000060660 001__ 60660
000060660 005__ 20230622083307.0
000060660 0247_ $$2doi$$a10.3390/en9080636
000060660 0248_ $$2sideral$$a98058
000060660 037__ $$aART-2016-98058
000060660 041__ $$aeng
000060660 100__ $$aSerrano, Javier
000060660 245__ $$aDesign and Implementation of a Test-Bench for Efficiency Measurement of Domestic Induction Heating Appliances
000060660 260__ $$c2016
000060660 5060_ $$aAccess copy available to the general public$$fUnrestricted
000060660 5203_ $$aThe operation of a domestic induction cooktop is based on the wireless energy transfer from the inductor to the pot. In such systems, the induction efficiency is defined as the ratio between the power delivered to the pot and the consumed power from the supplying converter. The non-transferred power is dissipated in the inductor, raising its temperature. Most efficiency-measuring methods are based on measuring the effective power (pot) and the total power (converter output). While the converter output power is directly measurable, the measurement of the power dissipation in the pot is usually a cause of inaccuracy. In this work, an alternative method to measure the system’s efficiency is proposed and implemented. The method is based on a pot with a reversible base to which the inductor is attached. In the standard configuration, the inductor is placed below the pot in such a way that the delivered power is used to boil water, and the power losses are dissipated to the air. When the pot base is flipped, the inductor is immersed into the water. In this case the losses in the inductor also contribute to heating up and boiling the water. The induction efficiency is calculated from the boiling rates in both configurations. A commercial inductor was tested under real working conditions with consistent results.
000060660 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/RTC-2014-1847-6$$9info:eu-repo/grantAgreement/ES/MINECO/TEC2013-42937-R
000060660 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000060660 590__ $$a2.262$$b2016
000060660 591__ $$aENERGY & FUELS$$b45 / 92 = 0.489$$c2016$$dQ2$$eT2
000060660 592__ $$a0.662$$b2016
000060660 593__ $$aElectrical and Electronic Engineering$$c2016$$dQ1
000060660 593__ $$aRenewable Energy, Sustainability and the Environment$$c2016$$dQ2
000060660 593__ $$aEnergy Engineering and Power Technology$$c2016$$dQ2
000060660 593__ $$aControl and Optimization$$c2016$$dQ2
000060660 593__ $$aEnergy (miscellaneous)$$c2016$$dQ2
000060660 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000060660 700__ $$0(orcid)0000-0001-7207-5536$$aAcero, Jesús$$uUniversidad de Zaragoza
000060660 700__ $$0(orcid)0000-0003-0775-4641$$aAlonso, Rafael$$uUniversidad de Zaragoza
000060660 700__ $$0(orcid)0000-0001-7901-9174$$aCarretero, Claudio$$uUniversidad de Zaragoza
000060660 700__ $$0(orcid)0000-0003-4858-9734$$aLope, Ignacio$$uUniversidad de Zaragoza
000060660 700__ $$0(orcid)0000-0002-9655-5531$$aBurdío,  José Miguel$$uUniversidad de Zaragoza
000060660 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000060660 7102_ $$15007$$2520$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Ingen.Sistemas y Automát.
000060660 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000060660 773__ $$g9, 8 (2016), [11 pp.]$$pENERGIES$$tEnergies$$x1996-1073
000060660 8564_ $$s1309975$$uhttps://zaguan.unizar.es/record/60660/files/texto_completo.pdf$$yVersión publicada
000060660 8564_ $$s106935$$uhttps://zaguan.unizar.es/record/60660/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000060660 909CO $$ooai:zaguan.unizar.es:60660$$particulos$$pdriver
000060660 951__ $$a2023-06-21-14:58:26
000060660 980__ $$aARTICLE