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Reconocimiento de objetos en Android para aplicaciones de asistencia

Resumen

La capacidad de identificar y reconocer objetos es una tarea que la percepcion del ser humano
realiza sin problemas y de manera rutinaria. Sin embargo, crear un sistema informético capaz de
igualar estas capacidades sigue siendo uno de los principales campos de investigacion dentro de la
disciplina de la visién por computador, VC. Esta razén unida a las posibilidades de ayuda que la
VC puede ofrecer a personas con necesidades especiales han sido los acicates que han dado lugar a
este trabajo. Ademads, en los ultimos anos los smartphone han experimentado una gran evolucién en
términos de potencia, haciendo que cada persona tenga un “mini-ordenador” en el bolsillo. Por ello,
se ha enfocado el trabajo hacia esta plataforma y se han evaluado distintos algoritmos reconocedores
para implementarlos en un pequeno prototipo de asistencia al usuario que, en tiempo real, sea capaz

de identificar qué objetos que aparezcan en la camara y listar los alérgenos que contiene.

Se han investigado dos tipos de algoritmos distintos para el reconocimiento de los objetos: uno
basado en local features, que puede ser ejecutado tanto en local como en modo cliente-servidor, y
otro basado en técnicas mas novedosas, concretamente Deep Learning, que debido a que es mas

exigente en términos de recursos solo podra ser ejecutado en modo cliente-servidor.

Como punto de partida, se ha creado una base de datos de objetos propios de un supermercado.
A continuacién, se ha implementado un reconocedor de objetos basado en local features, y se ha
investigado y evaluado qué algoritmos de reconocimiento funcionaban mejor con esa base de datos.
Una vez elegido el que se ha considerado més éptimo, se ha implementado ese mismo reconocedor
en modo cliente-servidor. Después, se ha implementado el reconocedor basado en Deep Learning,
y se han evaluado sus resultados. Por ltimo, se han comparado el rendimiento y los resultados
obtenidos entre las distintas técnicas y arquitecturas, y se han extraido conclusiones acerca de ellos:

ventajas, desventajas de cada uno y posibles mejoras.

Finalmente, se ha desarrollado un pequetio prototipo, consistente en una aplicacion de asistencia
cuya funcién es reconocer los objetos de la base de datos creada a través de la camara del dispositivo

e indicar la lista de alérgenos que contienen, todo ello en tiempo real.
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1. Introduccion

Este primer capitulo describe el contexto en el que se desarrolla el trabajo, asi como la motivacién
del mismo. A continuacién, se habla del trabajo relacionado con este tema. Después, se hace una
breve introduccién a los objetivos de alto nivel del trabajo y a las tecnologias utilizadas, finalizando

con la explicacion de la estructura que presenta el resto de la memoria.

1.1. Contexto y motivacion

La visién por computador es una rama de la inteligencia artificial que se basa en métodos por
los cuales los computadores puedan adquirir, procesar, analizar y entender imagenes digitales del
mundo real para producir informacién. Mientras que la inteligencia artificial busca que las maquinas
imiten las formas de pensar de la mente humana (aprendizaje, resolucién de problemas...), la visién
por computador trata de reproducir en éstas la manera que tienen los seres humanos de, mediante

el sentido de la vista, comprender el mundo real.

Durante los iltimos afios y gracias a las nuevas tecnologias, la vision por computador ha experi-
mentado un gran auge y se han desarrollado numerosas aplicaciones. Una de las principales, y en la

que se va a centrar este trabajo, es el reconocimiento de objetos.

Actualmente, existen multitud de reconocedores de objetos en nuestra vida cotidiana, como por
ejemplo los lectores de matriculas, reconocedores de rostros, clasificadores de objetos, aplicaciones de
asistencia... Ademas, el hecho de que la inmensa mayoria de personas posee un smartphone o tablet
con Internet, unido a la evolucién que han experimentado estos aparatos en cuestiéon de prestaciones,

hacen que puedan ejecutar reconocedores sin necesidad de ningin dispositivo adicional.

Es precisamente en este marco donde se enmarca este sistema. Se han investigado, implementado y
evaluado distintos algoritmos y arquitecturas para el reconocimiento de objetos, y se ha desarrollado
un pequeno prototipo de asistencia al usuario. Este prototipo le permitira reconocer una serie de
objetos propios de un supermercado y obtener la lista de alérgenos que lo componen, todo esto en

tiempo real.

1.2. Trabajo relacionado

Muchos investigadores estan intentando optimizar los algoritmos de reconocimiento, en la mayoria
de los casos, para poder ejecutarlos desde dispositivos méviles y en tiempo real. Algunas investiga-
ciones se centran en ejecutar todos los célculos en el dispositivo, como por ejemplo [I], que consiste
en una aplicaciéon mévil de guia de museos mediante reconocimiento de objetos. Otras, sin embargo,
implementan un sistema distribuido, de tal manera que los célculos se realicen entre el cliente y el

servidor [2].

Este proyecto se centra en el reconocimiento de objetos para asistencia al usuario, y se han



comparado ambos enfoques, tanto solo cliente, como cliente/servidor, para analizar cual es la

mejor aproximacién en términos de precision y rendimiento. Relacionado con este tema esta esta

publicacién [3], donde hablan del desafio que supone reconocer productos de un supermercado

debido a que las imédgenes tomadas ahi tienen ruido mientras que las de la base de datos obtenidas

de Internet son limpias e incluso a veces generadas por ordenador.

En el dominio de la asistencia a personas con dificultades visuales existen ya algunas aplicaciones

en el mercado. A continuacion, se detallardan algunas de ellas:

1.3.

= OrCam E OrCam es una camara que se coloca en la montura de las gafas y permite reconocer

objetos y textos. Mediante un gesto de pulsacién, el usuario indica el objeto a reconocer,
y OrCam le comunica por voz, gracias a los auriculares que incorpora, el resultado del

reconocimiento.

Medicamento Accesible Plus ﬂ Esta aplicacién Android (también disponible en iOS)
permite, entre otras cosas, reconocer el cédigo de barras de cualquier medicamento y leer su

informacién en voz alta al usuario, lo cual es muy 1util para personas con problemas de vista.

KNFB Reader ﬁ Aplicacién disponible para iOS y Android que permite reconocer textos
en multitud de formatos y lugares gracias a algoritmos de visiéon por computador, permitiendo
reproducirlos por voz. Al igual que la anterior, también estd orientada a personas con déficit

visual.

Objetivos

Los objetivos generales de este proyecto son:

Crear una pequena base de datos de objetos tipicos de supermercado y de los alérgenos que

contienen.

Estudiar y evaluar distintos tipos de algoritmos de reconocimiento de objetos basado en Local
Features utilizando solo la plataforma Android, y elegir el méas preciso y rapido posible con

respecto a la base de datos creada.

Implementar el algoritmo elegido anteriormente tanto para ser ejecutado en local, como en

arquitectura cliente/servidor, y evaluar el rendimiento de ambas arquitecturas.

Estudiar e implementar otro algoritmo de reconocimiento de objetos més exigente en términos

de recursos, basado en Deep Learning, e implementarlo en arquitectura cliente/servidor.

'P4gina oficial: http://www.orcam.com/

2Enlace a la aplicacién en Google Play: https://play.google.com/store/apps/details?id=com.technosite|
medicamentoaccesible&hl=es/

“P4gina oficial: http://www.knfbreader.com/
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= Evaluar y comparar el rendimiento y resultado de los distintos algoritmos y arquitecturas

utilizados, analizando las ventajas, desventajas y resultados de cada uno.

= Creacién de un prototipo que permita reconocer objetos de la base de datos mencionada en

tiempo real, y proporcione al usuario informacién acerca de los alérgenos que estos contienen.

1.4. Distribucion temporal de las tareas

Entorno- Familiarizacién ento{no ‘

Prototipo Diseno e implementacion prototipo

Creacioh reconocedor Local Features
Reconocedor

Creacion reconocedor Deep Learning

Creacion base de datos
Arquitectura
Implementacién cliente - servidor

Creacion datos de test

Experimentos
Evaluar reconocedores

Documentacion Documentacion de métodos y experimentos evaluados

Septiembre Octubre Noviembre

Figura 1: Diagrama de Gantt de las tareas realizadas

1.5. Tecnologias utilizadas

Para llevar a cabo la implementacion de los objetivos citados anteriormente, es necesario el
uso de varias herramientas y tecnologfas. En la tabla[I] de esta seccién aparecen enumeradas las
diferentes herramientas y tecnologias empleadas durante el desarrollo del sistema. La tabla se
encuentra agrupada por categorias, mostrandose en primer lugar las tecnologias relacionadas con la
implementacién del sistema en local. A continuacién, se especifican las tecnologias utilizadas para la
comunicacién entre el cliente y el servidor. Después, se muestran las herramientas empleadas para
implementar el reconocedor mediante Deep Learning. Esto va seguido por las utilidades usadas para
procesar los resultados en bruto obtenidos en el sistema. Por tltimo, aparecen las herramientas de

desarrollo y las de ofimatica y documentacién, que sirven de apoyo para la realizaciéon del proyecto.



Categoria Tecnologias y Herramientas

Android
., . CrystaX’s Android NDK https://wuw.crystax.net/en/android/ndk
Implementacién del sistema
CH+
OpenCV http://opencv.org/
C : C++
Comunicacién Cliente-Servidor
Protocol Buffers https://developers.google.com/protocol-buffers/
Reconocimiento Deep Learning Calffe [4 http://caffe.berkeleyvision.org/
Procesamiento de resultados Python

Eclipse IDE
Android Studio
GitHub

Google Drive

Herramientas de desarrollo

Sublime Text
Ofimética y documentacién LaTeX https://www.latex-project.org/

Overleaf https://www.overleaf.com/

Tabla 1: Tecnologias y herramientas utilizadas en el proyecto

1.6. Estructura de la memoria

La memoria del trabajo se compone de seis capitulos y seis anexos, que se especifican a continuacion:

= Capitulo 1: Introduccién. Se hace una introduccion general del proyecto, mostrando el
contexto y la motivacion del mismo, el trabajo relacionado, los objetivos del proyecto y las

tecnologias utilizadas.

= Capitulo 2: Reconocimiento de objetos. Se abordan los aspectos tedricos de las dos técnicas
utilizadas para el reconocimiento de objetos en este proyecto, que son el reconocimiento basado

en Deep Learning y el reconocimiento basado en local features.

= Capitulo 3: Diseno del sistema. Se describe el sistema realizado durante el proyecto, lo que

incluye también detalles de su implementacién y de las distintas arquitecturas utilizadas.

= Capitulo 4: Implementacién del prototipo. Se comenta de forma mas general el prototipo

creado, al igual que se hace una descripcion de su mapa de navegacion y sus pantallas.

= Capitulo 5: Experimentos y resultados. Se explican los experimentos llevados a cabo, las

optimizaciones realizadas, y los resultados obtenidos para cada prueba.

= Capitulo 6: Conclusiones y trabajo futuro. Se muestran las conclusiones obtenidas de la
realizacién del proyecto, el trabajo que se puede llevar a cabo para mejorar y continuar el

sistema y la opinién personal del estudiante.

s Anexo A: Manual de instalacion del sistema. Se dan instrucciones de cémo instalar el sistema

(tanto la aplicacién como el servidor) asi como de sus requisitos.

4
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Anexo B: Estructura de la base de datos. Se explica como esta estructurada la base de datos

utilizada por el sistema.

Anexo C: Diagrama de clases del sistema: Se incluye un diagrama de clases del sistema

implementado.

Anexo D: Descriptor/Detector ORB. Se detallan las particularidades de este algoritmo de

extraccion y descripcién de puntos de interés.

Anexo E: Procesamiento en Redes neuronales convolucionales (CNN). Se explica més en

detalle cémo funcionan las redes neuronales convolucionales.

Anexo F: Resultados adicionales de los experimentos. Se muestran todos los resultados de

las pruebas realizadas a lo largo del proyecto.



2. Reconocimiento de objetos

En esta seccion se abordaran los aspectos tedricos de las dos técnicas que se han utilizado para
reconocer objetos en este proyecto: el reconocimiento mediante Local features y el reconocimiento
mediante Global features, haciendo uso de Deep Learning. En ambos casos, existird una base de datos
con imagenes de objetos y su informacién correspondiente. El objetivo del sistema de reconocimiento
es decir si la imagen tomada por el usuario corresponde con alguno de los objetos de la base de

datos.

2.1. Reconocimiento mediante Local Features

Una local feature, o caracteristica de interés local, es un patrén de la imagen que debido a una
serie de cualidades, puede ser utilizada como punto de referencia de esa imagen. En la publicacién
Local Invariant Feature Detectors: A Survey [5] se define como “Un patrén de la imagen que difiere
de sus vecinos inmediatos”. La principal caracteristica de una buena feature es que sea unica, y por
lo tanto, no pueda confundirse con otras features. Hay muchas propuestas para obtener local features
en la literatura, que pueden estar basadas en contornos, esquinas, regiones... En este trabajo, nos
hemos centrado en el uso de local features que consisten en un punto de interés descrito por el
contenido de una zona alrededor de dicho punto. Uno de los primeros detectores/descriptores de la
literatura que supuso grandes avances en sistemas de reconocimiento basados en local features es el
algoritmo de SIFT [§].

Un sistema de reconocimiento de objetos utilizando puntos de interés consiste en detectar dichos
puntos en una imagen y compararlas con las de las imagenes de la base de datos. El objeto de la base
de datos cuyos puntos de interés presenten mas similitud con los de imagen dada, sera identificado
como el que aparece en esa imagen. Este sistema de deteccién y comparacion de puntos no solo
se utiliza para el reconocimiento de imégenes, sino que también se emplea para, por ejemplo, la
creacién de imdgenes panoramicas [6], navegacién de robots [7]... Podemos dividir el reconocimiento

basado en puntos de interés en cuatro fases:

= Deteccion de puntos de interés: Consiste en identificar aquellos puntos que cumplen
la caracteristica nombrada anteriormente. Existen numerosas técnicas y algoritmos para
detectarlos, como por ejemplo el detector FAST [I0] u ORB [II]. Sin embargo, un buen

detector de local features deberia cumplir todas o la mayoria de estas caracteristicas:
e Robusto: que sea independiente de las transformaciones geométricas (escala, rotacion...)
y fotométricas (brillo, exposicién...).
e Preciso: que sea preciso a la hora de localizar los puntos de interés.
e Eficiente: que sea rapido, sobre todo orientado a las aplicaciones en tiempo real.

e Repetible: que se obtengan los mismos puntos cada vez que se ejecute.



En la figura [2| se pueden observar distintos puntos de interés extraidos de una imagen.

Figura 2: Deteccion de las local features de una imagen

= Descripcién de puntos de interés: Una vez obtenidos los puntos, el siguiente paso es
obtener el descriptor de cada uno de ellos. Existen multitud de algoritmos y soluciones para
ello, pero la idea en todos es obtener de cada feature, la informacién de la region vecina de
ella, informacién que deberd ser invariante de las transformaciones de la imagen. Podemos
agrupar los descriptores de puntos de interés més extendidos en dos tipos, segin el tipo de dato
utilizado en su descripcién: descriptores binarios o no binarios. Los primeros son generalmente
mas eficientes, pero menos precisos que los segundos. Algunos de los descriptores no binarios
mas conocidos son por ejemplo SIFT [§] y SURF [9], que utilizan vectores de valores reales
como descriptores. Ejemplos de descriptores binarios, que utilizan un vector de valores binarios
como descriptor, son ORB [11] o BRISK [12]. En el anexo [D|se explicarda ORB en detalle, ya

que es el que se utilizara en el proyecto.

En la figura @ se pueden observar las local features detectadas en una imagen, y el descriptor
de una de ellas, obtenido mediante el algoritmo SIFT [8], que estd basado en los gradientes de

la imagen.

4Fuente imagen:http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT~
Features-with-0


http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O
http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O

3.46
6.84
0.58

7|5 4.39

Representacion

descriptor Descriptor

Figura 3: A la izquierda, los puntos de interés detectados en una imagen de ejemplo. En el centro,
una rejilla que representa los valores y direcciones del gradiente del nivel de gris en cada pixel
alrededor del punto de interés descrito. A su derecha, la representacién del descriptor del punto, que
representa la distribucién de los valores del gradiente alrededor del punto, y por ultimo el vector de
numeros reales que codifica este descriptor.

= Calculo de correspondencias entre puntos de interés: Una vez obtenidos los descrip-
tores de la imagen, el tltimo paso es compararlos con los descriptores de la base de datos.
La idea general es establecer una funcién de similitud que a partir de dos descriptores, nos

indique su nivel de semejanza.

Existen varios algoritmos para identificar correspondencias entre descriptores, es decir, buscar
el més parecido o vecino mas cercano (nearest neighbour), y se distinguen principalmente por
el tipo de distancia o similitud para comparar dos descriptores. Por ejemplo, para descriptores
no binarios se suele utilizar la distancia Euclidea, mientras que trabajando con descriptores

binarios se suele utilizar la distancia Hamming:

n—1

d"P(,5) = lix # il (1)

k=0

Donde d4P es la distancia Hamming entre los cédigos binarios 4, j; k es el indice de bit,

entre 0 y el nimero de bits (n), o longitud del descriptor.

Para mejorar los resultados, se puede establecer un umbral o threshold que indique el nivel
minimo de semejanza entre correspondencias. Si una correspondencia no llega a ese nivel, se
descarta. Otra opcién mas robusta y extendida, que es la utilizada en este trabajo, consiste
en el uso del ratio entre los dos descriptores méas parecidos encontrados. Si la distancia al

mas cercano es menor que la distancia al segundo mas cercano, multiplicada por un factor



reductor, se da la correspondencia como buena. En caso contrario se descarta. El algoritmo es

/* Indicador de si la correspondencia es buena
bool accept;
si dnny < dnns *x 0,7 entonces
‘ accept = true; ;
en otro caso
‘ accept = false ;

devolver accept;

*/

Algoritmo 1: Algoritmo de correspondencias segun el ratio entre los dos vecinos méas cercanos

donde dnn; es la distancia al descriptor mas cercano, y dnnsy es la distancia al segundo

descriptor més cercano.

Para realizar comparaciones entre muchos puntos de muchas imégenes, se suelen utilizar
técnicas aproximadas, basadas en el uso de estructuras de datos que permitan una bisqueda
maés eficiente, como pueden ser arboles. Por ejemplo FLANN [I3] es un método muy extendido
para conseguir correspondencias entre features de manera eficiente. Sin embargo, debido a que
el nimero de objetos del proyecto es muy pequeno, no se ha considerado necesario implementar

este método.

Eleccion del objeto mas parecido: Una vez comparados todos los descriptores de los puntos
de interés, la imagen de la base de datos cuyo nivel de semejanza respecto a la imagen enviada
por el usuario sea el mas alto indicara el nombre del objeto. Esta similitud entre imagenes
puede ser sencillamente el niimero de correspondencias de puntos de interés buenas encontradas,
como se utilizara en este trabajo. Sin embargo hay otras técnicas mas sofisticadas que tienen
en cuenta la distribucion espacial de los puntos de interés, o co-ocurrencias de los mismos
[T4, [15]. No se ha visto necesario implementar ninguno de estos métodos ya que las imagenes
del modelo siempre eran limpias y no era parte central del proyecto conseguir un algoritmo de
correspondencias robusto, sino una manera rapida de conseguir una similitud. También es
posible aplicar un filtro para que el reconocedor sea mas robusto. Por ejemplo, calculando
restricciones geométricas entre dos vistas (como la homografia o la matriz fundamental [16])
mediante el algoritmo RANSAC [I7]. Este algoritmo consigue eliminar los valores atipicos
de un modelo, y seria posible filtrar aquellas correspondencias que no se ajustasen a la
transformacién geométrica. Sin embargo, debido al coste computacional que esto requiere, y a
que el reconocedor esta pensado para ejecutarse en tiempo real, se ha decidido no implementar

este filtro en este primer prototipo.

En la figura [4] se pueden observar las correspondencias entre un mismo objeto en dos imdgenes

distintas.



Figura 4: Puntos de interés y correspondencias buenas entre dos imégenes.

Las ventajas que tiene el empleo de local features, en concreto usando descriptores binarios, para

el reconocimiento de objetos son:

= Robustez a oclusiones, debido a que mientras haya puntos de interés visibles, el reconocedor

podrd hacer correspondencias con los objetos de la base de datos (que son imdgenes limpias).

= Son eficientes, pudiendo ser utilizados para reconocimiento en tiempo real. Esto es gracias al

uso de descriptores binarios.

2.2. Reconocimiento mediante Deep Learning

Se ha definido como Deep Learning [18§] (en espanol, aprendizaje profundo), a un tipo de aprendizaje

automdatico que cumple las siguientes caracteristicas:

= Utiliza una cascada de varias capas con unidades de procesamiento no lineales, en las que

cada capa sucesiva toma como entrada la salida de la anterior.

= Estd basado en el aprendizaje no supervisado de miltiples niveles de caracteristicas o repre-
sentaciones de los datos. Las caracteristicas de mas alto nivel derivan de las de mas bajo nivel,

formando una representaciéon jerarquica.

= Aprende multiples niveles de representaciones que corresponden a diferentes niveles de abs-

traccion, los cuales forman una jerarquia de conceptos.

En el caso de este proyecto, el método de reconocimiento de objetos mediante Deep Learning se

basa en el uso de redes neuronales denominadas Redes neuronales convolucionales (CNN, de sus
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siglas en inglés). El sistema de reconocimiento basado en estas técnicas tienes dos fases: extraccién

de features de una imagen, y clasificacién utilizando esas features.

En el trabajo, se parte de una red CNN ya entrenada (dataset de entrenamiento: [20]) para
reconocimiento de un conjunto de objetos. Si se quisiera reconocer objetos de ese conjunto de
entrenamiento, la red daria directamente una clasificacién. En este caso, se quiere utilizar las features
aprendidas de manera no supervisada durante el entrenamiento de dicha red, para clasificar y
reconocer otro tipo de objetos. Este tipo de redes CNN recopilan mucha informacién general de
imagenes (més detalle de como funcionan estas redes en el anexo [El y se ha demostrado que las
features que aprenden se pueden transferir con buenos resultados a otras aplicaciones [4], simplemente
utilizando la salida de capas intermedias de la red como features de una imagen. Esta es la base del

sistema utilizada en el proyecto.

En mas detalle, el proceso seguido en este trabajo para reconocer un objeto utilizando una CNN

entrenada previamente como extractor de caracteristicas es:

1. Se obtiene como feature de la imagen el resultado de una capa intermedia (fc7 de la red
publicada por AlexNet [20]) de las neuronas de clasificacidn, la cual consiste en 4096 valores
floats que corresponden con la respuesta combinada de la imagen de entrada a las funciones

evaluadas por todas las capas de la red hasta llegar a dicha capa intermedia.
2. Se obtiene el mismo tipo de feature para la imagen enviada por el usuario.

3. Se compara el vector obtenido de esa imagen, con todos los vectores obtenidos en las imédgenes
de la base de datos y, siguiendo el razonamiento de que imagenes similares tendran valores

similares, se elige la mds parecida (mediante distancia euclidea). El algoritmo seria el siguiente

float min_distance = oc;
int index = 0;
mientras index < numero(imagenesBD) hacer
float actual_distance = distancia_euclidea( escena, imagenesBD[index] );
si actual_distance < min_distance entonces
min_distance = actual_distance;
fin
index—++;

fin

devolver index;
Algoritmo 2: Algoritmo para la obtencién del objeto mas parecido mediante distancia euclidea

donde escena son los descriptores de la imagen enviada por el usuario, numero(imagenesBD)
devuelve el nimero de imégenes que contiene la base de datos e imagenesBD[index] se

corresponde al descriptor de la imagen de la base de datos con indice indez.

A diferencia del reconocimiento de objetos basado en local features, podemos considerar estas

caracteristicas como global features, ya que son descriptores de toda la imagen, no de una zona o
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punto concreto. Una de las desventajas de este tipo de descripcion de imagen es que, pese a que
resulta mas compacto (un descriptor por imagen solamente), también resulta mas sensible a la

oclusién y al ruido de fondo.

Otra desventaja es que requieren de una maquina potente capaz de cargar la red y obtener el
resultado, razén por la cual actualmente es prohibitivo para smartphones y tablets. Actualmente, es
motivo de investigacion de los principales fabricantes el como poder ejecutar Deep Learning en un
smartphone o tablet. Este tipo de algoritmos de reconocimiento también posee ciertas ventajas: por
ejemplo, permite trabajar por lotes, es decir, procesar varias imagenes al mismo tiempo, sin que
esto afecte al rendimiento o también permite aprovechar la GPU de las tarjetas graficas, lo que

supone un plus en rapidez.
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3. Diseno del sistema

En este capitulo se hablard del disefio del sistema. Primeramente se mostrarda un pequeno esquema,
del disenio del sistema. A continuacién, se comentara la base de datos y después la implementacién
del resto del sistema, lo cual incluye la descripcién de las distintas arquitecturas y de los algoritmos

de reconocimiento.

3.1. Diseno de la aplicacién

En la figura [5| se muestra un diagrama simplificado del sistema. Esto incluye las dos posibles

arquitecturas: local, y cliente-servidor.

Base de datos

||| Parte cl i
%}' Android ase na Iva—l_

Cliente Reconocedor
Local
Base de datos
Parte
] . Clase nativa— Network

/’%f Android l
Cliente Reconocedor
Local Servidor

Figura 5: Representacion simplificada del sistema con las arquitecturas local y cliente/servidor.

3.2. Descripcion de la base de datos

La base de datos final consta de 50 tipos de objetos. Cada objeto estd compuesto por su nombre,
que servird de identificador, una lista de imagenes del objeto (representando distintas vistas) con su
nombre de vista (arriba, abajo, cara frontal...) y una lista de alérgenos que lo componen, en caso de
haber alguno. Ademas, incluirdn un campo extra, que tiene inicamente fines experimentales y no
influye en el funcionamiento del prototipo, y es un indicador de si el objeto es “ficil” o “dificil” de

reconocer. En la figura [6] se puede observar un diagrama representando a un objeto.
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nombre

imagenesVistas Objeto }w

Figura 6: Representaciéon de cada objeto de la base de datos.

En total, en la base de datos estan almacenadas estas 54 imégenes de resoluciones variables y
obtenidas de diversas paginas de Internet. Esto se ha hecho asi para no poblar la base de datos con
fotos de la misma cdmara con lo que se grabard, haciendo mas dificil (y més real) el reconocimiento.
La dificultad anadida que plantea el tomar imagenes de Internet es que son en su mayoria imagenes

limpias, e incluso a veces generadas por ordenador. La figura [7] muestra todas las imagenes de la
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cafe_01.jpg champu_01.jpg espuma_01.jpg fideos_01.jpg tonica_01.jpg ultima_01.jpg ambar_01.jpg ariel_01.jpg ariel_02.png celta_01.jpg
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cereales01.jpg heinz_01.jpg compeed_01.,jpg betadine_01.jpg emulsion_01.jpg enjuague_01.jpg frenadol_01.jpg frenadol_02.png galletas_01.jpg aceitunas_01.jpg
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cicaderma_01.jpg licor43_01.jpg manocao_01.jpg nescafe_01.jpg nocilla_01.jpg orlando_01.jpg peroxiben_01.jpg asturiana01.jpg chromeicastim.jpg esparragos_01.jpg

Lo

levadura_01.jpg tortitas_01.jpg cafe,hac.endado, aceite,c.orporal,
01.jpg 01.jpg

Figura 7: Imagenes que componen la base de datos.

La lista de los posibles alérgenos es la siguiente:

= Altramuces = Frutos secos = Mostaza
= Apio = Huevos
= Pescado
s Cacahuetes s Leche
. = Sésamo
= Gluten = Marisco
= Diéxido de azufre = Moluscos = Soja
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La base de datos ha sido programada en C++, cargando los ficheros en memoria al inicio de la

aplicacion.

3.3. Implementacién de la aplicacion
3.3.1. Descripcién general

La aplicacién estd disenada para Android mezclando lenguaje Java (interfaz y acceso a la cidmara
del movil) y C++ (procesamiento de la imagen y base de datos). El objetivo de hacerlo asi es
desacoplar ambas partes para poder reutilizar facilmente el cédigo correspondiente al procesamiento
de la imagen en cualquier otro dispositivo (PC, iOS...) sin tener que modificarlo apenas y poder
optimizar esta parte. OpenCV dispone de una libreria escrita en Java para Android, pero es menos

eficiente y posee menos caracteristicas y funciones que la escrita en C++.

El sistema estard compuesto por varias clases:

= Clase nativa: Es la clase que sirve de puente entre el cédigo Java y el codigo C+—+.

= Reconocedor: Existen dos reconocedores, uno para reconocer objetos basado en local features
y otro basado en Deep Learning. Ambos poseeran la lista de objetos correspondientes al tipo
de reconocedor que son, y sus principales funciones seran cargar la lista de objetos de la base
de datos, extraer los descriptores de una imagen, y reconocer un objeto a partir de una imagen.

Ademas, estaran formados por:

e Reconocedor basado en local features: un detector y un descriptor de features, y

un matcher de descriptores.

e Reconocedor basado en Deep learning: un puntero a la red neuronal ya entrenada,

con la cual obtener los descriptores de la imagen.

= Objeto: Representa un objeto de la base de datos. Estd formado por su nombre, la lista
de nombres de las vistas que lo compone, la lista de alérgenos que contiene y si pertenece a
los objetos faciles de reconocer. Ademés, dependiendo del reconocedor al que correspondan,

estaran formados por:

e Objetos para reconocedor local features: una lista de puntos de interés de cada
una de sus vistas, una lista de matrices de descriptores para cada una de sus vistas, y

una lista con las cuatro esquinas de cada una de sus vistas.
e Objetos para reconocedor Deep Learning: una lista de descriptores para cada una

de sus vistas.

= Resultado: representa el resultado de aplicar cualquiera de los dos reconocedores a una
imagen. Esta compuesto por el nombre y la vista del objeto identificado, el nimero de puntos

de interés y de correspondencias que se han encontrado, la lista de alérgenos que contiene
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ese objeto y una lista con las esquinas del rectangulo de la imagen en la que se encuentra el

objeto (si lo hay).

= Network: utilizado para la comunicacién cliente servidor. Esta compuesto por un socket, la
direccién IP y el puerto del servidor, un indicador de si la conexién estd activa y otro del tipo
de reconocedor que estd ejecutando el servidor, ademés de funciones para enviar y recibir

datos del servidor. Més adelante, la subseccién [3.3.3] explica el funcionamiento de esta clase.

= Resultado serializado: clase generada por Google Protocol Buffer que representa un objeto

resultado serializado y listo para enviarse entre cliente y servidor.

Ademaés de estas clases, se ha creado otras clases auxiliares para medir tiempos, depurar el

programa, testear tipos de datos, y varias clases para ejecutar experimentos, que se detallaran en el
capitulo

En el anexo [C] se encuentra el diagrama de clases del sistema.

3.3.2. Descripciéon de los algoritmos de reconocimiento

Como ya se ha comentado anteriormente, se han implementado dos reconocedores, uno basado en
local features y el otro en Deep Learning. El funcionamiento de ambos es el mismo, lo inico que

cambia es la manera que tienen de reconocer objetos. El funcionamiento general seria el siguiente:
1. El reconocedor recibe una imagen.

2. El reconocedor extrae los descriptores de esa imagen.

3. El reconocedor compara los descriptores de la imagen recibida, con los descriptores de las
imagenes de la base de datos (que estaban cargados previamente). Aquella imagen de la
base cuya correspondencia sea més alta, indicara la vista del objeto al que mas se parece.
Si la correspondencia es lo suficientemente buena (se pasa un filtro), se marca como objeto

encontrado.

4. En caso de haber encontrado objeto, devuelve el resultado (nombre del objeto, nombre de la
vista del objeto, lista de alérgenos si los tiene). Si no lo ha encontrado, simplemente indica

que no hay objeto.

En el diagrama [§] se puede ver el funcionamiento de este proceso:
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Lista objetos

Extraer Comparar Devolver
descriptor descriptores resultado

Imagen enviada por usuario Resultado

Figura 8: Diagrama del funcionamiento general del reconocedor de objetos.

A continuacién, se ahondard en las diferencias de los dos reconocedores:

= Reconocedor basado en local features:

Este reconocedor tiene guardada la lista de objetos que, como se ha indicado antes, contiene
los puntos clave, descriptores y esquinas de cada una de las imdgenes que la componen. Cuando
recibe la imagen, mediante el algoritmo ORB [11] extrae sus puntos clave y descriptores. A
continuacién, calcula las correspondencias entre la imagen, y todas las imagenes de la base de
datos. Mediante la distancia de Hamming se obtienen las correspondencias entre puntos. Sin
embargo, para dar por valida una correspondencia, se aplica un filtro basado en el algoritmo
K-vecinos mds cercanos EL el cual ha sido anteriormente explicado . El objeto que mas
correspondencias buenas tenga con la imagen dada, sera reconocido como objeto de la imagen.
Sin embargo, ain se aplican dos filtros mas. El primero, establecer que haya mas de cuatro
correspondencias buenas. El segundo, calcular la matriz de homografia entre la imagen y el
objeto de la base de datos con mas correspondencias buenas. Esta matriz se calcula mediante
el algoritmo RANSAC [17], e indica la correspondencia entre cada punto de interés del objeto
de la base de datos con su correspondiente en la imagen. De esta manera, y a partir de las
esquinas de la imagen del objeto de la base de datos, se pueden obtener los vértices de un
poligono que rodee al objeto encontrado en la imagen. El filtro consiste en que si ese poligono
resultante no es convexo EL significa que las correspondencias eran malas, y por lo tanto no

existe correspondencia.

A continuacién, la figura [9] muestra un diagrama explicando el proceso:

SExplicacién  http://docs.opency.org/3.0-beta/doc/py_tutorials/py_ml/py_knn/py_knn_understanding/
py_knn_understanding.html
°Poligono convexo https://es.wikipedia.org/wiki/PolY,C3%ADgono_convexo
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Lista objetos

l

Comparar Devolver
descriptores resultado

Extraer
descriptor

Imagen enviada por el usuario Resultado

- . e

Correspondencias imagen usuario vs BD

Imagen tras obtener features

Figura 9: Diagrama del funcionamiento exclusivo del reconocedor de objetos basado en local features.

= Reconocedor basado en Deep learning:

Este reconocedor tiene guardado previamente la lista de objetos que, ademads de los parametros
comunes (nombre, etc), tienen un descriptor por imagen consistente en una lista de 4096
numeros reales, valores otorgados por la capa de neuronas fc7 de la red neuronal convolucional.
El proceso para reconocer un objeto mediante esta red es extraer ese mismo descriptor de la
imagen de entrada. Después, comparar ese vector con los vectores de descriptores de la base
de datos, buscando el mas parecido bajo el criterio de la distancia euclidea . Si la mejor
distancia obtenida es menor que cierto valor umbral, se dard por valida la correspondencia. A
diferencia del reconocedor de local features, este, al estar basado en global features, no puede
establecer una correspondencia entre puntos de una imagen con la de la base de datos. Por lo

tanto, con este reconocedor no se puede obtener el rectangulo rodeando al objeto.

A continuacién, la figura [10| muestra el diagrama explicando este proceso :
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Imagen enviada por el usuario Lista objetos Resultado

Extraer Comparar Devolver
descnpwr descriptores resultado

Red neuronal
convolucional

Matriz de caracteristicas

M, caract

Endrada M. carsct

-‘ ‘ | } H'”]i

Convoluciones Boasduiccbn dee muest| oo Red. midiestieo

Figura 10: Funcionamiento exclusivo del reconocedor de objetos basado en Deep Learning.

El coste en tiempo y la precision de cada uno se verd en la seccién [b| de experimentos y resultados

3.3.3. Descripcion de las arquitecturas

Como ya se ha dicho anteriormente, el reconocedor basado en Deep Learning no puede ser
ejecutado en el dispositivo Android, al ser muy exigente en términos de memoria y recursos. Es por
ello que se han implementado dos arquitecturas: modo local (local features), y modo cliente-servidor

(ambas).

» Modo local:

El modo local, como su propio nombre indica, no necesita conexién a Internet y es ejecutado
de manera local en el dispositivo Android. Para poder ejecutar este modo y que funcione
correctamente, es necesario que las imagenes de la base de datos se encuentren en el almace-
namiento interno del dispositivo. El funcionamiento esté explicado en la anterior subseccién
El coste en tiempo de este modo dependera en gran medida de la capacidad de calculo

del smartphone.

A continuacién, un diagrama mostrando su funcionamiento
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Usuario envia imagen

Reconocedor

Reconocedor devuelve resultado
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Figura 11: Funcionamiento del reconocedor de objetos en modo local.

» Modo cliente-servidor:

En este modo, existe un servidor con los reconocedores de objetos, y el cliente se limita a
enviarle peticiones con las imagenes y a recibir el resultado. Con el fin de que la comunicacién
sea lo mas rapida posible, y siguiendo la idea de que el cédigo pueda ser exportado con facilidad
a otros sistemas operativos, se ha decidido implementar la conexiéon mediante sockets |Z| bajo
el protocolo TCP |§| en C++.

En modo remoto, el cliente se conecta con el servidor, que esta esperando conexiones. Cuando
el servidor recibe una conexién, crea un hilo para atender al cliente, y le comunica qué tipo de
reconocedor tiene en marcha. Una vez establecida la conexién, el cliente procede a enviarle
la imagen al servidor. Ese proceso consiste en comprimir la imagen para reducir la latencia,
enviar al servidor el tamano de la imagen para que sepa cuando dejar de esperar mas bytes, y
enviar la imagen. Si el servidor estd en modo Deep learning, antes de comprimir la imagen la
reduce al tamano 256x256, que es el tamano con el que trabaja ese algoritmo. Asi, disminuye
ain mas el tamano de la imagen, y, por lo tanto, el tiempo de comunicaciéon. Después, el
cliente espera respuesta del servidor. Mientras tanto, el servidor una vez haya recibido la
imagen, procede a descomprimirla y aplicar el reconocedor correspondiente sobre ella. Una vez
obtenga el resultado, mediante los Protocol Buffers serializa el resultado y junto a su tamano
en bytes se envia de vuelta al cliente. Al recibir el resultado, el cliente lo “deserializa” para
finalmente mostrarlo por pantalla. La conexion entre el cliente y el servidor se cierra cuando

éste vuelva a la pantalla inicial, minimice o cierre la aplicacion.

La ventaja de este modo es que es méas escalable, puesto que el servidor, que es el que realiza
los célculos, puede ser muchisimo méas potente que un dispositivo mévil. Ademés, de esta
manera el dispositivo no tiene por qué tener almacenada la base de datos en su interior, con el

consecuente ahorro de memoria. Sin embargo, un inconveniente es que la red ha de ser répida,

"Definicién de socket: https://es.wikipedia.org/wiki/Socket_de_Internet
8Protocolo TCP https://es.wikipedia.org/wiki/Transmission_Control_Protocol
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puesto que el coste de todo el proceso dependera en gran medida de su velocidad, al igual que

de la velocidad de reconocimiento del objeto.

A continuacién, el diagrama [12] explica todo este proceso:

Descomprimir

Enviar imagen Reconocedor
i

Procesar
resultado

Se=—=00 o

Figura 12: Reconocedor de objetos en modo cliente-servidor.

Por ultimo, se mostraran dos diagramas de secuencia. Uno referente a la conexién entre cliente

y servidor en la figura [13] y otro referente a un envio de imagen en la figura

Cliente Servidor

Conexion

L J

Envio modo
(LF o DL}

Y

Figura 13: Diagrama de secuencia correspondiente al establecimiento de conexién entre cliente y

servidor.
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Descomprimir
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f

Figura 14: Diagrama de secuencia correspondiente a la comunicacién para el procesamiento de una
imagen en modo cliente - servidor.

Los costes de tiempo entre una arquitectura y otra se mostraran en la seccién |5 (experimentos y

resultados).
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4. Implementacion del prototipo

En este capitulo se describe de una forma mas general el prototipo creado, asi como una descripciéon

de su mapa de navegacién y sus pantallas.

4.1. Descripcion del prototipo

El prototipo es muy simple. Consta de una pantalla con una barra en la cual se encuentra el
titulo, y cuatro botones para las cuatro acciones que se pueden realizar: ejecutar el reconocedor
local, ejecutar el reconocedor remoto, ejecutar el test local y ejecutar el test remoto. El tipo de

reconocedor remoto dependerd del servidor, serd éste el que le indique al cliente cudl estd usando.

Para funcionar, la aplicacién necesita permisos de lectura/escritura en el almacenamiento (para
cargar las imagenes y escribir los resultados de los test, respectivamente); cdmara (para acceder a
ella) e Internet. En versiones posteriores a Android 6.0, el usuario tendrd que confirmar manualmente

estos permisos. En caso contrario, no funcionara la aplicacién.

Cuando el usuario la inicia, se cargan los objetos en background. Mientras esto sucede, la pantalla

aparece en blanco.

En la figura [15] se puede observar la pantalla principal de la aplicacion.

Oowd4d0 2N

LOCAL REMOTO

Figura 15: Pantalla principal de la aplicacién.

Ambos botones del reconocedor, al pulsarlos llevan a la misma pantalla: la visualizacién de la
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cdmara. En ella aparecerd también el nombre del objeto reconocido (o si no ha reconocido ninguno,
el mensaje “No object”), la lista de alérgenos que contiene, y si el reconocedor estd basado en local
features, un recuadro rodeando al objeto. En caso de que no aparezca ningun tipo de texto, significa
que ha habido algtin error en la conexién con el servidor, y entonces simplemente se muestra la

imagen de camara en tiempo real.

En cuanto al modo reconocedor remoto, la conexién con el servidor se establece al pulsar el botén,

y es cerrada al volver a la pantalla principal, minimizar o cerrar la aplicacién.

En la figura [16] se puede observar la pantalla del reconocedor.

Figura 16: Pantalla del reconocedor de objetos.

Los botones referentes al test no producen ningin cambio visual. Lo que hacen es ejecutar la
evaluacién del reconocedor correspondiente mediante las imagenes de prueba (esto se comentard mas

en detalle en la seccion . Estos botones por lo tanto tienen funcién tnicamente para experimentar.

Se pens6 también en incluir un botén en la barra principal que llevase a una lista de alérgenos,
donde el usuario pudiera marcar a los que él es alérgico. Después, al reconocer el objeto, se resaltarian
en otro color los peligrosos para él. Sin embargo la limitacién en tiempo del proyecto hizo que se
decidiera priorizar la realizacién de méas experimentos antes que anadir funcionalidades adicionales

al prototipo.

En la imagen se puede observar el mapa de navegacién. Este indica que desde la pantalla
principal se puede ir a la pantalla del reconocedor, mediante los botones “Camara” y “Remoto”
(reconocedor local y remoto, respectivamente). Desde la pantalla del reconocedor, es posible volver

a la pantalla principal, pulsando el botén de “atras” que incluyen todos los méviles Android.
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Figura 17: Mapa de navegacion del prototipo.

25



5. Experimentos y resultados

En este capitulo se hablara la preparacién de la bateria de imagenes de test, los experimentos
que se han realizado en el sistema, las optimizaciones que se han llevado a cabo, y finalmente, los
resultados obtenidos. En esta secciéon no se incluyen todas las pruebas realizadas, sélo las mas
relevantes. El total de pruebas realizadas se encuentra en el Anexo [F] Las imagenes de los resultados
obtenidos aqui se encuentran en tamano reducido por razones estéticas. Estas imagenes también se

encontraran en el anexo a tamano completo.

5.1. Setup de la bateria de test

Primeramente, se ha creado una base de datos de imédgenes de test. Esta base de datos estd formada
por 150 iméagenes, 3 por objeto existente. Para ello, se han tomado fotos de dichos objetos en
distintas posiciones (una sosteniendo el objeto con la mano; otra con oclusién, sosteniendo el objeto
con la mano y tapandolo parcialmente con el dedo; y otra sobre una mesa de escritorio). En la

imagen un ejemplo de las tres fotos de test de un objeto.

aceite_botella01.jpg aceite_botella02.jpg aceite_botella03.jpg

Figura 18: Imagenes de test del objeto “aceite_botella”.

Estas imagenes son mas grandes que las tomadas por la camara durante el reconocimiento en
tiempo real (640x1137 vs 640x480). Sin embargo, para hacer las pruebas sirven, ya que sélo interesa

saber las diferencias de tiempos de las distintas optimizaciones.

Para la implementacién de los experimentos se han creado varias clases nombradas anteriormente

en el capitulo Estas clases son:

= TestImage: Representan un objeto de test. Este objeto estard formado por el nombre del
objeto que representa, el nombre del fichero de su imagen, la imagen en formato Mat en blanco

y negro, y la imagen en el mismo formato en color.

= Tester: Es la clase que se encarga de ejecutar los experimentos. Posee como atributo una lista
de objetos de test, con los cuales evaluaré la precisiéon de los algoritmos reconocedores. Su

funcionamiento consiste en:

1. Crear una matriz de confusién vacia ﬂ Una matriz de confusién es una herramienta que

permite evaluar el desempeno de los reconocedores. Cada fila representa un objeto real,

9Matriz de confusién: https://es.wikipedia.org/wiki/Matriz_de_confusi%C3%B3n
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y cada columna un objeto predicho. Para que una matriz de confusién indique que el
reconocedor es 100 % perfecto para los objetos de test, deberia tener sélo ocupada la

diagonal. Esto indicaria que para cada objeto, en efecto predice ese objeto y no otro.

2. Pasar cada imagen de test por el reconocedor correspondiente y obtener el resultado

predicho.

3. Comparar el nombre del objeto del resultado dado por el reconocedor con el resultado

real.

4. Colocar el resultado de la comparacién en el lugar correspondiente de la matriz. Si el

reconocedor ha acertado, éste deberia colocarse en la diagonal.

5. Repetira todo el proceso 5 iteraciones para obtener la media de esas 5 ejecuciones.

Ademads, se miden los tiempos que tarda el reconocedor en ejecutarse, y se escribe la matriz
de confusién, junto con otros datos relevantes (media de puntos, media de matches, tiempo...)
en 4 ficheros de texto. Uno de ellos contiene los datos de test de toda la bateria de iméagenes,

v los otros tres, las baterias de objetos sin oclusién, objetos con oclusién y objetos en la mesa.

» Utilidades: Esta clase contiene métodos utilizados a lo largo del proyecto de propdsito general,

como por ejemplo escribir por consola mensajes o convertir variables de distintos tipos a string.

= Timer: Clase utilizada para almacenar tiempos de ejecucion identificados por etiquetas. De
esta manera se pueden medir tiempos de determinadas partes del coédigo, y almacenarlas
independientemente del resto de tiempos guardados. También permite imprimir todos los
tiempos almacenados, con junto con el nimero de ejecuciones de esa parte de cédigo, la media

de tiempo para ese numero de ejecuciones y la desviacion estandar.

Ademaés, para poder interpretar ese resultado, se ha creado un script en Python, que a partir
de la salida generada por el Tester, genera tres imagenes: la matriz de confusién, la tabla de
verdaderos/falsos positivos - verdaderos/falsos negativos m y la tabla de precision, exactitud y
exhaustividad [[T] (recall).

5.2. Elecciéon del algoritmo de reconocimiento basado en local features

Una vez creada la bateria de imagenes de test, el siguiente paso fue investigar qué algoritmo de
reconocimiento basado en local features era més adecuado para el proyecto. Debido a su naturaleza
en tiempo real, el algoritmo debia cumplir esta caracteristica: rapido, pero preciso. Se eligieron
los siguientes descriptores para su evaluacién: ORB, BRISK y FAST (este dltimo al ser sélo detector,
se combiné con ORB y BRISK para obtener los descriptores). Ademas, de los descriptores ORB y
BRISK se probaron distintas configuraciones aparte de las configuraciones por defecto en OpenCV.

La razoén de escoger estos algoritmos tinicamente es que se trata de descriptores binarios, mucho

YExplicacién verdadero/falso positivo/negativo: https://es.wikipedia.org/wiki/Curva_ROC
HPrecisién y recall: https://es.wikipedia.org/wiki/Precisi¥%C3%B3n_y_exhaustividad
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mas rapidos que no binarios como SIFT o SURF. Informacién al respecto se puede encontrar en

numerosos articulos [I1] [21].

Por ltimo, para desarrollar los experimentos se han utilizado tres maquinas distintas:

= Smartphone OnePlus X: Sistema operativo Android. 3GB RAM. Procesador 2.3GHz

Qualcomm Snapdragon 801 (cuatro nicleos). [T_Z]

= Portatil MSI GE62 6QE: Sistema operativo Ubuntu 16.04. 8GB RAM. Procesador Intel
Core i7-6700HQ (3.50 GHz). Durante el proyecto, se referird a esta maquina como “portétil”.

[

» Servidor remoto: Sistema operativo CentOS 6.8. 64GB RAM. Procesador Intel Core i7-
6700K (4 GHz). 2x GPU Nvidia Titan X [131 CUDA instalado [1—_5} Durante el proyecto, se

referird a esta maquina como “servidor”.

Primero se ha evaluado ORB y BRISK. El resultado de la evaluacién entre ambos, ejecutados

el smartphone, se observa en la figura

10

leche_hacendado

tomate_carref

(a) ORB
Tiempo: 48.2 segs
Aciertos: 88
Fallos: 4
No encontrados: 58
Media puntos: 500

Media matches buenos: 27

(b) BRISK

Tiempo: 502.7 segs
Aciertos: 86

Fallos: 3

No encontrados: 61
Media puntos: 1855

Media matches buenos: 63

Figura 19: ORB vs BRISK (Android)

20nePlus X https://oneplus.net/es/x

13MSI GE62 6QE https://www.msi.com/Laptop/GE62-6QE-Apache-Pro-.html#hero-overview
MNvidia Titan X http://www.nvidia.es/graphics-cards/geforce/pascal/titan-x/
5CUDA http://www.nvidia.es/object/cuda-parallel-computing-es.html
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ORB obtiene mejor precisién que BRISK (88 aciertos vs 86) con un menor tiempo de ejecucién.
Esta gran diferencia de tiempo se debe a que BRISK encuentra muchos méas puntos, y como el
algoritmo para calcular las correspondencias es linear para el nimero de puntos, incrementa mucho
el tiempo de ejecucion. Para intentar bajar este tiempo, se han retocado los valores por defecto que
presenta el descriptor BRISK, aumentando un umbral relacionado con el algoritmo AGAST [22],
que tiene que ver con la deteccién de esquinas. A mayor umbral, menor nimero de puntos, siendo
por defecto 30. En la imagen [20] se observan los resultados de los mismos reconocedores, salvo que
ahora BRISK tendrd un umbral de 85.

10 10
asturiana
ariel

afe
leche_celta

eeeeee

miel miel
tomate_carrefour tomate_carrefour

(a) ORB (b) BRISK (umbral 85) (102)
Tiempo: 48.2 segs Tiempo: 44.4 segs
Aciertos: 88 Aciertos: 72
Fallos: 4 Fallos: 3
No encontrados: 58 No encontrados: 75
Media puntos: 500 Media puntos: 331
Media matches buenos: 27 Media matches buenos: 23

Figura 20: ORB vs BRISK (umbral 85) (Android)

Se observa que el tiempo ha mejorado considerablemente, debido a la disminucién de puntos
de interés detectados. Sin embargo, se ha perdido precision, y ésta sigue siendo menor que la
del descriptor ORB (72 aciertos vs 88), por lo que se decidié por este iltimo. Para concluir con
la eleccién del reconocedor que se utilizara a lo largo del proyecto, se ha decidido comparar dos
configuraciones distintas del descriptor ORB. Una la de por defecto, y la otra cambiando el niimero
de puntos que ORB obtiene internamente de otro descriptor [16], para ver si mejora la precisién. En

la imagen [21| se puede observar el resultado:

6Ver pardmetro WTA_K aqui http://docs.opencv.org/trunk/db/d95/classcv_1_10RB.html
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(a) ORB (b) ORB (WTA K 4) (87)

Tiempo: 48.2 segs Tiempo: 71.3 segs
Aciertos: 88 Aciertos: 80

Fallos: 4 Fallos: 0

No encontrados: 58 No encontrados: 70

Media puntos: 500 Media puntos: 500

Media matches buenos: 27 Media matches buenos: 30

Figura 21: ORB vs ORB (WTA_K 4) (Android)

Se observa que no solo el tiempo es peor, sino que la precisién también lo es (88 vs 80 aciertos).
Pese a que no da falsos positivos (no reconoce erréneamente ningtin objeto como otro), la diferencia

de tiempo no compensa.

Las pruebas del detector FAST junto con los descriptores BRISK y ORB han resultado muy malas
en cuestién de tiempo y precision. Es por ello que no se incluyen en esta seccién. Estos resultados se
encuentran en el anexo [F}, seccién

En resumen, vistos los resultados obtenidos, se ha escogido ORB como descriptor final para el

reconocedor basado en local features.

5.3. Experimentos sobre la configuracion del modo cliente-servidor

Una vez elegido el descriptor, el siguiente paso era la implementacion de ese mismo reconocedor
pero en modo cliente-servidor. Como ya se ha comentado en la seccién la comunicacién ha
sido implementada mediante sockets y protocolo TCP. En la primera version, el cliente enviaba
al servidor la imagen sin comprimir, el servidor la procesaba, y enviaba al cliente otra imagen sin
comprimir con el resultado por pantalla. Esto era extremadamente ineficiente en términos de tiempo,
debido a la comunicacion red. Para la segunda version, el cliente enviaba un entero indicando el
tamano de la imagen codificada en jpeg, asi como la imagen codificada; el servidor descodificaba

esa imagen, la procesaba, y la imagen resultado la codificaba de nuevo y se la enviaba al cliente.
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Haciendo esto se logré mejorar en gran medida el tiempo de comunicacion, siendo ya aceptable
para usarse en tiempo real. Por ultimo, para la version final se decidié usar los Protocol Buffers de
Google, un mecanismo que permite serializar objetos. El proceso ahora consistia en que el cliente
enviaba la imagen comprimida al servidor, el servidor la descomprimia y procesaba, pero en vez de
devolver la imagen procesada, devolvia el objeto resultado, haciendo uso de estos Protocol Buffers.
El cliente procesaba el resultado y lo mostraba por pantalla. El resultado: reducir enormemente
el tamano del objeto a enviar desde el servidor al cliente. En esta tabla de tiempos [2| se pueden
observar las diferencias de tiempos y tamanos de objetos enviados durante las distintas versiones
en la aplicacién real (imagenes obtenidas directamente de la cdmara). (cliente: Android, servidor:

portatil, datos: cdmara, red: 100Mbps misma red, calidad jpeg: 90):

Tiempo Tiempo ~ . ~ .
. Tamano obj Tamano obj

Versiéon total (segs.) reconocedor (segs.) i .

. . . ) enviado (kB) recibido (kB)

(media 100 iter.)  (media 100 iter.)

Local 0.326 0.326 0 0
Sin comprimir imagen ni al enviar ni al recibir 1.025 0.122 921.6 921.6
Comprimiendo imagen a enviar y al recibir 0.457 0.122 ~175.6 ~175.6
Comprimiendo imagen a enviar, recibiendo protobuf 0.328 0.122 ~175.6 ~0.067

Tabla 2: Comparativa de tiempos y tamanos de objetos enviados/recibidos de las distintas versiones
realizadas. (cliente: Android, servidor: portétil, datos: cdmara, red: 100Mbps misma red)

El nivel de compresién de la imagen era un factor a tener en cuenta, puesto que puede afectar
a la precisién del reconocimiento. Se comprobaron los resultados para la bateria de imégenes de
test, comprimiéndola con distintos factores: 100 (menos pérdida de calidad posible), 90 y 80. Los

resultados que se obtuvieron se pueden observar en la tabla [3| (imdgenes en el anexo [F.2)).

Calidad de imagen jpeg | Aciertos Fallos No reconocidos
7 88 2 60
92 2 56
86 2 62

Tabla 3: Comparacion del reconocedor ORB con iméagenes comprimidas con distintas calidades.
(cliente: Android, servidor: portétil, datos: test)

Se observa que el ntmero de aciertos es mayor en el reconocedor con calidad de compresién
90 %. Esto probablemente se deba a que esa pérdida de calidad en estos casos estd haciendo que
el reconocedor detecte mejores puntos de interés para identificar ese objeto. Ademas, el tiempo
también mejora considerablemente (ver tiempos en anexo tabla [15 ). Con la calidad de la
imagen al 80 % se nota un descenso notorio en la precisién del reconocedor, pese a que el tiempo
sea menor también. Es por ello que se ha decidido optar por implementar un nivel de compresién
con calidad 90 %.
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5.4. Experimentos sobre la configuracién del reconocedor Deep Learning

En cuanto al reconocimiento basado en Deep Learning también se han realizado varias pruebas
sobre distintas configuraciones del mismo. Se parte de una red neuronal ya entrenada y, como se ha
indicado en la seccién [3.3.2] el procedimiento consiste en extraer los descriptores de la imagen y
compararlos con los descriptores previamente extraidos de los objetos. La capa de la que se extraen
los descriptores, como también se ha dicho, es la capa denominada fc7. El primer paso fue ejecutar
la bateria de imédgenes de pruebas con este reconocedor. El resultado fue el que se ve en la imagen
22

asturiana [2]
ariel 1]
cafe

leche_celta
nocilla
orlando

sal_hacendado
aceite

axe
cesar_heinz
enjuague
frenadol

10.6
mayonesa

tonica
tortitas_arroz
aceite_corporal
aftersun

anis

betadine
cafe_hacendado

chromecast
cicaderma
compeed
crema
emulsion
espuma
fideos

film

cereales
aceite_botella
aceitunas

atun

esparragos
leche_hacendado
miel
tomate_carrefour

2.2, O & 2.2 > B A B £08 L2003 & 282 9 & O R eI 2 L 20
> S TGS ) WO CERE O LRI FNC IR AT TOREE Y
O e @“5}‘\% e F T EE SFEFS L& G Gool® P Do
T E & & P e T &€ FT RS N
P @ <& 7 RS & N
G & & & @6‘

Figura 22: Matriz de confusién obtenida del reconocedor Deep Learning. |j

Tal y como se puede observar, el resultado no es nada bueno. Ademas, se ve como hay objetos
“predominantes”, los cuales el reconocedor predice en la mayoria de las ocasiones, aiin cuando no
se corresponde al objeto real. Para analizar mas a fondo este problema, se separé esta matriz de
confusién en otras tres: una para los objetos sin oclusion, otra para los objetos con oclusién, y otra
para los objetos en la mesa. En la tabla [4] se pueden ver los resultados del reconocimiento de esos

tres tipos de imagenes de test (las imégenes de las matrices se encuentran en la seccién del
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anexo [F)).

Tipo de imagen Aciertos Fallos
Sin oclusién (111 26 24
Con oclusién (114 13 37
Objeto en la mesa (|117] 11 39

Tabla 4: Resultados de los tres tipos de imédgenes de test comparando descriptores capa fc7

Se puede ver cémo los mejores resultados se obtienen con la perspectiva sin oclusién. Sin embargo,
con la perspectiva con oclusion y con objetos en la mesa, la precision del reconocedor es mucho
menor. Esto concuerda con la teoria de este tipo de reconocedores: al estar basados en global features,
son muy afectados por la oclusion, ya que no distinguen fondo de objeto y obtienen sus descriptores

a partir de toda la imagen entera.

También, para ver si se mejoraban los resultados, se programé el reconocedor para utilizar los
descriptores de la capa fc8 en lugar de la fc7, es decir, la siguiente capa a la que se estaba usando. El
resultado se puede visualizar en la tabla |5 (imdgenes en la seccién del mismo anexo, figura [120)]).

Tipo de imagen Aciertos Fallos
Sin oclusién (123 26 24
Con oclusién (126 17 33
Objeto en la mesa (129 13 37

Tabla 5: Resultados de los tres tipos de imédgenes de test comparando descriptores capa fc8

Se observa que los resultados para las imédgenes sin oclusion son los mismos, pero sin embargo
existe una pequena mejora en los otros dos tipos. Sin embargo, como resultado global, sigue sin ser

bueno.

Otra hipdtesis que se pensé como posible causa de que el reconocedor tuviese tan poca precision,
es la calidad de las imédgenes, tanto las de la base de datos, como las de test. La razén de ello es que
al tener resoluciones tan variables (algunas son cuadradas, otras horizontales, otras verticales muy
alargadas...) y el hecho de que este algoritmo antes de tratar con ellas, las escala a tamano 256x256,

se deformen los objetos y se pierda mucha calidad en el proceso.

Para comprobar si asi mejoraban los resultados, se cred una base de datos “alternativa”, con
imagenes de la base de datos cuadradas, y algunas de las imagenes de test limpias (fondo blanco,
objeto en el centro y cuadradas también). Se han seleccionado 5 objetos al azar, a los cuales se les

ha hecho fotos limpias. Las iméagenes se ven en la figura
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Figura 23: Imagenes de objetos limpias.

Al ejecutar el reconocedor, se obtienen los resultados mostrados en la tabla [f]

Aciertos Fallos

Objetos limpios 5 0

Tabla 6: Resultado de pasar las imagenes “limpias” por el reconocedor Deep Learning 1)

Se puede comprobar como el reconocedor ha acertado todos los objetos. Por lo tanto, es asumible
pensar que el problema esta el formato de las imdgenes, ya que cuadrando todas las imédgenes de la

base de datos, y usando imagenes limpias como imagenes de test, el reconocedor parece no fallar.

En cuanto a tiempos, se realizaron dos optimizaciones. La primera de ellas tiene que ver con la
compresion de la imagen. Ya que el algoritmo Deep Learning requiere que la imagen tenga tamano
256x256, y que la red es uno de los principales cuellos de botella en el modo cliente-servidor, se ha
decidido comprimir la imagen en el lado del cliente, enviando una imagen mucho menor al servidor
(~175.6 kB—=~12.5 kB). La otra optimizacién tiene que ver con el modo de procesamiento que
utiliza Caffe para ejecutar el algoritmo. Puede realizar los calculos con la CPU o con la GPU siendo

el resultado de ambas configuraciones el mostrado en la siguiente tabla

Configuracion CPU (segs) GPU (segs)
Cargar imagenes de la base de datos 4.95 9.3
Cargar red 0.23 0.39
Obtener descriptores de una imagen (reconocedor) 0.13 0.006
Total reconocedor 0.33 0.20

Tabla 7: Diferencia de tiempos ejecutando reconocedor en modo CPU o GPU (cliente: Android,
servidor: servidor)

Como se puede ver, leer las imagenes de la base de datos, obtener sus descriptores y guardarlos
en memoria, tarda casi el doble usando GPU en vez de CPU. También tarda maés el cargar la red
en memoria. Sin embargo, obtener los descriptores de la imagen que el cliente envia al servidor
va mucho maés rapido utilizando la GPU. Al ser las dos primeras operaciones que se ejecutaran al
iniciar el servidor inicamente, y ser esta ultima la més critica, pues es la que tiene que ejecutarse

en “tiempo real”, se ha dejado la configuracién usando la GPU.
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5.5. Evaluacién de la memoria

Se ha comparado también la memoria que utiliza cada uno de los descriptores. El resultado ha

sido:

= Reconocedor basado en local features:
e Lista de objetos: ~ 12 MB
= Reconocedor basado en Deep learning

e Lista de objetos: =~ 570 MB
e Red: =~ 220 MB

Los resultados han sido medidos calculando las diferencias entre la memoria utilizada por el
servidor cuando no se cargaba ningiin reconocedor, con la memoria utilizada cuando se cargaban
cada reconocedor y la red. Aqui se ratifica que el algoritmo Deep Learning es demasiado exigente en
términos de prestaciones para que sea viable ejecutarlo en local, puesto que ya sélo en términos
de memoria es inasumible ya que sélo los terminales de gama alta tienen mas de un gigabyte de

memoria.

5.6. Comparativa de tiempos finales

En esta subseccion se mostraran y compararan los tiempos finales de los tres tipos de reconocedores:
los reconocedores basados en local features (local y cliente servidor) y el reconocedor basado en

Deep Learning. Asi mismo detallardn los tiempos de las partes de cada uno.

= Modo local basado en local features.

o Cliente:

o Cargar los objetos: 6.23 segs.
o Procesar la imagen: 0.325 segs. Descomposicion en la tabla |8y figura

Tiempo medio Desviacion
(segs) (100 iter.) tipica

Extraer features 0.095 0.02
Hacer matches 0.2 0.03
Procesar resultado 0.13 0.002
Total | 0.325 0.04

Tabla 8: Coste en tiempo del reconocedor en local
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Figura 24: Porcentaje de tiempos del cliente en modo local con reconocedor basado en local features.

= Modo cliente-servidor basado en local features.

o Cliente:

o Proceso total: 0.325 segs. Descomposicién en la tabla [0y la figura 25

Tiempo medio Desviacion
(segs) (100 iter.) tipica
Codificar y enviar 0.057 0.01
-Codificar 0.056 0.01
-Enviar 0.001 0.001
Esperar, recibir y procesar resultado 0.259 0.09
-Recibir 0.257 0.09
-Deserializar resultado 0 0
-Procesar resultado 0.001 0.001
| Total 0.325 0.09

Tabla 9: Coste en tiempo del cliente en modo cliente-servidor con reconocedor basado en local
features.
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Figura 25: Porcentaje de tiempos del cliente en modo cliente-servidor con reconocedor basado en
local features.

e Servidor:

o Cargar objetos: 0.618 segs.

o Recibir, procesar y devolver la imagen: 0.355 segs. Descomposicién en la tabla

[10y la figura [26]

Tiempo medio  Desviacion

(segs) (100 iter.) tipica
Recibir imagen 0.2 0.08
Decodificar 0.005 0.002
Procesar total 0.149 0.02
-Extraccién de features 0.006 0
-Hacer matches 0.142 0.02
-Procesar resultado 0 0
Serializar 0 0
Enviar 0 0
Total 0.355 0.08

Tabla 10: Coste en tiempo del servidor en modo cliente-servidor con reconocedor basado en local
features.
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Figura 26: Porcentaje de tiempos del servidor en modo cliente-servidor con reconocedor basado en
local features.

= Modo cliente-servidor basado en Deep Learning.

e Cliente:

o Proceso total: 0.346 segs. Descomposicién en la tabla [I1] y la figura 27]

Tiempo medio  Desviacién

(segs) (100 iter.) tipica
Redimensionar, codificar y enviar 0.04 0.005
-Redimensionar 0.01 0.003
-Codificar 0.028 0.004
-Enviar 0.001 0.001
Esperar, recibir y procesar resultado 0.306 0.03
-Recibir 0.304 0.03
-Deserializar resultado 0 0
-Procesar resultado 0.002 0.003
Total 0.346 0.03

Tabla 11: Coste en tiempo del cliente en modo cliente-servidor con reconocedor basado en Deep
Learning.
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Figura 27: Porcentaje de tiempos del cliente en modo cliente-servidor con reconocedor basado en
Deep Learning.

e Servidor:

o Cargar objetos: 0.618 segs.

o Recibir, procesar y devolver la imagen: 0.375 segs. Descomposicién en la tabla

y la figura
Tiempo medio Desviacién

(segs) (100 iter.) tipica
Recibir imagen 0.167 0.04
Decodificar 0.002 0.001
Procesar total 0.205 0.006
-Extraccién de features 0.006 0.005
-Hacer matches 0.198 0.004
-Procesar resultado 0 0
Serializar 0 0
Enviar 0 0
Total 0.375 0.04

Tabla 12: Coste en tiempo del servidor en modo cliente-servidor con reconocedor basado en Deep
Learning.
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Figura 28: Porcentaje de tiempos del servidor en modo cliente-servidor con reconocedor basado en
Deep Learning.

Por 1ltimo, en la tabla |13| se mostraran juntos los tiempos totales de cada uno.

Local features | Deep learning
Local 0.325 /
Cliente - servidor 0.325 0.346

Tabla 13: Tiempos totales (en segundos) de cada reconocedor (media 100 iteraciones).

En vista de los resultados obtenidos, tanto de precisién como de tiempos, se podria decir que
el reconocedor adecuado para esta tarea y que mejor funciona es el reconocedor basado en local
features. En cuanto a la arquitectura a usar, ambas tienen sus ventajas y desventajas. El modo
local no depende de la red, pero sin embargo requiere tener los objetos almacenados en el teléfono.
Ademaés, utiliza mds memoria, puesto que carga en ella los objetos al iniciarse. Por otro lado, el
modo cliente-servidor depende totalmente de la red, siendo esta uno de los principales cuellos de
botella. Sin embargo presenta ventajas, como por ejemplo que si se quiere actualizar la base de
datos, se puede hacer de manera transparente al usuario, sin que este tenga que actualizarla. Y en
cuanto a términos de escalabilidad, esta es mejor en el modo cliente-servidor, puesto que aunque
el coste para cada uno de los algoritmos de reconocimiento es linear en el niimero de imégenes, el
servidor tarda mucho menos procesando las imagenes. Con lo cual, a més imdgenes, mayor serd la

diferencia de tiempos entre ambas arquitecturas.
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6. Conclusiones y trabajo futuro

En este ltimo capitulo se haran unas conclusiones acerca del proyecto, se hablara de posibles
lineas futuras para continuarlo, y se elaborara una opinién personal sobre el trabajo en si, y sobre

lo que le ha rodeado.

6.1. Conclusiones

Se ha logrado cumplir el objetivo del proyecto: implementar un reconocedor visual de objetos que
se pueden encontrar en un supermercado para la plataforma Android, y que indique a los usuarios
los posibles alérgenos que contengan dichos objetos. Se han evaluado dos algoritmos distintos de
reconocimiento: uno basado en local features, que puede ser ejecutado tanto en local como en remoto,
y otro basado en Deep Learning, que debido a su coste computacional solo puede ser ejecutado en
remoto. Dentro de estos algoritmos, se han evaluado distintas versiones, buscando un equilibrio

entre precision y eficiencia.

Gracias a los resultados obtenidos se puede ver que, con la base de datos actual, el reconocedor
que mejor funciona es el basado en local features. Esto es méas notorio en la precisién, ya que funciona
bastante mejor que el basado en Deep Learning. Se ha comprobado que esto se debe al formato de
las imagenes de la base de datos y de la bateria de test, ya que presentan resoluciones variables y
las imagenes de test tienen mucho ruido de fondo. Probando con cinco imédgenes sin ruido de fondo,
la precisién ha sido total. En cuanto a la arquitectura, la conclusion depende de varios factores.
Como ya se ha comentado en el capitulo anterior, la calidad y velocidad de la red es uno de ellos. Si
se dispone de una red rapida, vale la pena implementar el modo cliente-servidor, puesto que las
actualizaciones de la base de datos se realizarén solo del lado del servidor (el cliente no tendra que
actualizar nada), la aplicacion en si ocupard menos, y a mas objetos haya en la base de datos, la
diferencia con el modo local serd mas grande. Sin embargo, para una cantidad de objetos pequena,
el modo local funciona practicamente igual que el modo cliente-servidor, con la ventaja de que
funciona offline y que de que los tiempos son més constantes (el tiempo que se tarda en enviar y
recibir una imagen al servidor depende de muchos factores, como nimero de clientes conectados,

nivel de utilizacién de la red, etc).

En cuanto al modo Deep Learning, se ha comprobado que, efectivamente, es muy afectado
por la oclusién y el ruido de fondo. Tiene también potencial en este proyecto, con por ejemplo

optimizaciones que se nombraran en la subseccién pero sera necesario investigar sus resultados.

6.2. Trabajo futuro

Refiriéndose a lineas futuras sobre este proyecto, se pueden nombrar algunas que se han pensado

durante el transcurso del proyecto, pero que estaban fuera del alcance del mismo.

Lo primero, en cuanto a lo ya existente, mejorar los algoritmos de reconocimiento. Para mejorar
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el reconocedor basado en local features, se podria implementar algunas las mejoras nombradas en la
seccion [2.1], como por ejemplo, hacer més robusta la funcién de similitud entre imégenes mediante
Bag of words[T]|] o filtrar las correspondencias mediante RANSAC [17]. En cuanto al algoritmo de
Deep Learning, habria que adecuar la base de datos. Para ello, habria que tomar imagenes cuadradas
de los objetos, y de un tamano fijo. Otra posible mejora seria que apareciese un recuadro en la
pantalla del movil, se indicase al usuario que para reconocer un objeto lo sitiie en dicho recuadro, y
sélo procesar la imagen de ese area. De esta manera se recortaria mucho ruido de fondo, lo cual
ayuda al algoritmo de reconocimiento. También, en cuanto a la interfaz, se podria mejorar haciéndola
m4és atractiva de cara al usuario (lo de ahora es un prototipo simplemente), y como se comenta en
la seccién permitir al usuario seleccionar los alérgenos a los que es vulnerable, y que éstos se

destacasen durante el reconocimiento en otro color.

En cuanto a las posibles aplicaciones del sistema o de parte del mismo en el mundo real, se
cree que podria tener varias utilidades practicas. Por ejemplo, si se implementa el sistema en un
supermercado, con una base de datos de sus productos, los clientes podrian descargarse la aplicacién
y conectarse al servidor mediante la red del supermercado, permitiéndoles reconocer productos
y leer sus alérgenos sin necesidad de consultar la etiqueta del mismo. Esto podria ser de ayuda
a gente con problemas de vista que tengan dificultades para leer la letra de los ingredientes, o
simplemente por comodidad. También podrian consultar la informacién del producto desde casa.
Otra posibilidad, juntando el campo de la realidad aumentada, seria que una vez reconocido un
producto, apareciese un cuadro junto a él con la informacién del producto. Ademads, si se implementa,
en un supermercado, se puede aprovechar la capacidad del algoritmo de Deep Learning evaluado
en el proyecto de trabajar con bloques de iméagenes sin apenas impacto en su rendimiento. Los
clientes podrian ir enviando las imagenes no al servidor, sino a una cola, que una vez se llegase
a cierto tamano o cierto tiempo, las procesase todas de golpe. De esta manera se podria ahorrar
tiempo con respecto al reconocedor basado en local features. También se podria utilizar la parte del
reconocedor para crear una aplicaciéon de asistencia para personas invidentes, que dijesen por voz el
objeto reconocido, asi como informacion acerca de él. Estas son solo algunas de las posibles ideas

que se han ido barajando a lo largo del proyecto.

6.3. Opinion personal

La realizacién de este proyecto me ha generado una opinién personal muy positiva, tanto durante
el transcurso del proyecto, como del resultado final. Este proyecto me ha permitido aplicar distintos

conocimientos adquiridos a lo largo del grado, y adquirir experiencia en el campo de la investigacion.

Desde un punto de vista tecnoldgico, me ha permitido aprender muchas tecnologias de las cuales
hasta ahora sabia poco o nada. Una de mis motivaciones detras del proyecto era poder aprender y
experimentar con tecnologias que no habia tocado hasta ahora. Por ejemplo, mis conocimientos
en Android u OpenCV eran muy limitados, y este proyecto me ha permitido ampliarlos en gran

medida. A su vez, he aprendido de cero tecnologias y herramientas como son Android NDK para
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mezclar cédigo nativo en C++ con Java, cosa que considero muy interesante, Caffe, Python, CMake,
Google Protocol Buffers... En resumen, un conjunto de tecnologias amplio que, pese a complicar la

curva de aprendizaje, me ha dejado muy satisfecho.

En lo personal, me ha permitido también tocar un area que estd ahora muy en auge y en la
cual tengo mucho interés: la visién por computador, y en concreto, los algoritmos basados en Deep
Learning. Gracias al proyecto he podido comprender este drea mas en profundidad y descubrir las
dificultades que entrana, lo cual considero que es muy importante y enriquecedor para mi futuro

como ingeniero informatico.

En mi opinién, el Trabajo de Fin de Grado es una parte clave en el desarrollo de un ingeniero
informatico, y mi caso no ha sido una excepcién. Mi experiencia con la interaccién con los directores
de proyecto ha sido muy buena, asi como con los conocimientos adquiridos durante el mismo, dando
como resultado una base que espero que pueda servir para la implementacién de alguna aplicacién

de reconocimiento de objetos de cara a la comunidad.
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A.

A.l.

A.2.

A.3.

Manual de instalacion del sistema

Requisitos previos aplicacion:

Android Studio: Descargar desde aqui https://developer.android.com/studio/index|
html7hl=es-419.

Android SDK: Incluido durante la instalacién de Android Studio.

CrystaX’s Android NDK: Descargar desde aqui https://www.crystax.net/en/android/
ndk

OpenCYV 3.1 for Android: Descargar desde aqui http://opencv.org/downloads.html

Google Protocol Buffers: Descargar desde aqui https://github.com/julienr/protobuf-

android

Requisitos previos servidor:

OpenCV 2.4.12: Descargar desde aqui http://opencv.org/downloads.html

Google Protocol Buffers: Descargar desde aquihttps://developers.google.com/protocol-
buffers/docs/downloads

Caffe: Descargar desde aqui http://caffe.berkeleyvision.org/installation.html

Cuda: Descargar desde aqui https://developer.nvidia.com/cuda-75-downloads-archive

Instalacion

El cédigo del sistema estd subido a la plataforma GitHub, desde donde se puede clonar. El enlace

al repositorio es el siguiente: https://github.com/AMarquez94/UnizarNativeOpenCV.

Se recomienda clonar el repositorio desde el IDE Android Studio, ya que permite automaticamente

anadirlo como proyecto. Una vez clonado, habrd que editar algunos parametros y rutas para importar

correctamente todos los médulos y paquetes necesarios. La lista de cambios a realizar es la siguiente:

En el fichero local.properties situado en la raiz del proyecto, hay que cambiar el pardmetro

sdk.dir por la ruta en la que se encuentre el SDK de Android.

En el fichero gradle.properties situado también en la raiz del proyecto, hay que cambiar el

parametro ndkDir por la ruta en la que se encuentre el NDK descargado.

En el fichero Android.mk, situado en la ruta (raiz_proyecto)/app/src/main/jni, cambiar las

siguientes lineas:
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e En la variable OPENCVROOT (linea 9) escribir la ruta en la que esté instalado
OpenCV para Android.

e En la llamada a import-add-path (linea 43), sustituir la ruta existente por la ruta del

directorio en el que se encuentre Google Protocol Buffers descargado.

Para compilar el cédigo escrito en C++ y poder integrarlo con la aplicacion, hay que ejecutar un
comando especial. Se recomienda hacerlo de la siguiente manera. En Android Studio, ir al menu File
— Settings — Tools — External Tools. alli, pulsar el simbulo “+” verde (Add). Aparecerd una

pantalla como la que se muestra en la figura

Create Tool

Group: |External Tools

Qutput Filters...

s printed to standard output stream S vhen a message is printed to standard

Main menu ¥ Editor menu ¥ Projectviews & Search results

Insert macro...
Insert macro...

Insert macro...

Cancel Help

Figura 29: Pantalla de “External tools”.

En esta pantalla, habra que rellenar los datos como se indica:

= Name: ndk-build

= Group: Android Tools

» Description: (Opcional) Android Tool - NDK ndk-build tool

= Options: Marcar Synchronize files after execution y Open console. Desmarcar el resto.
= Show in: Marcar todas.

= Program: Insertar ruta al ejecutable ndk-build de ndk.

» Parameters: Insertar el siguiente pardmetro (todo en la misma linea):

NDK PROJECT PATH=$ModuleFileDir$ /app/build /intermediates /ndk
NDK_LIBS.OUT=$ModuleFileDir$ /app/src/main/jniLibs

NDK_APPLICATION MK=$ModuleFileDir$ /app/src/main/jni/Application .mk
APP_BUILD_SCRIPT=$ModuleFileDir$ /app/src/main/jni/Android .mk V=1
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= Working directory: $SourcepathEntry$

El resultado una vez completado serd algo similar a la imagen [30]

Edit Tool
Name: ndk-build Group: |Android Tools

: | Android Tool - NDK ndk-build tool

¥ Open console Output Filters...

> is printed to standard output stream Show console when a me: is printed to standard error stream
Main menu ¥ Editor menu ¥ Projectviews # Search results

Program: /home/alejandro/Android/ndk/ndk-build - Insert macro...

Parameters: /src/mai ‘Application.mk APP_BUILD_SCRIPT=§M: i S y i Android.mk V=1 Insert macro...

ing direcl $SourcepathEntry$ Insert macro...

Cancel Help

Figura 30: Pantalla de “External tools” una vez rellenada.

Después de guardar el resultado, al pulsar en Android Studio el botén derecho sobre algin
archivo o directorio, aparecerd una nueva opcién denominada “Android Tools”, con un desplegable:
“ndk-build”. La primera vez que se importe este codigo, v cada vez que se modifique el cédigo nativo,
habra que pulsar sobre el directorio raiz del proyecto y ejecutar este comando. De esa manera, se
compilardn las librerias que conectan la parte Java con la parte nativa dentro de la apk generada, y

ya se podrd instalar la aplicacién en el mévil.

En cuanto a la instalacién del servidor, su cédigo también estd en GitHub y el repositorio
es el siguiente: https://github.com/AMarquez94/UnizarNativeOpenCVServer. Para compilarlo
habra que cambiar las lineas correspondientes en el fichero CMakeLists.txt a las rutas donde
esté instalado Caffe y Cuda. Una vez compilado, generard el fichero binario NativeOpenCV. El

comando para ejecutarlo es:

NativeOpenCV numPuerto (dl/kp)

Donde numPuerto serd el nimero de puerto en el que el servidor se quedara escuchando, kp es que
el servidor usara el reconocedor basado en local features y dl que el servidor usard el reconocedor

basado en Deep Learning.

La base de datos usada en el proyecto se puede descargar utilizando este enlace: https://drive.
google.com/open?id=0B41189Zv6adpbyl1XTU1lnc3BIM1k

A.4. Requisitos aplicacion

= Smartphone con camara.

47


https://github.com/AMarquez94/UnizarNativeOpenCVServer
https://drive.google.com/open?id=0B4Il89Zv6adpby1XTU1nc3BIMlk
https://drive.google.com/open?id=0B4Il89Zv6adpby1XTU1nc3BIMlk

= Sistema operativo Android 14 o superior.

» Conexién a Internet (opcional).

48



49



B. Estructura de la base de datos

B.1. Objetos

Como ya se ha mencionado en el capitulo la base de datos estd compuesta por 50 objetos.
Cada uno de esos objetos estarda compuesto por un nombre, un indicador de si es facil o no de
reconocer, las imagenes que componen sus vistas, los nombres de dichas vistas, y la lista de alérgenos

que componen el objeto. La base de datos se estructura de la siguiente forma:

Consta de un directorio por objeto. En cada directorio habra una serie de imagenes, que se
corresponderan a las vistas del objeto, y un fichero info.txt. Este fichero contendrd toda la informacién
necesaria para crear una instancia de la clase objeto en el reconocedor. La sintaxis del fichero info.txt

es la siguiente:

nombre_objeto

easy

num-_vistas

(nombre_imagen_vista nombre_vista)+

(nombre_alergeno )

Donde nombre_objeto sera el nombre del objeto, easy serd un booleano indicando si el objeto es
de los faciles de reconocer o no, num_vistas serd el nimero de vistas que posee el objeto (minimo
una), nombre_imagen_vista serd el nombre del fichero imagen conteniendo la vista con nombre
nombre_vista (esta dupla se repetird tantas veces como vistas haya) y nombre_alergeno serd una

lista con los alérgenos que contiene el objeto (de 0 a 14).

La lista de directorios de los objetos sera tal y como se muestra en la figura

et ull = i et et ull = |
Aceite Aceite_botella Aceite_corporal Aceitunas Aftersun Agua Ambar Anis Ariel Asturiana
et et et et el et et el it il
Atun Axe Betadine Cafe Cafe_hacendado Caldo Celta Cereales Cesar_Heinz Champu
el et el it - el et el el el
Chromecast Cicaderma Compeed Crema Emulsion Enjuague Esparragos Espuma Fideos Film
el el el i el el el el > el
Frenadol Galletas_danesas Gel KH7 Leche_hacendado Levadura Licor43 Manocao Mayonesa Miel
et et ull = il el at ull e i
Nescafe Nocilla Orlando Peroxiben Sal_Hacendado Talco Tomate_carrefour Tonica Tortitas_arroz Ultima

Figura 31: Objetos de la base de datos.

A su vez, en la figura [6] del capitulo se muestran las imagenes que componen los objetos de la

base de datos.
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B.2. Objetos de test

Todas las imégenes que componen los objetos de test, de los cuales se ha hablado en el capitulo
5.1] estaran en un mismo directorio, junto con otro fichero info.tzt. Este fichero, a diferencia del
de los objetos de la base de datos, contendré una linea por imagen, con la tupla nombre_imagen

nombre_objeto. Por lo tanto la estructura de este fichero sera:

(nombre_imagen nombre_objeto)+

A continuacién, en la figura [32] se mostraran todas las imégenes que componen los objetos de test

en miniatura.
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Figura 32: Objetos de test.
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Diagrama de clases del sistema

C.
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Figura 33: Diagrama de la relacién entre clases de la aplicacién.
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D. Algoritmo ORB (Oriented FAST and Rotated BRIEF)

En este anexo se explica un poco mas en detalle el detector/descriptor ORB. Todo lo comentado

aqui estard més detalladamente contado en el articulo original [I1].

ORB nace como alternativa eficiente a los detectores de caracteristicas SIFT [§] y SURF [9]. El
objetivo de sus autores era proporcionar un detector/descriptor de local features que pudiese ser
empleado en tareas de tiempo real, y ejecutado en dispositivos de menor potencia que un ordenador,
como por ejemplo smartphones. El resultado que afirman que obtuvieron es un reemplazo de SIFT
que tiene un desempeno similar, pero estd menos afectado por el ruido de la imagen y puede ser
utilizado en aplicaciones en tiempo real. Segin sus resultados obtenidos, ORB es hasta dos érdenes

de magnitud mas rapido que SIF'T, y uno mas que SURF.

ORB estd basado en el detector FAST [10] y el descriptor BRIEF [23]. Estos métodos fueron

modificados para resolver ciertas limitaciones que tenian.

FAST es un método eficiente en tiempo para encontrar puntos de interés, utilizado en sistemas de
tiempo real. Sin embargo, a diferencia de otros detectores de features, como los ya nombrados, no
incluye la descripcion de la rotacién de un punto de interés. Por lo tanto, una de las modificaciones
realizadas sobre FAST fue proporcionar esa descripcién para cada punto de interés. La técnica
utilizada para ello es la denominada “Orientacién por intensidad de centroide” que, en base a
la intensidad de las esquinas (obtenida mediante la medida de Harris [24]) que rodean un punto,

determina su orientacion.

BRIEF es un descriptor binario cuyos resultados en cuanto a robustez frente a cambios de
luz, difuminacién y distorsiéon de la imagen es similar a SIFT. Sin embargo, es muy sensible a
las rotaciones. Para solucionarlo de manera eficiente, primero orientaron el descriptor BRIEF de
acuerdo a la orientacion de los puntos de interés, y después aumentaron la varianza y disminuyeron
la correlacion del descriptor, que son dos factores que hacen a una feature mas discriminativa, y por

tanto, mejor a la hora de describirla.

A estas dos modificaciones se las llam6 oFAST (Oriented FAST) y rBRIEF (Rotated BRIEF)
respectivamente. De ahi el origen del nombre del detector/descriptor, Oriented FAST and Rotated
BRIEF (ORB).

En el articulo original se detallan los experimentos de validacion realizados, entre ellos, las
diferencias de tiempos de ejecucién entre algoritmos, que, como se ve en la tabla [14]son muy notorios,
sobre todo la diferencia de ORB con SIFT.

ORB | SURF | SIFT
Tiempo (ms) | 15.3  217.3  5228.7

Tabla 14: Comparativa de tiempos de procesar una imagen usaando ORB, SURF y SIFT
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E. Procesamiento en Redes neuronales convolucionales (CNIN)

Se pueden distinguir dos fases en el procesado de una imagen en una red CNN: fase de procesado
de datos, y fase de clasificacion final. El tipo de procesado de los datos a través de una redes CNN

se realiza principalmente mediante dos tipos de neuronas:

= Neuronas convolucionales: Cada una de estas neuronas realiza una operacién matricial
sobre una regién de la imagen. Alguna de estas operaciones tiene sentido visual (como por
ejemplo, remarcar los bordes), pero otras no son triviales y carecen de él. El objetivo de estas
operaciones es filtrar la imagen, acentuando las caracteristicas correspondientes siguiendo el

modelo con el que ha sido entrenada la red.

= Neuronas de reduccién de muestreo: Estas neuronas tienen la funciéon de reducir la
regién que les corresponde, con el fin de reducir el coste computacional y el sobreajuste. La
forma ma&s comun de efectuar esta reduccion es la que se ve en la figura la cual reduce una
ventana formada por cuatro sub-ventanas 2x2 a una sola ventana 2x2, descartando todos los

valores excepto los mayores de cada sub-ventana. [7]

- W ph =
N = O O
N = O N
2 O 00 W
w
1S

v

Y

Figura 34: A la izquierda: antes de aplicar la funcién de muestreo. A la derecha, resultado de aplicar
la funcién.

La siguiente fase, la fase de clasificacién final, se compone de un tnico tipo de neurona:

= Neuronas de clasificaciéon: Estas neuronas reciben como entrada el resultado de las ope-
raciones de las neuronas de la primera fase sobre la imagen, obteniendo un conjunto de
valores numéricos que representan caracteristicas de la imagen. La funciéon de estas neuronas,

dependiendo de esas caracteristicas, clasificar la imagen.

El proceso completo se puede observar en la figura Al principio trabajan las neuronas

convolucionales aplicando operaciones matriciales sobre regiones de la imagen, alternadas con

1"Fuente imagen: https://en.wikipedia.org/wiki/Convolutional_neural_network
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neuronas que reducen el muestreo. Finalmente, las neuronas de clasificacién producen la salida
final. En resumen, se podria decir que las neuronas de la primera fase se encargan de extraer
las caracteristicas de una imagen, y las de la segunda fase de resumir esas caracteristicas en un

descriptor, obteniendo finalmente el resultado de la clasificacién. E

Matriz de caracteristicas

M. caract

Entrada

M. caract
Salida

Clasificacion
(fully connected)

. . Conv.
Convoluciones Reduccion de muestreo Red. muestreo

Figura 35: Diagrama explicativo de las distintas capas que forman la red neuronal convolucional y
sus operaciones y resultados.
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F. Resultados adicionales de los experimentos

En este anexo se mostraran todas las pruebas y experimentos que se han realizado a lo largo del

proyecto.

F.1. Experimentos algoritmos de reconocimiento basados en local features. Pri-

mera version

Estos experimentos se realizaron sobre la primera versién de la base de datos, formada por 13

objetos. Solo se probaron reconocedores basados en local features.

» Android. ORB/ORB.

Tiempo: 7.98 segs. Media puntos: 500. Media correspondencias buenas: 33

1.0
asturiana
ariel 09
cafe 0.8
leche_celta
- 0.7
nocilla
orlando 0.6
agua 0.5
ambar 04
licord3
0.3
manocao
nescafe 0.2
sal_hacendado 0.1
tortitas_arroz
0.0

R SR S X s B - R SN S B TR\« B R oY
& FL TS LS L E
& [ G . 0 of 2 0
o PRSI W & @ L, O
&8 @ S W #F e p
X8 & (S S
> < o
2 \‘9@6
&

Figura 36: Matriz de confusién de los resultados obtenidos mediante ORB en Android.
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asturiana
ariel

cafe
leche_celta
nocilla
orlando
agua
ambar
licord3
manocao
nescafe

sal_hacendado

tortitas_arroz

QRS R

Figura 37: Tabla de “True positives” de los resultados obtenidos mediante ORB en Android
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asturiana

ariel

cafe

leche_celta

nocilla

orlando

agua

ambar

licor43

manocao

nescafe

sal_hacendado

tortitas_arroz

Figura 38: Tabla de precisién de los resultados obtenidos mediante ORB en Android.

= PC. ORB/ORB.

Tiempo: 1.57 segs. Media puntos: 500. Media correspondencias buenas: 33
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cafe 0.8
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0.7
nocilla
orlando 0.6
agua 0.5
ambar 0.4
licord3
0.3
manocao
nescafe 0.2
sal_hacendado 0.1
tortitas_arroz
0.0
s
0\\’0
S
S

Figura 39: Matriz de confusién de los resultados obtenidos mediante ORB en PC.

asturianaf 3 36 0 O

arielF3 33 0 0 -

cafer3 33 0 O -

leche celtaf 3 33 0 0 -
nocillak3 33 0 0 -
orlandof2 34 0 1+
aguaf 1 35 0 2

ambart 0 36 0 3 -
licord3F 0 36 0 3 |
manocao+3 33 0 O
nescafef 3 33 0 0 -

sal hacendado 1 35 0 2
tortitas_arrozF 0 36 0 3

REQS Q@

Figura 40: Tabla de “True positives” de los resultados obtenidos mediante ORB en PC
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asturiana
ariel

cafe
leche_celta
nocilla
orlando
agua
ambar
licor43
manocao
nescafe

sal_ hacendado | 0.95 1.00

tortitas_arroz

Figura 41: Tabla de precisién de los resultados obtenidos mediante ORB en PC.

« Android. ORB(WTA K = 4)/ORB(WTA K = 4).

Tiempo: 9.6 segs. Media puntos: 500. Media correspondencias buenas: 37
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Figura 42: Matriz de confusién de los resultados obtenidos mediante ORB (WTA_K = 4) en Android.

asturianaf 3 36 0 O

arielF3 33 0 0 -

cafer3 33 0 O -

leche celtaf 3 33 0 0 -
nocillak3 33 0 0 -
orlandof2 34 0 1+
aguaf 2 34 0 1

ambarF0 35 1 34
licor43p 2 34 0 1 |

manocactF3 33 0 0 4

T
w

nescafe 33 0 0+

sal hacendado 0 36 0 3
tortitas_arrozF 0 36 0 3

REQS Q@

Figura 43: Tabla de “True positives” de los resultados obtenidos mediante ORB (WTA_K = 4) en
Android
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leche_celta

nocilla

orlando

agua

ambar

licor43

manocao

nescafe

sal_hacendado

tortitas_arroz

Figura 44: Tabla de precisién de los resultados obtenidos mediante ORB (WTA_K = 4) en Android.

« PC. ORB(WTA K = 4)/ORB(WTA K = 4).

Tiempo: 1.55 segs. Media puntos: 500. Media correspondencias buenas: 36
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Figura 45: Matriz de confusién de los resultados obtenidos mediante ORB(WTA_K = 4) en PC.

asturianaf 3 36 0 O

arielF2 34 0 1

cafer3 33 0 O -

leche celtaf 3 33 0 0 -
nocillak3 33 0 0 -
orlandof2 34 0 1+
aguaf 2 34 0 1

ambart0 35 1 3+
licord3F2 34 0 1 |
manocao+3 33 0 O
nescafef 3 33 0 0 -

sal hacendado 1 35 0 2
tortitas_arrozF 0 36 0 3

REQS Q@

Figura 46: Tabla de “True positives” de los resultados obtenidos mediante ORB(WTA_K = 4) en
PC
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Figura 47: Tabla de precision de los resultados obtenidos mediante ORB(WTA_K = 4) en PC.

» Android. FAST/BRISK.
Tiempo: 383.53 segs. Media puntos: 5107. Media correspondencias buenas: 83
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ariel 0.9
cafe 0.8
leche celta
0.7
nocilla
orlando 0.6
agua 0.5
ambar 0.4
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nescafe 0.2
sal_hacendado 01
tortitas_arroz
0.0
.
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asturianat 0 39 0 3 -
arielF0 39 0 3 -
cafer 0 39 O
leche celtat 0 39 0
nocillak 0 39 0 34
orlandoF 0 39 0
aguaf 0 389 0
ambart0 39 0 3 -
licord3F0 39 0 3 -

manocacfF 1 38 O 2 4

T
a8

nescafe 37 0 1+

sal hacendado 0 39 0 3
tortitas_arrozF 0 39 0 3

REQS Q@

Figura 49: Tabla de “True positives” de los resultados obtenidos mediante FAST/BRISK en Android
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asturiana

ariel
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leche_celta

nocilla

orlando

agua

ambar

licord3

manocao

nescafe

sal_hacendado

tortitas_arroz

Figura 50: Tabla de precisién de los resultados obtenidos mediante FAST/BRISK en Android.

» PC. FAST/BRISK.

Tiempo: 229.16 segs. Media puntos: 5107. Media correspondencias buenas: 82
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asturianat 0 39 0 3 -
arielF0 39 0 3 -
cafer 0 39 O
leche celtat 0 39 0
nocillak 0 39 0 34
orlandoF 0 39 0
aguaf 0 389 0
ambart0 39 0 3 -
licord3F0 39 0 3 -

manocacfF 1 38 O 2 4

T
a8

nescafe 37 0 1+

sal hacendado 0 39 0 3
tortitas_arrozF 0 39 0 3

REQS Q@

Figura 52: Tabla de “True positives” de los resultados obtenidos mediante FAST /BRISK en PC
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Figura 53: Tabla de precisién de los resultados obtenidos mediante FAST /BRISK en PC.

Android. BRISK/BRISK.

Tiempo: 57.53 segs. Media puntos: 2191. Media correspondencias buenas: 84
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licord3
manocao
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sal_hacendado

tortitas_arroz

Figura 54: Matriz de confusién de los resultados obtenidos mediante BRISK en Android.

asturianat 3 36 0 0
arielF3 33 0 O -
cafer3 33 0 O -

leche celtaf 3 33 0 0 -
nocillak3 32 1 0 -
orlandof 0 36 0 3 -
aguaf 2 34 0 1
ambart2 33 1 1 -
licord3F1 35 0 2 -

manocao3 33 0 O

nescafet 3 33 0 0 -
sal hacendado 0 36 0 3
tortitas_arrozF 0 36 0 3
| | | s
RS &

Figura 55: Tabla de “True positives” de los resultados
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asturiana
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leche_celta
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orlando

agua
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manocao
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sal_hacendado

tortitas_arroz

Figura 56: Tabla de precisién de los resultados obtenidos mediante BRISK en Android.

» PC. BRISK/BRISK.

Tiempo: 27.54 segs. Media puntos: 2161. Media correspondencias buenas: 84
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Figura 57: Matriz de confusién de los resultados obtenidos mediante BRISK en PC.

asturianat 3 36 0 0
arielF3 33 0 O -

cafer 3 33

leche celta} 3 33
nocillaf 3 32 1
orlandof 0 36 0 3 -
aguaf 2 34 0 1
ambart2 33 1 1 -
licord3F1 35 0 2 -

manocactF3 33 0 0 4

T
w

nescafe 33 0 0+

sal hacendado 0 36 0 3
tortitas_arrozF 0 36 0 3

REQS Q@

Figura 58: Tabla de “True positives” de los resultados obtenidos mediante BRISK en PC
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Figura 59: Tabla de precisién de los resultados obtenidos mediante BRISK en PC.

» Android. BRISK(thres = 85)/BRISK(thres = 85).

Tiempo:9.59 segs. Media puntos: 467. Media correspondencias buenas: 38
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Figura 60: Matriz de confusién de los resultados obtenidos mediante BRISK(thres = 85) en Android.

asturianaf 3 36 0 O

arielF2 34 0 1

cafef 3 32 1 0 -

leche celtaf 3 33 0 0 -
nocillak3 33 0 0 -
orlandof3 33 0 0
aguaf 0 36 0 3 -

ambarF2 34 0 14
licor43p 1 35 0 2 |

manocactF3 33 0 0 4

T
w

nescafe 33 0 0+

sal hacendado 0 36 0 3
tortitas_arrozF 0 36 0 3

REQS Q@

Figura 61: Tabla de “True positives” de los resultados obtenidos mediante BRISK (thres = 85) en
Android
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Figura 62: Tabla de precisién de los resultados obtenidos mediante BRISK(thres = 85) en Android.

» PC. BRISK(thres = 85)/BRISK(thres = 85).

Tiempo: 2.34 segs. Media puntos: 465. Media correspondencias buenas: 37
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Figura 63: Matriz de confusién de los resultados obtenidos mediante BRISK(thres = 85) en PC.

asturianaf 3 36 0 O

arielF2 34 0 1

cafef 3 32 1 0 -

leche celtaf 3 33 0 0 -
nocillak3 33 0 0 -
orlandof3 33 0 0
aguaf 0 36 0 3 -

ambarF2 34 0 14
licor43p 1 35 0 2 |

manocactF3 33 0 0 4

T
w

nescafe 33 0 0+

sal hacendado 0 36 0 3
tortitas_arrozF 0 36 0 3

REQS Q@

Figura 64: Tabla de “True positives” de los resultados obtenidos mediante BRISK (thres = 85) en
PC
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Figura 65: Tabla de precisién de los resultados obtenidos mediante BRISK (thres = 85) en PC.

» Android. FAST/ORB.

Tiempo: 338.12 segs. Media puntos: 4731. Media correspondencias buenas: 490
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asturianat 0 39 0 3 -
arielF0 39 0 3 -
cafer 0 39 O
leche celtat 0 39 0
nocillak 0 39 0 34
orlandoF 0 39 0
aguaf 0 389 0
ambart0 39 0 3 -
licord3F0 39 0 3 -

manocacF 0 39 0 34

T
o

nescafe 39 0 3+

sal hacendado- 0 38 1 3
tortitas_arrozF 0 39 0 3
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Figura 67: Tabla de “True positives” de los resultados obtenidos mediante FAST/ORB en Android
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Figura 68: Tabla de precisién de los resultados obtenidos mediante FAST/ORB en Android.

» PC. FAST/ORB.

Tiempo: 165.73 segs. Media puntos: 4728. Media correspondencias buenas: 463
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asturianat 0 39 0 3 -
arielF0 39 0 3 -
cafer 0 39 0 3 -
leche celtat 0 39 0 3 -
nocillak 0 39 0 34
orlandof 0 39 0 3+
aguaf 0 39 0 3 -
ambart0 39 0 3 -
licord3F0 39 0 3 -
manocao -0 39 0 3
nescafef 1 38 0 2 -
sal hacendado} 1 36 2 2
tortitas_arrozF 0 39 0 3
| s | s
RS &

Figura 70: Tabla de “True positives” de los resultados
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Figura 71: Tabla de precisién de los resultados obtenidos mediante FAST/ORB en PC.

F.2. Experimentos algoritmos de reconocimiento basados en local features. Se-

gunda version

Estas pruebas se realizaron ya con la base de datos final, compuesta por 50 objetos (54 imagenes
en total). Aqui se probaron las arquitecturas de local y cliente-servidor (siendo el servidor el portatil)
para todos los reconocedores candidatos, y la arquitectura cliente-servidor (siendo el servidor la

maquina remota) para el reconocedor elegido finalmente (ORB).

» Android. ORB/ORB.
Tiempo: 48.23 segs. Media puntos: 500. Media correspondencias buenas: 27
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asturiana
ariel
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Figura 72: Matriz de confusién de los resultados obtenidos mediante ORB en Android.
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Figura 73: Tabla de “True positives” de los resultados obtenidos mediante ORB en Android
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Figura 74: Tabla de precisién de los resultados obtenidos mediante ORB en Android.
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« PC. ORB/ORB.
Tiempo: 16.06 segs. Media puntos: 500. Media correspondencias buenas: 28
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Figura 75: Matriz de confusién de los resultados obtenidos mediante ORB en PC.

88



asturiana

ariel

cafe
leche_celta
nocilla

orlando

agua

ambar

licor43
manocao
nescafe
sal_hacendado
aceite

axe
cesar_heinz
enjuague
frenadol

gel

kh7

levadura
mayonesa
tonica
tortitas_arroz
aceite_corporal
aftersun

anis

betadine
cafe_hacendado
caldo
champu
chromecast

cicaderma
compeed

crema

emulsion
espuma

fideos

film
galletas_danesas
peroxiben

talco

ultima

cereales
aceite_botella
aceitunas

atun

esparragos
leche_hacendado
miel

tomate_carrefour
Q& Q &

Figura 76: Tabla de “True positives” de los resultados obtenidos mediante ORB en PC
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Figura 77: Tabla de precision de los resultados obtenidos mediante ORB en PC.
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» Server. ORB/ORB. (Calidad imagen 100 %)

Media puntos: 500. Media correspondencias buenas: 28

asturiana
ariel

cafe
leche_celta
nocilla
orlando

cesar_heinz
enjuague
frenadol

tortitas_arroz
aceite_corporal
aftersun

anis

betadine
cafe_hacendado

chromecast
cicaderma

emulsion
espuma
fideos
film

cereales
aceite_botella
aceitunas

atun

esparragos
leche_hacendado
miel
tomate_carrefour

Figura 78: Matriz de confusién de los resultados obtenidos mediante ORB en el servidor.
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Figura 79: Tabla de “True positives” de los resultados obtenidos mediante ORB en el servidor.
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Figura 80: Tabla de precision de los resultados obtenidos mediante ORB en el servidor.

93



» Server. ORB/ORB. (Calidad imagen 90 %

Media puntos: 500. Media correspondencias buenas: 27
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Figura 81: Matriz de confusién de los resultados obtenidos mediante ORB en el servidor, enviadas
con calidad al 90 %.
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Figura 82: Tabla de “True positives” de los resultados obtenidos mediante ORB en el servidor,
enviadas con calidad al 90 %.
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Figura 83: Tabla de precision de los resultados obtenidos mediante ORB en el servidor, enviadas
con calidad al 90 %.
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» Server. ORB/ORB. (Calidad imagen 80 %

Media puntos: 500. Media correspondencias buenas: 27
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Figura 84: Matriz de confusién de los resultados obtenidos mediante ORB en el servidor, enviadas
con calidad al 80 %.
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Figura 85: Tabla de “True positives” de los resultados obtenidos mediante ORB en el servidor,
enviadas con calidad al 80 %.
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Figura 86: Tabla de precisiéon de los resultados obtenidos mediante ORB en el servidor, enviadas
con calidad al 80 %.
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» Android. ORB(WTA_K = 4)/ORB(WTA K = 4).

Tiempo: 71.33 segs. Media puntos: 500. Media correspondencias buenas: 30
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Figura 87: Matriz de confusién de los resultados obtenidos mediante ORB (WTA _K = 4) en Android.
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Figura 88: Tabla de “True positives” de los resultados obtenidos mediante ORB (WTA K = 4) en
Android
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Figura 89: Tabla de precisién de los resultados obtenidos mediante ORB (WTA_K = 4) en Android.
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» PC. ORB(WTA K = 4)/ORB(WTA K = 4).

Tiempo: 18.08 segs. Media puntos: 500. Media correspondencias buenas: 30

asturiana
ariel

cafe
leche_celta
nocilla
orlando

2
2
1

cesar_heinz
enjuague
frenadol

N

tortitas_arroz
aceite_corporal
aftersun

anis

betadine
cafe_hacendado

[ v R

o
=
o
3

=]
c

]

chromecast
cicaderma

emulsion
espuma
fideos
film

cereales
aceite_botella
aceitunas

atun

esparragos
leche_hacendado
miel
tomate_carrefour

Figura 90: Matriz de confusién de los resultados obtenidos mediante ORB(WTA_K = 4) en PC.
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Figura 91: Tabla de “True positives” de los resultados obtenidos mediante ORB(WTA K = 4) en
PC
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Figura 92: Tabla de precisién de los resultados obtenidos mediante ORB(WTA_K = 4) en PC.
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= Server. ORB(WTA K = 4)/ORB(WTA K = 4).

Media puntos: 500. Media correspondencias buenas: 27
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Figura 93: Matriz de confusién de los resultados obtenidos mediante ORB(WTA_K = 4) en el
servidor.
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Figura 94: Tabla de “True positives” de los resultados obtenidos mediante ORB(WTA K = 4) el
servidor
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Figura 95: Tabla de precisién de los resultados obtenidos mediante ORB(WTA _K = 4) en el servidor.
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» Android. BRISK/BRISK.

Tiempo: 502.7 segs. Media puntos: 1855. Media correspondencias buenas: 63
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Figura 96: Matriz de confusién de los resultados obtenidos mediante BRISK en Android.
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Figura 97: Tabla de “True positives” de los resultados obtenidos mediante BRISK en Android
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Figura 98: Tabla de precisién de los resultados obtenidos mediante BRISK en Android.
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» PC. BRISK/BRISK.

Tiempo: 353.50 segs. Media puntos: 1855. Media correspondencias buenas: 63

asturiana
ariel

cafe
leche_celta
nocilla
orlando

cesar_heinz
enjuague
frenadol

tortitas_arroz
aceite_corporal
aftersun

anis

betadine
cafe_hacendado

chromecast
cicaderma

emulsion
espuma
fideos
film

cereales
aceite_botella
aceitunas

atun

esparragos
leche_hacendado
miel
tomate_carrefour

Figura 99: Matriz de confusién de los resultados obtenidos mediante BRISK en PC.
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Figura 100: Tabla de “True positives” de los resultados obtenidos mediante BRISK en PC

113



asturiana

ariel

cafe
leche_celta
nocilla

orlando

agua

ambar

licord3
manocao
nescafe
sal_hacendado
aceite

axe
cesar_heinz
enjuague
frenadol

gel

kh7

levadura
mayonesa
tonica
tortitas_arroz
aceite_corporal
aftersun

anis

betadine
cafe_hacendado
caldo

champu
chromecast
cicaderma
compeed
crema
emulsion
espuma

fideos

film
galletas_danesas
peroxiben
talco

ultima
cereales
aceite_botella
aceitunas

atun
esparragos
leche_hacendado
miel

tomate_carrefour

Figura 101: Tabla de precisién de los resultados obtenidos mediante BRISK en PC.
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» Android. BRISK(thres = 85)/BRISK(thres = 85).

Tiempo:44.4 segs. Media puntos: 331. Media correspondencias buenas: 23
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Figura 102: Matriz de confusién de los resultados obtenidos mediante BRISK (thres = 85) en Android.
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Figura 103: Tabla de “True positives” de los resultados obtenidos mediante BRISK (thres = 85) en
Android
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Figura 104: Tabla de precisién de los resultados obtenidos mediante BRISK(thres = 85) en Android.
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» PC. BRISK(thres = 85)/BRISK(thres = 85).

Tiempo: 19.75 segs. Media puntos: 331. Media correspondencias buenas: 23
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Figura 105: Matriz de confusién de los resultados obtenidos mediante BRISK (thres = 85) en PC.
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Figura 106: Tabla de “True positives” de los resultados obtenidos mediante BRISK(thres = 85) en
PC

119



asturiana

ariel {0.99 1.00
cafe [0.99

leche_celta

nocilla

orlando [0.99 1.00

agua
ambar [0.99 1.00

licord3 {0.98
manocao
nescafe
sal_hacendado
aceite
axe

cesar_heinz

enjuague

levadura
mayonesa
tonica
tortitas_arroz
aceite_corporal
aftersun

anis

betadine
cafe_hacendado
caldo {0.99 1.00

champu {0.99 1.00
chromecast
cicaderma
compeed
crema

emulsion
espuma

fideos

film
galletas_danesas
peroxiben

talco

ultima

cereales
aceite_botella
aceitunas

atun
esparragos
leche_hacendado
miel

tomate_carrefour {0.99 1.00

o
&
?“L &

R
&

Figura 107: Tabla de precisién de los resultados obtenidos mediante BRISK(thres = 85) en PC.
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F.3. Experimentos algoritmos de reconocimiento basados en Deep Learning.

Estos experimentos se realizaron con la base de datos final (50 objetos) y en modo cliente-servidor.

= Capa fc7. Imagenes sin retocar.
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Figura 108: Matriz de confusion de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc7 de la red neuronal.
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Figura 109: Tabla de “True positives” de los resultados obtenidos a partir de todos los objetos de
test usando como descriptor la capa fc7 de la red neuronal.
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Figura 110: Tabla de precisién de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc7 de la red neuronal.
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Figura 111: Matriz de confusiéon de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc7 de la red neuronal.
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Figura 112: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test
agarrados con la mano usando como descriptor la capa fc7 de la red neuronal.
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Figura 113: Tabla de precisién de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc7 de la red neuronal.
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Figura 114: Matriz de confusién de los resultados obtenidos a partir de los objetos de test con
oclusion usando como descriptor la capa fc7 de la red neuronal.
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Figura 115: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test con
oclusion usando como descriptor la capa fc7 de la red neuronal.
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Figura 116: Tabla de precisién de los resultados obtenidos a partir de los objetos de test con oclusién
usando como descriptor la capa fc7 de la red neuronal.
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Figura 117: Matriz de confusién de los resultados obtenidos a partir de los objetos de test en la
mesa usando como descriptor la capa fc7 de la red neuronal.
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Figura 118: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test en
la mesa usando como descriptor la capa fc7 de la red neuronal.
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Figura 119: Tabla de precision de los resultados obtenidos a partir de los objetos de test en la mesa
usando como descriptor la capa fc7 de la red neuronal.
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= Capa fc8. Iméagenes sin retocar.

asturiana H]
ariel [l 1]
cafe

leche_celta
nocilla
orlando

sal_hacendado
aceite

axe
cesar_heinz
enjuague
frenadol

tortitas_arroz
aceite_corporal
aftersun

anis

betadine
cafe_hacendado

chromecast
cicaderma

emulsion
espuma
fideos
film

cereales
aceite_botella
aceitunas

atun

esparragos
leche_hacendado
miel
tomate_carrefour

2, GNP R BN L1202 S B @R 2 B 8 2200 S B DB R AR RO RN 2 .20 S F 1O
R R T R R e i
@‘}Q é\“"\“\ \\@°°°2'c?’° ® ,_;o‘g\'\\ S Y ST Ex & b@@@%ﬁ 3 R \)d’}z ,b(,e’\ Q’?’\&Q 50“0?
& N & < L&~ @ & b%’qz & ST o <
> S @’ & & e aF
& o 3 N 5%
© & &9

Figura 120: Matriz de confusion de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc8 de la red neuronal.
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Figura 121: Tabla de “True positives” de los resultados obtenidos a partir de todos los objetos de
test usando como descriptor la capa fc8 de la red neuronal.
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Figura 122: Tabla de precisién de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc8 de la red neuronal.
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Figura 123: Matriz de confusiéon de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc8 de la red neuronal.
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Figura 124: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test
agarrados con la mano usando como descriptor la capa fc8 de la red neuronal.
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Figura 125: Tabla de precisién de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc8 de la red neuronal.
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Figura 126: Matriz de confusién de los resultados obtenidos a partir de los objetos de test con
oclusion usando como descriptor la capa fc8 de la red neuronal.
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Figura 127: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test con
oclusion usando como descriptor la capa fc8 de la red neuronal.
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Figura 128: Tabla de precisién de los resultados obtenidos a partir de los objetos de test con oclusién
usando como descriptor la capa fc8 de la red neuronal.
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Figura 129: Matriz de confusién de los resultados obtenidos a partir de los objetos de test en la
mesa usando como descriptor la capa fc8 de la red neuronal.

142



asturiana

ariel

cafe
leche_celta
nocilla

orlando

agua

ambar

licor43
manocao
nescafe
sal_hacendado
aceite

axe
cesar_heinz
enjuague
frenadol

gel

kh7

levadura
mayonesa
tonica
tortitas_arroz
aceite_corporal
aftersun

anis

betadine
cafe_hacendado
caldo
champu
chromecast

cicaderma
compeed

crema

emulsion
espuma

fideos

film
galletas_danesas
peroxiben

talco

ultima

cereales
aceite_botella
aceitunas

atun

esparragos
leche_hacendado
miel

tomate_carrefour
P .\Q & Q@

Figura 130: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test en
la mesa usando como descriptor la capa fc8 de la red neuronal.
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Figura 131: Tabla de precision de los resultados obtenidos a partir de los objetos de test en la mesa
usando como descriptor la capa fc8 de la red neuronal.
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= Capa fc7. Imagenes originales reescaladas.
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Figura 132: Matriz de confusion de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc7 de la red neuronal. Tanto las imagenes de test como las de la
base de datos han sido reescaladas.
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Figura 133: Tabla de “True positives” de los resultados obtenidos a partir de todos los objetos de
test usando como descriptor la capa fc7 de la red neuronal. Tanto las imagenes de test como las de
la base de datos han sido reescaladas.
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Figura 134: Tabla de precisién de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc7 de la red neuronal. Tanto las imagenes de test como las de la
base de datos han sido reescaladas.
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Figura 135: Matriz de confusion de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc7 de la red neuronal. Tanto las imagenes de test
como las de la base de datos han sido reescaladas.

148



asturiana

ariel

cafe
leche_celta
nocilla

orlando

agua

ambar

licor43
manocao
nescafe
sal_hacendado
aceite

axe
cesar_heinz
enjuague
frenadol

gel

kh7

levadura
mayonesa
tonica
tortitas_arroz
aceite_corporal
aftersun

anis

betadine
cafe_hacendado
caldo
champu
chromecast

cicaderma
compeed

crema

emulsion
espuma

fideos

film
galletas_danesas
peroxiben

talco

ultima

cereales
aceite_botella
aceitunas

atun

esparragos
leche_hacendado
miel

tomate_carrefour
P .\Q & Q@

Figura 136: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test
agarrados con la mano usando como descriptor la capa fc7 de la red neuronal. Tanto las imégenes
de test como las de la base de datos han sido reescaladas.
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Figura 137: Tabla de precisién de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc7 de la red neuronal. Tanto las imagenes de test
como las de la base de datos han sido reescaladas.
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Figura 138: Matriz de confusién de los resultados obtenidos a partir de los objetos de test con
oclusién usando como descriptor la capa fc7 de la red neuronal. Tanto las imagenes de test como las
de la base de datos han sido reescaladas.
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Figura 139: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test con
oclusién usando como descriptor la capa fc7 de la red neuronal. Tanto las imagenes de test como las
de la base de datos han sido reescaladas.
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Figura 140: Tabla de precisién de los resultados obtenidos a partir de los objetos de test con oclusién
usando como descriptor la capa fc7 de la red neuronal. Tanto las imagenes de test como las de la
base de datos han sido reescaladas.
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Figura 141: Matriz de confusién de los resultados obtenidos a partir de los objetos de test en la
mesa usando como descriptor la capa fc7 de la red neuronal. Tanto las imagenes de test como las de
la base de datos han sido reescaladas.
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Figura 142: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test en
la mesa usando como descriptor la capa fc7 de la red neuronal. Tanto las imdgenes de test como las
de la base de datos han sido reescaladas.
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Figura 143: Tabla de precision de los resultados obtenidos a partir de los objetos de test en la mesa
usando como descriptor la capa fc7 de la red neuronal. Tanto las imagenes de test como las de la
base de datos han sido reescaladas.
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= Capa fc8. Imagenes originales reescaladas.
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Figura 144: Matriz de confusion de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc8 de la red neuronal. Tanto las imagenes de test como las de la
base de datos han sido reescaladas.
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Figura 145: Tabla de “True positives” de los resultados obtenidos a partir de todos los objetos de
test usando como descriptor la capa fc8 de la red neuronal. Tanto las imagenes de test como las de
la base de datos han sido reescaladas.
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Figura 146: Tabla de precisién de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc8 de la red neuronal. Tanto las imagenes de test como las de la
base de datos han sido reescaladas.
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Figura 147: Matriz de confusion de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc8 de la red neuronal. Tanto las imagenes de test
como las de la base de datos han sido reescaladas.
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Figura 148: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test
agarrados con la mano usando como descriptor la capa fc8 de la red neuronal. Tanto las imédgenes
de test como las de la base de datos han sido reescaladas.
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Figura 149: Tabla de precisién de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc8 de la red neuronal. Tanto las imagenes de test
como las de la base de datos han sido reescaladas.
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Figura 150: Matriz de confusién de los resultados obtenidos a partir de los objetos de test con
oclusion usando como descriptor la capa fc8 de la red neuronal.

163



asturiana

ariel

cafe
leche_celta
nocilla

orlando

agua

ambar

licor43
manocao
nescafe
sal_hacendado
aceite

axe
cesar_heinz
enjuague
frenadol

gel

kh7

levadura
mayonesa
tonica
tortitas_arroz
aceite_corporal
aftersun

anis

betadine
cafe_hacendado
caldo
champu
chromecast

cicaderma
compeed

crema

emulsion
espuma

fideos

film
galletas_danesas
peroxiben

talco

ultima

cereales
aceite_botella
aceitunas

atun

esparragos
leche_hacendado
miel

tomate_carrefour
P .\Q & Q@

Figura 151: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test con
oclusién usando como descriptor la capa fc8 de la red neuronal. Tanto las imagenes de test como las
de la base de datos han sido reescaladas.
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Figura 152: Tabla de precisién de los resultados obtenidos a partir de los objetos de test con oclusién
usando como descriptor la capa fc8 de la red neuronal. Tanto las imagenes de test como las de la
base de datos han sido reescaladas.
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Figura 153: Matriz de confusién de los resultados obtenidos a partir de los objetos de test en la
mesa usando como descriptor la capa fc8 de la red neuronal.

166



asturiana

ariel

cafe
leche_celta
nocilla

orlando

agua

ambar

licor43
manocao
nescafe
sal_hacendado
aceite

axe
cesar_heinz
enjuague
frenadol

gel

kh7

levadura
mayonesa
tonica
tortitas_arroz
aceite_corporal
aftersun

anis

betadine
cafe_hacendado
caldo
champu
chromecast

cicaderma
compeed

crema

emulsion
espuma

fideos

film
galletas_danesas
peroxiben

talco

ultima

cereales
aceite_botella
aceitunas

atun

esparragos
leche_hacendado
miel

tomate_carrefour
P .\Q & Q@

Figura 154: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test en
la mesa usando como descriptor la capa fc8 de la red neuronal. Tanto las imagenes de test como las
de la base de datos han sido reescaladas.
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Figura 155: Tabla de precision de los resultados obtenidos a partir de los objetos de test en la mesa
usando como descriptor la capa fc8 de la red neuronal. Tanto las imagenes de test como las de la
base de datos han sido reescaladas.
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= Capa fc7. 5 Imagenes reescaladas y sin ruido
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Figura 156: Matriz de confusién de los resultados obtenidos a partir de 5 objetos de test cuyas
imégenes se han tomado sin ruido y han sido reescaladas.
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Figura 157: Tabla de “True positives” de los resultados obtenidos a partir de 5 objetos de test cuyas
imégenes se han tomado sin ruido y han sido reescaladas.
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Figura 158: Tabla de precision de los resultados obtenidos a partir de 5 objetos de test cuyas
imégenes se han tomado sin ruido y han sido reescaladas.
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F.4. Otras pruebas

= Las diferencias de tiempo y tamano de imagen entre los distintos niveles de calidad en la

compresion jpeg se pueden ver en la tabla

Nivel de calidad de la compresién | Tiempo (segs) ‘ Tamano (kB)
100 % 99.91 ~300
90 % 79.51 ~175.6
80 % 66.76 ~120

Tabla 15: Diferencias de tiempo y tamano de imagen entre los distintos niveles de calidad jpeg
comprobados para el modo cliente-servidor (cliente: Android, servidor: portatil, red: 100mbps, base
de datos: 50 objetos.
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