
Trabajo Fin de Grado
Grado en Ingenieŕıa Informática

Reconocimiento de objetos en Android para
aplicaciones de asistencia

Object recognition assistant application for Android

Autor

Alejandro Márquez Ferrer

Directores

Ana Cristina Murillo Arnal
Daŕıo Suárez Gracia

Universidad de Zaragoza
Escuela de Ingenieŕıa y Arquitectura

Noviembre 2016

i

Reconocimiento de objetos en Android para aplicaciones de asistencia

Resumen

La capacidad de identificar y reconocer objetos es una tarea que la percepción del ser humano

realiza sin problemas y de manera rutinaria. Sin embargo, crear un sistema informático capaz de

igualar estas capacidades sigue siendo uno de los principales campos de investigación dentro de la

disciplina de la visión por computador, VC. Esta razón unida a las posibilidades de ayuda que la

VC puede ofrecer a personas con necesidades especiales han sido los acicates que han dado lugar a

este trabajo. Además, en los últimos años los smartphone han experimentado una gran evolución en

términos de potencia, haciendo que cada persona tenga un “mini-ordenador” en el bolsillo. Por ello,

se ha enfocado el trabajo hacia esta plataforma y se han evaluado distintos algoritmos reconocedores

para implementarlos en un pequeño prototipo de asistencia al usuario que, en tiempo real, sea capaz

de identificar qué objetos que aparezcan en la cámara y listar los alérgenos que contiene.

Se han investigado dos tipos de algoritmos distintos para el reconocimiento de los objetos: uno

basado en local features, que puede ser ejecutado tanto en local como en modo cliente-servidor, y

otro basado en técnicas más novedosas, concretamente Deep Learning, que debido a que es más

exigente en términos de recursos sólo podrá ser ejecutado en modo cliente-servidor.

Como punto de partida, se ha creado una base de datos de objetos propios de un supermercado.

A continuación, se ha implementado un reconocedor de objetos basado en local features, y se ha

investigado y evaluado qué algoritmos de reconocimiento funcionaban mejor con esa base de datos.

Una vez elegido el que se ha considerado más óptimo, se ha implementado ese mismo reconocedor

en modo cliente-servidor. Después, se ha implementado el reconocedor basado en Deep Learning,

y se han evaluado sus resultados. Por último, se han comparado el rendimiento y los resultados

obtenidos entre las distintas técnicas y arquitecturas, y se han extráıdo conclusiones acerca de ellos:

ventajas, desventajas de cada uno y posibles mejoras.

Finalmente, se ha desarrollado un pequeño prototipo, consistente en una aplicación de asistencia

cuya función es reconocer los objetos de la base de datos creada a través de la cámara del dispositivo

e indicar la lista de alérgenos que contienen, todo ello en tiempo real.

ii

Agradecimientos

Quisiera en primer lugar dar las gracias a mis directores de proyecto Ana Cris y Daŕıo por toda

la ayuda prestada a lo largo del trabajo, el interés mostrado en el mismo, y las cosas que gracias a

ellos he aprendido.

Por supuesto también agradecer a mis padres sus ánimos a lo largo de toda esta carrera, apoyándo-

me en todo momento con su paciencia y consejos. No os preocupéis, que tras este trabajo ya

podré tener tiempo por fin para jugar con la gata.

A mi novia Nuria, que prácticamente desde que me conoce me ha tenido que aguantar en mis

momentos de desesperación y agobio con la carrera. A cambio, prometo arreglarte el ordenador y

cualquier aparato electrónico que se te estropee, que para eso soy ingeniero informático.

Y por último, pero para nada menos importante, a mis amigos, en especial a mis compañeros de

clase: compañeros de batallas, de desesperaciones, pero también de risas y muy buenos momentos.

Sin vosotros, este camino hubiese sido mucho más duro.

¡Muchas gracias a todos!

iii

Índice

1. Introducción 1

1.1. Contexto y motivación . 1

1.2. Trabajo relacionado . 1

1.3. Objetivos . 2

1.4. Distribución temporal de las tareas . 3

1.5. Tecnoloǵıas utilizadas . 3

1.6. Estructura de la memoria . 4

2. Reconocimiento de objetos 6

2.1. Reconocimiento mediante Local Features . 6

2.2. Reconocimiento mediante Deep Learning . 10

3. Diseño del sistema 13

3.1. Diseño de la aplicación . 13

3.2. Descripción de la base de datos . 13

3.3. Implementación de la aplicación . 15

3.3.1. Descripción general . 15

3.3.2. Descripción de los algoritmos de reconocimiento 16

3.3.3. Descripción de las arquitecturas . 19

4. Implementación del prototipo 23

4.1. Descripción del prototipo . 23

5. Experimentos y resultados 26

5.1. Setup de la bateŕıa de test . 26

5.2. Elección del algoritmo de reconocimiento basado en local features 27

5.3. Experimentos sobre la configuración del modo cliente-servidor 30

5.4. Experimentos sobre la configuración del reconocedor Deep Learning 32

5.5. Evaluación de la memoria . 35

5.6. Comparativa de tiempos finales . 35

6. Conclusiones y trabajo futuro 41

6.1. Conclusiones . 41

6.2. Trabajo futuro . 41

6.3. Opinión personal . 42

A. Manual de instalación del sistema 45

A.1. Requisitos previos aplicación: . 45

A.2. Requisitos previos servidor: . 45

A.3. Instalación . 45

A.4. Requisitos aplicación . 47

B. Estructura de la base de datos 50

B.1. Objetos . 50

B.2. Objetos de test . 51

C. Diagrama de clases del sistema 53

D. Algoritmo ORB (Oriented FAST and Rotated BRIEF) 55

E. Procesamiento en Redes neuronales convolucionales (CNN) 57

F. Resultados adicionales de los experimentos 60

F.1. Experimentos algoritmos de reconocimiento basados en local features. Primera versión 60

F.2. Experimentos algoritmos de reconocimiento basados en local features. Segunda versión 84

F.3. Experimentos algoritmos de reconocimiento basados en Deep Learning. 121

F.4. Otras pruebas . 172

G. Referencias 173

1. Introducción

Este primer caṕıtulo describe el contexto en el que se desarrolla el trabajo, aśı como la motivación

del mismo. A continuación, se habla del trabajo relacionado con este tema. Después, se hace una

breve introducción a los objetivos de alto nivel del trabajo y a las tecnoloǵıas utilizadas, finalizando

con la explicación de la estructura que presenta el resto de la memoria.

1.1. Contexto y motivación

La visión por computador es una rama de la inteligencia artificial que se basa en métodos por

los cuales los computadores puedan adquirir, procesar, analizar y entender imágenes digitales del

mundo real para producir información. Mientras que la inteligencia artificial busca que las máquinas

imiten las formas de pensar de la mente humana (aprendizaje, resolución de problemas...), la visión

por computador trata de reproducir en éstas la manera que tienen los seres humanos de, mediante

el sentido de la vista, comprender el mundo real.

Durante los últimos años y gracias a las nuevas tecnoloǵıas, la visión por computador ha experi-

mentado un gran auge y se han desarrollado numerosas aplicaciones. Una de las principales, y en la

que se va a centrar este trabajo, es el reconocimiento de objetos.

Actualmente, existen multitud de reconocedores de objetos en nuestra vida cotidiana, como por

ejemplo los lectores de matŕıculas, reconocedores de rostros, clasificadores de objetos, aplicaciones de

asistencia... Además, el hecho de que la inmensa mayoŕıa de personas posee un smartphone o tablet

con Internet, unido a la evolución que han experimentado estos aparatos en cuestión de prestaciones,

hacen que puedan ejecutar reconocedores sin necesidad de ningún dispositivo adicional.

Es precisamente en este marco donde se enmarca este sistema. Se han investigado, implementado y

evaluado distintos algoritmos y arquitecturas para el reconocimiento de objetos, y se ha desarrollado

un pequeño prototipo de asistencia al usuario. Este prototipo le permitirá reconocer una serie de

objetos propios de un supermercado y obtener la lista de alérgenos que lo componen, todo esto en

tiempo real.

1.2. Trabajo relacionado

Muchos investigadores están intentando optimizar los algoritmos de reconocimiento, en la mayoŕıa

de los casos, para poder ejecutarlos desde dispositivos móviles y en tiempo real. Algunas investiga-

ciones se centran en ejecutar todos los cálculos en el dispositivo, como por ejemplo [1], que consiste

en una aplicación móvil de gúıa de museos mediante reconocimiento de objetos. Otras, sin embargo,

implementan un sistema distribuido, de tal manera que los cálculos se realicen entre el cliente y el

servidor [2].

Este proyecto se centra en el reconocimiento de objetos para asistencia al usuario, y se han

1

comparado ambos enfoques, tanto solo cliente, como cliente/servidor, para analizar cual es la

mejor aproximación en términos de precisión y rendimiento. Relacionado con este tema está esta

publicación [3], donde hablan del desaf́ıo que supone reconocer productos de un supermercado

debido a que las imágenes tomadas ah́ı tienen ruido mientras que las de la base de datos obtenidas

de Internet son limpias e incluso a veces generadas por ordenador.

En el dominio de la asistencia a personas con dificultades visuales existen ya algunas aplicaciones

en el mercado. A continuación, se detallarán algunas de ellas:

OrCam 1: OrCam es una cámara que se coloca en la montura de las gafas y permite reconocer

objetos y textos. Mediante un gesto de pulsación, el usuario indica el objeto a reconocer,

y OrCam le comunica por voz, gracias a los auriculares que incorpora, el resultado del

reconocimiento.

Medicamento Accesible Plus 2: Esta aplicación Android (también disponible en iOS)

permite, entre otras cosas, reconocer el código de barras de cualquier medicamento y leer su

información en voz alta al usuario, lo cual es muy útil para personas con problemas de vista.

KNFB Reader 3: Aplicación disponible para iOS y Android que permite reconocer textos

en multitud de formatos y lugares gracias a algoritmos de visión por computador, permitiendo

reproducirlos por voz. Al igual que la anterior, también está orientada a personas con déficit

visual.

1.3. Objetivos

Los objetivos generales de este proyecto son:

Crear una pequeña base de datos de objetos t́ıpicos de supermercado y de los alérgenos que

contienen.

Estudiar y evaluar distintos tipos de algoritmos de reconocimiento de objetos basado en Local

Features utilizando solo la plataforma Android, y elegir el más preciso y rápido posible con

respecto a la base de datos creada.

Implementar el algoritmo elegido anteriormente tanto para ser ejecutado en local, como en

arquitectura cliente/servidor, y evaluar el rendimiento de ambas arquitecturas.

Estudiar e implementar otro algoritmo de reconocimiento de objetos más exigente en términos

de recursos, basado en Deep Learning, e implementarlo en arquitectura cliente/servidor.

1Página oficial: http://www.orcam.com/
2Enlace a la aplicación en Google Play: https://play.google.com/store/apps/details?id=com.technosite.

medicamentoaccesible&hl=es/
3Página oficial: http://www.knfbreader.com/

2

http://www.orcam.com/
https://play.google.com/store/apps/details?id=com.technosite.medicamentoaccesible&hl=es/
https://play.google.com/store/apps/details?id=com.technosite.medicamentoaccesible&hl=es/
http://www.knfbreader.com/

Evaluar y comparar el rendimiento y resultado de los distintos algoritmos y arquitecturas

utilizados, analizando las ventajas, desventajas y resultados de cada uno.

Creación de un prototipo que permita reconocer objetos de la base de datos mencionada en

tiempo real, y proporcione al usuario información acerca de los alérgenos que estos contienen.

1.4. Distribución temporal de las tareas

Figura 1: Diagrama de Gantt de las tareas realizadas

1.5. Tecnoloǵıas utilizadas

Para llevar a cabo la implementación de los objetivos citados anteriormente, es necesario el

uso de varias herramientas y tecnoloǵıas. En la tabla 1 de esta sección aparecen enumeradas las

diferentes herramientas y tecnoloǵıas empleadas durante el desarrollo del sistema. La tabla se

encuentra agrupada por categoŕıas, mostrándose en primer lugar las tecnoloǵıas relacionadas con la

implementación del sistema en local. A continuación, se especifican las tecnoloǵıas utilizadas para la

comunicación entre el cliente y el servidor. Después, se muestran las herramientas empleadas para

implementar el reconocedor mediante Deep Learning. Esto va seguido por las utilidades usadas para

procesar los resultados en bruto obtenidos en el sistema. Por último, aparecen las herramientas de

desarrollo y las de ofimática y documentación, que sirven de apoyo para la realización del proyecto.

3

Categoŕıa Tecnoloǵıas y Herramientas

Implementación del sistema

Android

CrystaX’s Android NDK

C++

OpenCV

https://www.crystax.net/en/android/ndk

http://opencv.org/

Comunicación Cliente-Servidor
C++

Protocol Buffers https://developers.google.com/protocol-buffers/

Reconocimiento Deep Learning Caffe [4] http://caffe.berkeleyvision.org/

Procesamiento de resultados Python

Herramientas de desarrollo

Eclipse IDE

Android Studio

GitHub

Google Drive

Ofimática y documentación

Sublime Text

LaTeX

Overleaf

https://www.latex-project.org/

https://www.overleaf.com/

Tabla 1: Tecnoloǵıas y herramientas utilizadas en el proyecto

1.6. Estructura de la memoria

La memoria del trabajo se compone de seis caṕıtulos y seis anexos, que se especifican a continuación:

Caṕıtulo 1: Introducción. Se hace una introducción general del proyecto, mostrando el

contexto y la motivación del mismo, el trabajo relacionado, los objetivos del proyecto y las

tecnoloǵıas utilizadas.

Caṕıtulo 2: Reconocimiento de objetos. Se abordan los aspectos teóricos de las dos técnicas

utilizadas para el reconocimiento de objetos en este proyecto, que son el reconocimiento basado

en Deep Learning y el reconocimiento basado en local features.

Caṕıtulo 3: Diseño del sistema. Se describe el sistema realizado durante el proyecto, lo que

incluye también detalles de su implementación y de las distintas arquitecturas utilizadas.

Caṕıtulo 4: Implementación del prototipo. Se comenta de forma más general el prototipo

creado, al igual que se hace una descripción de su mapa de navegación y sus pantallas.

Caṕıtulo 5: Experimentos y resultados. Se explican los experimentos llevados a cabo, las

optimizaciones realizadas, y los resultados obtenidos para cada prueba.

Caṕıtulo 6: Conclusiones y trabajo futuro. Se muestran las conclusiones obtenidas de la

realización del proyecto, el trabajo que se puede llevar a cabo para mejorar y continuar el

sistema y la opinión personal del estudiante.

Anexo A: Manual de instalación del sistema. Se dan instrucciones de cómo instalar el sistema

(tanto la aplicación como el servidor) aśı como de sus requisitos.

4

https://www.crystax.net/en/android/ndk
http://opencv.org/
https://developers.google.com/protocol-buffers/
http://caffe.berkeleyvision.org/
https://www.latex-project.org/
https://www.overleaf.com/

Anexo B: Estructura de la base de datos. Se explica cómo está estructurada la base de datos

utilizada por el sistema.

Anexo C: Diagrama de clases del sistema: Se incluye un diagrama de clases del sistema

implementado.

Anexo D: Descriptor/Detector ORB. Se detallan las particularidades de este algoritmo de

extracción y descripción de puntos de interés.

Anexo E: Procesamiento en Redes neuronales convolucionales (CNN). Se explica más en

detalle cómo funcionan las redes neuronales convolucionales.

Anexo F: Resultados adicionales de los experimentos. Se muestran todos los resultados de

las pruebas realizadas a lo largo del proyecto.

5

2. Reconocimiento de objetos

En esta sección se abordarán los aspectos teóricos de las dos técnicas que se han utilizado para

reconocer objetos en este proyecto: el reconocimiento mediante Local features y el reconocimiento

mediante Global features, haciendo uso de Deep Learning. En ambos casos, existirá una base de datos

con imágenes de objetos y su información correspondiente. El objetivo del sistema de reconocimiento

es decir si la imagen tomada por el usuario corresponde con alguno de los objetos de la base de

datos.

2.1. Reconocimiento mediante Local Features

Una local feature, o caracteŕıstica de interés local, es un patrón de la imagen que debido a una

serie de cualidades, puede ser utilizada como punto de referencia de esa imagen. En la publicación

Local Invariant Feature Detectors: A Survey [5] se define como “Un patrón de la imagen que difiere

de sus vecinos inmediatos”. La principal caracteŕıstica de una buena feature es que sea única, y por

lo tanto, no pueda confundirse con otras features. Hay muchas propuestas para obtener local features

en la literatura, que pueden estar basadas en contornos, esquinas, regiones... En este trabajo, nos

hemos centrado en el uso de local features que consisten en un punto de interés descrito por el

contenido de una zona alrededor de dicho punto. Uno de los primeros detectores/descriptores de la

literatura que supuso grandes avances en sistemas de reconocimiento basados en local features es el

algoritmo de SIFT [8].

Un sistema de reconocimiento de objetos utilizando puntos de interés consiste en detectar dichos

puntos en una imagen y compararlas con las de las imágenes de la base de datos. El objeto de la base

de datos cuyos puntos de interés presenten más similitud con los de imagen dada, será identificado

como el que aparece en esa imagen. Este sistema de detección y comparación de puntos no solo

se utiliza para el reconocimiento de imágenes, sino que también se emplea para, por ejemplo, la

creación de imágenes panorámicas [6], navegación de robots [7]... Podemos dividir el reconocimiento

basado en puntos de interés en cuatro fases:

Detección de puntos de interés: Consiste en identificar aquellos puntos que cumplen

la caracteŕıstica nombrada anteriormente. Existen numerosas técnicas y algoritmos para

detectarlos, como por ejemplo el detector FAST [10] u ORB [11]. Sin embargo, un buen

detector de local features debeŕıa cumplir todas o la mayoŕıa de estas caracteŕısticas:

• Robusto: que sea independiente de las transformaciones geométricas (escala, rotación...)

y fotométricas (brillo, exposición...).

• Preciso: que sea preciso a la hora de localizar los puntos de interés.

• Eficiente: que sea rápido, sobre todo orientado a las aplicaciones en tiempo real.

• Repetible: que se obtengan los mismos puntos cada vez que se ejecute.

6

En la figura 2 se pueden observar distintos puntos de interés extráıdos de una imagen.

Figura 2: Detección de las local features de una imagen

Descripción de puntos de interés: Una vez obtenidos los puntos, el siguiente paso es

obtener el descriptor de cada uno de ellos. Existen multitud de algoritmos y soluciones para

ello, pero la idea en todos es obtener de cada feature, la información de la región vecina de

ella, información que deberá ser invariante de las transformaciones de la imagen. Podemos

agrupar los descriptores de puntos de interés más extendidos en dos tipos, según el tipo de dato

utilizado en su descripción: descriptores binarios o no binarios. Los primeros son generalmente

más eficientes, pero menos precisos que los segundos. Algunos de los descriptores no binarios

más conocidos son por ejemplo SIFT [8] y SURF [9], que utilizan vectores de valores reales

como descriptores. Ejemplos de descriptores binarios, que utilizan un vector de valores binarios

como descriptor, son ORB [11] o BRISK [12]. En el anexo D se explicará ORB en detalle, ya

que es el que se utilizará en el proyecto.

En la figura 34 se pueden observar las local features detectadas en una imagen, y el descriptor

de una de ellas, obtenido mediante el algoritmo SIFT [8], que está basado en los gradientes de

la imagen.

4Fuente imagen:http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-
Features-with-O

7

http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O
http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O

Figura 3: A la izquierda, los puntos de interés detectados en una imagen de ejemplo. En el centro,
una rejilla que representa los valores y direcciones del gradiente del nivel de gris en cada pixel
alrededor del punto de interés descrito. A su derecha, la representación del descriptor del punto, que
representa la distribución de los valores del gradiente alrededor del punto, y por ultimo el vector de
números reales que codifica este descriptor.

Cálculo de correspondencias entre puntos de interés: Una vez obtenidos los descrip-

tores de la imagen, el último paso es compararlos con los descriptores de la base de datos.

La idea general es establecer una función de similitud que a partir de dos descriptores, nos

indique su nivel de semejanza.

Existen varios algoritmos para identificar correspondencias entre descriptores, es decir, buscar

el más parecido o vecino mas cercano (nearest neighbour), y se distinguen principalmente por

el tipo de distancia o similitud para comparar dos descriptores. Por ejemplo, para descriptores

no binarios se suele utilizar la distancia Eucĺıdea, mientras que trabajando con descriptores

binarios se suele utilizar la distancia Hamming:

dHAD(i, j) =
n−1∑
k=0

[ik 6= jk] (1)

Donde dHAD es la distancia Hamming entre los códigos binarios i, j ; k es el ı́ndice de bit,

entre 0 y el número de bits (n), o longitud del descriptor.

Para mejorar los resultados, se puede establecer un umbral o threshold que indique el nivel

mı́nimo de semejanza entre correspondencias. Si una correspondencia no llega a ese nivel, se

descarta. Otra opción más robusta y extendida, que es la utilizada en este trabajo, consiste

en el uso del ratio entre los dos descriptores más parecidos encontrados. Si la distancia al

más cercano es menor que la distancia al segundo más cercano, multiplicada por un factor

8

reductor, se da la correspondencia como buena. En caso contrario se descarta. El algoritmo es

/* Indicador de si la correspondencia es buena */

bool accept;

si dnn1 < dnn2 ∗ 0,7 entonces

accept = true; ;

en otro caso

accept = false ;

devolver accept;
Algoritmo 1: Algoritmo de correspondencias según el ratio entre los dos vecinos más cercanos

donde dnn1 es la distancia al descriptor más cercano, y dnn2 es la distancia al segundo

descriptor más cercano.

Para realizar comparaciones entre muchos puntos de muchas imágenes, se suelen utilizar

técnicas aproximadas, basadas en el uso de estructuras de datos que permitan una búsqueda

más eficiente, como pueden ser árboles. Por ejemplo FLANN [13] es un método muy extendido

para conseguir correspondencias entre features de manera eficiente. Sin embargo, debido a que

el número de objetos del proyecto es muy pequeño, no se ha considerado necesario implementar

este método.

Elección del objeto más parecido: Una vez comparados todos los descriptores de los puntos

de interés, la imagen de la base de datos cuyo nivel de semejanza respecto a la imagen enviada

por el usuario sea el más alto indicará el nombre del objeto. Esta similitud entre imágenes

puede ser sencillamente el número de correspondencias de puntos de interés buenas encontradas,

como se utilizará en este trabajo. Sin embargo hay otras técnicas más sofisticadas que tienen

en cuenta la distribución espacial de los puntos de interés, o co-ocurrencias de los mismos

[14, 15]. No se ha visto necesario implementar ninguno de estos métodos ya que las imágenes

del modelo siempre eran limpias y no era parte central del proyecto conseguir un algoritmo de

correspondencias robusto, sino una manera rápida de conseguir una similitud. También es

posible aplicar un filtro para que el reconocedor sea más robusto. Por ejemplo, calculando

restricciones geométricas entre dos vistas (como la homograf́ıa o la matriz fundamental [16])

mediante el algoritmo RANSAC [17]. Este algoritmo consigue eliminar los valores at́ıpicos

de un modelo, y seŕıa posible filtrar aquellas correspondencias que no se ajustasen a la

transformación geométrica. Sin embargo, debido al coste computacional que esto requiere, y a

que el reconocedor está pensado para ejecutarse en tiempo real, se ha decidido no implementar

este filtro en este primer prototipo.

En la figura 4 se pueden observar las correspondencias entre un mismo objeto en dos imágenes

distintas.

9

Figura 4: Puntos de interés y correspondencias buenas entre dos imágenes.

Las ventajas que tiene el empleo de local features, en concreto usando descriptores binarios, para

el reconocimiento de objetos son:

Robustez a oclusiones, debido a que mientras haya puntos de interés visibles, el reconocedor

podrá hacer correspondencias con los objetos de la base de datos (que son imágenes limpias).

Son eficientes, pudiendo ser utilizados para reconocimiento en tiempo real. Esto es gracias al

uso de descriptores binarios.

2.2. Reconocimiento mediante Deep Learning

Se ha definido como Deep Learning [18] (en español, aprendizaje profundo), a un tipo de aprendizaje

automático que cumple las siguientes caracteŕısticas:

Utiliza una cascada de varias capas con unidades de procesamiento no lineales, en las que

cada capa sucesiva toma como entrada la salida de la anterior.

Está basado en el aprendizaje no supervisado de múltiples niveles de caracteŕısticas o repre-

sentaciones de los datos. Las caracteŕısticas de más alto nivel derivan de las de más bajo nivel,

formando una representación jerárquica.

Aprende múltiples niveles de representaciones que corresponden a diferentes niveles de abs-

tracción, los cuales forman una jerarqúıa de conceptos.

En el caso de este proyecto, el método de reconocimiento de objetos mediante Deep Learning se

basa en el uso de redes neuronales denominadas Redes neuronales convolucionales (CNN, de sus

10

siglas en inglés). El sistema de reconocimiento basado en estas técnicas tienes dos fases: extracción

de features de una imagen, y clasificación utilizando esas features.

En el trabajo, se parte de una red CNN ya entrenada (dataset de entrenamiento: [20]) para

reconocimiento de un conjunto de objetos. Si se quisiera reconocer objetos de ese conjunto de

entrenamiento, la red daŕıa directamente una clasificación. En este caso, se quiere utilizar las features

aprendidas de manera no supervisada durante el entrenamiento de dicha red, para clasificar y

reconocer otro tipo de objetos. Este tipo de redes CNN recopilan mucha información general de

imágenes (más detalle de cómo funcionan estas redes en el anexo E, y se ha demostrado que las

features que aprenden se pueden transferir con buenos resultados a otras aplicaciones [4], simplemente

utilizando la salida de capas intermedias de la red como features de una imagen. Esta es la base del

sistema utilizada en el proyecto.

En más detalle, el proceso seguido en este trabajo para reconocer un objeto utilizando una CNN

entrenada previamente como extractor de caracteŕısticas es:

1. Se obtiene como feature de la imagen el resultado de una capa intermedia (fc7 de la red

publicada por AlexNet [20]) de las neuronas de clasificación, la cual consiste en 4096 valores

floats que corresponden con la respuesta combinada de la imagen de entrada a las funciones

evaluadas por todas las capas de la red hasta llegar a dicha capa intermedia.

2. Se obtiene el mismo tipo de feature para la imagen enviada por el usuario.

3. Se compara el vector obtenido de esa imagen, con todos los vectores obtenidos en las imágenes

de la base de datos y, siguiendo el razonamiento de que imágenes similares tendrán valores

similares, se elige la más parecida (mediante distancia eucĺıdea). El algoritmo seŕıa el siguiente

float min distance = ∞;

int index = 0;

mientras index < numero(imagenesBD) hacer

float actual distance = distancia euclidea(escena, imagenesBD[index]);

si actual distance < min distance entonces

min distance = actual distance;

fin

index++;

fin

devolver index;
Algoritmo 2: Algoritmo para la obtención del objeto más parecido mediante distancia eucĺıdea

donde escena son los descriptores de la imagen enviada por el usuario, numero(imagenesBD)

devuelve el número de imágenes que contiene la base de datos e imagenesBD[index] se

corresponde al descriptor de la imagen de la base de datos con ı́ndice index.

A diferencia del reconocimiento de objetos basado en local features, podemos considerar estas

caracteŕısticas como global features, ya que son descriptores de toda la imagen, no de una zona o

11

punto concreto. Una de las desventajas de este tipo de descripción de imagen es que, pese a que

resulta más compacto (un descriptor por imagen solamente), también resulta más sensible a la

oclusión y al ruido de fondo.

Otra desventaja es que requieren de una máquina potente capaz de cargar la red y obtener el

resultado, razón por la cual actualmente es prohibitivo para smartphones y tablets. Actualmente, es

motivo de investigación de los principales fabricantes el cómo poder ejecutar Deep Learning en un

smartphone o tablet. Este tipo de algoritmos de reconocimiento también posee ciertas ventajas: por

ejemplo, permite trabajar por lotes, es decir, procesar varias imágenes al mismo tiempo, sin que

esto afecte al rendimiento o también permite aprovechar la GPU de las tarjetas gráficas, lo que

supone un plus en rapidez.

12

3. Diseño del sistema

En este caṕıtulo se hablará del diseño del sistema. Primeramente se mostrará un pequeño esquema

del diseño del sistema. A continuación, se comentará la base de datos y después la implementación

del resto del sistema, lo cual incluye la descripción de las distintas arquitecturas y de los algoritmos

de reconocimiento.

3.1. Diseño de la aplicación

En la figura 5 se muestra un diagrama simplificado del sistema. Esto incluye las dos posibles

arquitecturas: local, y cliente-servidor.

Figura 5: Representación simplificada del sistema con las arquitecturas local y cliente/servidor.

3.2. Descripción de la base de datos

La base de datos final consta de 50 tipos de objetos. Cada objeto está compuesto por su nombre,

que servirá de identificador, una lista de imágenes del objeto (representando distintas vistas) con su

nombre de vista (arriba, abajo, cara frontal...) y una lista de alérgenos que lo componen, en caso de

haber alguno. Además, incluirán un campo extra, que tiene únicamente fines experimentales y no

influye en el funcionamiento del prototipo, y es un indicador de si el objeto es “fácil” o “dif́ıcil” de

reconocer. En la figura 6 se puede observar un diagrama representando a un objeto.

13

Figura 6: Representación de cada objeto de la base de datos.

En total, en la base de datos están almacenadas estas 54 imágenes de resoluciones variables y

obtenidas de diversas páginas de Internet. Esto se ha hecho aśı para no poblar la base de datos con

fotos de la misma cámara con lo que se grabará, haciendo más dif́ıcil (y más real) el reconocimiento.

La dificultad añadida que plantea el tomar imágenes de Internet es que son en su mayoŕıa imágenes

limpias, e incluso a veces generadas por ordenador. La figura 7 muestra todas las imágenes de la

colección.

Figura 7: Imágenes que componen la base de datos.

La lista de los posibles alérgenos es la siguiente:

Altramuces

Apio

Cacahuetes

Gluten

Dióxido de azufre

Frutos secos

Huevos

Leche

Marisco

Moluscos

Mostaza

Pescado

Sésamo

Soja

14

La base de datos ha sido programada en C++, cargando los ficheros en memoria al inicio de la

aplicación.

3.3. Implementación de la aplicación

3.3.1. Descripción general

La aplicación está diseñada para Android mezclando lenguaje Java (interfaz y acceso a la cámara

del móvil) y C++ (procesamiento de la imagen y base de datos). El objetivo de hacerlo aśı es

desacoplar ambas partes para poder reutilizar fácilmente el código correspondiente al procesamiento

de la imagen en cualquier otro dispositivo (PC, iOS...) sin tener que modificarlo apenas y poder

optimizar esta parte. OpenCV dispone de una libreŕıa escrita en Java para Android, pero es menos

eficiente y posee menos caracteŕısticas y funciones que la escrita en C++.

El sistema estará compuesto por varias clases:

Clase nativa: Es la clase que sirve de puente entre el código Java y el código C++.

Reconocedor: Existen dos reconocedores, uno para reconocer objetos basado en local features

y otro basado en Deep Learning. Ambos poseerán la lista de objetos correspondientes al tipo

de reconocedor que son, y sus principales funciones serán cargar la lista de objetos de la base

de datos, extraer los descriptores de una imagen, y reconocer un objeto a partir de una imagen.

Además, estarán formados por:

• Reconocedor basado en local features: un detector y un descriptor de features, y

un matcher de descriptores.

• Reconocedor basado en Deep learning : un puntero a la red neuronal ya entrenada,

con la cual obtener los descriptores de la imagen.

Objeto: Representa un objeto de la base de datos. Está formado por su nombre, la lista

de nombres de las vistas que lo compone, la lista de alérgenos que contiene y si pertenece a

los objetos fáciles de reconocer. Además, dependiendo del reconocedor al que correspondan,

estarán formados por:

• Objetos para reconocedor local features: una lista de puntos de interés de cada

una de sus vistas, una lista de matrices de descriptores para cada una de sus vistas, y

una lista con las cuatro esquinas de cada una de sus vistas.

• Objetos para reconocedor Deep Learning : una lista de descriptores para cada una

de sus vistas.

Resultado: representa el resultado de aplicar cualquiera de los dos reconocedores a una

imagen. Está compuesto por el nombre y la vista del objeto identificado, el número de puntos

de interés y de correspondencias que se han encontrado, la lista de alérgenos que contiene

15

ese objeto y una lista con las esquinas del rectángulo de la imagen en la que se encuentra el

objeto (si lo hay).

Network: utilizado para la comunicación cliente servidor. Está compuesto por un socket, la

dirección IP y el puerto del servidor, un indicador de si la conexión está activa y otro del tipo

de reconocedor que está ejecutando el servidor, además de funciones para enviar y recibir

datos del servidor. Más adelante, la subsección 3.3.3 explica el funcionamiento de esta clase.

Resultado serializado: clase generada por Google Protocol Buffer que representa un objeto

resultado serializado y listo para enviarse entre cliente y servidor.

Además de estas clases, se ha creado otras clases auxiliares para medir tiempos, depurar el

programa, testear tipos de datos, y varias clases para ejecutar experimentos, que se detallarán en el

caṕıtulo 5.

En el anexo C se encuentra el diagrama de clases del sistema.

3.3.2. Descripción de los algoritmos de reconocimiento

Como ya se ha comentado anteriormente, se han implementado dos reconocedores, uno basado en

local features y el otro en Deep Learning. El funcionamiento de ambos es el mismo, lo único que

cambia es la manera que tienen de reconocer objetos. El funcionamiento general seŕıa el siguiente:

1. El reconocedor recibe una imagen.

2. El reconocedor extrae los descriptores de esa imagen.

3. El reconocedor compara los descriptores de la imagen recibida, con los descriptores de las

imágenes de la base de datos (que estaban cargados previamente). Aquella imagen de la

base cuya correspondencia sea más alta, indicará la vista del objeto al que más se parece.

Si la correspondencia es lo suficientemente buena (se pasa un filtro), se marca como objeto

encontrado.

4. En caso de haber encontrado objeto, devuelve el resultado (nombre del objeto, nombre de la

vista del objeto, lista de alérgenos si los tiene). Si no lo ha encontrado, simplemente indica

que no hay objeto.

En el diagrama 8 se puede ver el funcionamiento de este proceso:

16

Figura 8: Diagrama del funcionamiento general del reconocedor de objetos.

A continuación, se ahondará en las diferencias de los dos reconocedores:

Reconocedor basado en local features:

Este reconocedor tiene guardada la lista de objetos que, como se ha indicado antes, contiene

los puntos clave, descriptores y esquinas de cada una de las imágenes que la componen. Cuando

recibe la imagen, mediante el algoritmo ORB [11] extrae sus puntos clave y descriptores. A

continuación, calcula las correspondencias entre la imagen, y todas las imágenes de la base de

datos. Mediante la distancia de Hamming se obtienen las correspondencias entre puntos. Sin

embargo, para dar por válida una correspondencia, se aplica un filtro basado en el algoritmo

K-vecinos más cercanos 5, el cual ha sido anteriormente explicado (1). El objeto que más

correspondencias buenas tenga con la imagen dada, será reconocido como objeto de la imagen.

Sin embargo, aún se aplican dos filtros más. El primero, establecer que haya más de cuatro

correspondencias buenas. El segundo, calcular la matriz de homograf́ıa entre la imagen y el

objeto de la base de datos con más correspondencias buenas. Esta matriz se calcula mediante

el algoritmo RANSAC [17], e indica la correspondencia entre cada punto de interés del objeto

de la base de datos con su correspondiente en la imagen. De esta manera, y a partir de las

esquinas de la imagen del objeto de la base de datos, se pueden obtener los vértices de un

poĺıgono que rodee al objeto encontrado en la imagen. El filtro consiste en que si ese poĺıgono

resultante no es convexo 6, significa que las correspondencias eran malas, y por lo tanto no

existe correspondencia.

A continuación, la figura 9 muestra un diagrama explicando el proceso:

5Explicación http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/py_knn/py_knn_understanding/

py_knn_understanding.html
6Poĺıgono convexo https://es.wikipedia.org/wiki/Pol%C3%ADgono_convexo

17

http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/py_knn/py_knn_understanding/py_knn_understanding.html
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_ml/py_knn/py_knn_understanding/py_knn_understanding.html
https://es.wikipedia.org/wiki/Pol%C3%ADgono_convexo

Figura 9: Diagrama del funcionamiento exclusivo del reconocedor de objetos basado en local features.

Reconocedor basado en Deep learning :

Este reconocedor tiene guardado previamente la lista de objetos que, además de los parámetros

comunes (nombre, etc), tienen un descriptor por imagen consistente en una lista de 4096

números reales, valores otorgados por la capa de neuronas fc7 de la red neuronal convolucional.

El proceso para reconocer un objeto mediante esta red es extraer ese mismo descriptor de la

imagen de entrada. Después, comparar ese vector con los vectores de descriptores de la base

de datos, buscando el más parecido bajo el criterio de la distancia eucĺıdea (2). Si la mejor

distancia obtenida es menor que cierto valor umbral, se dará por válida la correspondencia. A

diferencia del reconocedor de local features, este, al estar basado en global features, no puede

establecer una correspondencia entre puntos de una imagen con la de la base de datos. Por lo

tanto, con este reconocedor no se puede obtener el rectángulo rodeando al objeto.

A continuación, la figura 10 muestra el diagrama explicando este proceso :

18

Figura 10: Funcionamiento exclusivo del reconocedor de objetos basado en Deep Learning.

El coste en tiempo y la precisión de cada uno se verá en la sección 5 de experimentos y resultados

.

3.3.3. Descripción de las arquitecturas

Como ya se ha dicho anteriormente, el reconocedor basado en Deep Learning no puede ser

ejecutado en el dispositivo Android, al ser muy exigente en términos de memoria y recursos. Es por

ello que se han implementado dos arquitecturas: modo local (local features), y modo cliente-servidor

(ambas).

Modo local:

El modo local, como su propio nombre indica, no necesita conexión a Internet y es ejecutado

de manera local en el dispositivo Android. Para poder ejecutar este modo y que funcione

correctamente, es necesario que las imágenes de la base de datos se encuentren en el almace-

namiento interno del dispositivo. El funcionamiento está explicado en la anterior subsección

3.3.2. El coste en tiempo de este modo dependerá en gran medida de la capacidad de cálculo

del smartphone.

A continuación, un diagrama mostrando su funcionamiento 11:

19

Figura 11: Funcionamiento del reconocedor de objetos en modo local.

Modo cliente-servidor:

En este modo, existe un servidor con los reconocedores de objetos, y el cliente se limita a

enviarle peticiones con las imágenes y a recibir el resultado. Con el fin de que la comunicación

sea lo más rápida posible, y siguiendo la idea de que el código pueda ser exportado con facilidad

a otros sistemas operativos, se ha decidido implementar la conexión mediante sockets 7 bajo

el protocolo TCP 8 en C++.

En modo remoto, el cliente se conecta con el servidor, que está esperando conexiones. Cuando

el servidor recibe una conexión, crea un hilo para atender al cliente, y le comunica qué tipo de

reconocedor tiene en marcha. Una vez establecida la conexión, el cliente procede a enviarle

la imagen al servidor. Ese proceso consiste en comprimir la imagen para reducir la latencia,

enviar al servidor el tamaño de la imagen para que sepa cuando dejar de esperar más bytes, y

enviar la imagen. Si el servidor está en modo Deep learning, antes de comprimir la imagen la

reduce al tamaño 256x256, que es el tamaño con el que trabaja ese algoritmo. Aśı, disminuye

aún más el tamaño de la imagen, y, por lo tanto, el tiempo de comunicación. Después, el

cliente espera respuesta del servidor. Mientras tanto, el servidor una vez haya recibido la

imagen, procede a descomprimirla y aplicar el reconocedor correspondiente sobre ella. Una vez

obtenga el resultado, mediante los Protocol Buffers serializa el resultado y junto a su tamaño

en bytes se env́ıa de vuelta al cliente. Al recibir el resultado, el cliente lo “deserializa” para

finalmente mostrarlo por pantalla. La conexión entre el cliente y el servidor se cierra cuando

éste vuelva a la pantalla inicial, minimice o cierre la aplicación.

La ventaja de este modo es que es más escalable, puesto que el servidor, que es el que realiza

los cálculos, puede ser much́ısimo más potente que un dispositivo móvil. Además, de esta

manera el dispositivo no tiene por qué tener almacenada la base de datos en su interior, con el

consecuente ahorro de memoria. Sin embargo, un inconveniente es que la red ha de ser rápida,

7Definición de socket: https://es.wikipedia.org/wiki/Socket_de_Internet
8Protocolo TCP https://es.wikipedia.org/wiki/Transmission_Control_Protocol

20

 https://es.wikipedia.org/wiki/Socket_de_Internet
https://es.wikipedia.org/wiki/Transmission_Control_Protocol

puesto que el coste de todo el proceso dependerá en gran medida de su velocidad, al igual que

de la velocidad de reconocimiento del objeto.

A continuación, el diagrama 12 explica todo este proceso:

Figura 12: Reconocedor de objetos en modo cliente-servidor.

Por último, se mostrarán dos diagramas de secuencia. Uno referente a la conexión entre cliente

y servidor en la figura 13 y otro referente a un env́ıo de imagen en la figura 14.

Figura 13: Diagrama de secuencia correspondiente al establecimiento de conexión entre cliente y
servidor.

21

Figura 14: Diagrama de secuencia correspondiente a la comunicación para el procesamiento de una
imagen en modo cliente - servidor.

Los costes de tiempo entre una arquitectura y otra se mostrarán en la sección 5 (experimentos y

resultados).

22

4. Implementación del prototipo

En este caṕıtulo se describe de una forma más general el prototipo creado, aśı como una descripción

de su mapa de navegación y sus pantallas.

4.1. Descripción del prototipo

El prototipo es muy simple. Consta de una pantalla con una barra en la cual se encuentra el

t́ıtulo, y cuatro botones para las cuatro acciones que se pueden realizar: ejecutar el reconocedor

local, ejecutar el reconocedor remoto, ejecutar el test local y ejecutar el test remoto. El tipo de

reconocedor remoto dependerá del servidor, será éste el que le indique al cliente cuál está usando.

Para funcionar, la aplicación necesita permisos de lectura/escritura en el almacenamiento (para

cargar las imágenes y escribir los resultados de los test, respectivamente); cámara (para acceder a

ella) e Internet. En versiones posteriores a Android 6.0, el usuario tendrá que confirmar manualmente

estos permisos. En caso contrario, no funcionará la aplicación.

Cuando el usuario la inicia, se cargan los objetos en background. Mientras esto sucede, la pantalla

aparece en blanco.

En la figura 15 se puede observar la pantalla principal de la aplicación.

Figura 15: Pantalla principal de la aplicación.

Ambos botones del reconocedor, al pulsarlos llevan a la misma pantalla: la visualización de la

23

cámara. En ella aparecerá también el nombre del objeto reconocido (o si no ha reconocido ninguno,

el mensaje “No object”), la lista de alérgenos que contiene, y si el reconocedor está basado en local

features, un recuadro rodeando al objeto. En caso de que no aparezca ningún tipo de texto, significa

que ha habido algún error en la conexión con el servidor, y entonces simplemente se muestra la

imagen de cámara en tiempo real.

En cuanto al modo reconocedor remoto, la conexión con el servidor se establece al pulsar el botón,

y es cerrada al volver a la pantalla principal, minimizar o cerrar la aplicación.

En la figura 16 se puede observar la pantalla del reconocedor.

Figura 16: Pantalla del reconocedor de objetos.

Los botones referentes al test no producen ningún cambio visual. Lo que hacen es ejecutar la

evaluación del reconocedor correspondiente mediante las imágenes de prueba (esto se comentará más

en detalle en la sección 5). Estos botones por lo tanto tienen función únicamente para experimentar.

Se pensó también en incluir un botón en la barra principal que llevase a una lista de alérgenos,

donde el usuario pudiera marcar a los que él es alérgico. Después, al reconocer el objeto, se resaltaŕıan

en otro color los peligrosos para él. Sin embargo la limitación en tiempo del proyecto hizo que se

decidiera priorizar la realización de más experimentos antes que añadir funcionalidades adicionales

al prototipo.

En la imagen 17 se puede observar el mapa de navegación. Éste indica que desde la pantalla

principal se puede ir a la pantalla del reconocedor, mediante los botones “Cámara” y “Remoto”

(reconocedor local y remoto, respectivamente). Desde la pantalla del reconocedor, es posible volver

a la pantalla principal, pulsando el botón de “atrás” que incluyen todos los móviles Android.

24

Figura 17: Mapa de navegación del prototipo.

25

5. Experimentos y resultados

En este caṕıtulo se hablará la preparación de la bateŕıa de imágenes de test, los experimentos

que se han realizado en el sistema, las optimizaciones que se han llevado a cabo, y finalmente, los

resultados obtenidos. En esta sección no se incluyen todas las pruebas realizadas, sólo las más

relevantes. El total de pruebas realizadas se encuentra en el Anexo F. Las imágenes de los resultados

obtenidos aqúı se encuentran en tamaño reducido por razones estéticas. Estas imágenes también se

encontrarán en el anexo a tamaño completo.

5.1. Setup de la bateŕıa de test

Primeramente, se ha creado una base de datos de imágenes de test. Esta base de datos está formada

por 150 imágenes, 3 por objeto existente. Para ello, se han tomado fotos de dichos objetos en

distintas posiciones (una sosteniendo el objeto con la mano; otra con oclusión, sosteniendo el objeto

con la mano y tapándolo parcialmente con el dedo; y otra sobre una mesa de escritorio). En la

imagen 18, un ejemplo de las tres fotos de test de un objeto.

Figura 18: Imágenes de test del objeto “aceite botella”.

Estas imágenes son más grandes que las tomadas por la cámara durante el reconocimiento en

tiempo real (640x1137 vs 640x480). Sin embargo, para hacer las pruebas sirven, ya que sólo interesa

saber las diferencias de tiempos de las distintas optimizaciones.

Para la implementación de los experimentos se han creado varias clases nombradas anteriormente

en el caṕıtulo 3.3.1. Estas clases son:

TestImage: Representan un objeto de test. Este objeto estará formado por el nombre del

objeto que representa, el nombre del fichero de su imagen, la imagen en formato Mat en blanco

y negro, y la imagen en el mismo formato en color.

Tester: Es la clase que se encarga de ejecutar los experimentos. Posee como atributo una lista

de objetos de test, con los cuales evaluará la precisión de los algoritmos reconocedores. Su

funcionamiento consiste en:

1. Crear una matriz de confusión vaćıa 9. Una matriz de confusión es una herramienta que

permite evaluar el desempeño de los reconocedores. Cada fila representa un objeto real,

9Matriz de confusión: https://es.wikipedia.org/wiki/Matriz_de_confusi%C3%B3n

26

https://es.wikipedia.org/wiki/Matriz_de_confusi%C3%B3n

y cada columna un objeto predicho. Para que una matriz de confusión indique que el

reconocedor es 100 % perfecto para los objetos de test, debeŕıa tener sólo ocupada la

diagonal. Esto indicaŕıa que para cada objeto, en efecto predice ese objeto y no otro.

2. Pasar cada imagen de test por el reconocedor correspondiente y obtener el resultado

predicho.

3. Comparar el nombre del objeto del resultado dado por el reconocedor con el resultado

real.

4. Colocar el resultado de la comparación en el lugar correspondiente de la matriz. Si el

reconocedor ha acertado, éste debeŕıa colocarse en la diagonal.

5. Repetirá todo el proceso 5 iteraciones para obtener la media de esas 5 ejecuciones.

Además, se miden los tiempos que tarda el reconocedor en ejecutarse, y se escribe la matriz

de confusión, junto con otros datos relevantes (media de puntos, media de matches, tiempo...)

en 4 ficheros de texto. Uno de ellos contiene los datos de test de toda la bateŕıa de imágenes,

y los otros tres, las bateŕıas de objetos sin oclusión, objetos con oclusión y objetos en la mesa.

Utilidades: Esta clase contiene métodos utilizados a lo largo del proyecto de propósito general,

como por ejemplo escribir por consola mensajes o convertir variables de distintos tipos a string.

Timer: Clase utilizada para almacenar tiempos de ejecución identificados por etiquetas. De

esta manera se pueden medir tiempos de determinadas partes del código, y almacenarlas

independientemente del resto de tiempos guardados. También permite imprimir todos los

tiempos almacenados, con junto con el número de ejecuciones de esa parte de código, la media

de tiempo para ese número de ejecuciones y la desviación estándar.

Además, para poder interpretar ese resultado, se ha creado un script en Python, que a partir

de la salida generada por el Tester, genera tres imágenes: la matriz de confusión, la tabla de

verdaderos/falsos positivos - verdaderos/falsos negativos 10 y la tabla de precisión, exactitud y

exhaustividad 11 (recall).

5.2. Elección del algoritmo de reconocimiento basado en local features

Una vez creada la bateŕıa de imágenes de test, el siguiente paso fue investigar qué algoritmo de

reconocimiento basado en local features era más adecuado para el proyecto. Debido a su naturaleza

en tiempo real, el algoritmo deb́ıa cumplir esta caracteŕıstica: rápido, pero preciso. Se eligieron

los siguientes descriptores para su evaluación: ORB, BRISK y FAST (este último al ser sólo detector,

se combinó con ORB y BRISK para obtener los descriptores). Además, de los descriptores ORB y

BRISK se probaron distintas configuraciones aparte de las configuraciones por defecto en OpenCV.

La razón de escoger estos algoritmos únicamente es que se trata de descriptores binarios, mucho

10Explicación verdadero/falso positivo/negativo: https://es.wikipedia.org/wiki/Curva_ROC
11Precisión y recall: https://es.wikipedia.org/wiki/Precisi%C3%B3n_y_exhaustividad

27

https://es.wikipedia.org/wiki/Curva_ROC
https://es.wikipedia.org/wiki/Precisi%C3%B3n_y_exhaustividad

más rápidos que no binarios como SIFT o SURF. Información al respecto se puede encontrar en

numerosos art́ıculos [11] [21].

Por último, para desarrollar los experimentos se han utilizado tres máquinas distintas:

Smartphone OnePlus X: Sistema operativo Android. 3GB RAM. Procesador 2.3GHz

Qualcomm Snapdragon 801 (cuatro núcleos). 12

Portátil MSI GE62 6QE: Sistema operativo Ubuntu 16.04. 8GB RAM. Procesador Intel

Core i7-6700HQ (3.50 GHz). Durante el proyecto, se referirá a esta máquina como “portátil”.
13

Servidor remoto: Sistema operativo CentOS 6.8. 64GB RAM. Procesador Intel Core i7-

6700K (4 GHz). 2x GPU Nvidia Titan X 14. CUDA instalado 15. Durante el proyecto, se

referirá a esta máquina como “servidor”.

Primero se ha evaluado ORB y BRISK. El resultado de la evaluación entre ambos, ejecutados en

el smartphone, se observa en la figura 19.

(a) ORB (72)

Tiempo: 48.2 segs

Aciertos: 88

Fallos: 4

No encontrados: 58

Media puntos: 500

Media matches buenos: 27

(b) BRISK (96)

Tiempo: 502.7 segs

Aciertos: 86

Fallos: 3

No encontrados: 61

Media puntos: 1855

Media matches buenos: 63

Figura 19: ORB vs BRISK (Android)

12OnePlus X https://oneplus.net/es/x
13MSI GE62 6QE https://www.msi.com/Laptop/GE62-6QE-Apache-Pro-.html#hero-overview
14Nvidia Titan X http://www.nvidia.es/graphics-cards/geforce/pascal/titan-x/
15CUDA http://www.nvidia.es/object/cuda-parallel-computing-es.html

28

https://oneplus.net/es/x
https://www.msi.com/Laptop/GE62-6QE-Apache-Pro-.html#hero-overview
http://www.nvidia.es/graphics-cards/geforce/pascal/titan-x/
http://www.nvidia.es/object/cuda-parallel-computing-es.html

ORB obtiene mejor precisión que BRISK (88 aciertos vs 86) con un menor tiempo de ejecución.

Esta gran diferencia de tiempo se debe a que BRISK encuentra muchos más puntos, y como el

algoritmo para calcular las correspondencias es linear para el número de puntos, incrementa mucho

el tiempo de ejecución. Para intentar bajar este tiempo, se han retocado los valores por defecto que

presenta el descriptor BRISK, aumentando un umbral relacionado con el algoritmo AGAST [22],

que tiene que ver con la detección de esquinas. A mayor umbral, menor número de puntos, siendo

por defecto 30. En la imagen 20 se observan los resultados de los mismos reconocedores, salvo que

ahora BRISK tendrá un umbral de 85.

(a) ORB (72)

Tiempo: 48.2 segs

Aciertos: 88

Fallos: 4

No encontrados: 58

Media puntos: 500

Media matches buenos: 27

(b) BRISK (umbral 85) (102)

Tiempo: 44.4 segs

Aciertos: 72

Fallos: 3

No encontrados: 75

Media puntos: 331

Media matches buenos: 23

Figura 20: ORB vs BRISK (umbral 85) (Android)

Se observa que el tiempo ha mejorado considerablemente, debido a la disminución de puntos

de interés detectados. Sin embargo, se ha perdido precisión, y ésta sigue siendo menor que la

del descriptor ORB (72 aciertos vs 88), por lo que se decidió por este último. Para concluir con

la elección del reconocedor que se utilizará a lo largo del proyecto, se ha decidido comparar dos

configuraciones distintas del descriptor ORB. Una la de por defecto, y la otra cambiando el número

de puntos que ORB obtiene internamente de otro descriptor 16, para ver si mejora la precisión. En

la imagen 21 se puede observar el resultado:

16Ver parámetro WTA K aqúı http://docs.opencv.org/trunk/db/d95/classcv_1_1ORB.html

29

http://docs.opencv.org/trunk/db/d95/classcv_1_1ORB.html

(a) ORB (72)

Tiempo: 48.2 segs

Aciertos: 88

Fallos: 4

No encontrados: 58

Media puntos: 500

Media matches buenos: 27

(b) ORB (WTA K 4) (87)

Tiempo: 71.3 segs

Aciertos: 80

Fallos: 0

No encontrados: 70

Media puntos: 500

Media matches buenos: 30

Figura 21: ORB vs ORB (WTA K 4) (Android)

Se observa que no solo el tiempo es peor, sino que la precisión también lo es (88 vs 80 aciertos).

Pese a que no da falsos positivos (no reconoce erróneamente ningún objeto como otro), la diferencia

de tiempo no compensa.

Las pruebas del detector FAST junto con los descriptores BRISK y ORB han resultado muy malas

en cuestión de tiempo y precisión. Es por ello que no se incluyen en esta sección. Estos resultados se

encuentran en el anexo F, sección F.1.

En resumen, vistos los resultados obtenidos, se ha escogido ORB como descriptor final para el

reconocedor basado en local features.

5.3. Experimentos sobre la configuración del modo cliente-servidor

Una vez elegido el descriptor, el siguiente paso era la implementación de ese mismo reconocedor

pero en modo cliente-servidor. Como ya se ha comentado en la sección 3.3.3, la comunicación ha

sido implementada mediante sockets y protocolo TCP. En la primera versión, el cliente enviaba

al servidor la imagen sin comprimir, el servidor la procesaba, y enviaba al cliente otra imagen sin

comprimir con el resultado por pantalla. Esto era extremadamente ineficiente en términos de tiempo,

debido a la comunicación red. Para la segunda versión, el cliente enviaba un entero indicando el

tamaño de la imagen codificada en jpeg, aśı como la imagen codificada; el servidor descodificaba

esa imagen, la procesaba, y la imagen resultado la codificaba de nuevo y se la enviaba al cliente.

30

Haciendo esto se logró mejorar en gran medida el tiempo de comunicación, siendo ya aceptable

para usarse en tiempo real. Por último, para la versión final se decidió usar los Protocol Buffers de

Google, un mecanismo que permite serializar objetos. El proceso ahora consist́ıa en que el cliente

enviaba la imagen comprimida al servidor, el servidor la descomprimı́a y procesaba, pero en vez de

devolver la imagen procesada, devolv́ıa el objeto resultado, haciendo uso de estos Protocol Buffers.

El cliente procesaba el resultado y lo mostraba por pantalla. El resultado: reducir enormemente

el tamaño del objeto a enviar desde el servidor al cliente. En esta tabla de tiempos 2 se pueden

observar las diferencias de tiempos y tamaños de objetos enviados durante las distintas versiones

en la aplicación real (imágenes obtenidas directamente de la cámara). (cliente: Android, servidor:

portátil, datos: cámara, red: 100Mbps misma red, calidad jpeg : 90):

Versión

Tiempo

total (segs.)

(media 100 iter.)

Tiempo

reconocedor (segs.)

(media 100 iter.)

Tamaño obj

enviado (kB)

Tamaño obj

recibido (kB)

Local 0.326 0.326 0 0

Sin comprimir imagen ni al enviar ni al recibir 1.025 0.122 921.6 921.6

Comprimiendo imagen a enviar y al recibir 0.457 0.122 ≈175.6 ≈175.6

Comprimiendo imagen a enviar, recibiendo protobuf 0.328 0.122 ≈175.6 ≈0.067

Tabla 2: Comparativa de tiempos y tamaños de objetos enviados/recibidos de las distintas versiones
realizadas. (cliente: Android, servidor: portátil, datos: cámara, red: 100Mbps misma red)

El nivel de compresión de la imagen era un factor a tener en cuenta, puesto que puede afectar

a la precisión del reconocimiento. Se comprobaron los resultados para la bateŕıa de imágenes de

test, comprimiéndola con distintos factores: 100 (menos pérdida de calidad posible), 90 y 80. Los

resultados que se obtuvieron se pueden observar en la tabla 3 (imágenes en el anexo F.2).

Calidad de imagen jpeg Aciertos Fallos No reconocidos

100 % (78) 88 2 60

90 % (81) 92 2 56

80 % (84) 86 2 62

Tabla 3: Comparación del reconocedor ORB con imágenes comprimidas con distintas calidades.
(cliente: Android, servidor: portátil, datos: test)

Se observa que el número de aciertos es mayor en el reconocedor con calidad de compresión

90 %. Esto probablemente se deba a que esa pérdida de calidad en estos casos está haciendo que

el reconocedor detecte mejores puntos de interés para identificar ese objeto. Además, el tiempo

también mejora considerablemente (ver tiempos en anexo F.4, tabla 15). Con la calidad de la

imagen al 80 % se nota un descenso notorio en la precisión del reconocedor, pese a que el tiempo

sea menor también. Es por ello que se ha decidido optar por implementar un nivel de compresión

con calidad 90 %.

31

5.4. Experimentos sobre la configuración del reconocedor Deep Learning

En cuanto al reconocimiento basado en Deep Learning también se han realizado varias pruebas

sobre distintas configuraciones del mismo. Se parte de una red neuronal ya entrenada y, como se ha

indicado en la sección 3.3.2, el procedimiento consiste en extraer los descriptores de la imagen y

compararlos con los descriptores previamente extráıdos de los objetos. La capa de la que se extraen

los descriptores, como también se ha dicho, es la capa denominada fc7. El primer paso fue ejecutar

la bateŕıa de imágenes de pruebas con este reconocedor. El resultado fue el que se ve en la imagen

22:

Figura 22: Matriz de confusión obtenida del reconocedor Deep Learning. (108)

Tal y como se puede observar, el resultado no es nada bueno. Además, se ve como hay objetos

“predominantes”, los cuales el reconocedor predice en la mayoŕıa de las ocasiones, aún cuando no

se corresponde al objeto real. Para analizar más a fondo este problema, se separó esta matriz de

confusión en otras tres: una para los objetos sin oclusión, otra para los objetos con oclusión, y otra

para los objetos en la mesa. En la tabla 4 se pueden ver los resultados del reconocimiento de esos

tres tipos de imágenes de test (las imágenes de las matrices se encuentran en la sección F.3 del

32

anexo F).

Tipo de imagen Aciertos Fallos

Sin oclusión (111) 26 24

Con oclusión (114) 13 37

Objeto en la mesa (117) 11 39

Tabla 4: Resultados de los tres tipos de imágenes de test comparando descriptores capa fc7

Se puede ver cómo los mejores resultados se obtienen con la perspectiva sin oclusión. Sin embargo,

con la perspectiva con oclusión y con objetos en la mesa, la precisión del reconocedor es mucho

menor. Esto concuerda con la teoŕıa de este tipo de reconocedores: al estar basados en global features,

son muy afectados por la oclusión, ya que no distinguen fondo de objeto y obtienen sus descriptores

a partir de toda la imagen entera.

También, para ver si se mejoraban los resultados, se programó el reconocedor para utilizar los

descriptores de la capa fc8 en lugar de la fc7, es decir, la siguiente capa a la que se estaba usando. El

resultado se puede visualizar en la tabla 5 (imágenes en la sección F.3 del mismo anexo, figura 120).

Tipo de imagen Aciertos Fallos

Sin oclusión (123) 26 24

Con oclusión (126) 17 33

Objeto en la mesa (129) 13 37

Tabla 5: Resultados de los tres tipos de imágenes de test comparando descriptores capa fc8

Se observa que los resultados para las imágenes sin oclusión son los mismos, pero sin embargo

existe una pequeña mejora en los otros dos tipos. Sin embargo, como resultado global, sigue sin ser

bueno.

Otra hipótesis que se pensó como posible causa de que el reconocedor tuviese tan poca precisión,

es la calidad de las imágenes, tanto las de la base de datos, como las de test. La razón de ello es que

al tener resoluciones tan variables (algunas son cuadradas, otras horizontales, otras verticales muy

alargadas...) y el hecho de que este algoritmo antes de tratar con ellas, las escala a tamaño 256x256,

se deformen los objetos y se pierda mucha calidad en el proceso.

Para comprobar si aśı mejoraban los resultados, se creó una base de datos “alternativa”, con

imágenes de la base de datos cuadradas, y algunas de las imágenes de test limpias (fondo blanco,

objeto en el centro y cuadradas también). Se han seleccionado 5 objetos al azar, a los cuales se les

ha hecho fotos limpias. Las imágenes se ven en la figura 23:

33

Figura 23: Imágenes de objetos limpias.

Al ejecutar el reconocedor, se obtienen los resultados mostrados en la tabla 6

Aciertos Fallos

Objetos limpios 5 0

Tabla 6: Resultado de pasar las imágenes “limpias” por el reconocedor Deep Learning (156)

Se puede comprobar como el reconocedor ha acertado todos los objetos. Por lo tanto, es asumible

pensar que el problema está el formato de las imágenes, ya que cuadrando todas las imágenes de la

base de datos, y usando imágenes limpias como imágenes de test, el reconocedor parece no fallar.

En cuanto a tiempos, se realizaron dos optimizaciones. La primera de ellas tiene que ver con la

compresión de la imagen. Ya que el algoritmo Deep Learning requiere que la imagen tenga tamaño

256x256, y que la red es uno de los principales cuellos de botella en el modo cliente-servidor, se ha

decidido comprimir la imagen en el lado del cliente, enviando una imagen mucho menor al servidor

(≈175.6 kB→≈12.5 kB). La otra optimización tiene que ver con el modo de procesamiento que

utiliza Caffe para ejecutar el algoritmo. Puede realizar los calculos con la CPU o con la GPU siendo

el resultado de ambas configuraciones el mostrado en la siguiente tabla 7:

Configuración CPU (segs) GPU (segs)

Cargar imágenes de la base de datos 4.95 9.3

Cargar red 0.23 0.39

Obtener descriptores de una imagen (reconocedor) 0.13 0.006

Total reconocedor 0.33 0.20

Tabla 7: Diferencia de tiempos ejecutando reconocedor en modo CPU o GPU (cliente: Android,
servidor: servidor)

Como se puede ver, leer las imágenes de la base de datos, obtener sus descriptores y guardarlos

en memoria, tarda casi el doble usando GPU en vez de CPU. También tarda más el cargar la red

en memoria. Sin embargo, obtener los descriptores de la imagen que el cliente env́ıa al servidor

va mucho más rápido utilizando la GPU. Al ser las dos primeras operaciones que se ejecutarán al

iniciar el servidor únicamente, y ser esta última la más cŕıtica, pues es la que tiene que ejecutarse

en “tiempo real”, se ha dejado la configuración usando la GPU.

34

5.5. Evaluación de la memoria

Se ha comparado también la memoria que utiliza cada uno de los descriptores. El resultado ha

sido:

Reconocedor basado en local features:

• Lista de objetos: ≈ 12 MB

Reconocedor basado en Deep learning

• Lista de objetos: ≈ 570 MB

• Red: ≈ 220 MB

Los resultados han sido medidos calculando las diferencias entre la memoria utilizada por el

servidor cuando no se cargaba ningún reconocedor, con la memoria utilizada cuando se cargaban

cada reconocedor y la red. Aqúı se ratifica que el algoritmo Deep Learning es demasiado exigente en

términos de prestaciones para que sea viable ejecutarlo en local, puesto que ya sólo en términos

de memoria es inasumible ya que sólo los terminales de gama alta tienen más de un gigabyte de

memoria.

5.6. Comparativa de tiempos finales

En esta subsección se mostrarán y compararán los tiempos finales de los tres tipos de reconocedores:

los reconocedores basados en local features (local y cliente servidor) y el reconocedor basado en

Deep Learning. Aśı mismo detallarán los tiempos de las partes de cada uno.

Modo local basado en local features.

• Cliente:

◦ Cargar los objetos: 6.23 segs.

◦ Procesar la imagen: 0.325 segs. Descomposición en la tabla 8 y figura 24.

Tiempo medio

(segs) (100 iter.)

Desviación

t́ıpica

Extraer features 0.095 0.02

Hacer matches 0.2 0.03

Procesar resultado 0.13 0.002

Total 0.325 0.04

Tabla 8: Coste en tiempo del reconocedor en local

35

Figura 24: Porcentaje de tiempos del cliente en modo local con reconocedor basado en local features.

Modo cliente-servidor basado en local features.

• Cliente:

◦ Proceso total: 0.325 segs. Descomposición en la tabla 9 y la figura 25.

Tiempo medio

(segs) (100 iter.)

Desviación

t́ıpica

Codificar y enviar 0.057 0.01

-Codificar 0.056 0.01

-Enviar 0.001 0.001

Esperar, recibir y procesar resultado 0.259 0.09

-Recibir 0.257 0.09

-Deserializar resultado 0 0

-Procesar resultado 0.001 0.001

Total 0.325 0.09

Tabla 9: Coste en tiempo del cliente en modo cliente-servidor con reconocedor basado en local
features.

36

Figura 25: Porcentaje de tiempos del cliente en modo cliente-servidor con reconocedor basado en
local features.

• Servidor:

◦ Cargar objetos: 0.618 segs.

◦ Recibir, procesar y devolver la imagen: 0.355 segs. Descomposición en la tabla

10 y la figura 26

Tiempo medio

(segs) (100 iter.)

Desviación

t́ıpica

Recibir imagen 0.2 0.08

Decodificar 0.005 0.002

Procesar total 0.149 0.02

-Extracción de features 0.006 0

-Hacer matches 0.142 0.02

-Procesar resultado 0 0

Serializar 0 0

Enviar 0 0

Total 0.355 0.08

Tabla 10: Coste en tiempo del servidor en modo cliente-servidor con reconocedor basado en local
features.

37

Figura 26: Porcentaje de tiempos del servidor en modo cliente-servidor con reconocedor basado en
local features.

Modo cliente-servidor basado en Deep Learning .

• Cliente:

◦ Proceso total: 0.346 segs. Descomposición en la tabla 11 y la figura 27.

Tiempo medio

(segs) (100 iter.)

Desviación

t́ıpica

Redimensionar, codificar y enviar 0.04 0.005

-Redimensionar 0.01 0.003

-Codificar 0.028 0.004

-Enviar 0.001 0.001

Esperar, recibir y procesar resultado 0.306 0.03

-Recibir 0.304 0.03

-Deserializar resultado 0 0

-Procesar resultado 0.002 0.003

Total 0.346 0.03

Tabla 11: Coste en tiempo del cliente en modo cliente-servidor con reconocedor basado en Deep
Learning.

38

Figura 27: Porcentaje de tiempos del cliente en modo cliente-servidor con reconocedor basado en
Deep Learning.

• Servidor:

◦ Cargar objetos: 0.618 segs.

◦ Recibir, procesar y devolver la imagen: 0.375 segs. Descomposición en la tabla

12 y la figura 28

Tiempo medio

(segs) (100 iter.)

Desviación

t́ıpica

Recibir imagen 0.167 0.04

Decodificar 0.002 0.001

Procesar total 0.205 0.006

-Extracción de features 0.006 0.005

-Hacer matches 0.198 0.004

-Procesar resultado 0 0

Serializar 0 0

Enviar 0 0

Total 0.375 0.04

Tabla 12: Coste en tiempo del servidor en modo cliente-servidor con reconocedor basado en Deep
Learning.

39

Figura 28: Porcentaje de tiempos del servidor en modo cliente-servidor con reconocedor basado en
Deep Learning.

Por último, en la tabla 13 se mostrarán juntos los tiempos totales de cada uno.

Local features Deep learning

Local 0.325 /

Cliente - servidor 0.325 0.346

Tabla 13: Tiempos totales (en segundos) de cada reconocedor (media 100 iteraciones).

En vista de los resultados obtenidos, tanto de precisión como de tiempos, se podŕıa decir que

el reconocedor adecuado para esta tarea y que mejor funciona es el reconocedor basado en local

features. En cuanto a la arquitectura a usar, ambas tienen sus ventajas y desventajas. El modo

local no depende de la red, pero sin embargo requiere tener los objetos almacenados en el teléfono.

Además, utiliza más memoria, puesto que carga en ella los objetos al iniciarse. Por otro lado, el

modo cliente-servidor depende totalmente de la red, siendo esta uno de los principales cuellos de

botella. Sin embargo presenta ventajas, como por ejemplo que si se quiere actualizar la base de

datos, se puede hacer de manera transparente al usuario, sin que este tenga que actualizarla. Y en

cuanto a términos de escalabilidad, esta es mejor en el modo cliente-servidor, puesto que aunque

el coste para cada uno de los algoritmos de reconocimiento es linear en el número de imágenes, el

servidor tarda mucho menos procesando las imágenes. Con lo cual, a más imágenes, mayor será la

diferencia de tiempos entre ambas arquitecturas.

40

6. Conclusiones y trabajo futuro

En este último caṕıtulo se harán unas conclusiones acerca del proyecto, se hablará de posibles

ĺıneas futuras para continuarlo, y se elaborará una opinión personal sobre el trabajo en śı, y sobre

lo que le ha rodeado.

6.1. Conclusiones

Se ha logrado cumplir el objetivo del proyecto: implementar un reconocedor visual de objetos que

se pueden encontrar en un supermercado para la plataforma Android, y que indique a los usuarios

los posibles alérgenos que contengan dichos objetos. Se han evaluado dos algoritmos distintos de

reconocimiento: uno basado en local features, que puede ser ejecutado tanto en local como en remoto,

y otro basado en Deep Learning, que debido a su coste computacional solo puede ser ejecutado en

remoto. Dentro de estos algoritmos, se han evaluado distintas versiones, buscando un equilibrio

entre precisión y eficiencia.

Gracias a los resultados obtenidos se puede ver que, con la base de datos actual, el reconocedor

que mejor funciona es el basado en local features. Esto es más notorio en la precisión, ya que funciona

bastante mejor que el basado en Deep Learning. Se ha comprobado que esto se debe al formato de

las imágenes de la base de datos y de la bateŕıa de test, ya que presentan resoluciones variables y

las imágenes de test tienen mucho ruido de fondo. Probando con cinco imágenes sin ruido de fondo,

la precisión ha sido total. En cuanto a la arquitectura, la conclusión depende de varios factores.

Como ya se ha comentado en el caṕıtulo anterior, la calidad y velocidad de la red es uno de ellos. Si

se dispone de una red rápida, vale la pena implementar el modo cliente-servidor, puesto que las

actualizaciones de la base de datos se realizarán solo del lado del servidor (el cliente no tendrá que

actualizar nada), la aplicación en śı ocupará menos, y a más objetos haya en la base de datos, la

diferencia con el modo local será más grande. Sin embargo, para una cantidad de objetos pequeña,

el modo local funciona prácticamente igual que el modo cliente-servidor, con la ventaja de que

funciona offline y que de que los tiempos son más constantes (el tiempo que se tarda en enviar y

recibir una imagen al servidor depende de muchos factores, como número de clientes conectados,

nivel de utilización de la red, etc).

En cuanto al modo Deep Learning, se ha comprobado que, efectivamente, es muy afectado

por la oclusión y el ruido de fondo. Tiene también potencial en este proyecto, con por ejemplo

optimizaciones que se nombrarán en la subsección 6.2, pero será necesario investigar sus resultados.

6.2. Trabajo futuro

Refiriéndose a ĺıneas futuras sobre este proyecto, se pueden nombrar algunas que se han pensado

durante el transcurso del proyecto, pero que estaban fuera del alcance del mismo.

Lo primero, en cuanto a lo ya existente, mejorar los algoritmos de reconocimiento. Para mejorar

41

el reconocedor basado en local features, se podŕıa implementar algunas las mejoras nombradas en la

sección 2.1, como por ejemplo, hacer más robusta la función de similitud entre imágenes mediante

Bag of words[14] o filtrar las correspondencias mediante RANSAC [17]. En cuanto al algoritmo de

Deep Learning, habŕıa que adecuar la base de datos. Para ello, habŕıa que tomar imágenes cuadradas

de los objetos, y de un tamaño fijo. Otra posible mejora seŕıa que apareciese un recuadro en la

pantalla del móvil, se indicase al usuario que para reconocer un objeto lo sitúe en dicho recuadro, y

sólo procesar la imagen de ese área. De esta manera se recortaŕıa mucho ruido de fondo, lo cual

ayuda al algoritmo de reconocimiento. También, en cuanto a la interfaz, se podŕıa mejorar haciéndola

más atractiva de cara al usuario (lo de ahora es un prototipo simplemente), y como se comenta en

la sección 4.1 permitir al usuario seleccionar los alérgenos a los que es vulnerable, y que éstos se

destacasen durante el reconocimiento en otro color.

En cuanto a las posibles aplicaciones del sistema o de parte del mismo en el mundo real, se

cree que podŕıa tener varias utilidades prácticas. Por ejemplo, si se implementa el sistema en un

supermercado, con una base de datos de sus productos, los clientes podŕıan descargarse la aplicación

y conectarse al servidor mediante la red del supermercado, permitiéndoles reconocer productos

y leer sus alérgenos sin necesidad de consultar la etiqueta del mismo. Esto podŕıa ser de ayuda

a gente con problemas de vista que tengan dificultades para leer la letra de los ingredientes, o

simplemente por comodidad. También podŕıan consultar la información del producto desde casa.

Otra posibilidad, juntando el campo de la realidad aumentada, seŕıa que una vez reconocido un

producto, apareciese un cuadro junto a él con la información del producto. Además, si se implementa

en un supermercado, se puede aprovechar la capacidad del algoritmo de Deep Learning evaluado

en el proyecto de trabajar con bloques de imágenes sin apenas impacto en su rendimiento. Los

clientes podŕıan ir enviando las imágenes no al servidor, sino a una cola, que una vez se llegase

a cierto tamaño o cierto tiempo, las procesase todas de golpe. De esta manera se podŕıa ahorrar

tiempo con respecto al reconocedor basado en local features. También se podŕıa utilizar la parte del

reconocedor para crear una aplicación de asistencia para personas invidentes, que dijesen por voz el

objeto reconocido, aśı como información acerca de él. Estas son solo algunas de las posibles ideas

que se han ido barajando a lo largo del proyecto.

6.3. Opinión personal

La realización de este proyecto me ha generado una opinión personal muy positiva, tanto durante

el transcurso del proyecto, como del resultado final. Este proyecto me ha permitido aplicar distintos

conocimientos adquiridos a lo largo del grado, y adquirir experiencia en el campo de la investigación.

Desde un punto de vista tecnológico, me ha permitido aprender muchas tecnoloǵıas de las cuales

hasta ahora sab́ıa poco o nada. Una de mis motivaciones detrás del proyecto era poder aprender y

experimentar con tecnoloǵıas que no hab́ıa tocado hasta ahora. Por ejemplo, mis conocimientos

en Android u OpenCV eran muy limitados, y este proyecto me ha permitido ampliarlos en gran

medida. A su vez, he aprendido de cero tecnoloǵıas y herramientas como son Android NDK para

42

mezclar código nativo en C++ con Java, cosa que considero muy interesante, Caffe, Python, CMake,

Google Protocol Buffers... En resumen, un conjunto de tecnoloǵıas amplio que, pese a complicar la

curva de aprendizaje, me ha dejado muy satisfecho.

En lo personal, me ha permitido también tocar un área que está ahora muy en auge y en la

cual tengo mucho interés: la visión por computador, y en concreto, los algoritmos basados en Deep

Learning. Gracias al proyecto he podido comprender este área más en profundidad y descubrir las

dificultades que entraña, lo cual considero que es muy importante y enriquecedor para mi futuro

como ingeniero informático.

En mi opinión, el Trabajo de Fin de Grado es una parte clave en el desarrollo de un ingeniero

informático, y mi caso no ha sido una excepción. Mi experiencia con la interacción con los directores

de proyecto ha sido muy buena, aśı como con los conocimientos adquiridos durante el mismo, dando

como resultado una base que espero que pueda servir para la implementación de alguna aplicación

de reconocimiento de objetos de cara a la comunidad.

43

44

A. Manual de instalación del sistema

A.1. Requisitos previos aplicación:

Android Studio: Descargar desde aqúı https://developer.android.com/studio/index.

html?hl=es-419.

Android SDK: Incluido durante la instalación de Android Studio.

CrystaX’s Android NDK: Descargar desde aqúı https://www.crystax.net/en/android/

ndk

OpenCV 3.1 for Android: Descargar desde aqúı http://opencv.org/downloads.html

Google Protocol Buffers: Descargar desde aqúı https://github.com/julienr/protobuf-

android

A.2. Requisitos previos servidor:

OpenCV 2.4.12: Descargar desde aqúı http://opencv.org/downloads.html

Google Protocol Buffers: Descargar desde aqúı https://developers.google.com/protocol-

buffers/docs/downloads

Caffe: Descargar desde aqúı http://caffe.berkeleyvision.org/installation.html

Cuda: Descargar desde aqúı https://developer.nvidia.com/cuda-75-downloads-archive

A.3. Instalación

El código del sistema está subido a la plataforma GitHub, desde donde se puede clonar. El enlace

al repositorio es el siguiente: https://github.com/AMarquez94/UnizarNativeOpenCV.

Se recomienda clonar el repositorio desde el IDE Android Studio, ya que permite automáticamente

añadirlo como proyecto. Una vez clonado, habrá que editar algunos parámetros y rutas para importar

correctamente todos los módulos y paquetes necesarios. La lista de cambios a realizar es la siguiente:

En el fichero local.properties situado en la ráız del proyecto, hay que cambiar el parámetro

sdk.dir por la ruta en la que se encuentre el SDK de Android.

En el fichero gradle.properties situado también en la ráız del proyecto, hay que cambiar el

parámetro ndkDir por la ruta en la que se encuentre el NDK descargado.

En el fichero Android.mk, situado en la ruta (ráız proyecto)/app/src/main/jni, cambiar las

siguientes ĺıneas:

45

https://developer.android.com/studio/index.html?hl=es-419
https://developer.android.com/studio/index.html?hl=es-419
https://www.crystax.net/en/android/ndk
https://www.crystax.net/en/android/ndk
http://opencv.org/downloads.html
https://github.com/julienr/protobuf-android
https://github.com/julienr/protobuf-android
http://opencv.org/downloads.html
https://developers.google.com/protocol-buffers/docs/downloads
https://developers.google.com/protocol-buffers/docs/downloads
http://caffe.berkeleyvision.org/installation.html
https://developer.nvidia.com/cuda-75-downloads-archive
https://github.com/AMarquez94/UnizarNativeOpenCV

• En la variable OPENCVROOT (ĺınea 9) escribir la ruta en la que esté instalado

OpenCV para Android.

• En la llamada a import-add-path (ĺınea 43), sustituir la ruta existente por la ruta del

directorio en el que se encuentre Google Protocol Buffers descargado.

Para compilar el código escrito en C++ y poder integrarlo con la aplicación, hay que ejecutar un

comando especial. Se recomienda hacerlo de la siguiente manera. En Android Studio, ir al menú File

→ Settings → Tools → External Tools. alĺı, pulsar el śımbulo “+” verde (Add). Aparecerá una

pantalla como la que se muestra en la figura 29.

Figura 29: Pantalla de “External tools”.

En esta pantalla, habrá que rellenar los datos como se indica:

Name: ndk-build

Group: Android Tools

Description: (Opcional) Android Tool - NDK ndk-build tool

Options: Marcar Synchronize files after execution y Open console. Desmarcar el resto.

Show in: Marcar todas.

Program: Insertar ruta al ejecutable ndk-build de ndk.

Parameters: Insertar el siguiente parámetro (todo en la misma ĺınea):

NDK PROJECT PATH=$ModuleFi leDir$ /app/ bu i ld / in t e rmed ia t e s /ndk

NDK LIBS OUT=$ModuleFi leDir$ /app/ s r c /main/ j n i L i b s

NDK APPLICATION MK=$ModuleFi leDir$ /app/ s r c /main/ j n i / Appl i ca t ion .mk

APP BUILD SCRIPT=$ModuleFi leDir$ /app/ s r c /main/ j n i /Android .mk V=1

46

Working directory: $SourcepathEntry$

El resultado una vez completado será algo similar a la imagen 30.

Figura 30: Pantalla de “External tools” una vez rellenada.

Después de guardar el resultado, al pulsar en Android Studio el botón derecho sobre algún

archivo o directorio, aparecerá una nueva opción denominada “Android Tools”, con un desplegable:

“ndk-build”. La primera vez que se importe este código, y cada vez que se modifique el código nativo,

habrá que pulsar sobre el directorio ráız del proyecto y ejecutar este comando. De esa manera, se

compilarán las libreŕıas que conectan la parte Java con la parte nativa dentro de la apk generada, y

ya se podrá instalar la aplicación en el móvil.

En cuanto a la instalación del servidor, su código también está en GitHub y el repositorio

es el siguiente: https://github.com/AMarquez94/UnizarNativeOpenCVServer. Para compilarlo

habrá que cambiar las ĺıneas correspondientes en el fichero CMakeLists.txt a las rutas donde

esté instalado Caffe y Cuda. Una vez compilado, generará el fichero binario NativeOpenCV. El

comando para ejecutarlo es:

NativeOpenCV numPuerto (d l /kp)

Donde numPuerto será el número de puerto en el que el servidor se quedará escuchando, kp es que

el servidor usará el reconocedor basado en local features y dl que el servidor usará el reconocedor

basado en Deep Learning.

La base de datos usada en el proyecto se puede descargar utilizando este enlace: https://drive.

google.com/open?id=0B4Il89Zv6adpby1XTU1nc3BIMlk

A.4. Requisitos aplicación

Smartphone con cámara.

47

https://github.com/AMarquez94/UnizarNativeOpenCVServer
https://drive.google.com/open?id=0B4Il89Zv6adpby1XTU1nc3BIMlk
https://drive.google.com/open?id=0B4Il89Zv6adpby1XTU1nc3BIMlk

Sistema operativo Android 14 o superior.

Conexión a Internet (opcional).

48

49

B. Estructura de la base de datos

B.1. Objetos

Como ya se ha mencionado en el caṕıtulo 3.2, la base de datos está compuesta por 50 objetos.

Cada uno de esos objetos estará compuesto por un nombre, un indicador de si es fácil o no de

reconocer, las imágenes que componen sus vistas, los nombres de dichas vistas, y la lista de alérgenos

que componen el objeto. La base de datos se estructura de la siguiente forma:

Consta de un directorio por objeto. En cada directorio habrá una serie de imágenes, que se

corresponderán a las vistas del objeto, y un fichero info.txt. Este fichero contendrá toda la información

necesaria para crear una instancia de la clase objeto en el reconocedor. La sintaxis del fichero info.txt

es la siguiente:

nombre objeto

easy

num vistas

(nombre imagen vista nombre vista)+

(nombre alergeno)∗

Donde nombre objeto será el nombre del objeto, easy será un booleano indicando si el objeto es

de los fáciles de reconocer o no, num vistas será el número de vistas que posee el objeto (mı́nimo

una), nombre imagen vista será el nombre del fichero imagen conteniendo la vista con nombre

nombre vista (esta dupla se repetirá tantas veces como vistas haya) y nombre alergeno será una

lista con los alérgenos que contiene el objeto (de 0 a 14).

La lista de directorios de los objetos será tal y como se muestra en la figura 31

Figura 31: Objetos de la base de datos.

A su vez, en la figura 6 del caṕıtulo 3.2 se muestran las imágenes que componen los objetos de la

base de datos.

50

B.2. Objetos de test

Todas las imágenes que componen los objetos de test, de los cuales se ha hablado en el caṕıtulo

5.1 estarán en un mismo directorio, junto con otro fichero info.txt. Este fichero, a diferencia del

de los objetos de la base de datos, contendrá una ĺınea por imagen, con la tupla nombre imagen

nombre objeto. Por lo tanto la estructura de este fichero será:

(nombre imagen nombre objeto)+

A continuación, en la figura 32 se mostrarán todas las imágenes que componen los objetos de test

en miniatura.

Figura 32: Objetos de test.

51

52

C. Diagrama de clases del sistema

Figura 33: Diagrama de la relación entre clases de la aplicación.

53

54

D. Algoritmo ORB (Oriented FAST and Rotated BRIEF)

En este anexo se explica un poco más en detalle el detector/descriptor ORB. Todo lo comentado

aqúı estará más detalladamente contado en el art́ıculo original [11].

ORB nace como alternativa eficiente a los detectores de caracteŕısticas SIFT [8] y SURF [9]. El

objetivo de sus autores era proporcionar un detector/descriptor de local features que pudiese ser

empleado en tareas de tiempo real, y ejecutado en dispositivos de menor potencia que un ordenador,

como por ejemplo smartphones. El resultado que afirman que obtuvieron es un reemplazo de SIFT

que tiene un desempeño similar, pero está menos afectado por el ruido de la imagen y puede ser

utilizado en aplicaciones en tiempo real. Según sus resultados obtenidos, ORB es hasta dos órdenes

de magnitud más rápido que SIFT, y uno más que SURF.

ORB está basado en el detector FAST [10] y el descriptor BRIEF [23]. Estos métodos fueron

modificados para resolver ciertas limitaciones que teńıan.

FAST es un método eficiente en tiempo para encontrar puntos de interés, utilizado en sistemas de

tiempo real. Sin embargo, a diferencia de otros detectores de features, como los ya nombrados, no

incluye la descripción de la rotación de un punto de interés. Por lo tanto, una de las modificaciones

realizadas sobre FAST fue proporcionar esa descripción para cada punto de interés. La técnica

utilizada para ello es la denominada “Orientación por intensidad de centroide” que, en base a

la intensidad de las esquinas (obtenida mediante la medida de Harris [24]) que rodean un punto,

determina su orientación.

BRIEF es un descriptor binario cuyos resultados en cuanto a robustez frente a cambios de

luz, difuminación y distorsión de la imagen es similar a SIFT. Sin embargo, es muy sensible a

las rotaciones. Para solucionarlo de manera eficiente, primero orientaron el descriptor BRIEF de

acuerdo a la orientación de los puntos de interés, y después aumentaron la varianza y disminuyeron

la correlación del descriptor, que son dos factores que hacen a una feature más discriminativa, y por

tanto, mejor a la hora de describirla.

A estas dos modificaciones se las llamó oFAST (Oriented FAST) y rBRIEF (Rotated BRIEF)

respectivamente. De ah́ı el origen del nombre del detector/descriptor, Oriented FAST and Rotated

BRIEF (ORB).

En el art́ıculo original se detallan los experimentos de validación realizados, entre ellos, las

diferencias de tiempos de ejecución entre algoritmos, que, como se ve en la tabla 14 son muy notorios,

sobre todo la diferencia de ORB con SIFT.

ORB SURF SIFT

Tiempo (ms) 15.3 217.3 5228.7

Tabla 14: Comparativa de tiempos de procesar una imagen usaando ORB, SURF y SIFT

55

56

E. Procesamiento en Redes neuronales convolucionales (CNN)

Se pueden distinguir dos fases en el procesado de una imagen en una red CNN: fase de procesado

de datos, y fase de clasificación final. El tipo de procesado de los datos a través de una redes CNN

se realiza principalmente mediante dos tipos de neuronas:

Neuronas convolucionales: Cada una de estas neuronas realiza una operación matricial

sobre una región de la imagen. Alguna de estas operaciones tiene sentido visual (como por

ejemplo, remarcar los bordes), pero otras no son triviales y carecen de él. El objetivo de estas

operaciones es filtrar la imagen, acentuando las caracteŕısticas correspondientes siguiendo el

modelo con el que ha sido entrenada la red.

Neuronas de reducción de muestreo: Estas neuronas tienen la función de reducir la

región que les corresponde, con el fin de reducir el coste computacional y el sobreajuste. La

forma más común de efectuar esta reducción es la que se ve en la figura 34, la cual reduce una

ventana formada por cuatro sub-ventanas 2x2 a una sola ventana 2x2, descartando todos los

valores excepto los mayores de cada sub-ventana. 17

Figura 34: A la izquierda: antes de aplicar la función de muestreo. A la derecha, resultado de aplicar
la función.

La siguiente fase, la fase de clasificación final, se compone de un único tipo de neurona:

Neuronas de clasificación: Estas neuronas reciben como entrada el resultado de las ope-

raciones de las neuronas de la primera fase sobre la imagen, obteniendo un conjunto de

valores numéricos que representan caracteŕısticas de la imagen. La función de estas neuronas,

dependiendo de esas caracteŕısticas, clasificar la imagen.

El proceso completo se puede observar en la figura 35. Al principio trabajan las neuronas

convolucionales aplicando operaciones matriciales sobre regiones de la imagen, alternadas con

17Fuente imagen: https://en.wikipedia.org/wiki/Convolutional_neural_network

57

https://en.wikipedia.org/wiki/Convolutional_neural_network

neuronas que reducen el muestreo. Finalmente, las neuronas de clasificación producen la salida

final. En resumen, se podŕıa decir que las neuronas de la primera fase se encargan de extraer

las caracteŕısticas de una imagen, y las de la segunda fase de resumir esas caracteŕısticas en un

descriptor, obteniendo finalmente el resultado de la clasificación. 17

Figura 35: Diagrama explicativo de las distintas capas que forman la red neuronal convolucional y
sus operaciones y resultados.

58

59

F. Resultados adicionales de los experimentos

En este anexo se mostrarán todas las pruebas y experimentos que se han realizado a lo largo del

proyecto.

F.1. Experimentos algoritmos de reconocimiento basados en local features. Pri-

mera versión

Estos experimentos se realizaron sobre la primera versión de la base de datos, formada por 13

objetos. Solo se probaron reconocedores basados en local features.

Android. ORB/ORB.

Tiempo: 7.98 segs. Media puntos: 500. Media correspondencias buenas: 33

Figura 36: Matriz de confusión de los resultados obtenidos mediante ORB en Android.

60

Figura 37: Tabla de “True positives” de los resultados obtenidos mediante ORB en Android

61

Figura 38: Tabla de precisión de los resultados obtenidos mediante ORB en Android.

PC. ORB/ORB.

Tiempo: 1.57 segs. Media puntos: 500. Media correspondencias buenas: 33

62

Figura 39: Matriz de confusión de los resultados obtenidos mediante ORB en PC.

Figura 40: Tabla de “True positives” de los resultados obtenidos mediante ORB en PC

63

Figura 41: Tabla de precisión de los resultados obtenidos mediante ORB en PC.

Android. ORB(WTA K = 4)/ORB(WTA K = 4).

Tiempo: 9.6 segs. Media puntos: 500. Media correspondencias buenas: 37

64

Figura 42: Matriz de confusión de los resultados obtenidos mediante ORB (WTA K = 4) en Android.

Figura 43: Tabla de “True positives” de los resultados obtenidos mediante ORB (WTA K = 4) en
Android

65

Figura 44: Tabla de precisión de los resultados obtenidos mediante ORB (WTA K = 4) en Android.

PC. ORB(WTA K = 4)/ORB(WTA K = 4).

Tiempo: 1.55 segs. Media puntos: 500. Media correspondencias buenas: 36

66

Figura 45: Matriz de confusión de los resultados obtenidos mediante ORB(WTA K = 4) en PC.

Figura 46: Tabla de “True positives” de los resultados obtenidos mediante ORB(WTA K = 4) en
PC

67

Figura 47: Tabla de precisión de los resultados obtenidos mediante ORB(WTA K = 4) en PC.

Android. FAST/BRISK.

Tiempo: 383.53 segs. Media puntos: 5107. Media correspondencias buenas: 83

68

Figura 48: Matriz de confusión de los resultados obtenidos mediante FAST/BRISK en Android.

Figura 49: Tabla de “True positives” de los resultados obtenidos mediante FAST/BRISK en Android

69

Figura 50: Tabla de precisión de los resultados obtenidos mediante FAST/BRISK en Android.

PC. FAST/BRISK.

Tiempo: 229.16 segs. Media puntos: 5107. Media correspondencias buenas: 82

70

Figura 51: Matriz de confusión de los resultados obtenidos mediante FAST/BRISK en PC.

Figura 52: Tabla de “True positives” de los resultados obtenidos mediante FAST/BRISK en PC

71

Figura 53: Tabla de precisión de los resultados obtenidos mediante FAST/BRISK en PC.

Android. BRISK/BRISK.

Tiempo: 57.53 segs. Media puntos: 2191. Media correspondencias buenas: 84

72

Figura 54: Matriz de confusión de los resultados obtenidos mediante BRISK en Android.

Figura 55: Tabla de “True positives” de los resultados obtenidos mediante BRISK en Android

73

Figura 56: Tabla de precisión de los resultados obtenidos mediante BRISK en Android.

PC. BRISK/BRISK.

Tiempo: 27.54 segs. Media puntos: 2161. Media correspondencias buenas: 84

74

Figura 57: Matriz de confusión de los resultados obtenidos mediante BRISK en PC.

Figura 58: Tabla de “True positives” de los resultados obtenidos mediante BRISK en PC

75

Figura 59: Tabla de precisión de los resultados obtenidos mediante BRISK en PC.

Android. BRISK(thres = 85)/BRISK(thres = 85).

Tiempo:9.59 segs. Media puntos: 467. Media correspondencias buenas: 38

76

Figura 60: Matriz de confusión de los resultados obtenidos mediante BRISK(thres = 85) en Android.

Figura 61: Tabla de “True positives” de los resultados obtenidos mediante BRISK(thres = 85) en
Android

77

Figura 62: Tabla de precisión de los resultados obtenidos mediante BRISK(thres = 85) en Android.

PC. BRISK(thres = 85)/BRISK(thres = 85).

Tiempo: 2.34 segs. Media puntos: 465. Media correspondencias buenas: 37

78

Figura 63: Matriz de confusión de los resultados obtenidos mediante BRISK(thres = 85) en PC.

Figura 64: Tabla de “True positives” de los resultados obtenidos mediante BRISK(thres = 85) en
PC

79

Figura 65: Tabla de precisión de los resultados obtenidos mediante BRISK(thres = 85) en PC.

Android. FAST/ORB.

Tiempo: 338.12 segs. Media puntos: 4731. Media correspondencias buenas: 490

80

Figura 66: Matriz de confusión de los resultados obtenidos mediante FAST/ORB en Android.

Figura 67: Tabla de “True positives” de los resultados obtenidos mediante FAST/ORB en Android

81

Figura 68: Tabla de precisión de los resultados obtenidos mediante FAST/ORB en Android.

PC. FAST/ORB.

Tiempo: 165.73 segs. Media puntos: 4728. Media correspondencias buenas: 463

82

Figura 69: Matriz de confusión de los resultados obtenidos mediante FAST/ORB en PC.

Figura 70: Tabla de “True positives” de los resultados obtenidos mediante FAST/ORB en PC

83

Figura 71: Tabla de precisión de los resultados obtenidos mediante FAST/ORB en PC.

F.2. Experimentos algoritmos de reconocimiento basados en local features. Se-

gunda versión

Estas pruebas se realizaron ya con la base de datos final, compuesta por 50 objetos (54 imágenes

en total). Aqúı se probaron las arquitecturas de local y cliente-servidor (siendo el servidor el portátil)

para todos los reconocedores candidatos, y la arquitectura cliente-servidor (siendo el servidor la

máquina remota) para el reconocedor elegido finalmente (ORB).

Android. ORB/ORB.

Tiempo: 48.23 segs. Media puntos: 500. Media correspondencias buenas: 27

84

Figura 72: Matriz de confusión de los resultados obtenidos mediante ORB en Android.

85

Figura 73: Tabla de “True positives” de los resultados obtenidos mediante ORB en Android

86

Figura 74: Tabla de precisión de los resultados obtenidos mediante ORB en Android.

87

PC. ORB/ORB.

Tiempo: 16.06 segs. Media puntos: 500. Media correspondencias buenas: 28

Figura 75: Matriz de confusión de los resultados obtenidos mediante ORB en PC.

88

Figura 76: Tabla de “True positives” de los resultados obtenidos mediante ORB en PC

89

Figura 77: Tabla de precisión de los resultados obtenidos mediante ORB en PC.

90

Server. ORB/ORB. (Calidad imagen 100 %)

Media puntos: 500. Media correspondencias buenas: 28

Figura 78: Matriz de confusión de los resultados obtenidos mediante ORB en el servidor.

91

Figura 79: Tabla de “True positives” de los resultados obtenidos mediante ORB en el servidor.

92

Figura 80: Tabla de precisión de los resultados obtenidos mediante ORB en el servidor.

93

Server. ORB/ORB. (Calidad imagen 90 %

Media puntos: 500. Media correspondencias buenas: 27

Figura 81: Matriz de confusión de los resultados obtenidos mediante ORB en el servidor, enviadas
con calidad al 90 %.

94

Figura 82: Tabla de “True positives” de los resultados obtenidos mediante ORB en el servidor,
enviadas con calidad al 90 %.

95

Figura 83: Tabla de precisión de los resultados obtenidos mediante ORB en el servidor, enviadas
con calidad al 90 %.

96

Server. ORB/ORB. (Calidad imagen 80 %

Media puntos: 500. Media correspondencias buenas: 27

Figura 84: Matriz de confusión de los resultados obtenidos mediante ORB en el servidor, enviadas
con calidad al 80 %.

97

Figura 85: Tabla de “True positives” de los resultados obtenidos mediante ORB en el servidor,
enviadas con calidad al 80 %.

98

Figura 86: Tabla de precisión de los resultados obtenidos mediante ORB en el servidor, enviadas
con calidad al 80 %.

99

Android. ORB(WTA K = 4)/ORB(WTA K = 4).

Tiempo: 71.33 segs. Media puntos: 500. Media correspondencias buenas: 30

Figura 87: Matriz de confusión de los resultados obtenidos mediante ORB (WTA K = 4) en Android.

100

Figura 88: Tabla de “True positives” de los resultados obtenidos mediante ORB (WTA K = 4) en
Android

101

Figura 89: Tabla de precisión de los resultados obtenidos mediante ORB (WTA K = 4) en Android.

102

PC. ORB(WTA K = 4)/ORB(WTA K = 4).

Tiempo: 18.08 segs. Media puntos: 500. Media correspondencias buenas: 30

Figura 90: Matriz de confusión de los resultados obtenidos mediante ORB(WTA K = 4) en PC.

103

Figura 91: Tabla de “True positives” de los resultados obtenidos mediante ORB(WTA K = 4) en
PC

104

Figura 92: Tabla de precisión de los resultados obtenidos mediante ORB(WTA K = 4) en PC.

105

Server. ORB(WTA K = 4)/ORB(WTA K = 4).

Media puntos: 500. Media correspondencias buenas: 27

Figura 93: Matriz de confusión de los resultados obtenidos mediante ORB(WTA K = 4) en el
servidor.

106

Figura 94: Tabla de “True positives” de los resultados obtenidos mediante ORB(WTA K = 4) el
servidor

107

Figura 95: Tabla de precisión de los resultados obtenidos mediante ORB(WTA K = 4) en el servidor.

108

Android. BRISK/BRISK.

Tiempo: 502.7 segs. Media puntos: 1855. Media correspondencias buenas: 63

Figura 96: Matriz de confusión de los resultados obtenidos mediante BRISK en Android.

109

Figura 97: Tabla de “True positives” de los resultados obtenidos mediante BRISK en Android

110

Figura 98: Tabla de precisión de los resultados obtenidos mediante BRISK en Android.

111

PC. BRISK/BRISK.

Tiempo: 353.50 segs. Media puntos: 1855. Media correspondencias buenas: 63

Figura 99: Matriz de confusión de los resultados obtenidos mediante BRISK en PC.

112

Figura 100: Tabla de “True positives” de los resultados obtenidos mediante BRISK en PC

113

Figura 101: Tabla de precisión de los resultados obtenidos mediante BRISK en PC.

114

Android. BRISK(thres = 85)/BRISK(thres = 85).

Tiempo:44.4 segs. Media puntos: 331. Media correspondencias buenas: 23

Figura 102: Matriz de confusión de los resultados obtenidos mediante BRISK(thres = 85) en Android.

115

Figura 103: Tabla de “True positives” de los resultados obtenidos mediante BRISK(thres = 85) en
Android

116

Figura 104: Tabla de precisión de los resultados obtenidos mediante BRISK(thres = 85) en Android.

117

PC. BRISK(thres = 85)/BRISK(thres = 85).

Tiempo: 19.75 segs. Media puntos: 331. Media correspondencias buenas: 23

Figura 105: Matriz de confusión de los resultados obtenidos mediante BRISK(thres = 85) en PC.

118

Figura 106: Tabla de “True positives” de los resultados obtenidos mediante BRISK(thres = 85) en
PC

119

Figura 107: Tabla de precisión de los resultados obtenidos mediante BRISK(thres = 85) en PC.

120

F.3. Experimentos algoritmos de reconocimiento basados en Deep Learning.

Estos experimentos se realizaron con la base de datos final (50 objetos) y en modo cliente-servidor.

Capa fc7. Imágenes sin retocar.

Figura 108: Matriz de confusión de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc7 de la red neuronal.

121

Figura 109: Tabla de “True positives” de los resultados obtenidos a partir de todos los objetos de
test usando como descriptor la capa fc7 de la red neuronal.

122

Figura 110: Tabla de precisión de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc7 de la red neuronal.

123

Figura 111: Matriz de confusión de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc7 de la red neuronal.

124

Figura 112: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test
agarrados con la mano usando como descriptor la capa fc7 de la red neuronal.

125

Figura 113: Tabla de precisión de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc7 de la red neuronal.

126

Figura 114: Matriz de confusión de los resultados obtenidos a partir de los objetos de test con
oclusión usando como descriptor la capa fc7 de la red neuronal.

127

Figura 115: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test con
oclusión usando como descriptor la capa fc7 de la red neuronal.

128

Figura 116: Tabla de precisión de los resultados obtenidos a partir de los objetos de test con oclusión
usando como descriptor la capa fc7 de la red neuronal.

129

Figura 117: Matriz de confusión de los resultados obtenidos a partir de los objetos de test en la
mesa usando como descriptor la capa fc7 de la red neuronal.

130

Figura 118: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test en
la mesa usando como descriptor la capa fc7 de la red neuronal.

131

Figura 119: Tabla de precisión de los resultados obtenidos a partir de los objetos de test en la mesa
usando como descriptor la capa fc7 de la red neuronal.

132

Capa fc8. Imágenes sin retocar.

Figura 120: Matriz de confusión de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc8 de la red neuronal.

133

Figura 121: Tabla de “True positives” de los resultados obtenidos a partir de todos los objetos de
test usando como descriptor la capa fc8 de la red neuronal.

134

Figura 122: Tabla de precisión de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc8 de la red neuronal.

135

Figura 123: Matriz de confusión de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc8 de la red neuronal.

136

Figura 124: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test
agarrados con la mano usando como descriptor la capa fc8 de la red neuronal.

137

Figura 125: Tabla de precisión de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc8 de la red neuronal.

138

Figura 126: Matriz de confusión de los resultados obtenidos a partir de los objetos de test con
oclusión usando como descriptor la capa fc8 de la red neuronal.

139

Figura 127: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test con
oclusión usando como descriptor la capa fc8 de la red neuronal.

140

Figura 128: Tabla de precisión de los resultados obtenidos a partir de los objetos de test con oclusión
usando como descriptor la capa fc8 de la red neuronal.

141

Figura 129: Matriz de confusión de los resultados obtenidos a partir de los objetos de test en la
mesa usando como descriptor la capa fc8 de la red neuronal.

142

Figura 130: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test en
la mesa usando como descriptor la capa fc8 de la red neuronal.

143

Figura 131: Tabla de precisión de los resultados obtenidos a partir de los objetos de test en la mesa
usando como descriptor la capa fc8 de la red neuronal.

144

Capa fc7. Imágenes originales reescaladas.

Figura 132: Matriz de confusión de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc7 de la red neuronal. Tanto las imágenes de test como las de la
base de datos han sido reescaladas.

145

Figura 133: Tabla de “True positives” de los resultados obtenidos a partir de todos los objetos de
test usando como descriptor la capa fc7 de la red neuronal. Tanto las imágenes de test como las de
la base de datos han sido reescaladas.

146

Figura 134: Tabla de precisión de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc7 de la red neuronal. Tanto las imágenes de test como las de la
base de datos han sido reescaladas.

147

Figura 135: Matriz de confusión de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc7 de la red neuronal. Tanto las imágenes de test
como las de la base de datos han sido reescaladas.

148

Figura 136: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test
agarrados con la mano usando como descriptor la capa fc7 de la red neuronal. Tanto las imágenes
de test como las de la base de datos han sido reescaladas.

149

Figura 137: Tabla de precisión de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc7 de la red neuronal. Tanto las imágenes de test
como las de la base de datos han sido reescaladas.

150

Figura 138: Matriz de confusión de los resultados obtenidos a partir de los objetos de test con
oclusión usando como descriptor la capa fc7 de la red neuronal. Tanto las imágenes de test como las
de la base de datos han sido reescaladas.

151

Figura 139: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test con
oclusión usando como descriptor la capa fc7 de la red neuronal. Tanto las imágenes de test como las
de la base de datos han sido reescaladas.

152

Figura 140: Tabla de precisión de los resultados obtenidos a partir de los objetos de test con oclusión
usando como descriptor la capa fc7 de la red neuronal. Tanto las imágenes de test como las de la
base de datos han sido reescaladas.

153

Figura 141: Matriz de confusión de los resultados obtenidos a partir de los objetos de test en la
mesa usando como descriptor la capa fc7 de la red neuronal. Tanto las imágenes de test como las de
la base de datos han sido reescaladas.

154

Figura 142: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test en
la mesa usando como descriptor la capa fc7 de la red neuronal. Tanto las imágenes de test como las
de la base de datos han sido reescaladas.

155

Figura 143: Tabla de precisión de los resultados obtenidos a partir de los objetos de test en la mesa
usando como descriptor la capa fc7 de la red neuronal. Tanto las imágenes de test como las de la
base de datos han sido reescaladas.

156

Capa fc8. Imágenes originales reescaladas.

Figura 144: Matriz de confusión de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc8 de la red neuronal. Tanto las imágenes de test como las de la
base de datos han sido reescaladas.

157

Figura 145: Tabla de “True positives” de los resultados obtenidos a partir de todos los objetos de
test usando como descriptor la capa fc8 de la red neuronal. Tanto las imágenes de test como las de
la base de datos han sido reescaladas.

158

Figura 146: Tabla de precisión de los resultados obtenidos a partir de todos los objetos de test
usando como descriptor la capa fc8 de la red neuronal. Tanto las imágenes de test como las de la
base de datos han sido reescaladas.

159

Figura 147: Matriz de confusión de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc8 de la red neuronal. Tanto las imágenes de test
como las de la base de datos han sido reescaladas.

160

Figura 148: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test
agarrados con la mano usando como descriptor la capa fc8 de la red neuronal. Tanto las imágenes
de test como las de la base de datos han sido reescaladas.

161

Figura 149: Tabla de precisión de los resultados obtenidos a partir de los objetos de test agarrados
con la mano usando como descriptor la capa fc8 de la red neuronal. Tanto las imágenes de test
como las de la base de datos han sido reescaladas.

162

Figura 150: Matriz de confusión de los resultados obtenidos a partir de los objetos de test con
oclusión usando como descriptor la capa fc8 de la red neuronal.

163

Figura 151: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test con
oclusión usando como descriptor la capa fc8 de la red neuronal. Tanto las imágenes de test como las
de la base de datos han sido reescaladas.

164

Figura 152: Tabla de precisión de los resultados obtenidos a partir de los objetos de test con oclusión
usando como descriptor la capa fc8 de la red neuronal. Tanto las imágenes de test como las de la
base de datos han sido reescaladas.

165

Figura 153: Matriz de confusión de los resultados obtenidos a partir de los objetos de test en la
mesa usando como descriptor la capa fc8 de la red neuronal.

166

Figura 154: Tabla de “True positives” de los resultados obtenidos a partir de los objetos de test en
la mesa usando como descriptor la capa fc8 de la red neuronal. Tanto las imágenes de test como las
de la base de datos han sido reescaladas.

167

Figura 155: Tabla de precisión de los resultados obtenidos a partir de los objetos de test en la mesa
usando como descriptor la capa fc8 de la red neuronal. Tanto las imágenes de test como las de la
base de datos han sido reescaladas.

168

Capa fc7. 5 Imágenes reescaladas y sin ruido

Figura 156: Matriz de confusión de los resultados obtenidos a partir de 5 objetos de test cuyas
imágenes se han tomado sin ruido y han sido reescaladas.

169

Figura 157: Tabla de “True positives” de los resultados obtenidos a partir de 5 objetos de test cuyas
imágenes se han tomado sin ruido y han sido reescaladas.

170

Figura 158: Tabla de precisión de los resultados obtenidos a partir de 5 objetos de test cuyas
imágenes se han tomado sin ruido y han sido reescaladas.

171

F.4. Otras pruebas

Las diferencias de tiempo y tamaño de imagen entre los distintos niveles de calidad en la

compresión jpeg se pueden ver en la tabla 15.

Nivel de calidad de la compresión Tiempo (segs) Tamaño (kB)

100 % 99.91 ≈300

90 % 79.51 ≈175.6

80 % 66.76 ≈120

Tabla 15: Diferencias de tiempo y tamaño de imagen entre los distintos niveles de calidad jpeg
comprobados para el modo cliente-servidor (cliente: Android, servidor: portátil, red: 100mbps, base
de datos: 50 objetos.

172

G. Referencias

[1] P. Föckler, T. Zeidler, B. Brombach, E. Bruns, and O. Bimber. PhoneGuide: Museum Guidance

Supported by On-Device Object Recognition on Mobile Phones (2005). PhoneGuide: Museum

Guidance Supported by On-Device Object Recognition on Mobile Phones . http://dl.acm.org/

citation.cfm?id=1149490

[2] S. Gammeter, A. Gassmann, L. Bossard. Server-side object recognition and client-side object

tracking for mobile augmented reality (2010). Server-side object recognition and client-side object

tracking for mobile augmented reality. http://ieeexplore.ieee.org/document/5543248/

?section=abstract

[3] M. Merler, C. Galleguillos, S. Belongie. Recognizing Groceries in situ Using in vitro Training

Data (2007). Recognizing Groceries in situ Using in vitro Training Data. http://vision.ucsd.

edu/sites/default/files/grozi_slam.pdf

[4] S. Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and Karayev, Sergey and Long,

Jonathan and Girshick, Ross and Guadarrama, Sergio and Darrell, Trevor. Caffe: Convolutional

Architecture for Fast Feature Embedding (2014). Caffe. http://ucb-icsi-vision-group.

github.io/caffe-paper/caffe.pdf

[5] Tuytelaars, T., Mikolajczyk, K. Local Invariant Feature Detectors: A Survey. 177-280 (2007). Lo-

cal Invariant Feature Detectors: A Survey. http://www.eng.auburn.edu/~roppeth/courses/

7970%202015A%20AdvMobRob%20sp15/literature/%5B2008%5D%20Local%20Invariant%

20Feature%20Detectors-%20A%20Survey.pdf

[6] D.J. Fleet, A.D. Jepson. Feature Descriptors, Detection and Matching (2011) Pag 2. Feature

Descriptors, Detection and Matching. https://www.cs.toronto.edu/~kyros/courses/2503/

Handouts/features.pdf

[7] Ramisa, A., Tapus, A., Aldavert, D., Toledo, R. Robust Vision-based Robot Localization

using Combinations of Local Feature Region Detectors. Robust Vision-based Robot Localization

using Combinations of Local Feature Region Detectors. http://www.iiia.csic.es/~mantaras/

comb_loc_Feb2009.pdf

[8] Lowe, D. G. Distinctive Image Features from Scale-Invariant Keypoints. University of British

Columbia (2004) Distinctive Image Features from Scale-Invariant Keypoints. http://www.cs.

ubc.ca/~lowe/papers/ijcv04.pdf

[9] Bay, H., Tuytelaars, T. and Van Gool, L. SURF: Speeded Up Robust Features (2006) Surf.

http://www.vision.ee.ethz.ch/~surf/eccv06.pdf

[10] E. Rosten, T. Drummond. Machine learning for high-speed corner detection (2006) FAST.

https://www.edwardrosten.com/work/rosten_2006_machine.pdf

173

http://dl.acm.org/citation.cfm?id=1149490
http://dl.acm.org/citation.cfm?id=1149490
http://ieeexplore.ieee.org/document/5543248/?section=abstract
http://ieeexplore.ieee.org/document/5543248/?section=abstract
http://vision.ucsd.edu/sites/default/files/grozi_slam.pdf
http://vision.ucsd.edu/sites/default/files/grozi_slam.pdf
http://ucb-icsi-vision-group.github.io/caffe-paper/caffe.pdf
http://ucb-icsi-vision-group.github.io/caffe-paper/caffe.pdf
http://www.eng.auburn.edu/~roppeth/courses/7970%202015A%20AdvMobRob%20sp15/literature/%5B2008%5D%20Local%20Invariant%20Feature%20Detectors-%20A%20Survey.pdf
http://www.eng.auburn.edu/~roppeth/courses/7970%202015A%20AdvMobRob%20sp15/literature/%5B2008%5D%20Local%20Invariant%20Feature%20Detectors-%20A%20Survey.pdf
http://www.eng.auburn.edu/~roppeth/courses/7970%202015A%20AdvMobRob%20sp15/literature/%5B2008%5D%20Local%20Invariant%20Feature%20Detectors-%20A%20Survey.pdf
https://www.cs.toronto.edu/~kyros/courses/2503/Handouts/features.pdf
https://www.cs.toronto.edu/~kyros/courses/2503/Handouts/features.pdf
http://www.iiia.csic.es/~mantaras/comb_loc_Feb2009.pdf
http://www.iiia.csic.es/~mantaras/comb_loc_Feb2009.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.vision.ee.ethz.ch/~surf/eccv06.pdf
https://www.edwardrosten.com/work/rosten_2006_machine.pdf

[11] E. Rublee, V. Rabaud, K. Konolige, G. Bradski. ORB: an efficient alternative to SIFT or SURF

(2011) ORB. http://www.vision.cs.chubu.ac.jp/CV-R/pdf/Rublee_iccv2011.pdf

[12] S. Leutenegger, M. Chli, R. Y. Siegwart. BRISK: Binary Robust Invariant Scalable Key-

points (2011) Brisk. https://e-collection.library.ethz.ch/eserv.php?pid=eth:7684&

dsID=eth-7684-01.pdf

[13] M. Muja, D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm con-

figuration. (2009) Flann. http://www.cs.ubc.ca/research/flann/uploads/FLANN/flann_

visapp09.pdf

[14] D. Nister, H. Stewenius. Scalable Recognition with a Vocabulary Tree. (2006) Bag of words.

http://ieeexplore.ieee.org/document/1641018/

[15] K. Grauman, T. Darrell. The pyramid match kernel: discriminative classification with sets of

image features. (2005) Spatial Pyramid. http://www.cs.ubc.ca/research/flann/uploads/

FLANN/flann_visapp09.pdf

[16] R. Hartley, A. Zisserman. Multiple View Geometry in Computer Vision. (2004) Multiple View

Geometry in Computer Vision. http://www.robots.ox.ac.uk/~vgg/hzbook/

[17] E. Vincent and R. Laganiere. Detecting Planar Homographies in an Image Pair. RANSAC.

https://www.researchgate.net/profile/Robert_Laganiere/publication/3905826_

Detecting_planar_homographies_in_an_image_pair/links/0c96052c70b8baccb6000000.

pdf

[18] Definición de Deep Learning. Li Deng, Dong Yu. Deep Learning: Methods and Applications

(Pags. 199-200). Deep Learning. https://www.microsoft.com/en-us/research/wp-content/

uploads/2016/02/DeepLearning-NowPublishing-Vol7-SIG-039.pdf

[19] Modelos entrenados para el framework Caffe. Modelos entrenados Caffe. http://caffe.

berkeleyvision.org/model_zoo.html

[20] Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E. ImageNet Classification with

Deep Convolutional Neural Networks (2012). AlexNet. http://papers.nips.cc/paper/4824-

imagenet-classification-with-deep-convolutional-neural-networks

[21] O. Miksik and K. Mikolajczyk. Evaluation of local detectors and descriptors for fast feature

matching. (2012) Evaluation of local detectors and descriptors for fast feature matching. http:

//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6460718

[22] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger. Adaptive and Generic Corner

Detection Based on the Accelerated Segment Test. (2010) Evaluation of local detectors and des-

criptors for fast feature matching. http://www6.in.tum.de/Main/Publications/Mair2010c.

pdf

Las Web han sido accedidas por última vez el 25 de noviembre de 2016.

174

http://www.vision.cs.chubu.ac.jp/CV-R/pdf/Rublee_iccv2011.pdf
https://e-collection.library.ethz.ch/eserv.php?pid=eth:7684&dsID=eth-7684-01.pdf
https://e-collection.library.ethz.ch/eserv.php?pid=eth:7684&dsID=eth-7684-01.pdf
http://www.cs.ubc.ca/research/flann/uploads/FLANN/flann_visapp09.pdf
http://www.cs.ubc.ca/research/flann/uploads/FLANN/flann_visapp09.pdf
http://ieeexplore.ieee.org/document/1641018/
http://www.cs.ubc.ca/research/flann/uploads/FLANN/flann_visapp09.pdf
http://www.cs.ubc.ca/research/flann/uploads/FLANN/flann_visapp09.pdf
http://www.robots.ox.ac.uk/~vgg/hzbook/
https://www.researchgate.net/profile/Robert_Laganiere/publication/3905826_Detecting_planar_homographies_in_an_image_pair/links/0c96052c70b8baccb6000000.pdf
https://www.researchgate.net/profile/Robert_Laganiere/publication/3905826_Detecting_planar_homographies_in_an_image_pair/links/0c96052c70b8baccb6000000.pdf
https://www.researchgate.net/profile/Robert_Laganiere/publication/3905826_Detecting_planar_homographies_in_an_image_pair/links/0c96052c70b8baccb6000000.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/DeepLearning-NowPublishing-Vol7-SIG-039.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/DeepLearning-NowPublishing-Vol7-SIG-039.pdf
http://caffe.berkeleyvision.org/model_zoo.html
http://caffe.berkeleyvision.org/model_zoo.html
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6460718
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6460718
 http://www6.in.tum.de/Main/Publications/Mair2010c.pdf
 http://www6.in.tum.de/Main/Publications/Mair2010c.pdf

[23] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, P. Fua. BRIEF: Computing a

Local Binary Descriptor Very Fast. (2012) Brief. http://ieeexplore.ieee.org/document/

6081878/

[24] C. Harris and M. Stephens. A combined corner and edge detector. (1988) Harris. http://

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.4816&rep=rep1&type=pdf

175

 http://ieeexplore.ieee.org/document/6081878/
 http://ieeexplore.ieee.org/document/6081878/
 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.4816&rep=rep1&type=pdf
 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.434.4816&rep=rep1&type=pdf

	Introducción
	Contexto y motivación
	Trabajo relacionado
	Objetivos
	Distribución temporal de las tareas
	Tecnologías utilizadas
	Estructura de la memoria

	Reconocimiento de objetos
	Reconocimiento mediante Local Features
	Reconocimiento mediante Deep Learning

	Diseño del sistema
	Diseño de la aplicación
	Descripción de la base de datos
	Implementación de la aplicación
	Descripción general
	Descripción de los algoritmos de reconocimiento
	Descripción de las arquitecturas

	Implementación del prototipo
	Descripción del prototipo

	Experimentos y resultados
	Setup de la batería de test
	Elección del algoritmo de reconocimiento basado en local features
	Experimentos sobre la configuración del modo cliente-servidor
	Experimentos sobre la configuración del reconocedor Deep Learning
	Evaluación de la memoria
	Comparativa de tiempos finales

	Conclusiones y trabajo futuro
	Conclusiones
	Trabajo futuro
	Opinión personal

	Manual de instalación del sistema
	Requisitos previos aplicación:
	Requisitos previos servidor:
	Instalación
	Requisitos aplicación

	Estructura de la base de datos
	Objetos
	Objetos de test

	Diagrama de clases del sistema
	Algoritmo ORB (Oriented FAST and Rotated BRIEF)
	Procesamiento en Redes neuronales convolucionales (CNN)
	Resultados adicionales de los experimentos
	Experimentos algoritmos de reconocimiento basados en local features. Primera versión
	Experimentos algoritmos de reconocimiento basados en local features. Segunda versión
	Experimentos algoritmos de reconocimiento basados en Deep Learning.
	Otras pruebas

	Referencias

