
Trabajo Fin de Grado.
Grado en Ingeniería Informática

Araword móvil.
Editor de picto-textos para dispositivos

móviles.

Araword mobile.
Pict-text editor for mobile devices.

Autor/es

Diego Ceresuela Arrazola

Director/es

Joaquín Ezpeleta Mateo

Universidad de Zaragoza / Escuela de Ingeniería y Arquitectura
2016

Resumen

Araword móvil.
Editor de picto-textos para dispositivos móviles.

AraWord es una aplicación informática de libre distribución consistente en un proce-
sador de textos que permite la escritura simultánea de texto y pictogramas, facilitando
la elaboración de materiales de comunicación aumentativa, la elaboración de materiales
curriculares accesibles, y la adaptación de documentos para personas que presentan di-
ficultades en el ámbito de la comunicación funcional y de la lectoescritura.

Actualmente Araword sólo cubre el sector de los ordenadores personales. Sin embargo,
el enorme crecimiento de la tecnoloǵıa móvil y las redes sociales ha generado la nece-
sidad de desarrollar Araword móvil (en adelante AWm). Este TFG ha consistido en
la creación de la versión móvil de Araword, introduciendo además diversas mejoras y
añadiendo funcionalidades demandadas por los usuarios.

AWm es la primera aplicación para smartphones que permite utilizar los sistemas de
mensajeŕıa instantanea para enviar documentos basados en texto y pictogramas. De esta
manera, se han eliminado barreras que impedian a los usuarios de sistemas alternativos
y aumentativos de la comunicación el uso de estas aplicaciones de manera efectiva. Es
una herramienta altamente configurable en cuanto a la visualización de los documentos y
la limitación de funcionalidades, ya que existe un amplio rango de usuarios con distintas
dificultades que pueden o no estar capacitados para usar o comprender determinados
aspectos de la aplicación. Además permite que el usuario (o en su defecto el educador)
introduzca nuevos pictogramas para usarlos localmente, añadiendo aśı un grado más de
personalización. Por último, se ha realizado un esfuerzo por mantener la compatibilidad
entre Araword y AWm en lo que a los documentos se refiere, permitiendo de esta manera
compartir de forma efectiva documentos entre las distintas plataformas.

Durante todas las fases del proyecto se ha contado con un experto logopeda con amplia
experiencia en el sector, que ha aportado el punto de vista del usuario y los requisitos
del mismo. Aún aśı, debido a las caracteŕısticas del usuario, se ha realizado un amplio
periodo de pruebas con expertos que se ha extendido durante 3 meses. La aplicación se
ha distribuido a grupos de expertos formados por logopedas, educadores y/o personas
con experiencia en el sector TIC para la comunicación aumentativa y alternativa. Estos
grupos empezaron siendo reducidos y se ha ido incrementando el numero de expertos
conforme avanzaba el desarrollo, generando aśı un producto de calidad.

Índice general

1. Introducción 1
1.1. Conocimientos previos . 1

1.1.1. Sistemas aumentativos y alternativos de comunicación (SAACs) . 1
1.1.2. Pictograma . 1
1.1.3. Araword . 2

1.2. Objetivos del proyecto . 3

I. Araword 4

2. Análisis del problema 5
2.1. Requisitos . 5
2.2. Araword . 6
2.3. ¿Cómo funciona? . 6

2.3.1. Documentos AWZ . 7
2.4. Paradigmas . 7

2.4.1. Desarrollo nativo . 8
2.4.2. Desarrollo multi-plataforma . 8
2.4.3. Desarrollo web . 8
2.4.4. Desarrollo h́ıbrido . 9
2.4.5. Conclusión . 10

2.5. Tecnoloǵıa . 10

3. Diseño de la solución 11
3.1. Prototipado . 11

3.1.1. En papel . 11
3.1.2. Software . 11

3.2. Esquemas . 11
3.2.1. Estructural . 11

3.3. Representación de la información . 12
3.3.1. Modelo del término . 13
3.3.2. Modelo/vista del documento . 13

4. Implementación 15
4.1. Vista principal (MVC) . 15
4.2. Algoritmo principal . 17
4.3. Integración con redes sociales . 18

Índice general

4.4. Env́ıo de documentos . 18
4.5. Documentación . 19

5. Pruebas 20
5.1. Con experto . 20
5.2. Usuarios . 20

6. Cierre del proyecto 21
6.1. Memoria . 21
6.2. Trabajo pendiente . 21
6.3. Conclusiones . 21

II. PictoServer 23

7. Análisis del problema y diseño de la solución 24
7.1. Contexto . 24
7.2. Análisis tecnológico . 24
7.3. Diseño del servicio . 25

7.3.1. Pictograma . 25
7.3.2. Language . 25

8. Implementación 26
8.1. Desbordamientos de pila en traducciones 26
8.2. Ficheros ZIP en memoria . 26
8.3. Actualización del conjunto de pictogramas 26

9. Pruebas 28
9.1. Pruebas de desarrollo . 28
9.2. Pruebas con usuarios . 28

10.Cierre del proyecto 29
10.1. Memoria . 29
10.2. Trabajo pendiente . 29
10.3. Conclusiones . 29

11.Gestión de proyecto 30
11.1. Distribución temporal . 30

1. Introducción

1.1. Conocimientos previos

1.1.1. Sistemas aumentativos y alternativos de comunicación

Los Sistemas Aumentativos y Alternativos de Comunicación (SAAC) son formas de
expresión distintas al lenguaje hablado, que tienen como objetivo aumentar (aumen-
tativos) las capacidades comunicativas y/o compensar (alternativos) las dificultades de
comunicación y lenguaje de personas con discapacidad [1].

La utilización de SAACs no es excluyente del uso del lenguaje común sino que puede
ayudar a reforzar algunas carencias y pulir defectos. De hecho los SAACs también pueden
utilizarse para ayudar a los niños pequeños a iniciarse en la lecto-escritura, tanto en la
lengua materna como en una extranjera.

1.1.2. Pictograma

Un pictograma es una representación simbólica de una palabra o grupo de palabras
llamado término, tiene un significado único y sirve para identificar ineqúıvocamente el
término que representa. Aparte de la imagen el pictograma puede contener otra infor-
mación relativa, por ejemplo, al tipo de palabra que representa.

Figura 1.1.: Ejemplo de pictograma para pato.

Estos pictogramas se utilizan acompañados de los términos que representan para crear
documentos de picto-texto. Además de la propia imagen también se puede representar
de manera visual otra información, como el tipo de palabra, utilizando por ejemplo,
bordes de colores.

1

1. Introducción

1.1.3. Araword

AraWord es una aplicación informática de libre distribución consistente en un proce-
sador de textos que permite la escritura simultánea de texto y pictogramas, facilitando
la elaboración de materiales de comunicación aumentativa, la elaboración de materia-
les curriculares accesibles, y la adaptación de documentos para personas que presentan
dificultades en el ámbito de la comunicación funcional y de la lectoescritura. [2]

Figura 1.2.: Picto-texto en Araword

En el ámbito de los ordenadores personales Araword es uno de los productos de ayuda
a la comunicación más usado debido a la flexibilidad a la hora de crear documentos y
las múltiples funcionalidades que ofrece. Algunas de ellas se listan a continuación.

Alternar entre los distintos pictogramas que representan un término.

Dividir una palabra compuesta en sus términos simples y viceversa.

Cambiar el contenido de un texto sin variar el pictograma.

Procesar textos copiados y pegados convirtiendolos en picto-texto.

Sin embargo, presenta varias limitaciones:

La expansión de la tecnoloǵıa móvil ha supuesto la apertura de un sector al que
Araword no estaba destinado, desaprovechando de esa manera una gran oportuni-
dad.

No existe una integración de la aplicación con las redes sociales, por lo que com-
partir los picto-textos supone un esfuerzo extra.

2

1. Introducción

El proceso de actualización de los pictogramas en Araword es tedioso ya que incluye
a terceras personas no dedicadas al proyecto, que tienen que crear la nueva base
de datos de manera manual. Además no existe la posibilidad de descargar sólo los
nuevos pictogramas, lo cuál supone un consumo de ancho de banda muy alto en
el momento de actualizar.

1.2. Objetivos del proyecto

El primer objetivo consiste en desarrollar AWm manteniendo la flexibilidad de Ara-
word en cuanto a configuración y libre escritura de picto-texto, integrando la aplicación
con las redes sociales, añadiendo todas aquellas funcionalidades, útiles, ofrecidas por la
plataforma y eliminando todas aquellas que ahora no tengan utilidad.

Por otro lado, el segundo objetivo es desarrollar un servicio de gestión de pictogramas,
que permita la descarga parcial de los pictogramas por parte de la aplicación, reducien-
do aśı el tiempo de actualización (aspecto clave para las plataformas móviles) y que
introduzca procedimientos automáticos para la adición, modificación y eliminación de
pictogramas de la base de datos. De esta manera, se consigue suprimir el trabajo manual
y la intervención de terceros ajenos al proyecto.

Las partes I y II de esta memoria describen el proceso seguido para el desarrollo de
las herramientas que cubren los objetivos citados anteriormente.

3

Parte I.

Araword

4

2. Análisis del problema

Se ha acudido al Colegio público de educación especial (CPEE) Alborada para median-
te la observación directa y la entrevista con varios logopedas conocer en detalle cuales
son las limitaciones del usuario y qué caracteŕısticas tiene que tener la nueva aplicación.
Posteriormente se han fijado los requisitos del producto haciendo especial hincapié en
los criterios de usabilidad.

2.1. Requisitos

El análisis de requisitos se realizó tras la primera visita al CPEE Alborada en colabora-
ción con uno de los profesores y el director del proyecto. Algunos de los más importantes
se muestran a continuación (para ver todos los requisitos y su clasificación ir al apéndice
A.2).

Código Requisito

RF1 Se debe poder generar documentos basados en picto-texto.
RF2 Los documentos podrán guardarse para ser recuperados poste-

riormente.
RF3 Se podrá enviar un documento entre dispositivos de tal manera

que el documento recibido se pueda modificar como uno guar-
dado.

RF4 Se permitirá compartir un documento a través de las redes so-
ciales y aplicaciones de mensajeŕıa instantánea.

RF6 Se permitirá crear nuevos términos con su correspondiente pic-
tograma.

RNF1 Los documentos mantendrán el formato de Araword PC.
RNF2 Los idiomas soportados por la aplicación serán, al menos, los

mismos que para los documentos.
RNF4 Se podrán limitar las acciones realizables desde un modo admi-

nistrador.
RNF5 Se permitirá personalizar el tamaño de los pictogramas, tamaño

de la letra, escala de grises del pictograma, velocidad del lector
y el color del borde asociado a cada tipo de palabra.

Cuadro 2.1.: Resumen de los requisitos

5

2. Análisis del problema

2.2. Araword

Se ha hecho un análisis en profundidad de Araword para comprender cómo funciona,
determinar cuales son los principales problemas que se van a tener que afrontar y concer
el formato de documentos de Araword.

2.3. ¿Cómo funciona?

La herramienta tiene, en rasgos generales, que detectar cada pulsación del teclado y
modificar, si fuera necesario, los pictogramas que se visualizan junto al texto. Para ello
los pasos a seguir son los siguientes.

1. Detectar en qué término se ha producido el cambio.

2. Formar un contexto con los términos colindantes ya que un cambio en una palabra
puede resultar en una expresión compuesta. Por ejemplo el texto “de olor” está
compuesto por dos términos simples (de y olor) con sus respectivos pictogramas
mientras que “de color” es un único término con su pictograma.

3. Crear todos los posibles compuestos, que incluyan el término que ha cambiado, en
el contexto y ordenarlos por longitud (número de palabras) de mayor a menor.

4. Buscar en la base de datos de verbos conjugados.

a) Si el término es una forma conjugada sustituir en la búsqueda el término
compuesto por su forma en infinitivo.

5. Buscar en la base de datos de términos.

a) Si el término existe se le asignan los pictogramas que le corresponden, eli-
minar todos los términos simples del documento y cambiarlos por el término
compuesto.

b) Si no existe pasar al siguiente término (de menor longitud) hasta llegar a uno
que exista, o bien, llegar al término de longitud uno inexistente, en este caso
se le asigna un pictograma en blanco.

Analizando el funcionamiento se pueden deducir diversos problemas que tendrán que
afrontarse. Algunos de los más importantes son los siguientes.

La pulsación de una tecla dispara una serie de acciones (búsquedas en las bases
de datos) costosas en tiempo, lo que puede generar problemas de concurrencia al
pulsar teclas más rápido de lo que se tarde en buscar los términos en la base de
datos. Bloquear la escritura mientras se busca no es una opción porque entorpeceŕıa
la escritura del usuario.

6

2. Análisis del problema

En el momento de introducir los nuevos términos compuestos habrá que eliminar los
simples, aunque pueden haberse disparado otros cambios. Es decir, el documento
puede haber variado mientras que se busca en las BDs, por lo que habrá que
encontrar la manera de saber dónde introducir los resultados.

Otro aspecto fundamental es la existencia de dos bases de datos, una con los términos y la
información relativa y otra/s con los verbos conjugados del idioma elegido. Trás realizar
un análisis se ha concluido que, dado que la tecnoloǵıa elegida en su momento para
desarrollar las bases de datos de Araword es completamente portable a la plataforma
móvil, se van a reutilizar. En el apéndice A.3.2 se detalla el análisis de las bases de datos.

2.3.1. Documentos AWZ

Dado que uno de los requisitos es mantener la compatibilidad con la versión de PC,
se ha realizado un examen exhaustivo del formato de documentos usado por Araword.

El formato de documentos de Araword tiene la extensión AWZ y consiste en un fichero
comprimido (ZIP) que contiene por un lado un archivo “base.awd” con la información
del documento en XML (el orden de los términos, el idioma del documento, el color de
los tipos de palabras, la fuente usada, etc...) y por otro una carpeta “exportbbdd”. Esta
carpeta almacena la información de los pictogramas: por un lado todas las imágenes
y por otro, un archivo XML llamado “images.xml” con la información asociada a los
pictogramas. En el apéndice A.3.1 se encuentran los DTDs aśı como ejemplos de los
ficheros XML.

2.4. Paradigmas

Se ha de revisar el estado del arte para conocer las estrategias y tecnoloǵıas disponibles
para elegir la que mejor se adecúe al problema expuesto. En lo referente a las estrategias
se han identificado cuatro paradigmas distintos: nativo, multi-plataforma, web e h́ıbrido.
Para cada uno de ellos se han analizado las ventajas y desventajas de su uso.

7

2. Análisis del problema

2.4.1. Desarrollo nativo

Un desarrollo nativo supone la utilización del más bajo nivel ofrecido por la plataforma
para construir la aplicación usando para ello el framework ofrecido por los desarrolladores
de la plataforma.

A favor En contra

Disponibilidad de una API propia de
la plataforma sobre la que desarrollar.

Cada plataforma requiere de una im-
plementación independiente.

Existencia de un SDK espećıfico, li-
breŕıas, frameworks, compiladores y
depuradores desarrollados para dicha
plataforma.

Tecnoloǵıa espećıfica y curva de
aprendizaje pronunciada en caso de
que no se conozca el lenguaje de pro-
gramación.

Control casi completo sobre el funcio-
namiento de la aplicación.

Requiere de instalación y al menos un
dispositvo f́ısico donde depurar.

Mayor rendimiento, ya que se controla
el hardware del dispositivo al más bajo
nivel posible.

Dificultad para implementar una ar-
quitectura u orgranización distinta de
la predefinida por la plataforma.

Mejor interacción y adaptación por
parte del usuario, ya que este no sa-
le del entorno de ejecución.

Coste de mantenimiento y actualiza-
ción mayor, especialmente si se sopor-
tan múltiples plataformas.

Cuadro 2.2.: Pros y contras del desarrollo nativo

2.4.2. Desarrollo multi-plataforma

El desarrollo multi-plataforma es básicamente igual al nativo pero se utiliza un compi-
lador, provisto por un tercero, que permite realizar una compilación cruzada entre varias
plataformas.

A favor En contra

Un único desarrollo permite a la apli-
cación funcionar sobre otras platafor-
mas especificadas por los propietarios
del framework utilizado.

Dependencia del proveedor del com-
pilador, no se puede sacar una ver-
sión para un dispositivo no soportado
o una nueva plataforma.

Cuadro 2.3.: Pros y contras del desarrollo multi-plataforma

2.4.3. Desarrollo web

El desarrollo web consiste en la creación de una página web que permita simular un
entorno de aplicación genérico de las distintas plataformas.

8

2. Análisis del problema

A favor En contra

Simplicidad y variedad en la tecno-
loǵıa de desarrollo, se puede elegir
cualquier tecnoloǵıa web. Curva de
aprendizaje suave.

Acceso limitado o inexistente al hard-
ware, imposibilidad de almacenar un
estado persistente en el cliente o utili-
zar funciones propias del dispositivo.

Facilidad de desarrollo, no requiere de
instalación de SDK, se puede trabajar
sin libreŕıas de terceros, incluso sin las
propias de la plataforma.

Requerimiento de una conexión a in-
ternet continua. No existe la posibili-
dad de un modo offline ni siquiera con
prestaciones reducidas.

Mayor capacidad para encontrar do-
cumentación que permita seguir un es-
tandar abierto.

Imposible de instalar en un dispositivo
o publicar en una tienda virtual.

Multi-plataforma, un único desarrollo
permite a la aplicación funcionar sobre
diferentes plataformas.

Incapacidad de alcanzar el rendimien-
to del código nativo, sobre todo en la
visualización de animaciones.

Capacidad para obtener métricas so-
bre tus usuarios, se conoce perfecta-
mente el número de visitas aśı como
el origen de las mismas.

Dependencia ı́ntegra del navegador y
necesidad de implementar y testear la
aplicación para distintos navegadores
desde el principio.

Desarrollo rápido, mayor tiempo pa-
ra perfeccionar la aplicación o integrar
nuevas funcionalidades.

Necesidad de un servidor web que so-
porte la apliación, realice los procesos
y contenga la base de datos.

Cuadro 2.4.: Pros y contras del desarrollo web

2.4.4. Desarrollo h́ıbrido

El desarrollo h́ıbrido utiliza libreŕıas de terceros que realizan la traducción entre el
lenguaje dinámico web y el lenguaje nativo, permitiendo generar una aplicación nativa
con una interfaz web.

A favor En contra

Curva de aprendizaje ligera para desa-
rrolladores web.

Rendimiento limitado a una visualiza-
ción web.

Puede instalarse y desplegarse en la
tienda virtual de la plataforma.

-

Un único código para múltiples plata-
formas.

-

Acceso casi completo al hardware del
dispositvo, asi como a las APIs.

-

Cuadro 2.5.: Pros y contras del desarrollo h́ıbrido

9

2. Análisis del problema

2.4.5. Conclusión

Se ha optado por descartar un desarrollo nativo debido al alto coste en tiempo de
realizar y documentar ambas aplicaciones ya que el tiempo es limitado y se desea añadir
funcionalidades a la aplicación. El desarrollo web queda descartado dado que uno de los
requisistos es que la aplicación funcione sin conexión a internet. Finalmente se realizará
un desarrollo h́ıbrido.

2.5. Tecnoloǵıa

En cuanto a las tecnoloǵıas disponibles para el desarrollo h́ıbrido, debido al hecho de
que es una tecnoloǵıa en crecimiento y de fácil prototipado, se ha elegido Ionic, una
plataforma para desarrollo h́ıbrido basada en AngularJS y Cordova.

AngularJS sostiene la parte web ofreciendo un paradigma de progamación modelo-
vista-controlador. El modelo–vista–controlador (MVC) es un patrón de arquitectura de
software, que separa los datos y la lógica de negocio de una aplicación de la interfaz de
usuario y del módulo encargado de gestionar los eventos y las comunicaciones. Para ello
MVC propone la construcción de tres componentes distintos que son el modelo, la vista y
el controlador: por un lado define componentes para la representación de la información,
y por otro lado para la interacción del usuario. Este patrón arquitectural se basa en las
ideas de reutilización de código y la separación de conceptos, caracteŕısticas que buscan
facilitar la tarea de desarrollo de aplicaciones y su mantenimiento [4].

Las vistas se implementan con HTML y CSS y la lógica con JavaScript. Cordova es
un software que ofrece la posibilidad de acceder a las funciones nativas del dispositivo
a través de JavaScript. Las dos en conjunto ofrecen toda la tecnoloǵıa necesaria para
llevar a cabo un desarrollo h́ıbrido.

10

3. Diseño de la solución

3.1. Prototipado

3.1.1. En papel

Se han creado, junto al experto logopeda, prototipos en papel que han permitido
diseñar las pantallas más complejas y la navegación entre las mismas. El hecho de contar
con un experto en las fases tempranas del diseño ha supuesto no tener que modificar el
diseño a lo largo de todo el proyecto y ha sido un aspecto clave.

Aunque la fase de análisis ha concluido en este momento se sigue sin tener un cono-
cimiento profundo del usuario final, por lo que contar con un experto es primordial. En
el apéndice A.5 pueden encontrarse los prototipos.

3.1.2. Software

Debido al desconocimiento previo de la tecnoloǵıa y con intención de comprobar si el
problema era resoluble de manera eficiente, se decidió empezar con un prototipo vertical.
La funcionalidad elegida fue la expuesta en el RF-10. La aplicación debeŕıa ser capaz de
generar documentos basados en picto-texto.

Una vez completado el prototipo vertical se ha procedido a realizar otro horizontal
que incluya todas las pantallas y opciones, pero sin tener funcionalidad ninguna. Este
prototipo ha sido modificado múltiples veces, para corregir detalles

Al realizar prototipos en software nos hemos arriesgado a dar la impresión de tener
un producto muy pulido cuando aún es muy pronto. Sin embargo la estrecha comunica-
ción con el director del TFG y el experto logopeda lo han evitado. Poder controlar las
expectativas nos ha permitido aprovecharnos de la facilidad de prototipado ofrecida por
la tecnoloǵıa elegida.

3.2. Esquemas

3.2.1. Estructural

El paradigma de programación MVC fuerza al menos tres capas: modelo, vista y con-
trolador. Sin embargo, por claridad, los servicios/modelos se han tratado de estructurar
en dos capas: por un lado los elementos para acceder a las bases de datos y por otro el
resto de modelos. El desconocimiento de la tecnoloǵıa ha hecho que el software pase por
varias etapas, estructuralmente hablando. La estructura final es la siguiente.

11

3. Diseño de la solución

Figura 3.1.: Estructura final

Las vistas corresponden a cada una de las pantallas de la aplicación y las ventanas
emergentes. Los controladores implementan parte de la lógica sencilla y hay uno por
cada vista a excepción de los popups que se han tratado de unificar en un único servicio
proveedor de popups. Por último los servicios contienen la lógica pesada y permiten el
acceso al almacenamiento del dispositivo, ya sean las bases de datos o el almacenamiento
local (necesario para guardar documentos y parámetros de configuración). En el apéndice
A.6 se pueden ver los diferentes esquemas y el progreso seguido.

3.3. Representación de la información

Ha habido que definir los tipos de datos que se iban a usar aśı como su representación
posterior en las vistas. Esta representación no ha variado desde la primera etapa de
diseño aunque se ha añadido alguna información posteriormente.

12

3. Diseño de la solución

3.3.1. Modelo del término

Cada uno de los términos tiene una serie de información asociada:

Un identificador único que no sólo se usa para localizar el término en el modelo
sino que identifica tambien el contenedor HTML que representa dicho término.

Una lista de pictogramas y un ı́ndice que indica qué pictograma está actualmente
en uso. Para cada uno de los pictogramas:

• El nombre de la imagen.

• El tipo de palabra, por ejemplo “casa” es un nombre común y una forma con-
jugada del verbo “casar”. Tendrá los pictogramas de ambos y serán distintos
tipos.

• La imagen léıda en codificación base64 o nada si el pictograma no ha sido
visualizado aún.

El número de palabras que componen el término.

En JavaScript, la representación de datos se hace por defecto utilizando JSON (un
formato de texto ligero para el intercambio de datos). Una descripción formal del tipo
de dato término es la siguiente:

{

’id’: String, /* Identificador único */

’value’: String, /* El término en si ej: "de color" */

’pictos’: [{

’picto’:String, /* ej: "62243.png" */

’type’:Number, /* El tipo de palabra 0-5 */

’base64’:String /* El picto leido en base64 */

}], /* Todos los pictogramas asociados al término */

’pictInd’: Number, /* El pictograma en uso de la lista */

’words’: Number /* Número de palabras del término ej: 2 */

}

3.3.2. Modelo/vista del documento

Aśı pues, el documento es una lista de términos. Para cada uno de los términos (exis-
tentes en el controlador) existe una representación en HTML en la vista, de tal manera
que:

1. La imagen en base64 del pictograma seleccionado es el contenido de una etiqueta
img. Redimensionada según la configuración.

2. El propio término es el contenido de una etiqueta input.

3. El tipo de palabra define el color del borde del pictograma. Es decir el borde de la
etiqueta div que contiene la imagen y el input.

13

3. Diseño de la solución

Figura 3.2.: Relación entre el modelo y la vista

Las representaciones de cada término se mostrarán de izquierda a derecha y de arriba
abajo. El número de términos por linea variará en función del tamaño (configurable) de
los pictogramas.

14

4. Implementación

La implementación se ha llevado a cabo en procesos ćıclicos, siempre con prototipos
o versiones funcionales, desde el primer prototipo vertical, el cuál ya era usable, hasta
la última versión.

4.1. Vista principal (MVC)

Para comprender de manera más completa el modelo vista controlador que implementa
AngularJS se va a explicar cómo se ha implementado la representación del picto-texto.
Los módulos que intervienen son los siguientes.

Función Nombre Fichero

Vista text text.html
Controlador textController text.controller.js
Servicio textAnalyzer text.service.js

Cuadro 4.1.: MVC para la vista principal

El servicio es quien tiene el array de términos que conforma el picto-texto y las fun-
ciones para tratar con el mismo. Exporta el siguiente objeto JSON.

var service = {

processEvent: processEvent, /* Función para procesar los cambios */

deleteWord: deleteWord, /* Función para borrar un término*/

setCaret: setCaret, /* Función para modificar el cursor */

addEmptyWord: addEmptyWord, /* Función para a~nadir un término vacı́o */

text: text, /* El array de términos */

errors: errors,

radius: radius, /* Radio de análisis para el algoritmo */

docName: ’’, /* Nombre del documento */

tryCompound: tryCompound, /* Función para crear compuesto */

splitWord: splitWord /* Función para separar compuesto */

};

El controlador tiene el texto por defecto con el término Araword y lo pone en el
servicio; a partir de ese momento el servicio y el controlador tienen el mismo objeto
como texto y trabajan sobre lo mismo.

15

4. Implementación

vm.myText = [{

’id’: getId(),

’value’: ’AraWord’,

’pictos’: [{’picto’:’25748.png’, ’type’:4}],

’pictInd’: 0,

’words’: 1,

’autofocus’: true

}];

textAnalyzer.text = vm.myText;

La vista tiene la representación HTML del texto que hay en el controlador. Si analiza-
mos la vista de fuera hacia adentro, es decir, del contenedor más grande al más pequeño,
observamos lo siguiente:

<div class="visible" id="text" style="display: inline-block;">

Contiene todo el documento. El atributo “style” especifica cómo se van a situar los
elementos en el interior de este contenedor.

<div class="inline padding"

ng-repeat="word in text.myText track by word.id"

ng-attr-id="{{word.id}}">

Esta seccion de código corresponde al contenedor de cada término. Tiene el atributo
ng-repeat por lo que se repetirá para cada término de la lista. De tal manera que cualquier
referencia posterior a “word” es una referencia a un término.

<img class="picto"

data-ng-src="{{ word.pictos[word.pictInd][’base64’]

|| text.readPicto(word.pictos[word.pictInd]) }}"

hm-tap="text.singleClickAction(word)"

hm-press="text.showOptions(word)"

hm-swiperight="text.swipe(\$event, word)"

hm-swipedown="text.otherSwipe(word)"/>

El código anterior representa una imagen con el pictograma asociado al término. El
atributo “data-ng-src” contiene la imagen en base64. En el caso de que aún no se haya
léıdo la imagen ésta se lee y se asigna. Después se asocian una serie de funciones a
ciertos eventos: “hm-tap” para la pulsación simple, “hm-press” para mantener pulsado,
“hm-swipe” para los desplazamientos a izquierda y derecha.

<input type="text"

ng-change="text.onChange(word)"

ng-keyup="text.onKeyUp(\$event,word)"

16

4. Implementación

ng-model="word.value"

ng-model-options="

{ ’updateOn’: ’default blur’, ’debounce’:

{ ’blur’:50,

’default’:5000 }

}"

focus="{{ word.autofocus }}"

pu-elastic-input

class="word"

single

autocapitalize="off"/>

Por último, cada término está escrito en un “input”. Al igual que con la imagen,
ciertos eventos disparan algunas funciones: “ng-change” para los cambios y “ng-keyup”
para cada pulsación. Por otro lado, el contenido se enlaza con la etiqueta “ng-model”.

4.2. Algoritmo principal

Se ha denominado algoritmo principal al encargado de evaluar los cambios en el texto,
generar los posibles términos compuestos, buscarlos en la base de datos e insertarlos en
el texto en caso de que sea necesario.

Se han realizado 3 revisiones del algoritmo, desde la rev. A utilizada en el primer
prototipo vertical que sólo utilizaba la base de datos de términos hasta la rev. D que
usa las bases de datos de términos y conjugaciones. El uso y estructura de las bases de
datos está especificado en el apéndice A.3.2. Los pasos que sigue dicho algoritmo en su
última versión son los siguientes:

1. Crear un contexto que incluya los términos no compuestos, ni vaćıos y que estén en
un radio preestablecido (parámetro del programa) con respecto al término donde
el cambio se ha producido.

2. Generar todos los posibles términos compuestos en el contexto y ordenarlos de
mayor a menor por número de palabras.

3. Para cada uno de los términos generados.

a) Buscar en la base de datos de verbos el término; si está, añadirlo a los re-
sultados, en caso de que no haya ningún otro término de mayor longitud que
incluya las palabras del mismo.

b) Buscar en la base de datos de términos; si está, añadir los pictogramas al
verbo, en caso de que el paso anterior haya obtenido resultados o añadirlo a
los resultados.

4. Para cada resultado.

17

4. Implementación

a) Si el resultado tiene una posición superior a la longitud del texto (el texto
ha variado y ha menguado en tamaño, generalmente por la inclusión de un
compuesto) se añade al final el nuevo término.

b) Si el resultado es igual al elemento del texto con la misma posición no se
modifica.

c) Si el resultado es compuesto se eliminan los términos simples y se introduce
el compuesto en su lugar.

d) Si el resultado es simple y la posición está dentro del contexto se modifica el
término que ya existe en el texto.

e) Si el resultado es simple y la posición está fuera del contexto se añade el
resultado al final del contexto.

En las revisiones A, B y C el algoritmo principal se ejecutaba cada vez que suced́ıa un
cambio en un término (con un debounce de 600ms, es decir, cuando sucede un cambio
y pasan 600ms sin producirse otro) y cuando el cursor abandonaba dicho término. Esto
supońıa serios problemas debido a la asincrońıa de los resultados, ya que los términos de
un cambio anterior pueden llegar posteriormente. Además, también existe otro problema
con el tiempo de debounce, ya que no todas las personas tardan en escribir lo mismo. Aśı
pues se decidió que el algoritmo principal solo se ejecutase cuando el cursor abandonase
el término. De esta manera se evitan los problemas de asincrońıa y de debounce.

4.3. Integración con redes sociales

Para conseguir enviar picto-texto a través de las redes sociales se ha usado la libreŕıa
html2canvas, que permite obtener una imagen de un elemento HTML. De esta manera
se puede capturar todo el documento y compartirlo como una única imagen a través de
cualquier red social.

El principal problema es que los navegadores optimizan el tiempo de carga de las
páginas renderizando sólo los elementos que aparecen en la pantalla. Eso supone que si
el texto ocupa más que la pantalla en la imagen no aparecerá todo el texto, únicamente
la parte renderizada.

Se ha solucionado utilizando el atributo overflow de CSS para forzar el renderizado
completo aśı como un servicio de Ionic que permite hacer scroll para solventar el hecho
de que el atributo CSS solo hace visible el contenido oculto por debajo de la pantalla,
no el que se esconde por encima.

4.4. Env́ıo de documentos

Para mantener la compatibilidad con Araword PC se ha implementado un servicio
denominado parser que se encarga de traducir los documentos de su forma nativa en
JSON al formato común en XML, y viceversa.

18

4. Implementación

Para enviar un documento se utiliza el servicio de parsing con el objetivo de generar
un fichero AWZ y luego se env́ıa a través de cualquiera de los servicios de mensajeŕıa
presentes en el dispositivo. Además se ha asociado el formato AWZ con la aplicación
AWm para permitir abrir los documentos directamente desde el navegador de archivos.

4.5. Documentación

La documentación de usuario se ha realizado en colaboración con los profesores del
CPEE Alborada ya que son ellos los que conocen a los usuarios y mejor pueden generar
dicha documentación.

La documentación técnica se ha creado utilizando JSDoc. En concreto, un plugin
para AngularJS llamado angular-jsdoc, lo que ha permitido generar una documentación
navegable en formato HTML que se ofrece junto a la propia aplicación.

19

5. Pruebas

5.1. Con experto

Contar con un experto desde las fases tempranas del diseño ha permitido no introducir
casi ningún cambio en la interfaz desde el primer prototipo en papel hasta el producto
final.

Se han realizado reuniones mensuales a lo largo de los ocho meses que ha durado el
proyecto, en las que se ha evaluado, por un lado, la usabilidad de la aplicación, y por
otro, el funcionamiento de la misma.

En estas pruebas se utilizan los conocimientos del experto para poder determinar
qué funcionalidades no triviales requiere el usuario. De esta manera se han determinado
requisitos no funcionales como la implementación de un control de accesos o la limitación
de las funcionalidades por parte del administrador.

5.2. Usuarios

Una vez desarrollada la primera versión se entregó a un grupo de una decena de
personas que inclúıan logopedas y personas con concimientos técnicos en el ámbito de
los productos de ayuda a la comunicación. Una vez distribuida se recabó información
enviada por cada uno de los testers y se aplicaron las correcciones pertinentes.

Cuando la aplicación estuvo avanzada, se distribuyó a un grupo mucho más amplio,
de aproximadamente un centenar de personas, todas ellas con experiencia en el cuidado
de gente con discapacidad, logopedas o educadores. Al igual que en el proceso anterior,
se obtuvieron múltiples informes. Los informes y las decisiones tomadas a partir de ellos
se encuentran en el apéndice A.7.

20

6. Cierre del proyecto

6.1. Memoria

La memoria se ha creado utilizando LATEXa través de la plataforma ShareLatex, lo que
ha facilitado el aprendizaje del lenguaje TEX. Se ha generado por separado la memoria
de los apéndices.

6.2. Trabajo pendiente

Se han encontrado diversos obstáculos que no han podido ser superados ya sea por
la dificultad de los mismos o por la falta de tiempo. Se listan a continuación las tareas
pendientes.

Se sugirió la posibilidad de que en caso de escribir un término sin ningún picto-
grama asociado se generase automáticamente una imagen con el propio término.
Se ha intentado usar la misma libreŕıa que para enviar los documentos a través de
las redes sociales pero no se ha conseguido que funcione.

Realizar la compilación para otras plataformas como iOS o Windows Phone. No
se ha hecho porque de momento no existe la posibilidad de distribuir la aplicación
para dichas plataformas en su correspondiente market.

Añadir un método de recuperación de contraseñas que permita recordar la contra-
seña de administrador.

6.3. Conclusiones

Trabajar con una nueva tecnoloǵıa supone un hándicap que no se abandona cuando
aprendes la tecnoloǵıa, ya que es en ese momento cuando te das cuenta de las cosas
que no has hecho correctamente. Reparar los errores conceptuales que se han acarreado
durante el desarrollo debido al desconocimento es muy costoso en tiempo y además no
se plasma en avances en la aplicación.

El prototipado cuando se usan tecnoloǵıas h́ıbridas como Ionic es extremadamente
rápido, pudiendo de esta manera no utilizar herramientas de prototipado. El principal
problema, sobre todo cuando tienes un cliente, es no dar la sensación de tener un produc-
to terminado en una fase temprana. Si consigues mantener las expectativas del cliente

21

https://www.sharelatex.com

6. Cierre del proyecto

dentro de unos ĺımites, tal y como se ha hecho en este proyecto se puede ahorrar mucho
tiempo.

La asincrońıa en JavaScript es un tema realmente complicado y en aplicaciones que
requieren un análisis pesado en tiempo real generan diversos problemas con soluciones
no triviales. Si las tareas son pesadas en cómputo se tiene que mantener la asincrońıa
para no generar una degradación de la experiencia de usuario, en cualquier otro caso es
mejor utilizar funciones śıncronas.

22

Parte II.

PictoServer

23

7. Análisis del problema y diseño de la
solución

7.1. Contexto

Hasta ahora la manera de actualizar el conjunto de pictogramas que utiliza Araword
era mediante un fichero ZIP estático, alojado en un servidor web. Dicho fichero era
generado de manera manual y sustituido completamente con cada actualización. Esto
implica que en Araword tras una actualización toda la información local de los picto-
gramas desaparece.

Con la creación de la aplicación móvil se llegó a la conclusión de que descargar todo
el conjunto de pictogramas para cada actualización, desde un dispositivo móvil, seŕıa
demasiado costoso. Aśı pues se decide diseñar un servicio web que actualice tanto la
aplicación móvil como la de sobremesa.

El servicio de actualización ofrecerá la posibilidad de descargar sólo los pictogramas
que falten en el dispositivo. Además, se podrán añadir pictogramas e idiomas al servidor
a través de un formulario (previa autenticación).

7.2. Análisis tecnológico

Se ha decidido trabajar con el stack MEAN que incluye MongoDB, Express, AngularJS
y Node.js. Se ha elegido esta tecnoloǵıa porque se tiene experiencia con ella y se sabe que
el desarrollo es poco costoso en tiempo. Una breve descripción del stack es la siguiente:

MongoDB: Es un sistema gestor de bases de datos NoSql orientado a documentos.

Express: Es una infraestructura de aplicaciones web Node.js mı́nima y flexible
que proporciona un conjunto sólido de caracteŕısticas para las aplicaciones web y
móviles. [3]

AngularJS: Es una plataforma para el desarrollo de aplicaciones web basada en
JavaScript que implementa el modelo vista controlador.

Node.js: Es un entorno de ejecución para JavaScript orientado al desarrollo de
aplicaciones del lado del servidor.

24

7. Análisis del problema y diseño de la solución

7.3. Diseño del servicio

El servicio tiene que cubrir dos aspectos básicos. Por un lado, actualizar el conjunto de
pictogramas y actualizar los idiomas soportados por la aplicación, con las nuevas bases
de datos de verbos si fuese necesario. Por otro lado, permitir actualizar el conjunto de
pictogramas que provee el propio servicio.

Se han definido dos recursos pictos y languages. Sobre el recurso pictos se ha definido
una operacion download que permite descargar el conjunto de pictogramas añadidos
desde una fecha. La lista completa de endpoints se pueden encontrar en el apéndice B.1.

7.3.1. Pictograma

El pictograma es el recurso básico, contiene la información de todas las palabras
asociadas a un único pictograma aśı como su última fecha de actualización. Esto permite
al servidor filtrar los resultados en función de la fecha que acompañe la petición.

{

"_id" : ObjectId, /* Id interno */

"path" : String, /* Nombre del picto ej: 2001.png */

"date" : ISODate, /* Fecha de última modificación */

"word" : [{

"type" : String, /* Tipo de palabra ej: "verbo" */

"language" : String, /* Idioma ej: "Castellano" */

"value" : String /* El término en si */

}] /* Las palabras asociadas al picto */

}

7.3.2. Language

Al recurso language no se accede de manera individual sino que se solicita la lista
de todos los idiomas. Cada idioma tiene la información necesaria para que la aplicación
funcione correctamente. El nombre largo es necesario para la versión de PC de Araword
mientras que el locale es necesario para usar el text-to-speech de la aplicación móvil.

{

"_id" : ObjectId, /* Id interno */

"code" : String, /* Código de idioma ej: "es" */

"locale" : String, /* Locale ej: "es-ES" */

"long" : String, /* Nombre del idioma ej: "Castellano" */

"haveVerbs": Boolean /* Cierto si hay verbos conjugados */

}

Para acceder a un recurso language antes se consulta la carpeta donde están todas las
bases de datos de verbos conjugados, en caso de que exista la base de datos el atributo
haveVerbs se pone a verdadero. Una base de datos de verbos conjugados contiene todas
las conjugaciones de los distintos verbos en un idioma determinado

25

8. Implementación

La utilización del stack MEAN para desarrollar servicios web está bastante estandari-
zada y no da lugar a la toma de muchas decisiones durante la implementación. Algunos
de los principales problemas que han surgido y sus soluciones se explican a continuación.

8.1. Desbordamientos de pila en traducciones

Uno de los aspectos más importantes de pictoServer es que trabaja con XML y objetos
JSON de gran tamaño, ya que al iniciar el proyecto se contaba con 9306 pictogramas y
unos 139.000 términos, esto ha dado lugar a problemas de desbordamiento de la pila.

Lo que se ha intentado es realizar traducciones parciales e ir escribiéndolas poco a
poco en disco, esto hace que el contenido nunca esté por completo en la RAM y evita
los desbordamientos.

8.2. Ficheros ZIP en memoria

Generar dinámicamente un fichero ZIP con 9306 imágenes es un proceso costoso y
aquellas libreŕıas que crean el fichero completo primero en RAM y luego lo vuelcan a
disco también dan lugar a desbordamientos de la pila.

Para solucionar este problema lo que se ha utilizado el comando zip del sistema
GNU/Linux que funciona por debajo ya que el tiempo de respuesta es much́ısimo mas
pequeño y no genera ningún desbordamiento.

Además con el objetivo de disminuir el tiempo de creación de los ficheros ZIP se ha
decidido mantener siempre un fichero latest.zip que contenga la última versión completa
de los pictogramas, de tal manera que para todo cliente que visite el endpoint sin ninguna
fecha en el parámetro date será como si pidiesen un archivo estático.

Utilizar el comando zip en vez de un módulo en JavaScript nos permite utilizar op-
ciones para añadir contenido al fichero en vez de generarlo de nuevo, lo cuál también
reduce el tiempo de compresión cada vez que se añaden nuevos pictogramas al servidor.

8.3. Actualización del conjunto de pictogramas

Para actualizar los pictogramas del servidor se ha creado un frontend que se ha alojado
en el mismo servidor. Se dispone de un formulario con dos entradas, una para el fichero
ZIP que contenga únicamente los pictogramas y otro para un fichero XSLX con la

26

8. Implementación

información de los pictogramas. La descripción detallada de cómo debe ser el XSLX está
en el apéndice B.2.

27

9. Pruebas

9.1. Pruebas de desarrollo

Durante el desarrollo de los endpoints se han ido realizando múltiples pruebas. Para
ello se ha utilizado la herramienta Postman, un complemento de Google Chrome, que
nos permite realizar peticiones GET, POST, PUT y DELETE.

Se han realizado pruebas de carga para determinar qué cantidad de trabajo
puede suponer una cáıda del sistema o una degradación de las prestaciones.

Pruebas de caja negra para comprobar que ningún valor de los parámetros en los
endpoints hace caer el servidor.

Durante la fase de pruebas se observó que el proceso cŕıtico es el de creación del nuevo
fichero latest.zip que contiene la última versión de los pictogramas. Tras la optimización
descrita en la Sección 8.2 se ha reducido el uso de memoria del servidor, evitando aśı la
cáıda del mismo durante el proceso.

9.2. Pruebas con usuarios

Aunque en la primera fase de pruebas los pictogramas de Araword se inclúıan en el
propio APK, a partir de la versión 0.0.4 se integró el servidor de pictogramas, por lo
que todas las pruebas con usuarios de Araword se han sustentado en el conjunto de
pictogramas de pictoServer.

Además, se solicitó a los usuarios que instalasen la aplicación al mismo tiempo, para
conseguir el máximo número de descargas simultaneas. Ninguno de los informes ha
reportado algún problema con el servidor, por lo que podemos considerar que responde
correctamente.

Por otro lado, desde la versión 0.1.13, se ha añadido la funcionalidad de actualizar
pictogramas que no solo utiliza el endpoint /pictos/download sino que además consulta
los idiomas soportados para determinar si se ha de descargar una nueva base de datos
de verbos conjugados o no, y si se ha de añadir un idioma a la tabla Languages. A pesar
del incremento de tráfico entre el servidor y las aplicaciones no se ha recibido ningún
informe negativo.

28

10. Cierre del proyecto

10.1. Memoria

La memoria se ha creado utilizando LATEXa través de la plataforma ShareLatex lo que
ha facilitado el aprendizaje del lenguaje TEX. Se ha generado por separado la memoria
de los apéndices.

10.2. Trabajo pendiente

En cuanto al trabajo a realizar, se han definido ciertas tareas que se han de terminar
en un futuro, algunas de ellas por temas de seguridad y otras por temas de usabilidad:

Modificar las cabeceras de CORS que env́ıa el servidor para acomodar los permisos
al uso habitual del servidor.

Crear un conjunto de pruebas automáticas de los endpoints para evitar la compro-
bación manual tras cada modificación o parche del servidor.

Modificar el frontend para permitir la creación de usuarios por parte de usuarios
previamente autenticados.

10.3. Conclusiones

El desarrollo de servicios web utilizando el stack MEAN es rápido y cuando se tiene
experiencia, poco costoso. A pesar de ello, en el momento en el que se tienen que realizar
tareas no habituales, como puede ser la compresión de ficheros muy grandes o el tra-
tamiento de objetos JSON muy grandes, buscar soluciones supone un coste en tiempo
alt́ısimo.

29

https://www.sharelatex.com

11. Gestión de proyecto

Se ha utilizado GitHub como repositorio de código, se ha mantenido de manera privada
hasta tener una versión estable de la aplicación. En cuanto al repositorio documental se
ha utilizado DropBox, lo cual ha garantizado la persistencia de las actas de las reuniones
aśı como los diagramas, bocetos y el cuaderno de bitácora, donde quedan reflejadas todas
las horas invertidas.

11.1. Distribución temporal

El tiempo del proyecto se ha repartido en las siguientes tareas:

Estudio de Araword (8h).

Aprendizaje de la tecnoloǵıa (28h).

Desarrollo del prototipo software (16h).

Análisis, diseño e implementación de AWm (110h).

Análisis, diseño e implementación de pictoServer (80h).

Reuniones con el director y el logopeda (15h).

Creación de la documentación técnica (19h).

Escritura de la memoria (30h).

En total el tiempo dedicado al proyecto ha sido de 306 horas, concentradas en su
mayoŕıa en el desarrollo de AWm y pictoServer.

30

https://github.com
https://dropbox.com

Bibliograf́ıa

[1] Arasaac. sistemas aumentativos y alternativos de comunicación. http://arasaac.

org/aac.php. Accessed: 2016-08-2.

[2] Catedu. http://aratools.catedu.es/araword/#quees. Accessed: 2016-08-30.

[3] Expressjs. http://expressjs.com/es/. Accessed: 2016-08-6.

[4] Wikipedia. https://es.wikipedia.org/wiki/Modelo-vista-controlador. Ac-
cessed: 2016-08-30.

31

http://arasaac.org/aac.php
http://arasaac.org/aac.php
http://aratools.catedu.es/araword/#quees
http://expressjs.com/es/
https://es.wikipedia.org/wiki/Modelo-vista-controlador

	Introducción
	Conocimientos previos
	Sistemas aumentativos y alternativos de comunicación (SAACs)
	Pictograma
	Araword

	Objetivos del proyecto

	Araword
	Análisis del problema
	Requisitos
	Araword
	¿Cómo funciona?
	Documentos AWZ

	Paradigmas
	Desarrollo nativo
	Desarrollo multi-plataforma
	Desarrollo web
	Desarrollo híbrido
	Conclusión

	Tecnología

	Diseño de la solución
	Prototipado
	En papel
	Software

	Esquemas
	Estructural

	Representación de la información
	Modelo del término
	Modelo/vista del documento

	Implementación
	Vista principal (MVC)
	Algoritmo principal
	Integración con redes sociales
	Envío de documentos
	Documentación

	Pruebas
	Con experto
	Usuarios

	Cierre del proyecto
	Memoria
	Trabajo pendiente
	Conclusiones

	PictoServer
	Análisis del problema y diseño de la solución
	Contexto
	Análisis tecnológico
	Diseño del servicio
	Pictograma
	Language

	Implementación
	Desbordamientos de pila en traducciones
	Ficheros ZIP en memoria
	Actualización del conjunto de pictogramas

	Pruebas
	Pruebas de desarrollo
	Pruebas con usuarios

	Cierre del proyecto
	Memoria
	Trabajo pendiente
	Conclusiones

	Gestión de proyecto
	Distribución temporal

