000060926 001__ 60926
000060926 005__ 20200221144310.0
000060926 0247_ $$2doi$$a10.1002/cphc.201600077
000060926 0248_ $$2sideral$$a94935
000060926 037__ $$aART-2016-94935
000060926 041__ $$aeng
000060926 100__ $$0(orcid)0000-0002-9253-7926$$aCastro, A.$$uUniversidad de Zaragoza
000060926 245__ $$aTheoretical Shaping of Femtosecond Laser Pulses for Molecular Photodissociation with Control Techniques Based on Ehrenfest's Dynamics and Time-Dependent Density Functional Theory
000060926 260__ $$c2016
000060926 5060_ $$aAccess copy available to the general public$$fUnrestricted
000060926 5203_ $$aThe combination of nonadiabatic Ehrenfest-path molecular dynamics (EMD) based on time-dependent density functional theory (TDDFT) and quantum optimal control formalism (QOCT) was used to optimize the shape of ultra-short laser pulses to achieve photodissociation of a hydrogen molecule and the trihydrogen cation H3 +. This work completes a previous one A. Castro, ChemPhysChem, 2013, 14, 1488-1495], in which the same objective was achieved by demonstrating the combination of QOCT and TDDFT for many-electron systems on static nuclear potentials. The optimization model, therefore, did not include the nuclear movement and the obtained dissociation mechanism could only be sequential: fast laser-assisted electronic excitation to nonbonding states (during which the nuclei are considered to be static), followed by field-free dissociation. Here, in contrast, the optimization was performed with the QOCT constructed on top of the full dynamic model comprised of both electrons and nuclei, as described within EMD based on TDDFT. This is the first numerical demonstration of an optimal control formalism for a hybrid quantum-classical model, that is, a molecular dynamics method.
000060926 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/FIS2013-46159-C2-2-P
000060926 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000060926 590__ $$a3.075$$b2016
000060926 591__ $$aPHYSICS, ATOMIC, MOLECULAR & CHEMICAL$$b8 / 35 = 0.229$$c2016$$dQ1$$eT1
000060926 591__ $$aCHEMISTRY, PHYSICAL$$b54 / 145 = 0.372$$c2016$$dQ2$$eT2
000060926 592__ $$a1.284$$b2016
000060926 593__ $$aPhysical and Theoretical Chemistry$$c2016$$dQ1
000060926 593__ $$aAtomic and Molecular Physics, and Optics$$c2016$$dQ1
000060926 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000060926 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000060926 773__ $$g17, 11 (2016), 1601-1607$$pChemphyschem$$tCHEMPHYSCHEM$$x1439-4235
000060926 8564_ $$s343137$$uhttps://zaguan.unizar.es/record/60926/files/texto_completo.pdf$$yPostprint
000060926 8564_ $$s58587$$uhttps://zaguan.unizar.es/record/60926/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000060926 909CO $$ooai:zaguan.unizar.es:60926$$particulos$$pdriver
000060926 951__ $$a2020-02-21-13:36:36
000060926 980__ $$aARTICLE