianillos detectores. 

Swithenbank (1976) elige el radio más externo de cada semianillo ρmax i en lugar del central  

ρcentral i = (ρmin i + ρmax i) / 2. Véase que cuanto más externo es el anillo (mayor es ρi) menor es el 

diámetro de partícula asociado Di. Esto ocurre así porque las partículas pequeñas difractan luz en 

ángulos mayores. Por otra parte, para un conjunto de anillos detectores fijo (con radios constantes) 

puede ajustarse la resolución cambiando la lente del instrumento: cuanto mayor sea la focal de la 

lente montada, el difractómetro puede medir partículas más grandes. 

Esta discretización de tamaños es la usada en el Malvern HS 2600 y el criterio que conduce a 

ella se le denomina en este PFC “de máxima densidad radial de intensidad” luminosa. La Tabla 1 

muestra las clases de diámetros calculados siguiendo este criterio para la distancia focal f=300 mm 

de un Malvern 2600 equipado con un laser HeNe de longitud de onda =0,6328x10-3 mm (en aire) y 

radios de semianillos detectores  representados en el ANEXO 4. En el ANEXO 5 se encuentran 

disponibles las tamaños discretizados para todas las focales del instrumento. 

j Dj 

(m) 

j Dj 

(m) 

j Dj 

(m) 

j Dj 

(m) 

j Dj 

(m) 

j Dj 

(m) 

j Dj 

(m) 

j Dj (m) 

1 550,2 5 148,0 9 80,3 13 48,5 17 29,6 21 18,1 25 11,2 29 7,1 

2 322,7 6 124,2 10 70,5 14 42,8 18 26,1 22 16,0 26 10,0 30 6,4 

3 232,2 7 106,2 11 62,1 15 37,8 19 23,1 23 14,2 27 8,9 31 5,7 

4 181,4 8 91,9 12 54,8 16 33,5 20 20,4 24 12,6 28 7,9   

Tabla 1. Clases de diámetros según criterio convencional (f=300mm) 

2.2.3. Formulación de la matriz de transferencia pdf de tamaños-energías. 

La Ecuación 12 aplicada a cada uno de los semianillos detectores se convierte en un sistema 

de ecuaciones lineales al aplicar la discretización de la pdf definida por la Ecuación 16. Sustituyendo: 

𝑊𝑖 = 𝑉
3

2
∫ ∑ 𝑣𝑗𝛿(𝐷 − 𝐷𝑗)

𝑁

𝑗=1

1

𝐷
[𝐽0

2(𝑧) + 𝐽1
2(𝑧)]

𝑧𝑒𝑥𝑡𝑖=
𝜋𝜌𝑒𝑥𝑡𝑖𝐷

𝜆𝑓

𝑧𝑖𝑛𝑡𝑖=
𝜋𝜌𝑖𝑛𝑡𝑖𝐷

𝜆𝑓
𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

=
3

4
𝐼0𝑉∑ {[

1

𝐷𝑗
[𝐽0

2(𝑧) + 𝐽1
2(𝑧)]

𝑧𝑒𝑥𝑡𝑖𝑗=
𝜋𝜌𝑒𝑥𝑡𝑖𝐷𝑗

𝜆𝑓

𝑧𝑖𝑛𝑡𝑖𝑗=
𝜋𝜌𝑖𝑛𝑡𝑖𝐷𝑗
𝜆𝑓

] 𝑣𝑗}
𝑁

𝑗=1
 para 𝑖 = 1,…𝑁 

En forma matricial: 

𝑊 = 𝑀𝑉 

 con 

{
 
 

 
 𝑚𝑖𝑗 =

1

𝐷𝑗
[𝐽0

2(𝑧) + 𝐽1
2(𝑧)]

𝑧𝑒𝑥𝑡𝑖𝑗=
𝜋𝜌𝑒𝑥𝑡𝑖𝐷𝑗

𝜆𝑓

𝑧𝑖𝑛𝑡𝑖𝑗=
𝜋𝜌𝑖𝑛𝑡𝑖𝐷𝑗
𝜆𝑓

= 𝑚𝑎𝑡𝑟𝑖𝑧 𝑑𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎

𝑊 = {𝑤𝑖} = vector de energías

𝑉 = {𝑣𝑗} = vector de distribución de tamaños

 para {
𝑖 = 1,…𝑁
𝑗 = 1,…𝑁

 

Ecuación 17. Formulación de la matriz de transferencia pdf-energías 
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En la definición de Mij, se ha omitido el factor (3/4)I0V, ya que solo estamos interesados en la 

distribución de tamaños y no en el volumen total de las partículas contenidas en el haz láser. 

Además, la intensidad del láser I0 puede variar con el tiempo dependiendo de las condiciones de 

operación (tensión de excitación aplicada, temperatura ambiental...) o el envejecimiento del mismo, 

por lo que no es un factor demasiado útil. 

Cada una de las columnas j-ésima de la matriz de transferencia M tiene un significado claro: 

es el patrón de difracción medido por los detectores cuando se coloca una partícula de tamaño Dj en 

el aparato. Por tanto, lo que persigue Swithenbank (1976) con su discretización de tamaños es hacer 

la matriz lo más “diagonal” posible, generando el término más grande en la diagonal principal. Es 

decir, se busca facilitar la resolución del sistema de ecuaciones. 

2.3. Otros criterios para la discretización del tamaño de partículas 

Expuesto el tratamiento de datos clásico (e implementado en el difractómetro Malvern HSM 

2600), se procede con el estudio de posibles las alternativas. Se comienza con nuevas propuestas de 

elección de las clases de tamaño. El propósito del criterio “máxima densidad radial de intensidad” es 

facilitar la resolución del sistema de ecuaciones resultante. A pesar de su evidente interpretación 

física este criterio es arbitrario. 

En este apartado, se presentan otras dos alternativas de elección de clases Di: el de “máximo 

porcentaje de energía detectada” por el anillo y el “criterio de condicionamiento óptimo”. Los tres 

criterios se compararán entre sí. 

2.3.1. Criterio de máxima eficiencia del detector 

Si se desea que la matriz M sea lo más diagonal posible, cada columna i-ésima de la misma 

debe contener un valor grande en la diagonal y números pequeños fuera de la diagonal. Es decir, el 

anillo j-ésimo debe de tener la mayor sensibilidad relativa a la clase de tamaño Dj. Por tanto, debe 

buscarse que el mayor porcentaje de la energía difractada por esta clase de tamaño incida en dicho 

anillo. En otras palabras, buscamos la partícula Di tal que maximice la eficiencia de recolección de luz 

de detector i. 

Usando la Ecuación 10 y como la energía difractada total vale W0, el porcentaje de energía 

recogida por el semianillo i cuando están presentes partículas de tamaño D se calcula como: 

𝑤𝑖
𝑊0

=
1

2
[𝐽0

2(𝑧) + 𝐽1
2(𝑧)]

𝑧𝑒𝑥𝑡𝑖=
𝜋𝜌𝑒𝑥𝑡𝑖𝐷

𝜆𝑓

𝑧𝑖𝑛𝑡𝑖=
𝜋𝜌𝑖𝑛𝑡𝑖𝐷

𝜆𝑓
 

Ecuación 18. Condición de máximo porcentaje de energía detectado por un semianillo 

Así, la clase de tamaño Di es aquella que maximiza el ratio wi / W0 de la Ecuación 18 para el 
detector i-ésimo. Esta tarea se realiza con ayuda de software matemático como se puede observar 
en el ANEXO 8. 
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Este criterio no coincide con el usado de forma clásica (máxima densidad radial de 
intensidad) a pesar de que, a primera vista, son similares. Para ilustrar la diferencia entre ambos, 
vamos a considerar anillos de anchura Δρi pequeña, con radio interno ρint i, radio externo 
ρext i = ρint i + Δρi. y radio medio ρm i = ρint i + Δρi / 2. Partiendo de la Ecuación 10, la energía incidente 
sobre el detector puede aproximarse por: 

𝑤𝑖 = 𝑊0∫
𝐽1
2(𝑧)

𝑧
𝑑𝑧

𝑧𝑒𝑥𝑡𝑖

𝑧𝑖𝑛𝑡𝑖

~𝑊0
𝐽1
2(𝑧𝑚𝑖)

𝑧𝑚𝑖
∆𝑧𝑖 = 𝑊0

𝐽1
2 (
𝜋𝐷𝜌𝑚𝑖
𝜆𝑓

)

𝜌𝑚𝑖
∆𝜌𝑖 con 𝑊0 = 𝐼0

𝜋

4
𝐷2, 𝑧 =

𝜋𝐷𝜌

𝜆𝑓
 

Ecuación 19: Energía detectada en un anillo fino 

Ahora, se aprecia perfectamente la diferencia entre ambos criterios: el clásico busca el Di 
que maximiza la función J1

2(z) / z (véase la Ecuación 16). Sin embargo, la Ecuación 19 muestra que 
maximizar wi / W0 (que es la propuesta de este apartado) implica hacer máximo J1

2(z), en el límite de 
anillos muy delgados. 

2.3.2. Criterio de condicionamiento óptimo. 

A pesar de que el “Criterio de máxima eficiencia de detección” pueda parecer más racional 

que el originalmente expresado por Swithenbank, es en realidad casi tan arbitrario como el primero. 

El objetivo de ambos criterios es facilitar la resolución del sistema de ecuaciones lineal 

resultante. Existe un parámetro llamado número de condición que mide la “facilidad” con la que se 

resuelve un sistema de ecuaciones lineales. Así, dado el sistema de ecuaciones lineal MV = W con M 

la matriz cuadrada, se define el número de condición del sistema (o, lo que es lo mismo, de la matriz 

M) como: 

cond𝑝(𝑀) = ‖𝑀‖𝑝‖𝑀
−1‖𝑝 

Donde ||M||p es la norma-p de la matriz M. Según teoría estándar de álgebra lineal, puede 

demostrarse que cuanto menor sea el número de condición de la matriz condp(M), menos sensible 

es la solución (la distribución de tamaños calculada V) a los pequeños errores de medida de las 

energías W. Por tanto, el sistema es más fácilmente resoluble. El menor número de condición 

posible es la unidad, indicando que dicha matriz está óptimamente condicionada. 

Como la matriz de transferencia es función de la discretización de tamaños que se elija 

M = M({Di}) (véase la Ecuación 17), el tercer criterio que se plantea para esta discretización es elegir 

un conjunto de diámetros de partícula {D*i} que minimice el número de condición de la matriz de 

transferencia obtenida M. Formalmente: 

{𝐷∗𝑖} con 𝑖 = 1…𝑁 tal que cond𝑝(𝑀({𝐷
∗
𝑖})) = min

∀{𝐷𝑖}
cond𝑝(𝑀({𝐷𝑖})) 

Este criterio proporciona la discretización de tamaños más funcional, pero, a cambio, el 

cálculo es extremadamente costoso en términos computacionales. Así, el cálculo toma cerca de una 

hora para un PC de gama media-alta usando los datos del difractómetro Malvern existente en el 

Área de Mecánica Fluidos. Por esta razón, la determinación de las clases de tamaño según este 
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método se ha realizado solo para la lente de focal f = 63 mm usando el script de Matlab detallado en 

el ANEXO 8 En el ANEXO 7, se comparan las clases de diámetros obtenidas por los tres criterios para 

esta misma lente (f = 63 mm). 

2.3.3. Comparación de los criterios de discretización de diámetros 

Los números de condición de las matrices generadas por cada criterio de condición son los 

dados en la siguiente tabla: 

Criterio de discretización Número de condición de la 
matriz de transferencia 

Máxima densidad radial de intensidad 
(criterio convencional) 

1,6255E+08 

Máxima eficiencia del detector 1,3048E+08 

Condicionamiento óptimo de la matriz 
de transferencia 

9,0169E+07 

Tabla 2. Números de condición para los diferentes criterios de discretización de diámetros 

Como primera conclusión, casi cualquier discretización de tamaños genera matrices de 

transferencia con números de condición elevados. Esto va a obligar a usar métodos de resolución de 

sistemas de ecuaciones lineales que ofrezcan soluciones “plausibles” pero suavizadas. Por su buen y 

más que probado comportamiento, se empleará el método implementado de forma original en el 

Malvern HSM 2600 y descrito en el PFC de Lagranja & Vecino (1986). 

Por otra parte, los criterios de máxima eficiencia de detección y condicionamiento óptimo 

presentan números de condición comparables entre sí y menores a los dados por la discretización de 

diámetros clásica. Por tanto, se concluye que los dos nuevos criterios son superiores al clásico. Si se 

comparan las clases de tamaños obtenidos, los dos nuevos criterios arrojan valores virtualmente 

idénticos. Estas clases difieren de las dadas por el criterio clásico y se desplazan hacia tamaños 

ligeramente superiores. 

Por todo esto, se toma como criterio práctico para la discretización de las clases de tamaños 

el de máxima eficiencia de detección, ya que arroja resultados similares al mejor de ellos (el de 

condicionamiento óptimo) y resulta computacionalmente mucho menos costoso. 
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3. UNA DISCRETIZACIÓN ALTERNATIVA DEL PROBLEMA 
3.1. Discretización de la pdf: una base de funciones triangulares. 

Como procedimiento novedoso en el ámbito de la granulometría por difractometría laser, se 

propone un método de discretización basado en una combinación lineal de funciones base con 

forma triangulare. Formalmente, lo expuesto en este apartado es una generalización del tratamiento 

clásico. 

En esta metodología, las funciones base triangulares estarán asociadas a cada uno de los 

semianillos detectores pero no estarán asociadas con un único tamaño de partícula, sino con tres: 

uno central donde se situará el máximo y dos extremos en los que la función será cero ( 

Figura 9.a. Funciones base triangulares para cada tamaño 
de partícula 

Figura 9.b. Pdf discretizada continua y lineal a trozos 

.a). Véase que, de nuevo, existen tantas funciones base como semianillos detectores. 

 

  

Figura 9.a. Funciones base triangulares para cada tamaño 
de partícula 

Figura 9.b. Pdf discretizada continua y lineal a trozos 

Para conseguir que la pdf discretizada sea continua, los diámetros extremos de la función 

base fi deberán coincidir con el diámetro central de las funciones fi-1 y fi+1. Por lo tanto, el número 

total de diámetros “discretos” serán 31 (el número de semianillos detectores del difractómetro) más 

dos tamaños de partículas adicionales en los extremos, D(0) y D(32) como se puede observar en la 

Figura 9a. 

Matemáticamente, cada una de las funciones triangulares se expresa como: 

𝑓𝑖(𝑑) =

{
 

 
2

𝐷𝑖−1 −𝐷𝑖+1
·
𝑑 − 𝐷𝑖+1
𝐷𝑖 −𝐷𝑖+1

 𝑠𝑖 𝑑 ∈ (𝐷𝑖+1, 𝐷𝑖)

2

𝐷𝑖−1 −𝐷𝑖+1
·
𝐷𝑖−1 − 𝑑

𝐷𝑖−1 −𝐷𝑖
 𝑠𝑖 𝑑 ∈ (𝐷𝑖, 𝐷𝑖−1)

 

Ecuación 20. Función base triangular 
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Como antes, las clases de tamaño están ordenadas de mayor a menor Di+1 < Di < Di-1. En esta 

definición, el coeficiente 2 / (Di – 1 – Di – 1) se introduce para normalizar a la unidad cada función de la 

base, teniendo a su vez sentido de función de densidad de probabilidad elemental. Es decir: 

∫ 𝑓𝑖

∞

0

(𝑑)𝑑𝑑 = ∫ 𝑓𝑖

𝐷𝑖−1

𝐷𝑖+1

(𝑑)𝑑𝑑 = 1 

Puede verse que la discretización de tamaños {Di} define unívocamente las base de 

funciones. Con esto, la pdf de tamaños se formará por combinación lineal de las funciones base 

triangulares: 

La pdf de tamaños se formará por combinación lineal de las funciones base triangulares: 

𝑓𝑉(𝐷) =∑ 𝑣𝑖𝑓𝑖
31

𝑖=1
 𝑐𝑜𝑛 ∫ 𝑓𝑉

∞

0

𝑑𝑑 =∑ 𝑣𝑖
31

𝑖=1
= 1 

Ecuación 21. pdf de tamaños de partícula y propiedad de continuidad 

El resultado de todo esto es una pdf continua y lineal a trozos entre los diferentes diámetros 

discretos Di, según ilustra la Figura 9.b. La Ecuación 12 aplicada a cada uno de los semianillos 

detectores se convierte en un sistema de ecuaciones lineales al aplicar la discretización de la pdf 

definida por la Ecuación 21. Sustituyendo: 

𝑊𝑖 = 𝐼0𝑉
3

2
{∫ ∑ 𝑣𝑗

𝑁

𝑗=1

2

𝐷𝑗−1 −𝐷𝑗+1
·
𝑑 − 𝐷𝑗+1

𝐷𝑗 − 𝐷𝑗+1
[𝐽0

2(𝑧) + 𝐽1
2(𝑧)]

𝑧𝑒𝑥𝑡𝑖=
𝜋𝜌𝑒𝑥𝑡𝑖𝑑

𝜆𝑓

𝑧𝑖𝑛𝑡𝑖=
𝜋𝜌𝑖𝑛𝑡𝑖𝑑

𝜆𝑓
𝑑𝑑

𝐷𝑗

𝐷𝑗+1

+∫ ∑ 𝑣𝑗
𝑁

𝑗=1

2

𝐷𝑗−1 − 𝐷𝑗+1
·
𝐷𝑗−1 − 𝑑

𝐷𝑗−1 − 𝐷𝑗
[𝐽0

2(𝑧) + 𝐽1
2(𝑧)]

𝑧𝑒𝑥𝑡𝑖=
𝜋𝜌𝑒𝑥𝑡𝑖𝑑

𝜆𝑓

𝑧𝑖𝑛𝑡𝑖=
𝜋𝜌𝑖𝑛𝑡𝑖𝑑

𝜆𝑓
𝑑𝑑

𝐷𝑗−1

𝐷𝑗

}    

En forma matricial: 

𝑊 = 𝑀𝑉 con 

{
 
 
 
 

 
 
 
 𝑚𝑖𝑗 = ∫

2

𝐷𝑗−1 −𝐷𝑗+1
·
𝑑 − 𝐷𝑗+1

𝐷𝑗 − 𝐷𝑗+1
[𝐽0

2(𝑧) + 𝐽1
2(𝑧)]

𝑧𝑒𝑥𝑡𝑖𝑗=
𝜋𝜌𝑒𝑥𝑡𝑖𝑑

𝜆𝑓

𝑧𝑖𝑛𝑡𝑖𝑗=
𝜋𝜌𝑖𝑛𝑡𝑖𝑑

𝜆𝑓
𝑑𝑑

𝐷𝑗

𝐷𝑗+1

 

+∫
2

𝐷𝑗−1 − 𝐷𝑗+1
·
𝐷𝑗−1 − 𝑑

𝐷𝑗−1 − 𝐷𝑗
[𝐽0

2(𝑧) + 𝐽1
2(𝑧)]

𝑧𝑒𝑥𝑡𝑖=
𝜋𝜌𝑒𝑥𝑡𝑖𝑑

𝜆𝑓

𝑧𝑖𝑛𝑡𝑖=
𝜋𝜌𝑖𝑛𝑡𝑖𝑑

𝜆𝑓
𝑑𝑑

𝐷𝑗−1

𝐷𝑗

𝑊 = {𝑤𝑖} = vector de energías

𝑉 = {𝑣𝑗} = vector de distribución de tamaños

 

 para {
𝑖 = 1,…𝑁
𝑗 = 1,…𝑁

 

Ecuación 22. Formulación de la matriz de transferencia pdf tamaños-energías en base de funciones triangulares 

Comparando la formulación basada en una base de funciones triangulares (Ecuación 22) con 

a obtenida con deltas de Dirac (Ecuación 17) se puede apreciar la ventaja de la formulación 

propuesta: la nueva matriz de transferencia permite calcular la energía incidente sobre uno de los 

anillos con una mayor precisión ya que tiene cuenta la luz difundida por las partículas con un 

diámetro intermedio entre las diferentes clases de tamaño Di. Por tanto, esta formulación presenta 
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una discretización de precisión un orden superior al tratamiento clásico. Esta es la razón de ser 

esencial de este PFC. 

3.2. La discretización de los diámetros de partícula. 

Una vez presentado el concepto de funciones base triangulares y sus efectos en la pdf 

discretizada, queda elegir correctamente las clases de diámetros que harán de soporte para dichas 

funciones. Los criterios presentados hasta ahora (secciones 2.2.2 y 2.3) están adaptados a la base de 

funciones clásica constituida por deltas de Dirac. Por tanto, es necesario extenderlos a la nueva 

base. 

Por su moderado coste computacional y el buen comportamiento mostrado anteriormente, 

se va a trabajar en la extensión del criterio de máxima eficiencia de detector. Así, se desea que cada 

anillo detector i sea especialmente eficiente recolectando la luz de una población de partículas con 

distribución volúmica de tamaños del elemento fi(d) de la base de funciones triangulares(Ecuación 

20). Es decir, si llamamos wii a la energía incidente sobre el anillo i-ésimo cuando difracta luz una 

población de partículas fi(d) (función triangular i-ésima de la base) y W0 i la energía total difractada 

por dicha población, se debe maximizar el ratio wii/W0 i. 

En forma matemática, wii se evalúa sustituyendo la definición de la función base (Ecuación 

20) en la Ecuación 12: 

𝑤𝑖𝑖 =
3

4
𝐼0 {∫

2

𝐷𝑗−1 − 𝐷𝑗+1
·
𝑑 − 𝐷𝑗+1

𝐷𝑗 − 𝐷𝑗+1
[𝐽0

2(𝑧) + 𝐽1
2(𝑧)]

𝑧𝑒𝑥𝑡𝑖𝑗=
𝜋𝜌𝑒𝑥𝑡𝑖𝑑

𝜆𝑓

𝑧𝑖𝑛𝑡𝑖𝑗=
𝜋𝜌𝑖𝑛𝑡𝑖𝑑

𝜆𝑓
𝑑𝑑

𝐷𝑗

𝐷𝑗+1

+∫
2

𝐷𝑗−1 −𝐷𝑗+1
·
𝐷𝑗−1 − 𝑑

𝐷𝑗−1 − 𝐷𝑗
[𝐽0

2(𝑧) + 𝐽1
2(𝑧)]

𝑧𝑒𝑥𝑡𝑖=
𝜋𝜌𝑒𝑥𝑡𝑖𝑑

𝜆𝑓

𝑧𝑖𝑛𝑡𝑖=
𝜋𝜌𝑖𝑛𝑡𝑖𝑑

𝜆𝑓
𝑑𝑑

𝐷𝑗−1

𝐷𝑗

} 

Ecuación 23. Energía incidente sobre el anillo i-ésimo 

Y la energía total difractada W0 i no es más que la suma de la energía incidente en cada una 

de las partículas de la distribución fi. 

𝑊0𝑖 = ∫
𝑓𝑖(𝑑)
𝜋
6 𝑑

3
𝐼0
𝜋

4
𝑑2𝑑𝑑

∞

0

=
3

2
𝐼0

2

𝐷𝑖−1 − 𝐷𝑖+1
{
𝐷𝑖−1

𝐷𝑖−1 − 𝐷𝑖
ln (

𝐷𝑖−1
𝐷𝑖
) −

𝐷𝑖+1
𝐷𝑖 − 𝐷𝑖+1

ln (
𝐷𝑖
𝐷𝑖+1

)} 

Ecuación 24. Energía total difractada por una población de partículas fi(d) 

Con esto, la eficiencia del detector pi frente la fdp elemental triangular fi se evalúa 

fácilmente. Como la función de la base queda unívocamente definida por la discretización de 

diámetros fi = fi (d, Di+1, Di,  Di–1), la eficiencia pi solo depende de estos diámetros discretos. 

𝑝𝑖 =
𝑤𝑖𝑖
𝑊0𝑖

= 𝑝𝑖(𝐷𝑖+1, 𝐷𝑖, 𝐷𝑖−1) 

Ecuación 25. Factor de eficiencia del detector i-ésimo 
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Por tanto, el criterio se reduce a encontrar la terna (Di+1, Di,  Di–1) que maximiza la eficiencia 

de detección. Por desgracia, no es posible encontrar un conjunto de diámetros {Di} que maximicen la 

eficiencia de todos los anillos. En otras palabras, los valores Di + 1, Di, Di – 1 que maximicen a la vez el 

ratio pi = wii/W0 i (asociado al detector i) son incompatibles con los valores D’i, D’i-1, D’i-2 que 

maximizan p(i–1) (i–1) (asociado al detector i – 1), ya que, en general, Di ≠ D’i y Di – 1  ≠ D’i – 1. Es decir, las 

funciones bases están acopladas entre sí, de tal forma que la modificación de una de ellas altera a 

las demás. En estas condiciones, no se puede plantear la optimización del rendimiento de detección 

de cada uno de los detectores individualmente. 

La solución a esta dificultad es el planteamiento de una optimización multiobjetivo. 

Evaluando la eficiencia de detección promedio ep, se busca el conjunto de diámetros {Di} que 

maximice esta eficiencia media. Matemáticamente, la discretización es un conjunto de tamaños de 

partícula D* definida por: 

𝐷∗ = {𝐷∗𝑖}𝑖=0
𝑖=32  tal que  𝑒𝑝(𝐷

∗
0, … , 𝐷

∗
32) = max

∀𝐷𝑖>0
𝑒𝑝   con  𝑒𝑝 =

∑ 𝑝𝑖
31
𝑖=1

31
= 𝑒𝑝(𝐷0, … , 𝐷32) 

De esta forma, se consigue una buena eficiencia de detección en todos los anillos, aunque 

ninguno de ellos esté optimizado al completo. Puede comprobarse que esto es una extensión del 

criterio equivalente para las base de deltas de Dirac. Para este caso, la eficiencia de cada uno de los 

sensores pueden optimizarse individualmente y, al hacerlo, se maximiza la eficiencia de detección 

conjunta promedio. 

La implementación computacional de este criterio de optimización puede verse 

íntegramente en el ANEXO 8, en donde los tamaños de partículas iniciales para comenzar la 

optimización han sido los procedentes del criterio clásico. El resultado es la discretización de 

tamaños válida para el Malvern HSM 2600, para cada diferentes focales empleada. 

Otra variante de este proceso podría haber sido el definir una variable que cuantifique el 

condicionamiento de la matriz y minimizar dicha ecuación para obtener una clase de tamaños de 

partícula, pero dicho criterio se ha desestimado por su altísimo coste computacional ya citado en el 

apartado 2.3.2 y sus reducidas ventajas. 
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4. RESULTADOS 

Se exponen a continuación los resultados obtenidos al aplicar los diferentes criterios 

explicados anteriormente al granulómetro Malvern, mod. HSM 2600 disponible en el Área de 

Mecánica de Fluidos. Se elige la configuración obtenida al usar la lente de focal f = 300 mm, útil para 

caracterizar partículas con tamaño entre varias decenas y alguna centena de micrómetros. En el 

ANEXO 4 se encuentran los datos necesarios del difractómetro para efectuar los cálculos. 

4.1. Comparación de las bases de funciones. 

En este apartado se comparan las bases de funciones obtenidas con el tratamiento 

convencional (Base de deltas de Dirac junto con una discretización de tamaños de partícula por el 

criterio de máxima densidad radial de intensidad) con el nuevo tratamiento (base de funciones 

triangulares y discretización de diámetros por el criterio de máxima eficiencia de detección). 

En la Figura 10.a se representa en rojo los Dj obtenidos a partir del criterio convencional, en 

azul las funciones base triangulares y en negro los Dj obtenidos a partir de dichas funciones base. 

Para facilitar la comparación, la Figura 10.b muestra un zoom de la Figura 10.a sobre los Dj 

más pequeños. 

 

Figura 10.a. Base de funciones para focal f=300mm 
siguiendo criterio convencional y criterio funciones base 

triangulares 

Figura 10.b. Base de funciones para focal f=300mm 
siguiendo criterio convencional y criterio funciones base 

triangulares (zoom) 

Como ocurría con el uso de la base de deltas de Dirac, el uso del criterio de máxima 

eficiencia desplaza el rango de tamaños medido hacia tamaños ligeramente más grandes (de entre 

5.72 y 550 μm para el tratamiento convencional a entre 6.96 y 749 μm en la nueva propuesta). El 

rango dinámico, definido como el tamaño máximo y mínimo que puede gestionar el aparato 

también aumenta ligeramente (de 96 a 108 en el nuevo tratamiento). No obstante, todos estos 

cambios son contenidos. 

Finalmente, el aparato tiene una gran resolución para los tamaños más pequeños y aporta 

un menor grado de detalle para los tamaños más grandes. Esto es debido al diseño del módulo de 
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anillo de detectores: el mismo fenómeno se presenta en ambos tratamientos. Cambiar este 

comportamiento requiere el rediseño de los detectores, algo que queda fuera del alcance de este 

proyecto. 

Numéricamente, los tamaños de partículas discretizados según los diferentes criterios y para 

todas las distancias focales que permite elegir el difractometro Malvern HS-2600 se encuentran en el 

ANEXO 5. 

4.2. Comparación de las matrices de transferencia. 

Las matrices de transferencia calculadas según los diferentes criterios de discretización para 

la distancia focal de 300mm (distancia intermedia), se representan en el ANEXO 6. Para facilitar la 

discusión, en la Figura 11.a y Figura 11.b se representan gráficamente las matrices de transferencia 

obtenidas según el tratamiento clásico y según el nuevo tratamiento respectivamente. 

 

Figura 11.a. Valores de la matriz de transferencia 
calculada según criterio de discretización clásico 

Figura 11.b. Valores de la matriz de transferencia según  
nuevo criterio de discretización 

Cualitativamente, ambas matrices son similares: el entorno de la diagonal principal tiene 

grandes valores, con un “rizado” en la zona por encima de la diagonal. Este rizado es consustancial a 

los efectos de difracción. 

Para apreciar mejor dónde están las diferencias entre ambas, se evalúa la cambio porcentual 

elemento a elemento, definido según, la Ecuación 26. 

𝐷𝑖𝑓𝑖,𝑗 = 
𝑀𝑇𝑖,𝑗 −𝑀𝐶𝑖,𝑗

𝑀𝐶𝑖,𝑗
para {

𝑖 = 1,…𝑁
𝑗 = 1,…𝑁

 

Ecuación 26. Matriz diferencia entre los criterios clásico y de base de funciones triangulares 

siendo MTi,j cada uno de los elementos de la matriz de transferencia según una base de 

funciones triangulares y MCi,j cada uno de los elementos según el criterio clásico. La comparación 

entre las matrices puede hacerse de forma directa porque ambas están normalizadas al mismo 

rango de valores. En efecto, la definición de la nueva matriz (Ecuación 22) se reduce a la matriz 
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clásica (Ecuación 17) si las funciones triangulares fueran infinitamente estrecha (Di – 1 – Di + 1 → 0 para 

todo i). Evidentemente, para conseguir esto se necesitaría un infinito número de anillos, algo 

imposible. 

El resultado se grafica en la Figura 12. Se observa que las matrices difieren sobre todo en la 

submatriz diagonal superior. El efecto final en un suavizado del rizado existente por encima de la 

diagonal principal. 

 

Figura 12. Matriz diferencia porcentual entre el criterio clásico y el criterio base de funciones triangulares 

4.3. Verificación de funcionamiento del método. 

En el presente proyecto no se ha utilizado el difractómetro Malvern HS-2600 para la 

validación experimental del tratamiento de inversión explicado hasta aquí. En lugar de eso, se ha 

considerado que el aparato está midiendo un espray con una distribución de tamaños prescrita y 

conocida (se ha usado una distribución lognormal, muy usual en espráis reales). Por tanto, esta 

distribución prescrita de tamaños  se considera “real”. 

Usando la ecuación 12, válida bajos las condiciones explicadas en apartados anteriores, se ha 

calculado mediante integración numérica precisa, el patrón de difracción de campo lejano generado 

sobre los fotodetectores del Malvern. Con esto, se ha simulado el vector de energías que medirían 

los fotodetectores W = {Wi} cuando estuviera presente la distribución de tamaños lognormal 

prescrita. Estas energías simuladas se han considerado como reales, “medidas” por el instrumento. 

Esta distribución de energías “medidas” se introduce como término independiente en el 

sistema de ecuaciones lineal W = MV donde M es la matriz de transferencia calculada según la base 

de funciones triangulares (Ecuación 22) y la discretización de tamaños dada por el criterio de 

máxima eficiencia de detección aplicado a esta nueva base (apartado 3.2). La resolución del sistema 

da el vector V = {Vi}. Este vector da la medida de la distribución de tamaños efectuada por el 

difractómetro fV medida = Σvi·fi. 

Debido al mal condicionamiento de la matriz final obtenida (apartado 2.3), para obtener el 

vector V  se ha seguido el método de resolución implementado originalmente en el Malvern (PFC de 

Lagranja & Vecino 1986). Dicho método afina progresivamente la distribución de tamaños hasta 

Índice 

de filas 

Índice de 

columnas 

V
a
l
o
r
 
d
e
 
l
a
 
m
a
t
r
i
z
 

d
i
f
e
r
e
n
c
i
a
 
p
o
r
c
e
n
t
u
a
l
 



 Medida de tamaño de partícula por difractometría laser: Un nuevo método de cálculo de la 
matriz de transferencia 

 

31 

reproducir el patrón de difracción detectado por el instrumento. Su algoritmo viene descrito en el 

ANEXO 8, así como en el citado PFC. El proceso de afinado concluye cuando ambas distribuciones de 

energía (“medida” y calculada por el sistema de ecuaciones lineal) exhiben un bajo desacuerdo. La 

Figura 13 compara ambos patrones de difracción al final del proceso de afinamiento. Como puede 

verse, el  grado de acuerdo es excelente. 

La Figura 14 compara la distribución de tamaños “real” (la lognormal prescrita) con la 

calculada tras resolver V del sistema de ecuaciones. El acuerdo es notable. La media de ambas 

funciones difiere en el quinto decimal, la desviación estándar en el cuarto decimal y el coeficiente de 

asimetría sólo varía en 0,56 entre ambas pdf como se puede ver en la Tabla 3. Con estos resultados, 

se considera validado el procedimiento de inversión propuesto del patrón de difracción para la 

medida de distribuciones de tamaño por difractometría láser. 

 

Figura 13. Energía medida y energía calculada después de ser afinada 

 
Figura 14. Pdf de tamaños calculada y simulada 

 

 pdf simulada pdf calculada diferencia 

Media 0,003594 0,003579 -1,50E-05 
Desviación típica 0,008038 0,008803 0,000765 
Coeficiente de asimetría 2,345808 2,904979 0,559170 

Tabla 3.  Indicadores estadísticos de la pdf simulada y calculada 
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5. CONCLUSIONES 

Este proyecto trata sobre la medida la distribuciones de tamaño de una muestra de 

partículas esféricas por medio de un difractómetro laser. Más concretamente, refina el cálculo de 

dicha distribución a partir del patrón de difracción de campo lejano medido por los fotodetectores 

del instrumento cuando la muestra de partículas a caracterizar atraviesa un haz láser colimado. 

Para conseguir este objetivo, se ha realizado un estudio sistemático de la teoría óptica 

asociada (difracción de campo lejano, óptica geométrica aplicada a lentes…) así como del 

tratamiento matemático implementado en difractómetros comerciales para realizar este cálculo. 

Este tratamiento fundamentalmente discretiza el problema, obteniéndose un sistema de ecuaciones 

lineales. Dicho sistema consta de una matriz de transferencia M que relaciona la distribución de 

tamaños de partícula (vector de porcentajes de volumen de partículas en cada clase de tamaño a 

calcular) con la energía medida en cada fotodetector del instrumento. 

Tras esto, se generaliza el tratamiento matemático. Primero, la discretización de la función 

de densidad de probabilidad de tamaño de partícula se formula como una combinación lineal de una 

base de distribuciones de tamaño elementales. Así, al elegir una base formada por funciones delta 

de Dirac, se recupera el tratamiento clásico de cálculo de tamaños. 

Para obtener un cálculo más refinado de la distribución de tamaños, se elige un conjunto de 

funciones triangulares solapadas entre sí. Esto permite generar distribuciones discretizadas lineales 

y continuas a trozos. Esta distribución sintética se ajusta mucho mejor a la distribución real de las 

partículas que la generada por la discretización clásica. También permite generar una matriz de 

transferencia que calcula con mayor precisión el patrón de energías difractadas al tener en cuenta el 

efecto de partículas de tamaño intermedio entre dos clases consecutivas de tamaño. 

La revisión de la bibliografía también concluye que el criterio de elección de las clases 

discretas de tamaño es arbitrario. Se proponen dos criterios alternativos que muestran un mejor 

comportamiento: el criterio de máxima eficiencia de detector y el criterio de condicionamiento 

óptimo de la matriz de transferencia. Ambos dos mejoran el comportamiento de la matriz (medido 

por el número de condición como puede observarse en el ANEXO 7). Además, ambos ofrecen 

resultados muy próximos entre sí, siendo el segundo de mucho mayor coste computacional. Por 

tanto, se elige para formular el tratamiento alternativo la discretización de tamaños dada por el 

criterio de máxima eficiencia de detección. 

La formulación original del criterio de máxima eficiencia de detección para la  discretización 

de diámetros es solo válida para el tratamiento clásico (base de funciones de deltas de Dirac). Para 

ser aplicado a la nueva base de funciones triangulares, es preciso generalizarlo también. La principal 

dificultad es el acoplamiento que presentan entre sí las funciones de la base. Esto impide la 

maximizar de forma individualizada la eficacia de detección de cada uno de los fotodiodos 

simultáneamente. Es decir, si se maximiza la eficiencia del detector i, se empeora la de los vecinos 

i + 1 e i – 1. 
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Para solucionarlo, se formula una maximización multiobjetivo. De esta forma, se optimiza la 

eficiencia de detección en su conjunto, sin que ninguno de ellos presente un comportamiento 

óptimo. 

Finalmente, se comparan las dos formulaciones, la clásica y la propuesta. La formulación 

propuesta desplaza el rango de medida del instrumento hacia diámetros algo mayores, 

incrementando también ligeramente el rango del aparato. La resolución del instrumento sigue 

siendo mayor para los diámetros pequeños que para los grandes. 

Finalmente, se ha comprobado el funcionamiento de la nueva formulación propuesta. Para 

ello, se ha simulado de forma precisa el patrón de difracción generado por una distribución 

lognormal (muy usual en atomización). Este patrón se ha sometido al algoritmo de inversión 

desarrollado en este proyecto fin de carrera, obteniendo una distribución discreta. El grado de 

acuerdo entre la distribución lognormal de partida y la calculada por el nuevo formalismo es 

razonable. 

Validado el nuevo procedimiento de inversión, queda como trabajo futuro su comparación 

con el procedimiento clásico, para cuantificar el grado de mejora. También se desea hacer un 

estudio sobre cómo afecta la forma de la distribución a la precisión de este método (la anchura de la 

distribución, su simetría, la posición del valor medio dentro del rango de medida, etc.). Por último, si 

se concluye que el nuevo método es completamente superior al convencional, se procederá a 

implementarlo en el difractómetro Malvern HSM 2600 del Área de Mecánica de Fluidos.  
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