Background rejection in NEXT using deep neural networks

Renner, J. ; Farbin, A. ; Vidal, J.M. ; Benlloch-Rodríguez, J.M. ; Botas, A. ; Ferrario, P. ; Gómez-Cadenas, J.J. ; Álvarez, V. ; Azevedo, C.D.R. ; Borges, F.I.G. ; Cárcel, S. ; Carrión, J.V. ; Cebrián, S. (Universidad de Zaragoza) ; Cervera, A. ; Conde, C.A.N. ; Díaz, J. ; Diesburg, M. ; Esteve, R. ; Fernandes, L.M.P. ; Ferreira, A.L. ; Freitas, E.D.C. ; Goldschmidt, A. ; González-Díaz, D. ; Gutiérrez, R.M. ; Hauptman, J. ; Henriques, C.A.O. ; Morata, J.A.H. ; Herrero, V. ; Jones, B. ; Labarga, L. ; Laing, A. ; Lebrun, P. ; Liubarsky, I. ; López-March, N. ; Lorca, D. ; Losada, M. ; Martín-Albo, J. ; Martínez-Lema, G. ; Martínez, A. ; Monrabal, F. ; Monteiro, C.M.B. ; Mora, F.J. ; Moutinho, L.M. ; Nebot-Guinot, M. ; Novella, P. ; Nygren, D. ; Palmeiro, B. ; Para, A. ; Pérez, J. ; Querol, M. ; Ripoll, L. ; Rodríguez, J. ; Santos, F.P. ; Dos Santos, J.M.F. ; Serra, L. ; Shuman, D. ; Simón, A. ; Sofka, C. ; Sorel, M. ; Toledo, J.F. ; Torrent, J. ; Tsamalaidze, Z. ; Veloso, J.F.C.A. ; White, J. ; Webb, R. ; Yahlali, N. ; Yepes-Ramírez, H.

Financiación FP7 / Fp7 Funds
Resumen: We investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.
Idioma: Inglés
DOI: 10.1088/1748-0221/12/01/T01004
Año: 2017
Publicado en: Journal of Instrumentation 12, 1 (2017), [21 pp]
ISSN: 1748-0221

Factor impacto JCR: 1.258 (2017)
Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 44 / 61 = 0.721 (2017) - Q3 - T3
Factor impacto SCIMAGO: 0.642 - Mathematical Physics (Q2) - Instrumentation (Q2)

Financiación: info:eu-repo/grantAgreement/EC/FP7/339787/EU/Towards the NEXT generation of bb0nu experimets/NEXT
Financiación: info:eu-repo/grantAgreement/ES/MINECO/Consolider-Ingenio-2010/CSD2008-00037
Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2014-53371-C04
Tipo y forma: Article (Published version)
Área (Departamento): Área Física Atóm.Molec.y Nucl. (Dpto. Física Teórica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

Exportado de SIDERAL (2019-07-09-11:42:22)

Este artículo se encuentra en las siguientes colecciones:

 Record created 2017-03-21, last modified 2019-07-09

Versión publicada:
Rate this document:

Rate this document:
(Not yet reviewed)