000060666 001__ 60666
000060666 005__ 20231023123340.0
000060666 0247_ $$2doi$$a10.1155/2014/483028
000060666 0248_ $$2sideral$$a98064
000060666 037__ $$aART-2015-98064
000060666 041__ $$aeng
000060666 100__ $$0(orcid)0000-0002-6046-4558$$aValladares Hernando, David$$uUniversidad de Zaragoza
000060666 245__ $$aApplication of Computational-Experimental Methods for Designing Optimized Semitrailer Axle Supports
000060666 260__ $$c2015
000060666 5060_ $$aAccess copy available to the general public$$fUnrestricted
000060666 5203_ $$aComputational and experimental methods were applied to the design and optimization of a semitrailer axle support subjected to fatigue loads. Numerical results based on the finite element method (FEM) were correlated with extensometric tests to assess the accuracy of the computational method. This paper is focused on the “minimum radius manoeuvre.” This situation represents the highly critical load case occurring in a semitrailer operation where the tractor vehicle pulls the semitrailer’s kingpin at approximately 90° with respect to its longitudinal axis, and high stress and strain phenomena take place in the axle supports’ structure. Loads and boundary conditions that correspond to this load case were first adjusted by means of experimental tests and could be later applied to each semitrailer axle support in the numerical model. In this analysis, the stress-strain elastic-plastic curves of the base material, the welding, and the HAZ have been incorporated to the numerical models. Fatigue ¿-¿ curves combined with the maximum Von Mises equivalent stresses obtained in the computational analysis provided a maximum number of cycles that the semitrailer axle support could reach in case of the minimum radius manoeuvre being applied to the vehicle in a repeated manner. The initial design could then be optimized to improve its fatigue life.
000060666 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/TRA2012-38826-C02-02
000060666 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000060666 590__ $$a0.64$$b2015
000060666 591__ $$aTHERMODYNAMICS$$b48 / 57 = 0.842$$c2015$$dQ4$$eT3
000060666 591__ $$aENGINEERING, MECHANICAL$$b104 / 131 = 0.794$$c2015$$dQ4$$eT3
000060666 592__ $$a0.26$$b2015
000060666 593__ $$aMechanical Engineering$$c2015$$dQ3
000060666 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000060666 700__ $$0(orcid)0000-0001-8089-3133$$aCarrera Alegre, Marco$$uUniversidad de Zaragoza
000060666 700__ $$0(orcid)0000-0002-9007-1560$$aCastejón Herrer, Luis$$uUniversidad de Zaragoza
000060666 700__ $$aMartín Lafuente, Carlos
000060666 7102_ $$15004$$2530$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Ingen.e Infraestr.Transp.
000060666 7102_ $$15004$$2545$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Ingeniería Mecánica
000060666 7102_ $$15004$$2X$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cProy. investigacion HJA
000060666 773__ $$g7, 2 (2015), 483028 [19 pp.]$$pAdv. Mech. Eng.$$tAdvances in Mechanical Engineering$$x1687-8132
000060666 8564_ $$s1567106$$uhttps://zaguan.unizar.es/record/60666/files/texto_completo.pdf$$yVersión publicada
000060666 8564_ $$s101097$$uhttps://zaguan.unizar.es/record/60666/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000060666 909CO $$ooai:zaguan.unizar.es:60666$$particulos$$pdriver
000060666 951__ $$a2023-10-23-12:20:41
000060666 980__ $$aARTICLE