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Debido a que este proyecto es de carácter exploratorio y de investigación, la mayor parte de la

terminología relacionada procede del inglés. Por esta razón, muchos de los términos y expresiones

técnicas más comunes carecen de traducción alguna al castellano o su traducción no es habitual en

este contexto. Durante el desarrollo de este documento se ha tratado, en la medida de lo posible,

de traducir la mayor parte de estos términos y expresiones, exceptuando casos en los que no existe

traducción o su inclusión repetida en el texto afectaba a la �uidez de la lectura.





Deep Learning en el arte y la ilustración

El siguiente proyecto investiga las técnicas del aprendizaje profundo denominadas Deep Learning,

que consisten en añadir un conjunto de capas no-lineales a las arquitecturas tradicionales de redes

neuronales. Esta técnica consigue tener una mayor precisión y capacidad de abstracción para realizar

tareas que, anteriormente, se asumían tan solo realizables con altos porcentajes de éxito por los

humanos.

Más concretamente, en este proyecto se trata de comprender la forma de trabajo de las redes

neuronales profundas, los algoritmos de optimización que emplean y su particular aplicación al proble-

ma de la clasi�cación de imágenes tanto naturales como artísticas. El problema de la clasi�cación de

imágenes se trata de una tarea sencilla para el ser humano dada la experiencia adquirida con el paso

de los años, pero realmente compleja de realizar por ordenadores, que deben traducir un conjunto de

número (píxeles) en etiquetas con sentido semántico.

Además, se evaluarán las arquitecturas ya existentes en un nuevo dominio, las imágenes artísticas

o ilustraciones, cuyas características a bajo y medio nivel di�eren completamente de las imágenes

naturales. Estas particularidades harán que su clasi�cación sea más compleja, sesgando las capacidades

de abstracción de las redes pre entrenadas y, por tanto, obteniendo poco éxito con su uso.

Para obtener altos porcentajes de precisión se hará uso de la red como generador de descriptores

de la clase, que van a ser clasi�cados usando una máquina de soporte de vectores. Además, con el �n

de mejorar dichos resultados, se optimizarán los parámetros de la red de manera que los descriptores

generados sean más precisos. Mejorando la precisión en hasta un 70%.
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1
INTRODUCCIÓN

Con el paso del tiempo el ser humano ha adquirido la capacidad de poder identi�car objetos,

texturas y formas en las imágenes naturales sin requerir de un esfuerzo desmesurado. Dicha tarea, es

mucho más complicada para los ordenadores que, para poder clasi�car imágenes deben ser capaces

de comprender su representación, que no deja de ser un conjunto de píxeles, de la cual deben obtener

toda la información posible. Recientemente, estas tareas de clasi�cación de imágenes naturales han

alcanzado niveles de acierto muy elevados gracias al uso del aprendizaje profundo (cuya traducción

al inglés es Deep Learning), haciendo que su error sea menor de un 10%. Antes de su aparición el

estado del arte obtenía valores de alrededor de un 30% utilizando algoritmos que consistían en un

proceso de extracción características (SIFT y vectores de Fisher), con algún tipo de reducción de

dimensionalidad como análisis principal de componentes (cuya traducción al inglés es PCA) [17] que,

posteriormente, se clasi�caban con máquinas de soporte de vectores (SVM) [14] [18].

El aprendizaje profundo hace referencia a un conjunto de técnicas de aprendizaje automático

que emplean arquitecturas complejas con transformaciones no lineales para modelar abstracciones a

alto nivel. Yann LeCun desarrolló una serie de arquitecturas utilizando redes neuronales con múltiples

capas a �nales del siglo XX [13] que dieron pie al deep learning, pero la baja potencia de las GPUs

de entonces impedía el desarrollo de algoritmos e�cientes y exitosos.

Actualmente, el aumento en la potencia de las tarjetas grá�cas unido al aumento de la disponi-

1



INTRODUCCIÓN

A B C D E F

Figura 1.1: Comparativa de clasi�cación de imágenes naturales y cliparts con diferente grado de

abstracción haciendo uso de la red VGG Net 19 mostrando la probabilidad entre 0 y 1 de que sea un

gato. La imagen A se trata de una imagen natural, las imágenes de B a D corresponden a clip-arts con

cierta similitud con una fotografía, mientras que los clip-arts E y F son completamente abstractos.

bilidad de datos etiquetados en la red con bases de datos como: ImageNet [5], CIFAR [10] o Pascal

VOC [6] enfocadas a clasi�cación de imágenes; MNIST [12] enfocada al reconocimiento de dígitos

manuscritos entre otras, han dado un gran empuje al uso de redes convolucionales profundas (las

cuales obtienen los mejores porcentajes de error) y a la exploración de diferentes arquitecturas que

estudian como la variación en profundidad [28] [23] y la anchura de las redes [27], o la inicialización

de sus pesos [2] mejoran los porcentajes de precisión obtenidos.

Las redes neuronales convolucionales tienen un desempeño extraordinario clasi�cando imágenes

naturales, además, se ha demostrado que pueden ser potentes descriptores de una clase [1] [16] si

se extraen sus características a alto nivel y se entrena un clasi�cador con ellas [4]. Estas técnicas

conocidas como transferencias de conocimiento son útiles para poder emplear la red con un nuevo

tipo de dato similar al que se ha usado para su entrenamiento optimizando tan solo los parámetros de

un número reducido de capas (las nuevas a añadir) obteniendo resultados notables. Sin embargo, si el

dato a usar tiene unas características muy diferentes a los de entrenamiento de la red la transferencia

de conocimiento puede fallar. Si se le une el hecho de usar tipos de imágenes ilustrativos o artísticos,

con cierta componente de aleatoriedad donde las formas, colores o texturas de los objetos puedan

ser completamente opuestas complica, aún más, la tarea de clasi�cación obteniendo resultados con

altos porcentajes de error.

La Figura 1.1 contiene un conjunto de imágenes naturales y clip-arts clasi�cados haciendo uso de

la red neuronal VGG Net 19, la cual obtiene resultados en el estado del arte en clasi�cación de imágenes

naturales, pero, si el tipo de dato usado es de tipo artístico su precisión disminuye prácticamente,

2



INTRODUCCIÓN 1.1. Objetivos

como se ilustra. La �gura muestra las probabilidades entre 0 y 1 de que cada imagen sea un gato. La

imagen A se trata de una imagen natural que la red es capaz de clasi�car sin problema alguno; las

imágenes B, C y D son clip-arts que tratan de simular la realidad, a pesar de ello, la �gura B no tiene

una probabilidad de ser un gato que parezca determinante para la red y la �gura C ha sido predicha con

0.39 como un tigre en vez de un gato, respecto a la imagen D, la red ha sido capaz de clasi�carla sin

problema alguno; ahora, si analizamos las imágenes con una mayor componente abstracta, se puede

apreciar por la probabilidad de que sea un gato, que la red no es capaz de clasi�carlo correctamente.

Además, si obtenemos la mayor probabilidad devuelta se tiene que la �gura E ha sido predicha como

sobre y un 0.07 de probabilidad y la �gura F ha sido clasi�cada como un hacha y probabilidad 0.08.

Lo que indica que la red no solo no ha sabido clasi�carlas correctamente, tampoco tiene seguridad de

que la clase con mayor probabilidad devuelta sea la correcta.

Se ha visto cómo las redes neuronales profundas son capaces de clasi�car imágenes naturales e

imágenes artísticas realistas de manera precisa haciendo uso de técnicas de aprendizaje profundo, sin

embargo, la clasi�cación de imágenes de tipo artístico con cierto grado de abstracción ha resultado ser

insatisfactoria; por ello, nos preguntamos si: es posible que una red neuronal aprenda el concepto

de clase a alto nivel para, así, generalizar y reconocer objetos en cualquier tipo de representación

pictórica.

1.1. Objetivos

Este proyecto de �n de grado es de carácter exploratorio y de investigación, y tiene como

objetivos: entender cómo funcionan las diferentes arquitecturas de red propuestas para esta tarea y

poder diseñar nuevas arquitecturas que mejoren el funcionamiento de las anteriores. Concretamente,

los objetivos �nales son:

Aplicar las arquitecturas conocidas para clasi�car imágenes naturales o fotografías en un con-

texto completamente diferente como es el arte o la ilustración.

Ser capaces de medir empíricamente el error y precisión de estas arquitecturas para tomar

decisiones de diseño.

Desarrollar nuevos modelos que consigan mejores resultados que los ya existentes para clasi�car

3



INTRODUCCIÓN 1.2. Entorno del proyecto

imágenes artísticas o ilustraciones.

1.1.1. Tecnologías empleadas

Además de objetivos teóricos, la realización del proyecto también contiene objetivos prácticos

como son la completa comprensión del framework a utilizar, en este caso, Torch1 [3], desarrollado por

el grupo de investigación en Inteligencia Arti�cial de Facebook, investigadores de Google DeepMind y

Twitter. Se trata de un framework fácil de usar, comprensible y e�ciente, desarrollado sobre LuaJIT y

una sub-implementación en C/CUDA que permite hacer uso de la potencia que nos brindan las GPU.

LuaJIT es un compilador Just-In-Time (JIT) para Lua, un lenguaje de programación interpretado

con sintaxis simple y con base en C y Perl. El framework Torch fue usado hasta hace unos meses

por Google DeepMind, en su famoso programa AlphaGo [22], que fue capaz de derrotar al campeón

mundial de Go por primera vez en la historia.

Conjuntamente a Torch se emplea Python en su versión 2.7 con el paquete sklearn, que será

útil para el entrenamiento y evaluación de las máquinas de soportes de vectores (SVM). La comu-

nicación entre Torch y Python se establece mediante �cheros con formato HDF5 que permiten un

fácil almacenamiento y una sencilla manipulación de grandes matrices. Conjuntamente a las tecno-

logías mencionadas anteriormente, se hace uso de GitHub una plataforma online que permite llevar

un control de versiones, donde se encuentra alojado un repositorio con el proyecto2 y otro repositorio

con la memoria3. Se puede encontrar una explicación más detallada de las tecnologías en el Anexo B

1.2. Entorno del proyecto

El proyecto ha sido desarrollado en el grupo de investigación Graphics and Imaging Lab (GILab),

perteneciente al Departamento de Informática e Ingeniería de Sistemas (DIIS) en la Escuela de Inge-

niería y Arquitectura de la Universidad de Zaragoza (EINA). Ha sido dirigido por Elena Garcés García

y supervisado por el Dr. Diego Gutiérrez Pérez.

1Proyecto Torch: http://torch.ch/
2Página del proyecto: https://github.com/mlagunas/DLart
3Página de la memoria https://github.com/mlagunas/DLart_projectReport
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1.3. Estructura de la memoria

MÉTRICAS

PREC. TOP-5 PREC. TOP-1 PREC. CLASE MÁX. ENTROPY

DATOS ARQUITECTURAS

ImageNet (1,2M)

Noisy (180k)

Noisy 23 (2k)

Curated (4k)

Arquitectura base

Arquitectura base + SVM

Modelo óptimo

Entrenado: ImageNet

Entrenado: Noisy

Entrenado: Curated

Entrenado: ImageNet

Entrenado: Curated

VGG 19
(fine-tunned)

 VGG 19
(sin modificar)

VGG 19
(sin modificar)

SVM

SVM Cap. 5

Cap. 5

Cap. 4

Cap. 2

Cap. 3

Figura 1.2: Vista general de las componentes del proyecto realizado con sus capítulos asociados.

En la Figura 1.2 se puede observar un esquema del proyecto realizado. De manera transversal se

pueden ver las Métricas que, aplicadas a los datos, se utilizaron para obtener las mejores clases y un

conjunto válido más exhaustivo. Además, las métricas se usaron en cada arquitectura propuesta para

evaluar su desempeño y poder realizar comparaciones objetivas entre ellas. Los Datos contienen los

conjuntos de imágenes, tanto naturales como ilustraciones, empleados en el trabajo. Por último, el

grupo de las Arquitecturas comenta la red neuronal usada, así como todos los cambios realizados en

esta para conseguir mejores porcentajes de precisión en la clasi�cación de imágenes.

Capítulo 2: Explica el conjunto de métricas empleadas: precisión top-1 y top-5 y la función de

máxima entropía, que será también la función de error para el entrenamiento de la red

neuronal profunda. Además, se explora el estado del arte actual en materias como:

la clasi�cación de imágenes y la transferencia de conocimiento en redes neuronales.

5
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Capítulo 3: Contiene la descripción de todos los conjuntos de datos empleados en este tra-

bajo. Se comienza comentando ImageNet (I), el conjunto de imágenes naturales.

Posteriormente, se detalla el proceso de obtención de los tres nuevos conjuntos de

imágenes de clip-art: Noisy (N), Noisy 23 (N23) y Curated (C), su número de clases

y entradas, sus problemas e inconvenientes, y las soluciones propuestas.

Capítulo 4: Comenta la arquitectura base empleada, que consiste en la red neuronal VGG Net 19,

pre-entrenada con el conjunto de imágenes ImageNet. Se verán además los resultados

obtenidos al tratar de emplear dicha arquitectura en un contexto diferente al que se

entrenó, como son los clip-arts, y las conclusiones que se han obtenido.

Capítulo 5: Explica los dos nuevos modelos propuestos basados en la arquitectura base cuyo �n

es mejorar la precisión �nal obtenida en la clasi�cación de los nuevos conjuntos de

imágenes. Introduce una primera mejora del modelo inicial donde se hace uso de una

máquina de soporte de vectores (SVM). Posteriormente, se describen todos pasos

realizados hasta obtener la segunda arquitectura propuesta, denominada el modelo

óptimo.

Capítulo 6: Valoración y comentarios acerca de la investigación realizada, conclusiones, ideas de

aplicación de la tecnología desarrollada y posibles futuras líneas de investigación.
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2
CONTEXTO

TECNOLÓGICO

El siguiente capítulo contiene dos secciones de carácter descriptivo con información necesaria

para la posterior comprensión del documento. Más concretamente, la Sección 2.1 explica las métricas

usadas para comparar los algoritmos propuestos usando técnicas de Deep Learning, posteriormente,

la Sección 2.2 es una exposición de las investigaciones que dieron pie al aprendizaje profundo, la

evolución en las arquitecturas usadas para la clasi�cación de imágenes y los métodos empleados para

obtener descriptores de los objetos a partir dichas arquitecturas con el �n de realizar transferencias

de conocimiento en una misma red neuronal. Además, en el Anexo A se encuentra una detallada

introducción al Deep Learning desde los conceptos más básicos.

2.1. Métricas empleadas

La tarea de clasi�cación de imágenes consiste en dar una etiqueta o clase a un dato de entrada.

El hecho de dar a cada imagen una sola clase podría generar problemas de ambigüedad si en dicha

entrada se pudiera encontrar más de un objeto. Por norma general, las métricas usadas para evaluar

estas tareas proponen considerar las cinco primeras clases devueltas con mayor probabilidad por la red

neuronal sin penalización siempre que en ellas se encuentre la clase real de la imagen. Para evaluar

cómo actúan los distintos modelos se hace uso de una métrica que será la precisión top-5 donde

7



CONTEXTO TECNOLÓGICO 2.1. Métricas empleadas

cada imagen i tiene una sola clase Ci , la arquitectura propuesta podrá devolver hasta cinco clases

ci1; : : : ; ci5 que serán correctas si ci j = Ci . La precisión se calculará di j = d(ci j ; Ci) = 1 si ci j = Ci ,

y 0 en cualquier otro caso. La precisión global será la suma del mayor número posible de aciertos

(di j = 1) devueltos para el conjunto de imágenes, considerando n el número total de imágenes:

prec5 =
1

n

n∑
i

maxj(di j) (2.1)

Dado que el conjunto de imágenes también ha sido curado y muchas de sus entradas carecen de

ningún tipo de ambigüedad posible, es necesario poder evaluar cómo actúan considerando tan solo la

primera predicción devuelta (la de mayor probabilidad), para ello se modi�ca la precisión top-5 para

considerar tan solo el primer resultado obtenido, llamándolo precisión top-1. La precisión será ahora

di1 = d(ci1; Ci) = 1 si ci1 = Ci , y 0 en cualquier otro caso, obteniendo un resultado global donde no

es necesario obtener el máximo j , pues solo hay una clase posible, la primera.

prec1 =
1

n

n∑
i

(di1) (2.2)

Además de globalmente, para poder evaluar de manera precisa una red, será necesario ver su

desempeño por clase, lo que permite diagnosticar posibles problemas durante el entrenamiento. Para

ello, se modi�ca el valor n de la fórmula de la precisión global, para que el conjunto evaluado sea solo

el de las imágenes pertenecientes a la clase l , siendo el número de imágenes de este conjunto nl :

prec1l =
1

nl

nl∑
i

(di1) (2.3)

prec5l =
1

nl

nl∑
i

maxj(di j) (2.4)

Estas medidas serán útiles para comparar modelos, y su desempeño global y especí�co. Como

medida adicional se hace uso del error de máxima entropía, que evalúa la seguridad de la arquitectura

midiendo la probabilidad de la clase real de la imagen, es decir, relacionando las probabilidades (S)

con las etiquetas reales (L) y obteniendo su valor medio para todas las imágenes del conjunto n.

De nuevo, podrá usarse de manera individual para cada clase l si solo se consideran sus etiquetas e

imágenes, teniendo ahora el conjunto de imágenes nl . Explicada en detalle en el Anexo A.1.3.

D(S; L) = �

n∑
i

log (Si) � Li (2.5)
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CONTEXTO TECNOLÓGICO 2.2. Estado del arte

D(S; L)l = �

nl∑
i

log (Si) � Li (2.6)

2.2. Estado del arte

Hasta �nales del siglo XX, la mayoría de técnicas que hacían uso de aprendizaje automático

usaban arquitecturas shallow-structured, como pueden ser las máquinas de soporte de vectores (cuya

traducción es Support Vector Machines,SVMs) o los perceptrones multicapa, (MLPs) entre otros.

Estas arquitecturas demostraron ser capaces de resolver un gran conjunto de problemas de manera

e�ciente pero sus restricciones a la hora de modelarlos y su bajo poder de representación hacen que

sean débiles a la hora de lidiar con problemas cotidianos más complejos.

La aparición del Deep Learning, como una variación de los MLPs con un gran número de capas

ocultas, donde existen capas no lineales, permitió que muchos problemas hasta entonces impensables

de resolver por máquinas tuvieran soluciones con grandes tasas de acierto. LeCun en 2001 presentó un

trabajo de investigación donde el Deep Learning comenzaba a resaltar en la tarea del reconocimiento

de documentos con la arquitectura LeNet [13] una red que hace uso de 7 capas con pesos. En dicho

trabajo muestra los primeros pasos para con�ar más en arquitecturas de aprendizaje automático que

en heurísticas creadas ad-hoc para cada tipo de problema.

Posteriormente, dada la mayor cantidad de datos disponibles y el mayor número de imágenes

etiquetadas comenzaron a desarrollarse nuevas arquitecturas más profundas, con mayor precisión y

capacidad de representación. Comenzaron a aparecer competiciones como ILSVRC (ImageNet Large

Scale Visual Recognition Challenge) [20] [5] con más de 1 millón de imágenes etiquetadas para poder

entrenar arquitecturas de red profundas que las clasi�quen en 1000 clases diferentes. En 2012, Alex

Krizhevsky [11] propuso una arquitectura prometedora mejorando los resultados anteriores en esta

competición, donde además, desarrolló una nueva implementación de convolución 2D mucho más

e�ciente que hacía posible el entrenamiento con gran cantidad de datos. Dicha arquitectura se trata

de una red convolucional profunda con 5 capas de convolución con un tamaño de ventana de 11 �

11 y 3 capas fully-connected que formarán el clasi�cador lineal. La red hace uso de ReLus [15] y de

dropout [24] para evitar el over�tting dada su profundidad.

Durante los años siguientes los ganadores han sido arquitecturas basadas en la propuesta por
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CONTEXTO TECNOLÓGICO 2.2. Estado del arte

Krizhevsky, en el año 2013 Zeiler y Fergus [28] proponen una técnica de visualización de activaciones

en las capas intermedias haciendo uso de redes desconvolucionales o deconvolutional neural networks

pudiendo observar que la red en sus capas bajas era capaz de reconocer características de la imagen

a bajo nivel, mientras que a alto nivel es capaz de capturar objetos completos.

El Visual Geometry Group de Oxford presentó al ILSVRC de 2014 una arquitectura llamada

VGG Net [23]. En ella exploran cómo afecta la profundidad de la red al resultado obtenido, obteniendo

mejores porcentajes de error que en anteriores casos. El problema que podría acarrear sería los tiempos

necesitados para llevar a cabo el entrenamiento. Por ello redujeron el tamaño de los �ltros y la ventana

a 3 � 3 píxeles con stride y padding de un pixel. Su mejor resultado es un error top-5 de 7; 3% en el

conjunto test del ILSVRC.

Oquab et. al. [16] presentaban una solución al problema de transferencia de representaciones,

donde, haciendo uso de una red neuronal convolucional profunda ya entrenada para el dataset Ima-

geNet eran capaces de obtener porcentajes de error relativamente bajos reiniciando la última capa

fully-connected del clasi�cador lineal y añadiendo dos nuevas que serán reentrenadas sobre el conjun-

to de imágenes del nuevo problema. Más cercano al trabajo propuesto, Crowley y Zisserman [4], del

Visual Geometry Group de Oxford, en la misma línea de transferir el conocimiento para poder usado

en otro tipo de problema reutilizando una red ya entrenada, proponen el uso de máquinas de soporte

de vectores (SVM) para clasi�car las activaciones obtenidas en las últimas capas de una red neuronal

convolucional. Las SVMs serán entrenados haciendo uso del nuevo conjunto de imágenes, que en este

caso es de cuadros. Babenko et. al. [1], demuestran en su trabajo que las capas superiores de las

redes convolucionales profundas pueden funcionar bien como descriptores del contenido visual de

la imagen (llamado neural codes). Haciendo uso de Principal Component Analysis (PCA) [17] sobre

los neural codes obtenidos de una red entrenada con ImageNet en la última capa convolucional y la

primera fully-connected son capaces de obtener prometedores resultados en la tarea de recuperación

de imágenes para distintos conjuntos. Sharif et. al. [19] reforzaba la teoría de la transferencia de

contenido gracias a SVMs para clasi�car las últimas capas haciendo uso de la red OverFeat [21], una

red convolucional profunda entrenada con ImageNet, con la que obtenía resultados similares al estado

del arte en otros conjuntos diferentes al usado para entrenarla.

Dada la capacidad de las redes convolucionales profundas para sobrepasar problemas a la hora de
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la transferencia de conocimiento [4], en el siguiente trabajo de investigación se hará uso de la red VGG

Net con 19 capas con pesos. Además, se hará uso de las activaciones de las últimas capas de la red [1],

más concretamente la segunda capa fully-connected, para que, posteriormente sean clasi�cadas por

una SVM, tal y como sugieren el trabajo de Crowley y Zisserman [4], y Sharif et. al. [19]. Los primeros

hacen uso de un conjunto de cuadros con complejidades relativas al estilo o el tiempo en el que fueron

pintados y los segundos usan distintos conjuntos de imágenes naturales. Por el contrario, nuestro

modelo hace uso de imágenes de clip-art cuya complejidad reside en las características de la imagen a

bajo nivel: bordes, colores, etc. También se hará una optimización de la red, reentrenando de manera

selectiva las capas que generan errores con las imágenes de entrada, de manera que las activaciones

�nales sean más restrictivas y precisas a la hora de actuar como descriptores de una clase que serán,

posteriormente, clasi�cados con una SVM.
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3
OBTENER LOS DATOS

La cantidad de información etiquetada en la red ha crecido de manera exponencial, haciendo fácil

su obtención para el posterior entreno de las redes neuronales profundas. Dicho crecimiento no ha sido

igual con todos los tipos de imagen focalizándose en las fotografías, haciendo que otros conjuntos de

imágenes no existan o sean muy limitados como conjuntos de datos de cuadros.

Por tanto, en este proyecto se ha tenido que obtener un conjunto de imágenes válido requiriendo

un tiempo de procesamiento, limpieza y curado de los datos antes de que estos puedan ser usados. Este

capítulo comenta en la Sección 3.1 la conocida base de datos ImageNet, las imágenes que contiene,

así como la competición que organiza cada año, posteriormente, en la Sección 3.2 se comenta el

conjunto de imágenes de ilustración propio, como se ha obtenido y el procesamiento necesario para

que fuera válido.

3.1. Base de datos ImageNet

ImageNet (I) [5]1 es un conjunto de datos con más de 15 millones de imágenes de alta resolución

que pertenecen a alrededor de 22;000 categorías. Estas imágenes fueron recogidas de páginas web

1Web de ImageNet http://image-net.org/
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OBTENER LOS DATOS 3.1. Base de datos ImageNet

como �ickr y etiquetadas manualmente haciendo uso de la herramienta de Amazon: Mechanical Turk,

una herramienta de crowd-sourcing. En el año 2010, comenzaron una competición anual llamada Ima-

geNet Large Scale Visual Recoginition Challenge (ILSVRC) [20] que hace uso de un subconjunto de

ImageNet con 1; 2 millones de imágenes distribuidas en 1;000 clases. De ellas, alrededor de 1;000;000

son para entrenamiento, 50;000 para validación y 150;000 para test obtenidas independientemente.

Figura 3.1: Muestra de parte de las imágenes de la base de datos ImageNet.

El ILSVRC es una competición que ofrece un gran número de imágenes etiquetadas cuyo objetivo

es poder evaluar el desarrollo de los algoritmos propuestos para generar un etiquetado automático,

además de, ofrecer a la comunidad cientí�ca una base de imágenes amplia para poder probar sus

modelos. La competición ofrece 3 conjuntos de imágenes para cada una de sus sub competiciones:

entrenamiento y validación que disponen de las etiquetas y test, el cual solo contiene las imágenes y

para el cual cada algoritmo propuesto debe ser el encargado de generar el etiquetado correspondiente.

Las imágenes de test se obtienen de manera independiente a las que aparecen en ImageNet y por

tanto no es posible conocer su etiqueta real. ILSVRC tiene 3 sub competiciones: clasi�cación de
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OBTENER LOS DATOS 3.2. Conjunto de imágenes de Clip-art

imágenes, localización single-object, y detección de objetos. El interés de esta competición para el

trabajo desarrollado reside en las clases que proponen para la tarea de clasi�cación de imágenes. A

la hora de obtener nuevos conjuntos de datos válidos, se realizará un mapeo a las 1000 clases que

ofrece dicha competición, de manera que una red neuronal pre-entrenada con los datos ofrecidos por

el ILSVRC sea usable con los nuevos datos obtenidos.

3.2. Conjunto de imágenes de Clip-art

El trabajo de investigación desarrollado busca clasi�car imágenes con el menor error posible,

dichas imágenes deben ser ilustraciones o de tipo artístico. Para la obtención de un conjunto de imá-

genes válido se ha seguido el proceso representado en la Figura 3.2. Se ha hecho uso de una notación

similar a �1 para poder tener correspondencia entre el texto y cada parte del proceso representado en

el grá�co.

Decidir tipo de
imagen

Buscar y obtener
imágenes

Adecuar datos a
ILSVRC

Obtener mejores
clases por error

Analizar imágenes
por clase

Ampliar número de
imágenes

*3

*2

*1

Algoritmo 1

*4

*5

*6

Curated

Noisy23

Noisy

Figura 3.2: Pasos a realizar hasta obtener un conjunto de datos usable para una red neuronal profunda.

Para este proyecto, se decidió hacer uso de clip-arts*1 dado su carácter artístico, su disponibilidad

en la red y complejidad a bajo nivel que hacían que lograr el objetivo propuesto fuera un reto (ver

Figura 3.3). Tras conocer el tipo de imagen a usar, el siguiente paso a realizar fue obtener un número

de imágenes que fuera considerable*2 de manera que la red neuronal a usar se pudiera optimizar

para el nuevo tipo de dato. Para ello se hizo uso del conjunto de imágenes de clip-art usado en
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la investigación de Garces et al. [7] que buscaba una métrica de similitud de estilos entre distintas

imágenes de este tipo. El conjunto de datos contiene más de 200;000 entradas de tamaño medio 400

� 400 píxeles, etiquetadas por su signi�cado semántico, no guardando correspondencia con las 1000

clases que da la competición ILSVRC.

Figura 3.3: Muestra de parte de las imágenes de clip-art obtenidas.

Dado que el etiquetado no corresponde con el del ILSVRC, no existe manera posible de poder

evaluar cuantitativamente el desempeño de una red neuronal profunda sobre este conjunto de datos.

Por ello es necesario realizar un pre proceso que descarte las imágenes que no tienen representación

dentro de estas 1000 clases y empareje el resto con sus posibles etiquetas*3. El proceso comienza

obteniendo todas las entradas del conjunto de datos y las 1000 clases de la competición, separando

sus nombres por palabras y eliminando stop-words. Posteriormente se hace un recorrido de manera

que si una palabra dentro del nombre de una imagen corresponde a una de las palabras de una clase

esta se copia a la ruta clase/imagen.png, por ejemplo: la imagen terrier-1.png se copiará en la ruta

terrier/terrier-1.png, por lo tanto, puede haber varias imágenes iguales en clases diferentes. Este

proceso puede verse en detalle en el Algoritmo 1. Tras �nalizar este proceso, el resultado es un nuevo

conjunto de imágenes clip-art con más de 180;000 entradas distribuidas en un total de 826 clases.

Este conjunto de datos recibe el nombre de noisy.
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Algorithm 1 Adecuar datos a ILSVRC.

procedure Adecuar_conjunto(Vector imagenes, Vector clases)

for cada clase c en clases do

clase  nombre de la clase

vector_clase  separar palabras y eliminar stopwords

matr iz_clases  añadir vector_clase

for cada imagen i en imagenes do

nombre  nombre de la imagen

vector_nombre  separar palabras y eliminar stopwords

for cada vector vc en matr iz_clases do

for cada palabra pc en vc do

for cada palabra pi en vector_nombre do

if pc = pi then copiar imagen pi en carpeta de clase pc .

3.2.1. Curando y poblando el conjunto de datos

Dado que a la hora de crear el conjunto de datos noisy se emplea una restricción débil (cuyo

objetivo es obtener el mayor número de imágenes el dataset) que puede generar problemas de ambi-

güedades en clases con nombres compuestos, por ejemplo una imagen de un perro, dog.png podría

estar en la clase hot-dog, problemas de sinonimia donde la clase crane puede signi�car grúa y grulla

haciendo que contenga elementos de ambos e incluso problemas en el número de ejemplos, existiendo

clases con tan solo una imagen o clases con más de 1500 entradas.

Por ello, se hace uso de la red neuronal VGG Net 19 [23] sin ninguna modi�cación en su arquitec-

tura y con los mismos pesos y bias que tiene tras su entrenamiento con ImageNet. La red sirve para

hacer una clasi�cación del conjunto de imágenes de clip-art completo obteniendo la precisión top-1 y

top-5, y el error de la función de máxima entropía. De acuerdo a estos resultados se seleccionan las

mejores clases*4 que no presenten además posibles problemas de ambigüedad ni de sinonimia (clases

con nombres de una sola palabra) y que tienen un número de imágenes representativo, es decir, más

de 25. Obteniendo un total de 23 clases �nales, las cuales están representadas en la Tabla 3.1.

Dichas clases, a pesar de ser las que mejores resultados tienen al ser clasi�cadas, siguen teniendo
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Dataset Ambulance Banjo Cassete Desk Envelope Goblet

Noisy 35 26 62 400 43 27

Curated 144 122 134 458 132 135

Dataset Hammer Harp Hourglass Jelly�sh Mask Mosque

Noisy 125 45 46 27 224 26

Curated 176 127 135 115 278 120

Dataset Pelican Printer Shovel Stove Syringe Teapot

Noisy 59 153 95 51 51 89

Curated 150 235 155 174 152 199

Dataset Toaster Trombone Umbrella Vase Zebra global

Noisy 70 32 203 157 31 2077

Curated 185 141 254 244 126 4091

Tabla 3.1: Comparativa de los resultados �nales sobre el número de imágenes del conjunto de datos

�curated� y el conjunto de datos �noisy� con las 23 clases usadas en ambos conjuntos.

los problemas que tenía el conjunto de datos noisy, por ello, habrá que realizar una limpieza manual*5

eliminando imágenes que no tuvieran correspondencia con la clase en cuestión, obteniendo, �nalmente,

un conjunto de datos curado, pero sin ejemplos su�cientes en algunas de las clases. Se hace uso de

web-scrapping de Google Images 2 para obtener un mayor número de ejemplos por clase. Para ello se

crea una consulta con el nombre de la clase y se establece el tipo de imagen para la búsqueda

en clip-art. Dicha consulta construye urls que haciendo uso de Firefox descargan un número de

entradas predeterminado, en este caso serán 200 nuevas imágenes por clase*6. Dichas imágenes al

estar descargadas automáticamente no tienen por qué corresponder con la clase en cuestión, por tanto,

posteriormente se curarán manualmente eliminando posibles datos erróneos que no correspondieran

a su etiquetado. Como resultado �nal se obtiene un conjunto de imágenes de clip-art el cual recibe

el nombre curated con 4091 imágenes distribuidas en 23 clases. Para que los futuros resultados a

obtener tengan relación y sean coherentes con las 23 clases del conjunto curated, habrá que obtener

2Código obtenido de: https://github.com/shuvronewscred
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por separado dichas clases del conjunto de imágenes noisy a la hora de obtener comparativas y

estadísticas.

Tras �nalizar el proceso de obtención y curado de los datos se obtienen 3 conjuntos de imágenes:

Imagenet (I) Conjunto de datos correspondiente a la competición ILSVRC. Contiene 1,2 millones

de imágenes separadas en: 1.000.000 para entrenamiento, 50.000 para validación y

150.000 para test. En el correspondiente trabajo se hace uso de la red pre-entrenada

con ese 1.000.000 de datos y se usa el sub-conjunto de validación para evaluar el

desempeño de las arquitecturas desarrolladas.

Noisy (N) Contiene las imágenes directamente extraídas del conjunto obtenido por Garces et

al. [7] tras realizar el mapeo de su etiquetado semántico a las clases del ILSVRC.

Tiene problemas de ambigüedad en sus clases. Contiene 23 clases y más de 180;000

imágenes. Es útil para medir el desempeño global de la red.

Noisy 23 (N23) Este conjunto de imágenes corresponde con el conjunto Noisy pero ha sido reducido

a las 23 clases del conjunto curated para poder realizar evaluaciones y comparaciones

más precisas entre ambos grupos de imágenes. Contiene 2077 imágenes entre sus

23 clases.

Curated (C) Contiene las 23 clases del conjunto noisy con un mayor porcentaje de precisión top-1

y top-5 así como menor error de máxima entropía. Además, cada una de estas clases

tiene un número mínimo de 25 imágenes. Cada clase ha sido curada manualmente

eliminando posibles incoherencias entre la imagen y el etiquetado dado. Finalmente

se han añadido nuevas entradas a cada clase haciendo web-scrapping de Google

images teniendo 4091 imágenes totales.
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4
REDES NEURONALES

PROFUNDAS

Tras obtener un conjunto de datos válido, el siguiente objetivo es conseguir una red neuronal

profunda previamente entrenada sobre imágenes naturales, para medir su desempeño con clip-arts, y

comprobar si es capaz de abstraerse lo su�ciente como para llegar a reconocer este tipo de dato nuevo

para la red. Para ello, se hará uso de la red VGG Net 19 explicada en detalle en la Sección 4.1, capaz

de obtener los resultados más avanzados en clasi�cación de imágenes. En la Sección 4.2 se describen

las pruebas realizadas para comprobar la capacidad de abstracción de la red sobre los conjuntos de

imágenes de clip-art creados haciendo uso de la precisión top-1 y top-5, además del error de máxima

entropía.

4.1. La red VGG Net 19

Los buenos resultados conseguidos en la competición ILSVRC [20] haciendo uso de redes convo-

lucionales [11] [28] y la potencia de las nuevas tarjetas grá�cas de entonces permitieron a Simonyan

y Zisserman [23] desarrollar un conjunto de arquitecturas más profundas y precisas, obteniendo

unos de los porcentajes de error top-5 y top-1 más bajos en clasi�cación de imágenes y localización

de objetos dentro de la competición.

La entrada de las redes convolucionales (tipo de red neuronal explicado en el Anexo A.3) pro-
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puestas por Simonyan y Zisserman es una imagen de 224�224 de 3 canales con su valor RGB medio

sustraído de cada pixel. La Figura 4.1 muestra la arquitectura de la red de 19 capas con pesos, Las

convoluciones tienen un tamaño de �ltro muy pequeño, 3 � 3, necesario para capturar la noción de

arriba/abajo y derecha/izquierda con stride y padding de 1 pixel evitando perder dimensionalidad. La

red contiene 5 capas de pooling con la función max, un tamaño de ventana de 2 � 2 y stride de

2 píxeles. Tras las capas de convolución y pooling se encuentra un clasi�cador lineal con 3 capas

fully-connected con 4096 canales en las dos primeras y 1000 canales en la última (las 1000 clases de

ILSVRC) seguido de una capa de softmax.
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Figura 4.1: Arquitectura completa de la red VGG Net de 19 capas con pesos.

La red fue entrenada mediante la optimización de la regresión logística multinomial, con el

algoritmo de descenso de gradiente con pequeños lotes (cuya traducción en inglés será batches) de

imágenes [12]. El tamaño de los lotes es de 256 y el momentum 0;9. Hacen uso de regularización L2

para la penalización de pesos grandes con factor de 5�10�4 y existe dropout [24] en las dos primeras

capas fully-connected con probabilidad 0;5 de frenar las activaciones. El coe�ciente de aprendizaje

(LR) al comienzo del entrenamiento es de 10�2 reducido cada vez que el coe�ciente de pérdida deja

de disminuir.

El entrenamiento les llevó de 2 a 3 semanas dependiendo de la red, usando 4 GPUs NVIDIA

Titan Black. Para su inicialización fueron entrenando gradualmente las redes comenzando con la de

11 capas con pesos (inicializada con muestras de la distribución normal), de manera que una vez esté
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entrenada sea posible transferir sus pesos a la de 13 capas de profundidad, siguiendo con este método

hasta la red de 19 capas.

4.2. Resultados con clip-arts

La red VGG Net 19 [23] funciona de manera muy precisa con fotografías, obteniendo casi un

93% de precisión top-5 en el ILSVRC [20]. Sin embargo, uno de los inconvenientes de las redes

neuronales profundas son sus pobres resultados a la hora de generalizar un problema, haciendo que no

funcione del mismo modo si sus entradas son imágenes de otro tipo. Para realizar pruebas se separan

los conjuntos de imágenes de clip-art usando un 80% para el futuro entrenamiento y validación y un

20% para probar el modelo. Haciendo uso del conjunto de imágenes de test para evaluar su desempeño

se observa como la red obtiene unos porcentajes de error mucho más elevados, como se aprecia en

la Tabla 4.1 (entorno a un 60% más en error top-1, un 70% más en error top-5, que los obtenidos

con ImageNet).

Red empleada Métrica I N N23 C

Prec. Top-1 66,10 4,80 13,40 26,50

Prec. Top-5 86,95 12,20 31,70 47,40

Test

Arquitectura base

Tabla 4.1: Tabla con precisión top-1 y top-5 haciendo uso de la arquitectura base (VGG Net 19) con

todos los conjuntos de datos empleados en el trabajo: ImageNet (I), Noisy (N), Noisy 23 (N23) y

Curated (C).

Las características a bajo nivel de las imágenes de clip-art cómo bordes o colores e incluso

características localizables por la red a medio nivel como las texturas, di�eren mucho de las que

podrían encontrarse en una fotografía. La red, dado su entrenamiento con ImageNet, ha aprendido

una representación de las clases donde cada una de ellas tiene unas características de color, una

forma y una textura concretas. Por el contrario, los clip-arts no tienen ninguna restricción impuesta y

una clase que aparentemente debería ser fácil de clasi�car se convierte en algo complejo para la red

neuronal, como se ve en la Figura 1.1, dada esa componente abstracta que le puede dar el artista a

la imagen que está creando.

Si se analizan los resultados individualmente del conjunto de datos noisy (23 clases) mostrados en
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Ambulance Jellyfish Zebra

Desk Shovel Pelican

Alta precisión

Baja precisión

Figura 4.2: Comparativa de imágenes predichas con mejor precisión por la red (ambulance, jelly�sh y

zebra) e imágenes predichas con los peores resultados (desk, shovel y pelican) con el �n de mostrar

las diferencias a la hora de identi�car los objetos entre ambas.

la Figura 4.3 se aprecia como las clases ambulance, jelly�sh y zebra tienen un mejor resultado que otras

como pelican, desk o shovel. Esto se debe a que las primeras clases poseen en su mayoría imágenes

donde el objeto además de ser fácilmente identi�cable se encuentra centrado. Por el contrario, en

las clases con menor precisión y mayor error de máxima entropía los objetos son más complicados

de identi�car y generalmente son parte de una acción con otro objeto que es el principal. Asimismo,

algunas imágenes no representan el objeto de la misma manera que se apreciaría en una fotografía,

teniendo pelícanos verdes o rosas, provocando que la red sea incapaz de identi�carlos (ver Figura 4.2).

Haciendo la limpieza manual de los datos es posible eliminar problemas de ambigüedad de las

imágenes, e incluso, algunos errores con imágenes donde el objeto a clasi�car no es identi�cable. Aun

con estas soluciones las características a bajo nivel y medio nivel siguen siendo un inconveniente. Es

por ello, que, a pesar de tener un conjunto de datos curado, los resultados siguen siendo inferiores

a los obtenidos con ImageNet [5] como se ha visto en la Tabla 4.1, in�uenciados principalmente por

los problemas con las características a bajo y medio nivel de las imágenes que la red es incapaz de

capturar en sus capas bajas y medias.
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Figura 4.3: Grá�co con los cálculos por clase para los conjuntos Noisy 23, ImageNet y Curated con

la red VGG Net 19.
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5
ARQUITECTURAS

PROPUESTAS

Uno de los problemas de los algoritmos que hacen uso de técnicas de aprendizaje automático es

que suelen ser de propósito especí�co, lo que implica que sólo son capaces de resolver los problemas

para los que fueron diseñados sin tener la capacidad de generalizarlo. Por ejemplo, la red usada en

este trabajo, VGG Net 19, como ya hemos visto funciona de manera precisa clasi�cando fotografías,

pero, si las imágenes son clip-arts su precisión disminuye drásticamente, en torno a un 70% en la

precisión top-1.

Este capítulo explica en la Sección 5.1 las decisiones tomadas sobre la arquitectura de la red para

obtener mejor resultado a la hora de clasi�car el conjunto de imágenes de clip-art, en la Sección 5.2

se detalla el proceso de optimización de los híper-parámetros para realizar de manera precisa la tarea

de clasi�cación de imágenes sobre un nuevo conjunto de datos.

5.1. Arquitectura base + SVM

Un tema activo dentro de la investigación en Deep Learning es la transferencia de conoci-

miento [16] [4], las técnicas que permiten a una red neuronal entrenada para un tipo de dato tener

porcentajes de precisión elevados sin necesidad de volver a entrenarla con otro tipo de dato diferente.

Siguiendo esta línea se propone hacer uso de una SVM que será entrenada con las activaciones que
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produce el nuevo conjunto de datos en las capas altas, las que capturan la información a alto nivel [28].

La Figura 5.1 corresponde a una visualización de las activaciones obtenidas de la red VGG Net

19 [23] en su segunda capa fully-connected haciendo uso del algoritmo t-SNE [26]. Dicho algoritmo

reduce la dimensionalidad de los vectores con las activaciones (en este caso a dos dimensiones),

haciendo posible su visualización en un grá�co. Analizando el grá�co se observa que objetos de

la misma clase están agrupados en zonas cercanas, lo que veri�ca que la red es capaz de extraer

descriptores de cada clase a alto nivel. Estos descriptores servirán para el entrenamiento de la SVM

que los clasi�cará en una de las 23 clases semánticas a las que pertenecen las imágenes con el objetivo

de sobreponer los problemas vistos en las Secciones 3.2 y 4.2. Esta modi�cación de la arquitectura

tiene 2 cambios principales :

Primero se eliminan las capas softmax y la última fully-connected (FC), de manera que la salida

de la red es ahora la segunda capa FC, que se trata de un vector de características (feature

vector) de tamaño 4096.

A continuación, se hace uso de los feature vector obtenidos para alimentar una máquina de so-

porte de vectores (SVM) que será primeramente evaluada para obtener los parámetros óptimos,

posteriormente entrenada con los datos de entrenamiento del conjunto curated y �nalmente

usada para la clasi�cación de los feature vector extraídos de cada imagen.

La Figura 5.2 muestra una visión global de la arquitectura descrita, conteniendo la SVM para la

clasi�cación.

En la Figura 5.3 se puede observar el �ujo de trabajo del algoritmo, donde para poder cargar

la red en la GPU se emplean las herramientas Torch y Ca�e, que permiten obtener las activaciones

en cualquier capa de la red que serán guardadas como un �chero HDF5. Para entrenar la SVM se

hace uso de Python y scikit-learn, que podrá leer los HDF5 generados con las activaciones extraídas,

para, posteriormente, haciendo uso de validación cruzada con el 20% de los datos usados para

entrenamiento, obtener los mejores parámetros de la SVM.

A la hora de entrenar la SVM se hace uso del 80% de las imágenes del conjunto de datos curated

como entradas para el entrenamiento, de este 80% un 20% se usa para realizar la validación cruzada

y obtener los mejores parámetros, mientras que el 20% restante serán los datos de test. Los mejores
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Figura 5.1: Visualización de las activaciones de las capas altas haciendo uso del algoritmo t-SNE [26]

sobre los datos de validación del conjunto curado, donde se pueden observar grupos de imágenes

próximas que comparten la misma clase.

parámetros obtenidos por las activaciones generadas con la red pre entrenada con ImageNet [5] son

el kernel de la función de base radial (RBF son sus siglas en inglés), que hace uso de la distancia

euclídea al cuadrado para la clasi�cación, un parámetro C = 1 que permite realizar ciertos errores

en la clasi�cación para ganar mayor estabilidad en el modelo (a mayor C menor permisividad en los

errores), y por último un valor 
 = 0;0001 que marca el peso de un ejemplo en el entrenamiento.

Siendo la ecuación del kernel: RBF = exp(�
jx � x 0j2)
. Además, existe un último parámetro, la

función de decisión, que es uno contra el resto (One versus the rest, cuyas siglas en inglés son OVR)

que implica entrenar un solo clasi�cador por clase con los ejemplos de esa clase como positivos y el

resto como negativos.
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Figura 5.2: Nueva arquitectura de red obtenida tras añadir la SVM.

Algorithm 2 Ejemplo de clasi�cación con la función OVR

1: procedure OVR(Clasi�cador C, Etiquetas L, Entradas X)

2: //Li corresponde a la etiqueta de la imagen en el índice i de X, es decir a la imagen Xi//

3: for etiqueta l en L do

4: Z  nuevo vector etiquetas

5: for i = 1 HASTA size of (Z) do

6: if li = l then

7: zi = 1

8: else

9: zi = 0

10: pred  Usar C con (X;Z)

El entrenamiento lleva tan solo unos minutos y los resultados obtenidos son prometedores,

mejorando los porcentajes de acierto alrededor de un 35% y disminuyendo el error en la función de

máxima entropía en hasta 3;5 puntos, tal y como puede verse en la Tabla 5.2.

Dado el poder de abstracción de la red VGG Net 19 a alto nivel, muchas de las carencias que

tenía, explicadas en las Secciones 3.2 y 4.2, son posibles de superar con las activaciones generadas.

Estos descriptores clasi�cados haciendo uso de una SVM devuelven porcentajes de acierto mucho

más elevados y un error de máxima entropía más bajo global e individualmente, como se aprecia en

la Figura 5.4.
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Cargar red VGG Net
19

Alimentar red con
imágenes

Extraer activaciones
de segunda capa
fuly­connected

Validación cruzada
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Clasificar
activaciones

Torch HDF5 Python+sklearn

Figura 5.3: Flujo de trabajo del algoritmo para poder clasi�car imágenes de tipo clip-art. El primer

paso será cargar la red en la memoria de la GPU para, posteriormente, poder alimentarla con las

imágenes y generar así las activaciones de la segunda capa fully-connected que serán almacenadas en

un �chero con formato HDF5. La aplicación encargada de la SVM leerá el conjunto de activaciones y

obtendrá las de validación a partir del conjunto de entrenamiento para realizar la validación cruzada

obtener los parámetros óptimos, entrenar la SVM y, �nalmente, clasi�car las activaciones de test para

obtener las predicciones.

5.2. Optimizar la red

Las mejoras obtenidas con la SVM son muy esperanzadoras, pero sin hacer el uso de la máquina

de soporte de vectores (SVM) se observa como la red no consigue altos porcentajes de acierto,

concluyendo que las características a bajo y medio nivel podrían estar lastrando su desempeño. Para

solucionar este problema, se va a reentrenar la red para buscar unos pesos (W) y bias (b) en cada capa

que entiendan de mejor forma los nuevos datos de entrada sin perder su poder de representación a alto

nivel. Para el entrenamiento se hace uso del conjunto de imágenes noisy, dada la cantidad de datos

que necesitan las redes neuronales profundas. A pesar de los problemas que se han visto: posibilidad
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Figura 5.4: Resultados obtenidos por la red con uso de softmax y una SVM que clasi�ca las activaciones

obtenidas de la segunda capa fully-connected.
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de representaciones abstractas, diferentes texturas, colores y bordes, y la diferente representación de

un mismo objeto con el paso del tiempo; este conjunto es de gran utilidad ya que el objetivo principal

es modi�car ligeramente (no realizar un reentreno completo, para el cual no sería útil) la arquitectura

para que capture las características a bajo y medio nivel que antes le era imposible, y genere un

descriptor de la imagen a alto nivel con mayor precisión.

5.2.1. Modelos exploratorios sin resultado

Con el objetivo de optimizar la red para los nuevos datos de entrada se reentrenará partiendo de

los pesos (W) y bias (b) que ha obtenido tras su entrenamiento en ImageNet. Para poder reentrenar

la red VGG Net 19 se modi�ca la última capa softmax, sustituyéndola por log(sof tmax) a la que se

aplica la función de pérdida negative-log-likelihood que, actuando conjuntamente dan como resultado

el error de máxima entropía. Algunos de los modelos reentrenados hacen uso de una nueva capa

que aplica una función llamada normalización de lotes (cuya traducción es batch-normalization) [9]

que centra cada activación de los lotes en media cero y varianza unitaria, dicha media y varianza son

medidas independientemente en cada activación generando una compensación y un coe�ciente de mul-

tiplicación que serán aplicados a las activaciones. Esta ligera modi�cación hace que las arquitecturas

profundas aprendan más rápido y sean más estables.

Dado que la optimización de los parámetros es un proceso costoso se tuvieron que probar un

conjunto de modelos que buscaban solucionar diferentes problemas para el reentrenamiento. A con-

tinuación, se explican todos los modelos probados que no tuvieron un resultado satisfactorio pero

que gracias a sus resultados se pudo realizar una con�guración de las capas que fuera óptima para el

problema de la clasi�cación de imágenes de clip-art:

(A) Reentreno como en ImageNet El primer modelo probado sigue el entrenamiento realizado so-

bre ImageNet. Se hace uso de un tamaño de lotes de 8, un momentum establecido a 0.9,

coe�ciente de aprendizaje 1e� 3 con caída en 5e� 4 y cada epoch llevará a cabo 10;000 pasos

del algoritmo SGD. Tras realizar 15 epochs se observa que la función de pérdida no ha reducido

su valor medio, indicando que los gradientes no son estables y hacen zigzaguear al algoritmo

que no es capaz de encontrar el camino hacia el mínimo global.

(B) Uso de normalización de lotes Dado el resultado insatisfactorio del modelo A, se prueba a
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incluir la capa de normalización de lotes entre cada capa convolucional y se mantienen todos

los parámetros tal y como estaban anteriormente. Se puede observar como el nuevo modelo

entrena con el conjunto de datos de entrenamiento, pero el coe�ciente de pérdida en el conjunto

de test no reduce, concluyendo que a pesar de la mejora con la normalización de lotes entre

convoluciones, esta no es la inicialización correcta, pues estaba incurriendo en over�tting con

los datos de entrenamiento.

(C) Bloqueando backpropagation en capas altas Visto que el entrenamiento manteniendo un co-

e�ciente de aprendizaje igual en todas capas, el usado en el modelo B, no ha dado resultados

satisfactorios, se comienza a explorar nuevas vías relativas a la investigación de Zeiler y Fer-

gus [28]. Se conoce que las capas bajas y medias no responden bien en la red VGG Net 19,

dadas las diferencias en las entradas usadas para entrenar y las nuevas imágenes, se elimina la

actualización del algoritmo SGD en las capas altas (últimas 8 convoluciones) evitando que sus

pesos y bias se actualicen, para así poder conservar su capacidad de representación a alto nivel.

Se mantienen los parámetros iguales que en los modelos anteriores. El resultado �nal vuelve a

ser insatisfactorio, la función de pérdida logra descender hasta estancarse en 6; 8. Con�ando que

quizás se habían restringido demasiado las capas medias se repite el mismo modelo eliminando

la actualización de los gradientes, los pesos y el bias solo en las 6 últimas convoluciones con el

mismo resultado negativo, la función de pérdida deja de reducir alrededor de 6; 8.

(D) Reinicio de pesos en capas bajas Los resultados evitando que el modelo aprenda en las capas

altas no funcionan como era esperado (modelo C), por ello, se comienza a creer que los pesos

que la red ha aprendido a bajo nivel son ine�caces para este problema, se decide reiniciarlos (en

las 6 primeras capas) cogiendo muestras de la distribución uniforme y aplicarles un coe�ciente de

aprendizaje de 1e�3. Las capas altas (las 6 últimas) volverán a tener su actualización de pesos

y bias bloqueada, y el resto de la red neuronal se actualiza con un coe�ciente de aprendizaje

menor: 1e�4 evitando perder la capacidad de abstracción a alto nivel o que el clasi�cador lineal

(las capas fully-connected) empeore lo aprendido. En este caso el modelo deja de aprender, cada

epoch el coe�ciente de pérdida es mayor, concluyendo que, evidentemente, esta inicialización

no es correcta. Se decide aplicar el mismo modelo aumentando el coe�ciente de aprendizaje en

las capas bajas a 1e � 2, con�ando en que los gradientes sean menos inestables y el algoritmo
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SGD sea capaz de avanzar hacia el mínimo global. El resultado �nal será una leve mejora del

modelo en los 5 primeros epochs, que acaba concluyendo con su estancamiento, haciendo que

a efectos prácticos el modelo no haya variado sus porcentajes de error y precisión.

(E) Reinicio del clasi�cador lineal Visto que ninguna de las aproximaciones al problema anteriores

ha dado un resultado satisfactorio, se intenta explorar una solución alrededor del clasi�cador

lineal. Se espera que este haya aprendido unos pesos y bias condicionados a las imágenes natu-

rales de la base de datos ImageNet que podrían estar lastrando el proceso de aprendizaje de la

red globalmente. Se reinician sus pesos y bias, cogiendo muestras de la distribución uniforme.

De nuevo, se bloquea la propagación de pesos y bias en las 6 últimas capas con el �n de con-

servar el poder de abstracción a alto nivel que tiene la red VGG Net 19. Además, se modi�ca

el coe�ciente de aprendizaje del clasi�cador lineal para que este aprenda más rápido a 1e � 2

y evitar así cierta inestabilidad que podría ser causada en los gradientes. El modelo comienza a

aprender, pero tras 10 epochs, se vuelve inestable, no reduciendo su coe�ciente de pérdida y,

por tanto, no siendo una solución al problema. También se prueba a eliminar la propagación de

pesos y bias, para veri�car que la aproximación al problema no es incorrecta, pero se obtiene

mismo resultado, gradientes inestables tras cierto número de epochs y el modelo sin entrenar.

5.2.2. Modelo óptimo

Finalmente, se intenta combinar las técnicas usadas anteriormente en una con el �n de probar

si el modelo, reiniciando sus capas medias y bajas (modelo D), y su clasi�cador lineal (modelo E),

es capaz de abstraerse lo su�ciente como para mejorar con imágenes de clip-art. Las capas bajas y

medias (desde la primera convolución hasta la décima) son reiniciadas inicializando sus pesos y bias

con muestras de la distribución uniforme, además su coe�ciente de aprendizaje es establecido en 1e�2

con el �n de que los gradientes se estabilicen y aprendan lo más rápido posible (la caída de LR hará

que reduzca si deja de aprender). En las capas altas el coe�ciente de aprendizaje se reduce a 1e � 4

evitando así que se modi�quen de manera acusada (manteniendo su capacidad de descripción a alto

nivel) pero permitiendo cierta adaptación a los nuevos datos. El clasi�cador lineal es reiniciado igual

que las capas bajas y su coe�ciente de aprendizaje será establecido a 1e � 2 nuevamente, evitando

que se haya adecuado en exceso a las imágenes de ImageNet y permitiendo que aprenda de nuevo
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como clasi�car clip-arts y genere activaciones teniendo en cuenta las características de bajo y medio

nivel que ha de aprender. Puede verse un ejemplo de los cambios en el modelo para el entrenamiento

en la Figura 5.5.

LR = 1e-2
Reinicio W y b LR = 1e-4

LR = 1e-2
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Figura 5.5: Arquitectura con los cambios aplicados en las diferentes capas para el entrenamiento. Los

fondos azules marcan las capas cuyo coe�ciente de aprendizaje se ha establecido en 1e � 2 (para

aprender más rápido) y cuyos pesos se han reiniciado usando muestras de la distribución uniforme,

mientras que el fondo rojo denota un coe�ciente de aprendizaje más reducido 1e � 4 (evitando su

modi�cación).

Detalles del entrenamiento

El entrenamiento comienza reduciendo la función de pérdida tanto en el conjunto de entrena-

miento como en el de test, lo que es un buen indicio. Tras 5 días de entrenamiento y 100 epochs

la precisión top-1 en el conjunto de datos Noisy 23 ha aumentado en un 5% en el conjunto de

datos de test hasta llegar a 17; 65% y las medidas de la función de pérdida hacen pensar que aún

tiene un largo recorrido hasta converger. A pesar de mejorar globalmente, el hecho de realizar el

entrenamiento sobre el conjunto de datos noisy, crea un problema visible en las grá�cas de resultados

(ver Figura 5.6) la red modi�ca sus pesos y bias en las capas bajas teniendo una mayor in�uencia

de las clases donde hay un mayor número de entradas, haciendo que las clases con menor número

no mejoren o incluso empeoren sus resultados. Las clases como ambulance con escasos 20 ejemplos

de entrenamiento (ver Tabla 3.1) son incapaces de in�uir en la red neuronal profunda, que necesita

de una gran cantidad de datos para poder entrenar correctamente. Además el hecho de reiniciar las

capas bajas y medias de la red podría estar causando problemas relativos al olvido de lo previamente
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aprendido con el entrenamiento sobre ImageNet. Al realizar el reinicio, la red podría estar perdiendo

el poder de abstracción adquirido para algunas de las clases provocando que su precisión empeore.

0

10

20

30

40

50

60

70

80

90

100

VGG 19 (softmax) Modelo óptimo
(softmax)

VGG (SVM) Modelo óptimo (SVM)

RESULTADOS DURANTE EL ENTRENAMIENTO

ambulance Mask pelican Printer

Figura 5.6: Visualización de la perdida de precisión al optimizar los parámetros de la red para los

nuevos datos.

Tras otros 5 días de entreno se alcanza el epoch 200, la precisión del nuevo modelo sigue

aumentando, mientras que las clases sin representación su�ciente continúan con peores resultados.

El modelo alcanza ahora un 21; 18% de precisión top-1 global, y con cierto margen de mejora dado

que la función de pérdida sigue reduciendo, aunque en menor medida (ver Figura 5.7).
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Figura 5.7: Valores tomados por la función de pérdida durante el entrenamiento.
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Finalmente, en el epoch 239, tal y como se observa en la Figura 5.7 se para el entrenamiento

tras no mejorar durante 3 iteraciones seguidas (usando la técnica de parada temprana para evitar

over�tting). El entrenamiento llevo 12 días empleando una grá�ca NVIDIA GTX980 Ti, obteniendo

un 21; 88% de precisión top-1 global, mejorando por tanto la precisión top-1 de la red VGG Net

19 [23] sin optimización en un 8%. La Figura 5.8 muestra los resultados por clase en los conjuntos

noisy y curated, la red es capaz de aumentar su precisión tanto top-1 como top-5 de manera global,

lo que podría ser un indicio de que los problemas relativos a las imágenes artísticas (la abstracción,

las características a medio y bajo nivel o el hecho de que el etiquetado de una imagen no sea una

parte principal de ella) puedan ser parcialmente sobrepuestos realizando una optimizando de los híper-

parámetros.
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Figura 5.8: Resultados tras el entrenamiento para los conjuntos de datos ImageNet, Noisy 23 y

Curated, mostrando cómo las clases con menor número de ejemplos, dada la actualización en pesos

y bias de la red, tienen un peor resultado.
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Como se ha mencionado, a la hora de entrenar, podrían existir problemas relativos al número

de entradas por clase o al hecho de olvidar lo previamente aprendido con ImageNet. Esto provoca

que algunas clases puntuales obtengan peores resultados de precisión mientras que el resto mejore,

haciendo que el error global de la red disminuya, como se aprecia en la Tabla 5.2.

El problema con las clases particulares que disminuyen su precisión no será de gran relevancia,

pues a nivel global, los resultados son mejores y por tanto, la red está interpretando de mejor forma

las características que antes era incapaz de reconocer. Tras extraer las activaciones de la segunda

capa fully-connected de los datos de entrenamiento del conjunto de imágenes curated se vuelve a

realizar validación cruzada sobre los parámetros del SVM, obteniendo en este caso el kernel sigmoidal

(tanh(
hx; x 0i+ r)) y un C = 10 manteniendo el resto de parámetros iguales.

Red empleada Métrica N23 C

Prec. Top-1 82,82 85,89

Prec. Top-5 95,53 97,10

Test

Modelo óptimo (con SVM)

Tabla 5.1: Resultados globales obtenidos en todos los conjuntos de imágenes tras la optimización de

los parámetros de la red, usando una máquina de soporte de vectores para la clasi�cación.

El entrenamiento, de nuevo, lleva escasos minutos y como se aprecia en la Tabla 5.1 los resultados

obtenidos mejoran alrededor de un 7%, obteniendo una precisión top-1 con el conjunto de datos de

test de 85; 89%, indicando que las activaciones generadas son mejores descriptores de la clase, gracias

a la información obtenida a bajo y medio nivel. La Figura 5.9 muestra los resultados obtenidos por

clase. En el Anexo D se pueden encontrar más grá�cas con resultados obtenidos durante el entreno

de la red.
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Figura 5.9: La Figura muestran los resultados �nales obtenidos tras clasi�car el conjunto de test de

los conjuntos curated haciendo uso de la SVM.

Resultados �nales obtenidos

A continuación, se muestra la Tabla 5.2 que contiene los resultados de la precisión top-1 medidos

sobre la arquitectura óptima y la arquitectura base, además de todos los modelos insatisfactorios

probados con los motivos por los que se desecharon. En ella se aprecia cómo, el hecho de modi�car

las capas a bajo nivel y alto nivel hace que la red pierda la capacidad de abstracción e interpretación que

antes tenía por un mejor resultado sobre imágenes de tipo clip-art. También contiene los resultados

que se obtienen globalmente tras sustituir las dos últimas capas de la red neuronal VGG Net 19

pre-entrenada con ImageNet, así como, tras la optimización realizada por una máquina de soporte de

vectores (SVM). Los conjuntos de imágenes empleados para las mediciones son Noisy 23 y Curated

dado que la SVM, tras su entrenamiento, solo clasi�ca esas 23 clases.

La Figura 5.10 muestra las probabilidades obtenidas con la red VGG Net 19 [23] y el clasi�cador

softmax frente al modelo óptimo desarrollado con la SVM entrenada. Además, entre paréntesis,
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Test

Modelo Métrica I N N23 C

Arquitectura base
Prec. Top-1 66,10 4,80 13,40 26,50

Prec. Top-5 86,95 12,20 31,70 47,40

A - Función de error no reduce

B - Overfitting, Función de error en test no reduce

C - Función de perdida estancada en 6,8

D - Función de perdida estancada de nuevo

E - Aprende durante 10 Epochs luego se estanca

Modelo óptimo (con softmax)
Prec. Top-1 41,66 11,59 21,80 37,96

Prec. Top-5 65,72 33,51 39,10 57,30

Arquitectura base + SVM
Prec. Top-1 - - 72,24 78,22

Prec. Top-5 - - 91,53 95,01

Modelo óptimo (con SVM)
Prec. Top-1 - - 82,82 85,89

Prec. Top-5 - - 95,53 97,10

Tabla 5.2: Resultados globales de las distintas arquitecturas para los 4 conjuntos de imágenes em-

pleados: Imagenet (I), Noisy (N), Noisy (23), Curated (C).

se encuentra la posición que ocupa la probabilidad de que sea la clase pelican, ordenando todas

las probabilidades de cada clase en orden descendente. Puede apreciarse una amplia mejora en las

imágenes a las que la red daba una probabilidad realmente baja. Por otro lado, las imágenes que

tenían una probabilidad alta la tienen ahora algo mayor, con�rmando que los cambios producidos en

la arquitectura hacen que las clasi�caciones sean ahora más robustas.
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Figura 5.10: Comparativa de probabilidades obtenidas por la red VGG Net 19 + softmax y el modelo

óptimo + SVM para un subconjunto de imágenes de la clase pelican. También se muestra la posición

que ocupa dicha probabilidad en el conjunto de probabilidades de pertenecer a cada clase devueltas

por ambas arquitecturas.

40



6
CONCLUSIÓN Y

TRABAJO FUTURO

En este proyecto hemos explorado un conjunto de técnicas del aprendizaje automático, conocidas

como Deep Learning, que consisten en incluir capas no lineales en las redes neuronales tradiciona-

les, aumentando su profundidad, capacidad de abstracción y de síntesis, para lograr una solución al

problema de la clasi�cación de imágenes artísticas o ilustraciones.

Durante su desarrollo se observa como un problema relativamente sencillo para el ser humano,

se convierte en una tarea realmente compleja de realizar por un ordenador. Gracias a la comprensión

completa de la forma de trabajo de las redes neuronales convolucionales, su arquitectura y los algo-

ritmos de optimización usados, es posible encontrar una solución al problema, que, sin ser perfecta,

devuelve unos resultados realmente esperanzadores.

Por tanto, mostramos cómo las redes neuronales convolucionales profundas pueden ser optimi-

zadas haciendo que, en una tarea muy compleja para los ordenadores, como es la clasi�cación de

imágenes artísticas o ilustraciones, se consigan porcentajes de error realmente bajos gracias al uso

de las activaciones obtenidas por la red a alto nivel su clasi�cación con una máquina de soporte de

vectores (SVM) y la optimización de las capas bajas de manera que, la red sea capaz de interpretar

imágenes con texturas, colores y bordes que no corresponden con los de una imagen natural.
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6.1. Gestión del proyecto

El proyecto comenzó a realizarse a principios de febrero del año 2016, el desarrollo de este se

realizó de manera presencial durante los meses lectivos y de manera remota el resto del tiempo. Desde

el comienzo se acordó trabajar alrededor de 4h horas diarias y realizar reuniones semanales con el �n

de llevar un control del avance.

1. La primera tarea acordada fue un estudio del campo de la clasi�cación de imágenes y la creación

arte con redes neuronales profundas, con el �n de comprender las últimas técnicas usadas así

como sus algoritmos.

2. Conocido el trabajo previo en clasi�cación de imagen y creación de arte, su desempeño y forma

de trabajo, se discutió una propuesta de solución con Elena (directora del proyecto) que fue

presentada como un proyecto del Graphics and Imaging Lab en una de sus reuniones semanales,

obteniendo nuevos comentarios, sugerencias e ideas.

3. Conocida la línea a seguir, se comenzó con la obtención y procesamiento de los datos y la

decisión de una red neuronal convolucional profunda a usar. Con ambos, se pudieron adaptar

los datos para que fueran válidos y usables en la red.

4. Posteriormente, se desarrollaron las pruebas para evaluar el desempeño de cualquier red con

nuevos datos como las imágenes de clip-art.

5. Al ver que sus porcentajes de error eran muy bajos se comenzó a desarrollar el código para el

entrenamiento y la evaluación de la SVM.

6. Finalmente, viendo los resultados prometedores, y la posibilidad de mejorarlos, se desarrolló la

optimización y reentreno de la red.

7. Además, se programó el código para entrenar un auto codi�cador para usarlo en la clasi�cación

de imágenes de clip-art. Dado el tiempo consumido por los reéntrenos sucesivos no pudo llegar

a probarse.

En la Tabla 6.1 puede verse el tiempo empleado en cada tarea de las explicadas anteriormente,

asimismo, en la Tabla 6.2 hay un horario detallado con el tiempo en horas invertido en cada tarea.
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Estudio del estado del arte

Entorno

Datos

Evaluación

Pruebas con SVMs

Entrenamiento de red

Búsqueda de modelo ópitmo

Memoria

Feb Mar Abr Mayo Jun Jul Ago Sep

2016

Trabajo realizado

Estudio del estado del arte

Familiarización e instalación del entorno

Obtención y curado de los datos

Desarrollo de pruebas de evaluación

Entrenamiento y evaluación de SVM

Desarrollo del entrenamiento de la red neuronal

Prueba con modelos para la optimización

Implementaciónde la memoria

Etapas proyecto

Tabla 6.1: Diagrama mostrando el tiempo que se ha estado realizando cada tarea durante la realización

del proyecto.

Tarea Horas personales Horas de máquina

Estudio 102 -

Adaptación/instalación framework 37 5

Obtención de datos 46 12

Pruebas de evaluación 37 19

Entrenamiento y evaluación SVM 47 25

Código para el entrenamiento 31 -

Reentrenamiento nuevos modelos 63 350

Implementación de la memoria 115 -

Total 478 411

Tabla 6.2: Tabla con las horas invertidas en cada tarea y el total de estas.

6.2. Trabajo futuro

En la realización del proyecto además de explorar y estudiar técnicas que ayuden a atajar un

problema en cuestión, también aprendimos a visualizar posibles caminos a seguir que podrían dar

un resultado mejor del esperado. Además, durante el trabajo han aparecido nuevas investigaciones

inspiradoras que pueden marcar nuevas líneas a considerar.

Una nueva solución al problema viene directamente de la arquitectura usada y los nuevos pa-

rámetros a optimizar a la hora de entrenar la red con coe�cientes de aprendizaje (LR) selectivos en

cada capa.
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Búsqueda de la con�guración optimiza en cada LR de cada capa. Una aproximación sería con-

siderar un número de epochs pequeño probando un conjunto de valores del LR para cada capa

(similar a la técnica usada para buscar los valores óptimos de la máquina de soporte de vectores,

explicado en la Sección 5.1).

La segunda opción sería averiguar qué capas necesitan un reinicio de los pesos e inicialización

con la distribución uniforme. De la misma manera que con la búsqueda del LR óptimo se podría

programar un reinicio de la capa en cuestión.

El hecho de hacer uso de reinicios y la obtención de muestras de distribuciones estadísticas, ofrece

una nueva posibilidad. Se ha demostrado como los auto codi�cadores (cuya traducción al inglés es

autoencoders) [2] son capaces de generar pesos para la inicialización de redes neuronales de manera

precisa. Por ello, el uso de un auto codi�cador como red para poder trasladar los pesos de las capas

reiniciadas sería otra posible futura investigación.

Actualmente, las redes neuronales residuales (Residual neural network, RNN)1 están obteniendo

resultados en el estado del arte en datasets con imágenes de tamaño pequeño como CIFAR [10], dado

que estos algoritmos son de caja negra, no se puede predecir si sería capaz de abstraerse de mejor

manera que la red VGG Net 19 [23], por ello sería una posible línea a explorar.

Además de las redes neuronales para clasi�cación de imágenes hay otro tipo de redes con el

�n de generar contenido perdido de una imagen, o recolorizar imágenes en blanco y negro. Las

adversarial neural networks [8] son capaces de modi�car imágenes a nivel de píxel de manera que no

se aprecie prácticamente su modi�cación, pero a la hora de hacer uso de una red neuronal profunda

para clasi�cación sus predicciones cambien completamente. Podría hacerse uso de una adversarial

neural network de manera que se modi�que ligeramente la imagen de entrada antes de esta ser

clasi�cada haciendo que los resultados mejoren con las predicciones de la red neuronal convolucional.

1Observar https://github.com/szagoruyko/wide-residual-networks

44

https://github.com/szagoruyko/wide-residual-networks


CONCLUSIÓN Y TRABAJO FUTURO 6.3. Comentario personal

6.3. Comentario personal

Este proyecto ha sido mi primera experiencia y contacto con el mundo de la investigación, y, la

verdad, es que ha sido algo realmente positivo y grati�cante. El poder compartir charlas, comentarios

y opiniones con gente que realmente vive y le apasiona lo que hace te llena de satisfacción, teniendo

la impresión de que no pude tomar una decisión más acertada cuando Elena me dio la oportunidad de

comenzar con este proyecto. Todos los integrantes del grupo, desde Diego hasta los proyectandos,

son gente fantástica y llena de entusiasmo. Además, el buen ambiente que se respira en el laboratorio,

las oportunidades que brinda el grupo, la idea de crear y colaborar en proyectos de repercusión inter-

nacional y la pasión por la investigación que emana el GILab han hecho que me decida a continuar

por la vía académica, con el plan de realizar el doctorado en un futuro muy cercano.
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A
¾QUÉ ES

DEEP LEARNING?

El aprendizaje profundo o Deep Learning son un conjunto de técnicas que consisten en añadir

a las arquitecturas de redes neuronales tradicionales capas no lineales aumentado su profundidad y

capacidad de abstracción a alto nivel consiguiendo, así, mejores resultados. Estas nuevas técnicas han

permitido que los ordenadores realicen tareas que hasta ahora eran solo posibles de hacer (con altos

niveles de precisión) por los seres humanos.

El gran número de capas ocultas de este tipo de redes podría suponer un gran problema años

atrás dado que la capacidad de cálculo y memoria de las máquinas entonces no era la su�ciente para

que una tarea de este tipo pudiera realizarse en un tiempo razonable. Con el aumento de la potencia en

las GPUs y la aparición de arquitecturas muy prometedoras, el Deep Learning o aprendizaje profundo

comenzó a popularizarse hasta que, hoy en día, el estado del arte en campos como la clasi�cación

de imágenes, el reconocimiento del lenguaje humano o la segmentación de imágenes lo componen

algoritmos que hacen uso de estas arquitecturas de red.

El siguiente capítulo explica los conceptos básicos necesarios para la comprensión del documento.

El Anexo A.1 expone la teoría básica del aprendizaje automático, comenzando con las arquitecturas

más sencillas, su funcionamiento y cómo entrenarlas. El Anexo A.2 introduce las capas no lineales

a las arquitecturas vistas, y con ello, las redes neuronales profundas (Deep Learning), �nalmente, el

Anexo A.3 desarrolla la idea de convolución aplicándola a las arquitecturas profundas para obtener
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¾QUÉ ES DEEP LEARNING? A.1. Conceptos básicos

redes convolucionales, que se enfocarán a la resolución de tareas de clasi�cación de imágenes.

A.1. Conceptos básicos

A continuación, se exponen los conceptos básicos necesarios para realizar predicciones haciendo

uso del aprendizaje automático. Durante esta introducción va a crearse una arquitectura sencilla que

hará uso del modelo logístico, una función de máxima entropía y la capa softmax, a dicha arquitectura

se le van a añadir nuevas capas y funciones que mejoren sus resultados hasta llegar �nalmente a un

modelo de red neuronal convolucional profunda enfocado a la clasi�cación de imágenes.

A.1.1. Clasi�cador logístico

Un clasi�cador logístico hace uso de la regresión logística para clasi�car una entrada, por

ejemplo, dada una imagen de entrada X aplicando una función lineal (W � X + b) y una función

logística (softmax) se obtiene una probabilidad Y donde, la Yi más cercana a 1 deberá ser la clase

real de dicha imagen. También puede verse como un perceptrón multicapa (MLP) cuya entrada

ha sido modi�cada usando una transformación no lineal que la proyecta en un espacio linealmente

separable. La regresión logística fue desarrollada por el estadista David Cox [25] en 1958. El clasi�cador

logístico es también llamado clasi�cador lineal dado que hace uso de una función lineal para obtener

sus predicciones. Esta función lineal se trata de una multiplicación y suma de matrices.

W �X + b = Y (A.1)

Donde X es la imagen de entrada (el perro, el gato o el pez), W será la matriz de pesos, b el

término de bias e Y serán los resultados de aplicar la función lineal a X, también llamados logits,

cuya representación grá�ca puede verse en la Figura A.1. El aprendizaje automático busca optimizar

los valores de W y b para que las predicciones sean lo más certeras posibles.
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Figura A.1: Ejemplo de arquitectura de red neuronal sencilla con 3 entradas.

A.1.2. Softmax

La función lineal dará como resultado un valor en los números reales, mientras que lo que se

necesita es una probabilidad que sea determinante para poder de�nir a qué clase pertenece la imagen

de entrada X, para ello se hace uso de la función softmax, S.

S(Yi) =
eYi∑n

j e
Yj

(A.2)

El resultado será un conjunto de probabilidades obtenidas a partir de los valores iniciales dados por

la función lineal, estas probabilidades serán mayores cuando el valor sea comparativamente grande

y pequeños en el caso opuesto, el resultado de aplicar esta función puede verse en la Figura A.1.

Softmax mapea un valor a una probabilidad, por lo tanto, la matriz o vector de entrada tendrá el

mismo tamaño que el de salida y su suma tendrá resultado 1.

A.1.3. Cross-entropy error

Para poder ver cómo actúa el modelo, y medir su precisión se hace uso de funciones de pérdida,

en este caso, la función de máxima entropía (D) o cross-entropy cuyo resultado será un número

en los reales que modela la relación entre dos vectores (vector de predicciones y vector de etiquetas).

Dado que se hace uso de logaritmos, cuanto menor sea el resultado obtenido por la función de máxima

entropía mejor estará funcionando el modelo. Existen otro tipo de funciones de pérdida que serán útiles

dependiendo del problema.
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D(S; L) = �

n∑
i

log (Si) � Li (A.3)

Estos vectores serán S con los resultados de la función softmax y L correspondiente a las etiquetas

o labels. El vector L tendrá mismo tamaño que S y contiene todo ceros excepto por la clase a evaluar

que tendrá valor 1, dicha clase a evaluar corresponderá con la de mayor probabilidad obtenida en la

función softmax. Esta forma de representar el vector L recibe el nombre de one-hot encoding, visible

en la Figura A.1. Agrupando todas diferentes capas explicadas en el modelo, se obtiene:

D(S(W �X + B); L) (A.4)

A.1.4. Precisión del modelo

Ahora, ya se conocen las probabilidades de que una imagen X pertenezca a las diferentes clases.

Será necesario establecer una función de pérdida (loss, L) que indique la precisión de nuestro modelo

de manera numérica. En este caso se hará uso de la media de la función de máxima entropía en el

conjunto de datos evaluado.

La función de pérdida deberá disminuir si la predicción D(c; p), donde c es la clase real de la

imagen y p la predicción obtenida por el modelo, es correcta D(A; a) y aumentar si es incorrecta

D(A; b). La media de la función máxima entropía para el conjunto de imágenes de entrada para

entrenar el clasi�cador recibe el nombre de training loss, si el conjunto de imágenes de entrada se usa

para validar, recibe el nombre de validation loss.

L =
1

n

n∑
i

D(S(WX + B); L) (A.5)

El objetivo será entonces tener el menor valor posible en la función máxima entropía para cada

imagen, lo que marcará que las predicciones de las clases son correctas y la función de pérdida, por

tanto, mínima. Puesto que la función de pérdida en esta arquitectura es dependiente de W y b, es

posible minimizarla, teniendo ahora que resolver un problema de optimización.
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A.1.5. Descenso de gradiente

Para obtener el mínimo W y b se hará uso del algoritmo de descenso de gradiente (GD).

Dicho algoritmo actualiza el valor de los pesos W y el bias b de acuerdo a sus derivadas. Cada

actualización de estos valores recibe el nombre de paso o step. Previamente a comenzar a iterar será

necesario inicializar los pesos, este será un paso crucial a la hora de que la red entrene correctamente.

Existen muchas técnicas como los autoencoders, compartir pesos con redes de menor tamaño o usar

distribuciones como la uniforme para generarlos.

A la hora de calcular los gradientes, para el problema de minimización, estos son multiplicados

por un término � llamado coe�ciente de aprendizaje o learning rate (LR) que denota el grado de

actualización de los valores de W y b en cada paso del algoritmo. Un valor excesivamente alto en el

coe�ciente de aprendizaje puede provocar que el paso dado por el algoritmo �salte� el mínimo global y

por tanto no sea encontrado como se ve en el grá�co izquierdo de la Figura A.2, mientras que un valor

muy bajo puede ralentizar el entrenamiento considerablemente incluso haciéndolo quedar atrapado en

un mínimo local, tal y como se aprecia en la grá�ca derecha de la Figura A.2.

Figura A.2: Izquierda: problema con LR demasiado alto, salta el mínimo global y empeora. Derecha:

problema con LR demasiado bajo, encuentra mínimo local y no avanza.

A la hora de entrenar la red serán necesarios un gran número de pasos del algoritmo de descenso

de gradiente, generalmente, entrenar con todo el conjunto de datos provocará que el modelo actual

tenga over�tting, es decir, que se haya adecuado demasiado a los datos que ha visto durante el

entrenamiento haciendo que el uso del modelo con nuevas entradas no funcione tal y como lo hacía

con los datos ya vistos, teniendo porcentajes de acierto mucho más bajos. Por ello, a la hora de

entrenar una red neuronal el conjunto de datos se separa en dos o tres subconjuntos que servirán para
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entrenar, validar o probar el modelo. El entrenamiento termina cuando los valores de W y b hacen

que la función de pérdida o loss (L) encuentre un mínimo global dentro del plano. Al observar que

(L) no mejora tras varias iteraciones, se asumirá que se encuentra en un mínimo global, por tanto, el

entrenamiento habrá convergido.

W  W � �� �LW (A.6)

b  b � �� �Lb (A.7)

Figura A.3: Ejemplo del algoritmo de descenso de gradiente sobre las variables W y b. La zona

coloreada son los valores que podría tomar la función de pérdida para dichos W y b, los puntos azules

son los pasos del algoritmo de descenso de gradiente y las líneas rojas la dirección en la que se toman.

A.1.6. Descenso de gradiente estocástico

Llevar a cabo un paso del algoritmo de descenso de gradiente necesita tres veces más cálculos

que obtener el valor de la función de pérdida, para cuyo cómputo se necesita el conjunto total de los

datos, usando matrices que pueden tener tamaños considerables (con varios millones de parámetros),

por lo que su coste computacional puede ser realmente elevado.

El descenso de gradiente estocástico hace uso de una pequeña parte de los datos de entrena-
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Figura A.4: Comparativa de pasos necesarios con el descenso de gradiente y el descenso de gradiente

estocástico visto desde la planta.

miento (incluso una sola muestra) seleccionada aleatoriamente para hacer el cálculo de la función de

pérdida mediante una estimación. Esto hará que los pasos a dar durante la ejecución del algoritmo

sean relativamente rápidos, pero serán necesarios un mayor número de pasos hasta llegar al mínimo

global.

A.1.7. Mejorando el entrenamiento

Al comienzo del entrenamiento de la red neuronal las variablesW y b son capaces de aprender rá-

pido (alto coe�ciente de aprendizaje), pues aún no conocen el problema y lo más seguro se encuentren

en un punto del plano alejado del mínimo global lo que les permite dar �pasos� mayores. Conforme

el entrenamiento avanza los valores que W y b vayan adquiriendo en cada paso del algoritmo de

descenso de gradiente harán que estén más cerca de alcanzar el mínimo global y converger.

Puede ocurrir, que, si se mantiene un coe�ciente de aprendizaje alto, tal como se ha hecho al

principio para acelerar el entrenamiento, los pasos dados en la actualización de las variables W y

b por el algoritmo hagan que se salte directamente el mínimo global tal y como se ha visto en el

grá�co izquierdo de la Figura A.2. Es por ello, que se usa una técnica conocida caída del coe�ciente

de aprendizaje (cuyo término en inglés es learning rate decay) que consiste en reducir el coe�ciente

de aprendizaje de manera que la actualización en cada paso de los valores de W y b sea menos

pronunciada, provocando que cada vez se esté más cerca de converger sin llegar a saltar el mínimo

global o pudiendo volver a alcanzarlo aunque se haya saltado, mejorando el entrenamiento tal como
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se puede ver en el grá�co de la Figura A.5.

Figura A.5: Ejemplo de aprendizaje con caída en el coe�ciente de aprendizaje vs coe�ciente de apren-

dizaje �jo en entrenamiento y validación. Se observa como el modelo sin caída en el coe�ciente de

aprendizaje (azul y verde) se estanca en un 96% y 90% (1� accuracy) de precisión para entrena-

miento y validación respectivamente, convergiendo en el epoch 67, mientras que el modelo con caída

del coe�ciente de aprendizaje (rojo y cian) obtiene mejores resultados tanto en entrenamiento como

en validación y converge más rápido, en el epoch 401.

Otra manera de mejorar el entrenamiento es hacer uso de Momentum (m), consiste en usar el

conocimiento adquirido en cada paso del descenso de gradiente antes de dar el siguiente. Para ello se

almacena la media de los gradientes calculados, de manera que al actualizar los valores de las variables

W y b se tengan en cuenta los resultados anteriores. Esta técnica permite que las redes converjan

antes y evita que el entrenamiento quede estancado en mínimos globales.

W (t + 1)  W (t + 1)� �� �LW (t + 1) +m � �W (t) (A.8)

b(t + 1)  b(t + 1)� �� �Lb(t + 1) +m � �b(t) (A.9)

1Grá�ca obtenida de https://adbrebs.wordpress.com
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A.2. Redes neuronales profundas

Los modelos lineales, como el explicado en el Anexo A.1.1, son modelos estables que pueden

ser útiles para tareas concretas pero poseen grandes limitaciones, dada su linealidad, que los hacen

débiles a la hora de enfrentarse a problemas como los relacionados con la clasi�cación de imágenes.

Las redes neuronales profundas buscan romper con dicha linealidad para abarcar un mayor número

de tareas donde poder ser e�cientes sin perder su estabilidad. Para conseguir esto, se introducirán

funciones intermedias no lineales como las Recti�ed Linear Units (ReLus) [15].

f (x) = max(0; x) (A.10)

f 0(x) =


1; if x > 0

0; otherwise

(A.11)

Las ReLus hacen que los gradientes aprendan más rápido y por tanto la red converja antes. El

modelo desarrollado tendrá ahora una capa intermedia que lo hará no-lineal. La arquitectura contará

con dos funciones lineales con una ReLu intermedia. De la misma manera, siguiendo este proceso

podremos añadir más capas no-lineales y lineales aumentando la profundidad del modelo.

Figura A.6: Nueva arquitectura de la red con capas no-lineales.

Como se puede observar en la imagen, las ReLus tienen otro parámetro optimizable h, que será

su profundidad. La profundidad afectará a su salida, haciendo que el número de �ltros o canales varíe

respecto a la imagen de entrada (normalmente, las imágenes de entrada tienen 1 canal si son en

blanco y negro o tres si son en color).

Matemáticamente la complejidad del modelo no crece excesivamente gracias a la regla de la

cadena que permite cambiar derivadas por productos y ejecutarlos de forma computacional con bajo

coste dada una representación grá�ca para el cálculo de las derivadas. Esta técnica de cálculo recibe
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el nombre de backpropagation, y permite reusar los datos pre calculados para obtener los gradientes

de manera e�ciente.

A.2.1. Evitar el over�tting

Para evitar que al entrenar la red neuronal profunda esta incurra en over�tting existen un conjunto

de técnicas. La primera a aplicar será la �terminación rápida� o early termination consiste en parar el

entrenamiento de la red tan pronto como esta deje de mejorar, pues cada paso dado en el algoritmo

de SGD llegado a este punto hará que el over�tting del modelo sea mayor.

Otra forma de mejorar la precisión será hacer uso de técnicas de regularización, esto consiste en

añadir un término de penalización en el cálculo de la función de pérdida que actúe sobre W grandes.

L0 = L+ �
1

2
kWk2

2
(A.12)

Se considerará L0 el nuevo valor del coe�ciente de pérdida tras aplicar la regularización L2.

Recibe el nombre de regularización L2 dado que se aplica la norma L2 con un coe�ciente � al valor

del coe�ciente de pérdida. El modelo tendrá ahora otro hiper-parámetro a optimizar cuando se entrene,

lo que bene�ciará el resultado �nal a costa del tiempo necesario para encontrar el valor � óptimo.

Los datos transferidos entre capas reciben el nombre de activaciones, dichas activaciones son

generalmente un vector con valores reales. La técnica del dropout [24] establece a 0.0 aleatoriamente

una serie de estas activaciones. El porcentaje a eliminar será otro híper-parámetro a optimizar. El

dropout permitirá tener varias representaciones con una misma entrada, por ejemplo: supongamos

una entrada con 4 reales y un dropout de 0.5, si eliminas los índices 1 y 2 del vector obtenemos una

salida de la siguiente forma [0; 0; z; w ] sin embargo si eliminamos los índices 3 y 4 obtendremos una

salida diferente; [x; y ; 0; 0].

Se observa en la Figura A.7 que a pesar de obtener resultados similares en el conjunto de

datos de entrenamiento (morado y azul), a la hora de validar el modelo con otro conjunto de datos

completamente diferente, se tiene menor over�tting (amarillo con dropout y verde). Por lo que se

concluye que la arquitectura representada por el morado y amarillo gracias al uso del dropout será más

2Grá�ca obtenida de https://adbrebs.wordpress.com.
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Figura A.7: Comparativa de un entrenamiento con y sin dropout, y con un momentum incorrecto.

Como se puede observar las redes con buen momentum a pesar de obtener resultados similares en

el conjunto de datos de entrenamiento (morado con dropout y azul), a la hora de validar el modelo

(amarillo con dropout y verde), se observa cierto over�tting en la red que no ha hecho uso de dropout

devolviendo peores resultados en el coe�ciente de pérdida. Por lo que se concluye que la arquitectura

representada por el morado y amarillo gracias al uso del dropout será más robusta al usarse con

nuevos datos. La arquitectura inicializada con mal momentum es muy inestable haciendo imposible

su entrenamiento2.

robusta al usarse con nuevos datos. La arquitectura inicializada con mal momentum es muy inestable

haciendo imposible su entrenamiento. La técnica del dropout, dado que usa aleatoriedad para frenar

activaciones y establecerlas a 0 solo debe ser usado durante el entrenamiento. Mientras se evalúe el

modelo esto no tiene que usarse, pues descartaría activaciones aleatorias haciendo que el modelo no

fuera estocástico pudiendo generar predicciones diferentes para la misma entrada.

A.3. Redes neuronales convolucionales

Hasta ahora se ha visto la imagen de como una matriz de dos dimensiones, esto no tiene

porqué ser así siempre, existen imágenes en color con 3 canales en cuyo caso serán matrices de tres

dimensiones. Las redes neuronales convolucionales tienen una estructura similar a las neuronas de
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la corteza visual primaria de un cerebro biológico y son más efectivas que un clasi�cador logístico

o una red neuronal profunda para tareas relacionadas con las imágenes. Este tipo de redes aplican

una convolución sobre la imagen de entrada considerando sus canales por separado. La convolución

consiste en aplicar un �ltro sobre parte de la imagen que, a modo de ventana deslizante, la recorrerá

de acuerdo a unos parámetros dados como son el paso o stride y el padding. El stride hace referencia

a los pixeles que avanza la ventana y el padding añadirá al principio y al �nal de la matriz �las y

columnas de ceros para evitar perder dimensionalidad tras la convolución.

Figura A.8: Ejemplo de convolución de una imagen 5�5 con padding=1 y stride=1. Al tener 1 pixel

de padding y 1 de stride, el resultado es una matriz del mismo tamaño a la inicial.

El �ltro aplicado será la función lineal explicada al principio W �X 0+b donde X 0 será la ventana,

ahora el valor de W y b tendrá un tamaño acorde al tamaño de la ventana y no al de la imagen. Tal

y como se puede ver en la �gura A.8 se aplica una convolución a una imagen de 5 pixeles de alto y

ancho con tan solo 1 canal de profundidad, la ventana tiene 1 pixel de stride y 1 de padding, por lo

que tras la convolución la imagen resultante tendrá mismo tamaño que la inicial.

Al añadir un conjunto de capas con profundidad se obtiene una estructura piramidal como se

observa en la Figura A.9. Asumiendo que no existe padding, trás cada convolución la matriz de entrada

(imagen) se convierta en una matriz de menor altura y anchura, pero mayor profundidad, igual a la

profundidad de los �ltros aplicados.

La información de la imagen durante las convoluciones ha sido separada y transferida al siguiente

nivel, de manera que las capas más cercanas a la imagen de entrada son capaces de identi�car

parámetros de bajo nivel como son colores y bordes, mientras que las capas más alejadas son capaces

de reconocer formas u objetos de más alto nivel y hasta entidades completas. Por lo tanto, lo que
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Figura A.9: Arquitectura de una red neuronal convolucional con 3 capas de convolución.

se pretende es clasi�car la matriz última de convolución. La arquitectura de la red convolucional se

completa añadiendo un clasi�cador lineal simple, como el visto al comienzo de este Anexo A.1.1, que

pueda diferenciar de acuerdo a los parámetros de las últimas capas a qué clase corresponde dicha

entrada.

Para poder realizar el entrenamiento de este tipo de redes se requiere de potentes GPUs. Las

imágenes de entrada pueden tener tamaños medianos y los �ltros pueden ser ligeramente profundos

haciendo que sean necesarios cálculos para millones de parámetros solo en una capa (algunas redes

alcanzan más de 20 capas y 150 millones de parámetros).

Figura A.10: Max pooling sobre una imagen de 8�8 píxeles, con un �ltro 2�2 y stride 2.

Existen técnicas que mejoran los tiempos de computación y la memoria usada, como, por ejemplo,

el pooling que agrupar un conjunto de píxeles aplicándoles una función como puede ser el máximo

o la media, reduciendo la dimensionalidad de la imagen y controlando el over�tting. El ejemplo más

común de pooling es el usado sobre un �ltro de 2� 2 de la imagen con stride de 2 píxeles tal y como
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puede apreciarse en la Figura A.10
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B
INSTALACIÓN Y

DESARROLLO

Al comienzo del proyecto se tuvo que estudiar qué entorno de trabajo usar, así como lenguaje

y con qué red neuronal comenzar a trabajar. Se exploró el ecosistema actual del Deep Learning, así

como las posibles herramientas posibles de desarrollo, lenguajes y respaldo dado por otros laboratorios

o grupos de investigación. La Sección B.1 comenta las decisiones tomadas al comienzo del proyecto,

el framework usado así como las librerías necesarias, seguidamente, la Sección B.2 explica el entorno

de desarrollo empleado.

B.1. Framework y librerías empleadas

Finalmente, tras una exploración del ecosistema actual del Deep Learning se optó por hacer uso

de Torch1 [3] dada su sencillez y e�cacia (además del respaldo dado por grupos como Twitter, Google

DeepMind, Facebook AI o Yandex). Junto con Torch son necesarias un conjunto de librerías que hacen

posible realizar operaciones con tarjetas grá�cas, y por tanto acelerar el proceso de entrenamiento o

evaluación de redes neuronales.

loadca�e Permite cargar modelos pre entrenados de Ca�e (otro framework de Deep Learning

1Proyecto Torch: http://torch.ch/
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en Torch ejecutándolos como si fueran uno propio, con toda su funcionalidad.)

cutorch y cunn Conjuntamente con CUDA permiten realizar operaciones con la GPU ahorrando

mucho tiempo en cálculos con grandes matrices.

cudnn Conjunto de operaciones asociadas con CUDA, implementadas de manera muy e�-

ciente (convoluciones o poolings) que aceleran los cálculos, haciéndolas realmente

útiles en Deep Learning.

hdf5 Librería que permite el uso del formato de �cheros HDF5 en torch, permitiendo gran

�exibilidad y capacidad de comunicación entre aplicaciones.

nn Aporta las funciones de las redes neuronales. Hace uso de funciones modulares fá-

cilmente escalables permitiendo crear estructuras de redes neuronales complejas.

optim Paquete que contiene diferentes algoritmos y rutinas de optimización, además de

ofrecer una utilidad para poder registrar y mostrar grá�camente los resultados.

matio Librería que permite cargar �cheros .mat con estructuras de datos complejas, así

como, escribirlos almacenando objetos creados con Torch.

Conjuntamente con Torch se hace uso de Python2 para las tareas relativas a las máquinas de

soporte de vectores (SVM). Python no implementa en su núcleo las funciones necesarias para la

manipulación de SVM o lectura de �cheros HDF5, por ello es necesario instalar una serie de paquetes

que hacen posible su uso:

h5py Interfaz para hacer uso del formato de datos HDF5 en Python, funciona de manera

simple haciendo que su uso sea inmediato.

sklearn Incluye un conjunto de funciones y algoritmos del aprendizaje automático. Se pueden

encontrar herramientas para la clasi�cación, reducción de dimensionalidad, regresión,

selección de modelos, clustering y pre procesamiento entre otros.

2Web de Python https://www.python.org/
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numpy Paquete base para realizar cálculos y operaciones con matrices y estructuras multidi-

mensionales. Además, incluye funciones del álgebra lineal y herramientas que integran

C/C++ y código Fortran.

B.2. Entorno de trabajo

Tras conocer el framework a usar y haber comenzado con el estudio teórico del actual estado del

arte en la tarea de clasi�cación de imágenes, así como la creación de arte con redes neuronales. Se

decide comenzar a buscar un editor de textos que sea funcional con Torch. Finalmente se hace uso

de Atom3 que permite hacer uso de torch gracias al kernel iTorch4 basado en iPython que permite

compilar y ejecutar código de manera modular. Atom es un editor de texto con�gurable y �exible,

que funciona gracias a la instalación de paquetes, dada su posibilidad de interactuar con kernels es

posible usarlo para desarrollar diferentes lenguajes, pudiendo hacer uso de los algoritmos desarrollados

en Torch y Python desde el mismo editor, además de escribir esta memoria con LaTeX sin necesidad

de cambiar de entorno.

Para poder hacer uso de Atom con todos los entornos es necesaria la instalación de la librerías

iTorch, iPython y la distribución TeX Live. Además, son necesarios los siguientes paquetes en Atom:

hydrogen Permite la interacción con un gran número de kernels donde se incluyen iTorch y

iPython. Gracias a este paquete es posible compilar y ejecutar modularmente el

código, siempre que se disponga de su kernel en cuestión.

language-(lenguaje) (lenguaje) será el lenguaje de programación del cual queremos instalar su sintaxis

para que sea reconocida en Atom.

linter-(lenguaje) Similar al paquete languaje, su función es resaltar posible texto a autocompletar del

(lenguaje) instalado.

pdf-view Permite la visualización de archivos pdf. Paquete útil para hacer uso mientras se

escribe en LaTeX y poder visualizar los cambios realizados.

3Web del proyecto Atom https://atom.io/
4Web de iTorch https://github.com/facebook/iTorch
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Conocidas todas herramientas a usar, se decide tomar como punto de partida el código disponible

del algoritmo neural-style [4]5 del que �nalmente solo se hace uso del modelo pre entrenado de la red

VGG Net 19 [23]. Durante el desarrollo de los algoritmos se usa GitHub para poder llevar un control de

las versiones, tanto del código como de la memoria. Además, para poder marcar las tareas realizadas,

a hacer y en proceso se emplea Trello, una web con una interfaz de usuario amigable que implementa

el método Kanban, donde se puede observar que se ha realizado cada día, compartir archivos y

comentar nuevas investigaciones que pudieran ser interesantes. A la hora de trabajar remotamente

(dada la necesidad de la potencia de la máquina situada en el laboratorio y la imposibilidad de estar en

este todo el tiempo) se hizo de uso de ssh para enviar comandos puntuales y del software teamviewer

para poder trabajar completamente en remoto.

5Neural-style https://github.com/jcjohnson/neural-style
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C
CONTENIDO DEL

REPOSITORIO

El repositorio contenido en GitHub con el trabajo realizado se compone de 3 carpetas principales:

data Compuesta por tres subcarpetas:

� La primera, con nombre data_utils, contiene los �cheros necesarios para la co-

rrecta ejecución del algoritmo como la relación entre el vector de probabilidades

devuelto por la red y la clase que representa.

� La carpeta results contiene los resultados devueltos por los modelos probados.

� Por último, se encuentra la carpeta paths con datos relativos a las rutas de las

imágenes.

Además de las subcarpetas, hay un �chero correspondiente a la aplicación usada para

obtener imágenes haciendo web-scrapping.

models Dicha carpeta contiene los modelos probados pre entrenados así como la red VGG

Net 19 [23], dado su peso (más de 1 GB e incluso 2.5 GB dependiendo del modelo)

esta carpeta se encuentra vacía

src Contiene el código usado para la clasi�cación de imágenes. En su raíz se encuen-

tra el archivo main que el archivo principal para la ejecución del programa y otro

67



CONTENIDO DEL REPOSITORIO

�chero feature_extract que es una utilidad para extraer activaciones de una capa

de una carpeta con un conjunto de imágenes. Se pueden encontrar también cuatro

subcarpetas.

� La primera con nombre SVM tiene el código necesario para entrenar y evaluar

las SVMs propuestas.

� La segunda subcarpeta, con nombre autoencoder, tiene el código creado para

poder entrenar y evaluar un auto codi�cador (no se llegó a usar).

� La tercera carpeta cuyo nombre es �ne-tune, tiene el código usado para reen-

trenar y evaluar nuevos modelos.

� Por último, la carpeta utils, contiene un conjunto de �cheros con funciones que

simpli�can tareas llevadas a cabo frecuentemente

En la raíz se pueden encontrar también un archivo INSTALLATION relativo a instrucciones para

la instalación, y diversos �cheros usados por GitHub para llevar a cabo su control de versiones.
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D
RESULTADOS

ADICIONALES

El siguiente capítulo contiene grá�cas que muestran resultados adicionales no incluidos en el

contenido principal de la memoria.

La Figura D.1 muestra los resultados sobre los conjuntos de datos Noisy 23 y Curated de la red

durante su optimización en el epoch 100.

La Figura D.2 muestra los resultados sobre los conjuntos de datos Noisy 23 y Curated de la red

durante su optimización en el epoch 200.

La Figura D.3 muestra los resultados sobre los conjuntos de datos Noisy 23 y Curated de la red

durante su optimización en el epoch 100, sustituyendo la capa softmax y la última fully connected

(1000 activaciones) por una SVM.

La Figura D.3 muestra los resultados sobre los conjuntos de datos Noisy 23 y Curated de la red

durante su optimización en el epoch 200, sustituyendo la capa softmax y la última fully connected

(1000 activaciones) por una SVM.

La Figura D.5 muestra la suma de las diferencias al cuadrado de los pesos en la red VGG Net

19 [23] y esta misma optimizada en el epoch 200. Se observa que la red tiene hasta 35 capas, mientras

que en la Sección 4.1 se nombraba que esta capa contenía 19 capas con pesos. Esto se debe a que

se encuentran incluidas las capas sin pesos en la leyenda sobre el eje x .
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Figura D.1: Las Figuras (a) y (b) muestran los resultados durante el entrenamiento para los conjuntos

de datos noisy y curated respectivamente en el Epoch 100, usando la capa softmax para la clasi�cación

de las imágenes.
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Figura D.2: Las Figuras (a) y (b) muestran los resultados durante el entrenamiento para los conjuntos

de datos noisy y curated respectivamente en el Epoch 200, usando la capa softmax para la clasi�cación

de las imágenes.
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Figura D.3: Las Figuras (a) y (b) muestran los resultados durante el entrenamiento, concretamente

en el Epoch 100, para los conjuntos de datos noisy y curated respectivamente haciendo uso de una

SVM como su clasi�cador.
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Figura D.4: Las Figuras (a) y (b) muestran los resultados durante el entrenamiento, concretamente

en el Epoch 200, para los conjuntos de datos noisy y curated respectivamente haciendo uso de una

SVM como su clasi�cador.
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Figura D.5: Suma de las diferencias al cuadrado (SSD) de los pesos en la red VGG Net 19 y la misma

red tras 200 epochs de optimización.
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