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Carbonatación mineral de cenizas de escombrera para 

captura de CO2  

RESUMEN 

Este proyecto se enmarca dentro de las actividades de I+D que la empresa 

Carbonífera Energía pretende emprender de manera paralela a la instalación de 

una central térmica para la valorización energética de residuos de mina de la 

cuenca de Mequinenza. El objetivo principal de este trabajo es la captura de CO2 

mediante carbonatación mineral con cenizas procedentes de la combustión de 

carbón y escombrera mediante carbonatación en vía húmeda. El uso de cenizas 

para la captura de CO2 viene determinado por su contenido en calcio. Las cenizas 

procedentes de Mequinenza poseen unos contenidos de CaO notables, en torno al 

30% en peso, algo sumamente inusual incluso en residuos minerales de gran 

alcalinidad. 

Inicialmente se llevó a cabo la caracterización de las cenizas tanto de 

carbón como de escombrera mediante la aplicación de diversas técnicas de 

caracterización: análisis del tamaño de partícula, inmediato, elemental y del poder 

calorífico, ICP, TGA y SEM-EDX. La captura de CO2 mediante carbonatación de 

cenizas por vía húmeda se realizó borboteando el gas sobre una mezcla cenizas-

agua sometida a agitación. La capacidad de carbonatación de las cenizas se 

cuantificó mediante TGA. Las variables estudiadas fueron: temperatura, tiempo, 

volumen de disolución, pH, [NaCl] y [EDTA]. Debido al elevado número de variables 

de operación, a los amplios rangos de estudio y a los posibles efectos cruzados 

entre las diferentes variables se realizó un diseño experimental a través de la 

herramienta informática “The Unscrambler X”. 

Las principales conclusiones extraídas de este estudio se resumen a 

continuación. A temperaturas altas la lixiviación del calcio de la matriz de las 

cenizas es más rápida pero la solubilidad del CO2 en la disolución disminuye. El 

tiempo presenta un comportamiento asintótico, se observó que tiempos de 30 

minutos eran suficientes para capturar un alto porcentaje de CO2. Asimismo se 

advirtió que una disminución del volumen genera un aumento de conversión. 

Finalmente se determinó que valores bajos de pH se oponen a la disolución de CO2 

y que el aumento de [NaCl] y [EDTA] no favorecía la carbonatación. Una vez 

realizado el estudio inicial, se llevó a cabo un estudio de optimización mediante el 

método Simplex modificado. Se observó que el pH originaba una gran variación. 

Por último se realizaron experimentos cruzados entre las condiciones óptimas 

obtenidas para las cenizas de ambos combustibles (carbón y escombrera). 
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1.1 ESTADO DEL ARTE 

El dióxido de carbono (CO2), junto al vapor de agua y otros gases, es uno de 

los gases de efecto invernadero (G.E.I.) que contribuyen a que la Tierra tenga una 

temperatura tolerable para la biomasa. Por otro lado, un exceso de dióxido de 

carbono acentúa el fenómeno conocido como efecto invernadero, reduciendo la 

emisión de calor al espacio y provocando un mayor calentamiento del planeta. 

Las grandes fuentes puntuales de CO2 comprenden a las instalaciones de 

combustibles fósiles o de energía de la biomasa de grandes dimensiones, 

principales industrias emisoras de CO2. Las emisiones de las centrales eléctricas 

son responsables del 35% de las emisiones de CO2 de todo el mundo [1]. 

La firma del Protocolo de Kyoto a finales de 1997 comprometía a los países 

industrializados a limitar sus emisiones de G.E.I. La Unión Europea (UE) estableció 

para sus países miembros un reparto de cargas, para cumplir el compromiso, que 

implicaba una reducción conjunta del 8% para el periodo 2008-12 respecto de los 

niveles de 1990 para los siguientes seis gases: dióxido de carbono, metano, óxido 

nitroso, hidrofluorcarburos, compuestos perfluorinados y hexafluoruro de azufre 

(CO2, CH4, N2O, HFC, PFC y SF6). Para España se permitía un incremento de las 

emisiones del 15% respecto a los niveles de 1990. Sin embargo, la evolución de las 

emisiones de G.E.I. en España se ha distanciado notablemente del objetivo 

marcado por la Directiva Europea. En 2006 las emisiones de los seis gases 

considerados por el Protocolo fueron un 54% superiores a las de 1990, lo que nos 

aleja considerablemente de los objetivos a alcanzar en 2008-2012. España es el 

país de la Unión Europea que más se aleja de los objetivos de reducción de 

emisiones de CO2 para cumplir el Protocolo [2].  

Resulta evidente que las actuaciones realizadas en los últimos años no han 

sido suficientes para controlar el fuerte aumento experimentado en las emisiones. 

Entre las medidas llevadas a cabo, destaca el Plan Nacional de Asignación de 

Emisiones, mediante el cual se ha dado cumplimiento a la directiva 2003/87/CE 

sobre el mercado de derechos de emisión, que obliga a determinados sectores a 

controlar sus emisiones de CO2 desde el 1 de enero de 2005 [3]. 

Otras opciones de mitigación comprenden la mejora de la eficiencia 

energética, la preferencia de combustibles que dependan menos intensivamente del 

carbono, la energía nuclear, las fuentes de energía renovables, el 

perfeccionamiento de los sumideros biológicos y la reducción de las emisiones de 

gases de efecto invernadero diferentes del CO2 [4].  

http://es.wikipedia.org/wiki/Vapor_de_agua
http://es.wikipedia.org/wiki/Gas_de_efecto_invernadero
http://es.wikipedia.org/wiki/Tierra
http://es.wikipedia.org/wiki/Temperatura
http://es.wikipedia.org/wiki/Efecto_invernadero
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Además se intentan desarrollar otras actuaciones como la captación y el 

almacenamiento de CO2 (CAC), que constituye un proceso consistente en la 

separación del CO2 emitido por la industria y fuentes relacionadas con la energía, 

su transporte a un lugar de almacenamiento y su aislamiento de la atmósfera a 

largo plazo. Existen diferentes tipos de sistemas de captación de CO2, 

esquematizados en la figura 1: post-combustión, pre-combustión y combustión 

oxifuel [5].  

 

-. Figura 1: Representación sistemática de los sistemas de captura de CO2 [3].- 

 
Los sistemas de captación post-combustión separan el CO2 de los gases 

producidos por la combustión convencional. Una amplia gama de adsorbentes se 

han desarrollado para la captura de CO2 en post-combustión. Para darse la 

adsorción química son necesarias condiciones a baja presión. Adsorbentes 

poliméricos inmovilizados basados en aminas proporcionan la mejor capacidad de 

adsorción de CO2 a la temperatura de los gases de combustión, por ello es la 

tecnología comercial más usada en los sistemas de captación de CO2 post-

combustión [6]. 

Por otra parte la tecnología requerida para la captación en pre-combustión 

se aplica de forma generalizada a la producción de hidrógeno. Los sistemas de 

captación pre-combustión procesan el combustible primario en un reactor con vapor 

y aire u oxígeno para producir una mezcla que consiste, principalmente, en 

monóxido de carbono e hidrógeno (“gas de síntesis”). Mediante la reacción del 

monóxido de carbono con el vapor en un segundo reactor (un “reactor de 

conversión”) se produce hidrógeno adicional y CO2. Entonces, la mezcla resultante 
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de hidrógeno y CO2 puede separarse en un flujo de gas de CO2 y un flujo de 

hidrógeno. Si bien las fases iniciales de la conversión del combustible en el sistema 

pre-combustión son más complejas y costosas, las concentraciones más altas de 

CO2 en el flujo de gas y la presión más elevada facilitan la separación [7]. 

La oxicombustión está en fase de demostración y utiliza oxígeno en lugar de 

aire para la combustión del combustible primario con objeto de producir un gas de 

combustión compuesto principalmente por vapor de agua y CO2. Esto da origen a 

un gas de combustión con altas concentraciones de CO2 (de más del 80 por ciento 

en volumen). Entonces, el vapor de agua es sustraído mediante el enfriamiento y la 

compresión del flujo de gas, y, por tanto, da lugar a una separación más fácil del 

CO2, así como a mayores necesidades energéticas para separar el oxígeno del aire 

[8]. 

 

-. Figura 2: Diagrama sistemático de los posibles sistemas de CAC [3].- 

 

Tras la captura del CO2 se procedería a su almacenamiento. Los posibles 

métodos técnicos de almacenamiento son (figura 2): almacenamiento geológico (en 

formaciones geológicas, como los yacimientos de petróleo y gas, las capas de 

carbón inexplotables y las formaciones salinas profundas), almacenamiento 

oceánico (liberación directa en la columna de agua oceánica o en el fondo 

oceánico) y la fijación industrial de CO2 en carbonatos inorgánicos (la carbonatación 

mineral se refiere a la fijación de CO2 mediante el uso de óxidos alcalinos y 

alcalinotérreos, como es obvio la capacidad de secuestrar CO2 depende 

directamente de la concentración de estos óxidos (CaO y MgO)) [9]. 
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Se cuenta con relativamente poca experiencia en la combinación de la 

captación, el transporte y el almacenamiento de CO2, en un sistema de CAC 

plenamente integrado. La utilización de la CAC para centrales eléctricas a gran 

escala (la aplicación potencial de mayor interés) aún no se ha llevado a la práctica 

[10]. 

1.2. DESCRIPCIÓN GENERAL DEL PROYECTO 

El proyecto se encuentra dentro de las actividades de investigación y 

desarrollo (I+D) que la empresa Carbonífera Energía pretende emprender de 

manera paralela a la instalación de una central térmica para la valorización 

energética de residuos de mina de la cuenca de Mequinenza (Zaragoza). El objetivo 

del plan de I+D que acompaña a la central es la captura de una fracción relevante 

del dióxido de carbono producido, mediante la carbonatación mineral con cenizas 

producida en la combustión, y la disposición permanente del material carbonatado 

en las propias minas (figura 3). 

 

-. Figura 3: Flujos de materiales y fases previos a la carbonatación mineral [11].- 

 
Debido a la constitución de las minas de Mequinenza el carbón se produce 

mezclado con roca caliza, su utilización en centrales térmicas ha requerido por 

tanto su lavado, es decir, la separación del mineral útil.  Ello ha generado millones 

de toneladas de escombrera, esta no solo es materia inerte, sino que incorpora una 

fracción importante de material carbonoso y una cantidad de material volátil, esto 

quiere decir que el material de escombrera se quema con gran facilidad y constituye 

así un tipo de residuo problemático.  Debido a ello, este tipo de residuos tampoco 

puede usarse directa y masivamente para restauración de terrenos (landfill) sino se 
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inertiza previamente de algún modo, ya que se correría el riesgo de un incendio 

subterráneo [12]. 

Otros efectos de la piedra caliza que incorpora el carbón de Mequinenza es 

que actúa como sorbente del dióxido de azufre producido en la combustión, 

calcinándose y formando sulfato cálcico sólido [13].  La central, con una tecnología 

extremadamente versátil, tendrá unas emisiones muy bajas tanto de dióxido de 

azufre como de óxidos de nitrógeno, partículas y otros contaminantes y efluentes. 

Pero aún así, el efecto sobre el medio ambiente no será nulo. Las cenizas, si bien 

inertizadas y en cantidad reducida seguirán constituyendo un volumen formidable 

de material sólido residual para su disposición, y finalmente como toda central de 

combustión fósil, la de Mequinenza de 37 MWe emitirá importantes cantidades de 

CO2 a la atmósfera, unas 400.000 t/año [14]. 

En este proyecto se va a intentar dar una respuesta responsable a esta 

coyuntura desfavorable, con un doble objetivo, en primer lugar utilizar una 

instalación para valorizar, inertizar y restaurar las escombreras de carbón 

acumuladas en la zona. Y en segundo lugar conseguir una captura y disposición 

permanente de un alto porcentaje del CO2 de chimenea. La figura 4 muestra un 

esquema de la operación de gestión de carbón en una central térmica cerca de las 

minas, para conseguir acercarse a una central de “emisiones cero” debido a la 

proximidad de todas las instalaciones involucradas [15]. 

 

-. Figura 4: Integración de la captura de CO2 en una central de carbón [15].- 

 

Las cenizas extraídas de la caldera de Combustión en Lecho Fluido 

Circulante (CLFC) que se instalará en la central térmica de Mequinenza poseerán 

unos contenidos de óxido de calcio notables, debido a la caliza que se encuentra 

con el carbón [16]. Estas cenizas debido a la carbonatación, o reconstitución del 

carbonato cálcico original, absorberán con ello una parte del CO2 sin necesidad de 
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separarlo del resto de los gases de combustión. Esto se cree que será factible con 

alto rendimiento por vía húmeda o en vía seca a temperaturas elevadas [17]. 

La alternativa de la carbonatación en vía seca supone hacer atravesar los 

gases de combustión por un reactor gas-sólido (previsiblemente, y dado el nivel 

térmico, de lecho fluidizado), alimentado en continuo por el material de las propias 

cenizas [18]. La carbonatación se consigue por sorción química sin necesidad de 

aporte de agua en el proceso. En este caso, el agua se utilizaría para humectar las 

cenizas ya carbonatadas, antes de su inyección en la mina. La ventaja de la 

carbonatación en vía seca es que ya se ha probado con éxito a tamaños 

semiindustriales. El inconveniente sería la necesidad de adecuar las cenizas al nivel 

de temperatura requerido para la carbonatación, en torno a los 675 ºC, lo que 

conllevaría modificaciones en los sistemas de extracción del proyecto actual de la 

caldera de Mequinenza. Por otro lado, el desarrollo tecnológico sería menos 

novedoso, la configuración de una planta con esta alternativa fue propuesta in 1999 

por Shimizu y cols. [19, 20].  

La vía húmeda supone humectar las cenizas y retenerlas en un medio 

acuoso, formando un barro o slurry que se pone en contacto con la corriente 

portadora de CO2, los gases de combustión. El medio acuoso sirve para facilitar la 

transferencia iónica entre los gases y sólidos disueltos, habiéndose experimentado 

para materias con menores contenidos en óxido de calcio que los existentes en 

Mequinenza. A priori, las ventajas de la carbonatación en medio húmedo son su 

mayor facilidad de integración en el proyecto de central térmica diseñada, sin 

requerir cambios relevantes de diseño de caldera, y el menor nivel de temperatura 

requerido para el proceso. La principal incertidumbre es que se trata de un proceso 

poco probado hasta el momento, limitándose a aplicaciones y experimentos de muy 

pequeña escala en laboratorio, en condiciones muy bien controladas y poco 

representativas de una instalación industrial [16]. No obstante, esto abre la 

posibilidad de presentar una solución completamente novedosa, que podría 

convertirse en un referente a nivel internacional. Por ello se opta en este proyecto 

por estudiar este método de carbonatación. 

La carbonatación mineral en medio acuoso se caracteriza por su aplicación 

a menores temperaturas y por la humectación de las cenizas, previa a la captura 

del dióxido de carbono. El uso de cenizas volantes para secuestro de CO2 viene 

determinado por su contenido en calcio. Es el hidróxido de calcio obtenido tras la 

humectación de las cenizas el que reacciona finalmente con el dióxido de carbono 

[21], tal y como se representa en las reacciones (1) y (2). 
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  CaO + H2O →  Ca(OH)2              (1) 

   Ca(OH)2 + CO2 → CaCO3 + H2O  (∆H = - 182,1 KJ/mol)    (2)  

Asimismo, para activar la reacción de carbonatación de las cenizas se 

podrían utilizar soluciones ricas en sodio como carbonatos sódicos, ácidos de 

carbonato sódico y cloruro de sodio [22]. El objetivo principal de la mayoría de los 

autores consiste en maximizar la conversión de reacción mediante una cuidada 

selección de las condiciones a las que ésta tiene lugar, principalmente tamaño de 

partícula y temperatura [23].  

 

1.3. OBJETIVOS 

La presente memoria se ciñe a actividades experimentales realizadas en el 

Instituto de Carboquímica (CSIC), como caracterización de cenizas y el ensayo del 

comportamiento de esas cenizas en laboratorio, para definir el proceso de 

carbonatación mineral en medio acuoso. Los resultados de estas actividades 

permitirán especificar las condiciones de operación para conseguir la máxima 

eficacia en la carbonatación mineral de las cenizas de Mequinenza. Los objetivos 

específicos de este proyecto son los siguientes: 

 
 Caracterización de las cenizas obtenidas del carbón y de la escombrera 

de la mina de Mequinenza, mediante técnicas como la difracción de 

rayos X (XRD), el análisis inmediato y elemental, la espectrometría de 

emisión óptica con fuente de plasma de acoplamiento inductivo (ICP-

OES), el microscopio electrónico de barrido (SEM) y el análisis de 

tamaño de partícula por dispersión de luz. 
 
 Diseño, montaje y puesta a punto del sistema experimental para el 

estudio de captura de CO2 mediante la carbonatación mineral de cenizas 

volantes. 
 
 Cuantificar la influencia de las principales variables de operación sobre 

la capacidad de carbonatación de las cenizas, y en particular, volumen 

de disolución, pH, tiempo y temperatura. 
 
 Análisis y discusión de los resultados experimentales obtenidos con 

objeto de definir las condiciones óptimas para capturar CO2 mediante la 

carbonatación mineral de cenizas de carbón y escombrera de 

Mequinenza.  
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2.1 COMBUSTIBLE 

Para llevar a cabo los experimentos que se presentan a lo largo del proyecto 

se utilizó una fracción de carbón y otra de escombrera procedente de Mequinenza. 

En primer lugar, previo a comenzar los experimentos de carbonatación, se 

realizó la caracterización de los combustibles de partida. Estos combustibles 

poseían una humedad relativamente alta, de 12,85% wt. y 14,66% wt., en la 

escombrera y carbón respectivamente. La humedad fue determinada según la 

norma ISO 589-2008 (anexo C).  

En la tabla 1 se presenta el análisis elemental e inmediato (anexo B) en 

base seca (b.s.). También se muestra el poder calorífico superior a volumen 

constante (PCSv) y el poder calorífico inferior a presión constante (PCIp) de ambos 

combustibles. 

-. Tabla 1: Análisis elemental e inmediato de los combustibles en b.s. (% en peso).- 

Parámetro Carbón Escombrera Norma 

Cenizas 48,20 58,34 ISO 1171-1976 

Volátiles 37,73 32,66 ISO 5623-1974 

C fijo 14,07 9,01 Por diferencia 

C 34,81 23,99 

Analizador Carlo Erba-1108 
N 0,52 0,38 

S 5,87 2,79 

H 0,89 0,09 

PCSv 2688 kcal/kg 1416 kcal/kg 
ISO 1928-2009 

PCIp 2641 kcal/kg 1409 kcal/kg 

 

De la tabla anterior cabe destacar que el poder calorífico mostrado por los 

combustibles es bajo, el poder calorífico de un carbón oscila normalmente entre 

4000 y 8000 kcal/kg [24]. Además son combustibles difíciles de manejar por su alto 

contenido en volátiles. 

Se realizó el tamizado del combustible y se seleccionó la fracción 

comprendida entre 0,8 y 1,4 mm de diámetro de partícula, ya que ésta es la 

utilizada a escala industrial en la caldera CLFC de Mequinenza.  

Con objeto de determinar el comportamiento del carbón en la mufla se 

realizó un análisis termogravimétrico (figura 5), donde se puede observar el cambio 

de peso y el flujo de calor frente a la temperatura. Se advierte que la muestra se 

calcina entre 200 y 600 ºC generando un proceso exotérmico. 
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Una vez tamizados los combustibles se realizó una calcinación en mufla a 

850 ºC durante 2 horas.  

 

-. Figura 5: Termograma de una muestra de carbón (0,8< Øp <  1,4 mm).- 

 

2.2 CENIZAS 

En ensayos reales anteriores realizados con carbón de Mequinenza en una 

planta piloto para estudios de reactividad [25], se observó que la granulometría de 

las cenizas obtenidas en los filtros de partículas era menor que 100 μm. Además 

Bociocchi y cols. [26] determinaron que una reducción de tamaño de partícula 

mediante una molienda previa aumenta la reactividad de la caliza. Por ello se 

decidió, para realizar el presente estudio, moler las cenizas obtenidas en la mufla 

hasta un diámetro de partícula máximo de 125 μm. 

Las cenizas de los combustibles se caracterizaron mediante un análisis 

elemental y espectrometría de emisión óptica con fuente de plasma de 

acoplamiento inductivo (ICP-OES) (anexo B) para conocer su composición (tabla 2). 

-. Tabla 2: Composición elemental de las cenizas de los combustibles (% en peso).- 

Parámetro Carbón Escombrera 

C 0,27 0,28 

H 0,04 0,08 

N 0,03 0,03 

S 7,07 5,55 

Ca 24,85 30,51 
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Se observa que el calcio presente en la escombrera es mayor que en el 

carbón, al contrario sucede con el azufre. 

Con el fin de asegurarse que el Ca observado en las cenizas mediante el 

ICP-OES se encontraba formando el CaO necesario para la captura de CO2 se 

utilizó la técnica de difracción de rayos X (XRD) (anexo B). En el difractograma de 

XRD (figura 6) se observan las fases cristalinas de las cenizas de escombrera, 

compuestas por cal (CaO), cuarzo (SiO2) y anhidrita (CaSO4). El sulfato procede del 

azufre orgánico y pirítico del combustible, que se oxida y se combina con calcio 

para formar la anhidrita [27]. A continuación se muestra la reacción de sulfatación 

(3) y (4) [28]:  

CaCO3 →  CaO + CO2 ↑  ∆H = 182,1 kJ/mol   (3)    

CaO + SO2 + 1/2O2  →  CaSO          ∆H = - 418,4 kJ/mol   (4) 

 
 

-. Figura 6: Difractograma de las cenizas de escombrera.- 

 
En el difractograma de XRD (figura 7) se observa como las cenizas de 

carbón se encuentran al igual que las de escombrera compuestas por cal (CaO), 

cuarzo (SiO2) y anhidrita (CaSO4). 

 
 

-. Figura 7: Difractograma de las cenizas de carbón.- 
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Una vez conocidos los compuestos principales (figura 6 y 7) y la 

composición elemental (tabla 2) se calcula la composición de las cenizas (tabla 3). 

El porcentaje de anhidrita se ha determinado en base al azufre disponible en 

la muestra (tabla 2), considerando que este se encuentra formando el sulfato de 

calcio. El porcentaje de la cal se ha calculado en función del calcio libre, es decir, el 

que no se encuentra como anhidrita. Finalmente el cuarzo se obtuvo balanceando 

los tres compuestos al 100%. 

-. Tabla 3: Composición de las cenizas de los combustibles.- 

 Composición (% peso) 

Compuesto g / mol Carbón Escombrera 

Anhidrita (CaSO4) 135,15 30,01 23,56 

Cal (CaO) 56,08 22,41 32,98 

Cuarzo (SiO2) (por ajuste del balance) 47,58 43,45 

 

Con el objetivo de observar la morfología de las cenizas y determinar si 

existen impedimentos estéricos para la carbonatación se caracterizaron mediante 

microscopía electrónico de barrido y espectroscopía de dispersión de rayos X 

(SEM-EDX) (anexo B). En la figura 8 se muestra la morfología de algunas partículas 

de las cenizas de escombrera y concretamente de una de ellas (imagen de la 

derecha) y debajo la composición elemental de un segmento de esa partícula, a 

partir de la cual se puede determinar la existencia de calcio en superficie. 

  

 

-. Figura 8: SEM de cenizas de escombrera.- 
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 Finalmente se estudió el comportamiento de las cenizas a través de un 

análisis termogravimétrico (figura 9 y 10). Se observa que las pérdidas de peso son 

insignificantes. El método aplicado fue el que se usó posteriormente para el análisis 

de las cenizas resultantes en cada experimento y que se describe en detalle en el 

apartado 3.3.  

 

 
 

-. Figura 9: Termograma de una muestra de cenizas de carbón.- 

 

 

 
 

-. Figura 10: Termograma de una muestra de cenizas de escombrera.- 
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3.1. DIAGRAMA DE FLUJO 

 
Para llevar a cabo los experimentos de carbonatación mineral de cenizas 

volantes para captura de CO2 se realizó el diseño y montaje de la planta que se 

esquematiza en la figura 11. 

 

 

 

 

-. Figura 11: Diagrama de flujo.- 

 
3.2. DESCRIPCIÓN  DEL SISTEMA EXPERIMENTAL 

 
Como se puede observar en la figura 11 el sistema experimental se 

encuentra compuesto por cuatro etapas: carbonatación mineral de las cenizas de 

carbón y escombrera, decantación de las cenizas carbonatadas, secado de las 

mismas y su posterior análisis mediante termogravimetría.  

A continuación se describen brevemente los principales equipos utilizados 

en el sistema experimental. 

Rotámetro. El rotámetro de la marca “ABB Ltd”, es un tubo de vidrio, con 

cuerpo de acero inoxidable, resistente a la corrosión e indica de forma visual el 

caudal de un líquido o de un gas sobre una escala lineal. Este fue calibrado para un 

rango de caudales de 0 a 117 cm3/min de CO2. 

Placa calefactora con agitador magnético. Esta placa de la marca 

“Barnstead Thermolyne Super-Nova” consta de una plataforma de cerámica de alta 

resistencia química, de un sensor externo para controlar la temperatura (termopar 

de tipo K) y de un imán magnético multiposición para agitar la disolución a unas 

determinadas revoluciones por minuto (rpm), lo que permite mantener una 
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disolución a una temperatura y una agitación contante. Trabaja en un rango de 

temperatura desde temperatura ambiente hasta 370 ºC y en un rango de agitación 

de 50 a 1200 ± 1 rpm. 

Borboteador fritado. El borboteador “vidra FOC” 647/01 y 649/01 está 

compuesto por dos piezas: el frasco de 125 ml que va a contener la disolución 

absorbente, y la cabeza superior con difusor de placa de vidrio fritado, para 

aumentar la superficie de contacto con la disolución absorbente e incrementar de 

esta manera la velocidad de difusión del CO2 en la solución. 

Baño térmico. Se utilizó un vaso de precipitados de 1000 ml lleno de agua o 

glicerina según la temperatura del experimento. Se introduce el termopar de la 

placa y el borboteador, para mantener la disolución absorbente a una temperatura 

determinada, tal y como se observa en la figura 12. 

 

-. Figura 12: Carbonatación de las cenizas.-  

Estufa de vacío. Se utilizó una estufa de la marca “GallenKamp Vacuum 

Oven”, que puede alcanzar temperaturas de hasta 200 ºC a través del controlador 

de temperatura hidráulico. Posee un circuito independiente de seguridad de exceso 

de temperatura el cual protege muestras sensibles de un exceso de calefacción. Un 

manómetro de vacío y dos válvulas de aguja con conectores de tubo son 

convenientemente situados en el panel frontal al que se encuentra conectada una 

bomba  de vacío, se muestra en la figura 13a. 

Bomba  de vacío: La bomba “LABOXACT” es resistente a sustancias 

químicas. Consta de una placa de base, un condensador, un vacuómetro digital y 

una válvula de seguridad y de aireación (figura 13b). 
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-. Figura 13: Secado de las cenizas carbonatadas. Estufa (a) y bomba de vacío (b).- 

Una balanza de análisis termogravimétrico (TGA) o termobalanza: Se utilizó 

una termobalanza horizontal “SDT Q600 de TA Instrument” (figura 14) que  

proporciona mediciones reales de cambio de peso (TGA) y de flujo de calor (DSC) 

de una muestra, en un intervalo de temperatura ambiente hasta 1500°C. La unidad 

cuenta con un horno de control preciso de temperatura, una termobalanza de alta 

confiabilidad, un sistema de gases de purga que incluye el controlador de flujo 

másico y automatización avanzada a través de software específico (anexo B). 

 

-. Figura 14: Análisis de las cenizas carbonatadas secas, TGA.- 

 

3.3. PROCEDIMIENTO EXPERIMENAL 

 
Se describe a continuación la metodología experimental utilizada para el 

desarrollo de los experimentos de captura de CO2 mediante carbonatación de 

cenizas volantes. 

En primer lugar se carga el borboteador con un gramo de cenizas del 

combustible deseado (carbón o escombrera), y posteriormente se adiciona el 

volumen de disolución correspondiente, preparada con distintos reactivos (anexo A) 

según el pH que se requiera (tabla 4). El pH es ajustado con disoluciones 0,1M de 

a 

b 
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hidróxido de socio o ácido clorhídrico, en función de la necesidad de aumentar o 

disminuir el pH respectivamente. 

-. Tabla 4: Disoluciones tampon 0,1M utilizadas según el pH requerido.- 

pH Compuestos 

2 - 5 Ácido cítrico 

5 – 6 Ácido acético - Acetato de sodio 

6 – 8 Imidazol 

8,5 – 10 Tetraborato de sodio 

9 - 10 Carbonato de sodio - Hidrogenocarbonato de sodio 

10 – 12,5 Carbonato de sodio 

13 Hidróxido de sodio 
 
 

Una vez que el baño ha alcanzado la temperatura de reacción, se introduce 

el borboteador y mediante el uso de un rotámetro se alimenta la corriente gaseosa 

de CO2. Para mantener las cenizas del combustible en suspensión y facilitar el 

contacto sólido-líquido se aplica agitación. 

Transcurrido el tiempo de reacción, se extrae la disolución resultante que se 

vierte sobre un vial, y se deja en reposo durante 15 min aproximadamente, 

decantando de este modo las cenizas carbonatadas. Posteriormente se elimina el 

agua remanente y las cenizas obtenidas se secan en estufa a 60 ºC y un vacío de 

300 mbar, con el fin de eliminar la mayor cantidad de humedad posible. 

El análisis del producto obtenido se realiza mediante termogravimetría, 

siguiendo el método que se muestra en la figura 15.  

 

-. Figura 15: Termograma de las cenizas de carbón carbonatadas (experimento 

E18).- 
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Como se puede observar en la figura 15, existen tres pérdidas de peso 

diferentes. La primera de ellas, hasta 100ºC, es causada por la pérdida de 

humedad. La segunda de ellas, sobre los 400ºC, vendrá provocada por la pérdida 

de los OH- del Ca(OH)2 [29]. Finalmente, la tercera pérdida de peso, entre 550 y 

900ºC, se correspondería con la descarbonatación de las cenizas, ya que es en 

este intervalo de temperaturas en el que se produce la descomposición térmica del 

carbonato de calcio [30]. 

El resultado obtenido a través de la termogravimetría se encuentra en base 

húmeda, sin embargo, para poder comparar los resultados de los diferentes 

experimentos, éste se transforma a base seca según la ecuación que se presenta a 

continuación. 

humedad

hbCO
sbCO

%100

100.)·.(%
.).(% 2

2

 

 
3.4. DISEÑO EXPERIMENTAL 

 
En esta sección se presentan los experimentos realizados para el estudio de 

la influencia de distintas variables de operación sobre la reacción de carbonatación 

de las cenizas de carbón y escombrera para captura de CO2. Las variables de 

operación que se han estudiado y el intervalo en el que se han variado se muestran 

en la tabla 5.  

-. Tabla 5: Variables de operación e intervalos estudiados.- 

T (oC) t (min) Volumen disolución (ml) NaCl añadido (g/l) pH EDTA (g/l) 

30 - 80 10 - 50 40 - 80 1 - 25 5 - 9 0 - 1 
 

Previo a la realización de los experimentos se fijaron una serie de 

condiciones experimentales, que se describen a continuación, en la tabla 6. Estas 

variables se ajustaron según las características de la instalación experimental, 

asegurando la saturación de la disolución con CO2 y garantizando la suspensión 

correcta de las partículas de cenizas. 

-. Tabla 6: Variables experimentales fijas.- 

Qgas (cm3/min) Velocidad agitación (rpm) Molaridad disolución tampon (M) 

117 1200 0,1 
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Con 2 niveles (máximo y mínimo) y 6 variables de operación a estudiar 

habría que realizar 64 experimentos para estudiar el efecto de todas las variables y 

sus interacciones. Sin embargo la aplicación informática “The Unscrambler X” 

(anexo D) permite la reducción del número de experimentos manteniendo el estudio 

de todas las variables. Se realizó un factorial fraccional reduciéndose los 

experimentos a 16, a costa de no obtener cierta información que, a priori, se 

consideró irrelevante, como confundir los efectos de interacciones dobles con 

triples. Con el fin de estudiar la reproducibilidad de los experimentos se añadieron 

tres con valores intermedios de las variables de operación (E6, E7 y E16). 

 En la tabla 7 se muestra el diseño de experimentos realizado tanto para las 

cenizas de carbón como para las cenizas de escombrera.  

-. Tabla 7: Diseño experimental.- 
 

Experimento T (ºC) t (min) Vagua (ml) NaCl (g/l) pH EDTA (g/l) 

E1 80 10 80 1 5 1 

E2 80 10 80 25 5 0 

E3 80 10 40 25 9 1 

E4 30 10 40 1 5 0 

E5 30 50 80 1 5 0 

E6 55 30 60 13 7 0,5 

E7 55 30 60 13 7 0,5 

E8 30 10 80 25 9 0 

E9 80 50 80 25 9 1 

E10 30 10 80 1 9 1 

E11 80 50 40 1 5 1 

E12 30 10 40 25 5 1 

E13 80 50 80 1 9 0 

E14 80 50 40 25 5 0 

E15 30 50 40 1 9 1 

E16 55 30 60 13 7 0,5 

E17 30 50 80 25 5 1 

E18 80 10 40 1 9 0 

E19 30 50 40 25 9 0 



 

 

 

 

 

 
 

 

 

 

 

 





Captura de CO2 mediante carbonatación mineral con cenizas                       Resultados experimentales      Resultados 

31 

 

4.1. CARBONATACIÓN DE CENIZAS DE CARBÓN 

 
4.1.1. Diseño factorial 

 
A continuación en la tabla 8 se muestran los resultados de los experimentos 

realizados para las cenizas de carbón. 

-. Tabla 8: Resultados del diseño experimental para las cenizas de carbón.- 

Experimento T (oC) t (min) Vagua (ml) NaCl (g/l) pH EDTA (g/l) %CO2 b.s. 

E1 80 10 80 1 5 1 11,01 

E2 80 10 80 25 5 0 10,228 

E3 80 10 40 25 9 1 11,573 

E4 30 10 40 1 5 0 10,617 

E5 30 50 80 1 5 0 9,187 

E6 55 30 60 13 7 0,5 11,637 

E7 55 30 60 13 7 0,5 11,581 

E8 30 10 80 25 9 0 0,796 

E9 80 50 80 25 9 1 10,763 

E10 30 10 80 1 9 1 0,810 

E11 80 50 40 1 5 1 11,644 

E12 30 10 40 25 5 1 9,824 

E13 80 50 80 1 9 0 13,624 

E14 80 50 40 25 5 0 11,816 

E15 30 50 40 1 9 1 8,973 

E16 55 30 60 13 7 0,5 11,214 

E17 30 50 80 25 5 1 6,989 

E18 80 10 40 1 9 0 12,761 

E19 30 50 40 25 9 0 12,041 

 
Con el fin de demostrar que el procedimiento aplicado para el análisis era 

adecuado y determinar la repetibilidad se calculó la desviación estándar de los 

experimentos marcados en la tabla 8 (E6, E7 y E16), realizados a valores 

intermedios de las variables de operación. La desviación estándar es 0,188, un 

valor bajo que indica que la repetibilidad de los resultados experimentales es 

satisfactoria. 

 
A continuación se presenta el efecto de las variables de operación obtenidas 

a partir del análisis de los resultados de la carbonatación de cenizas de carbón 

mediante la aplicación informática “The Unscrambler X”. En la tabla 9 se muestra la 

significancia de cada variable y de sus interacciones de forma cualitativa y 

cuantitativa, también se da el valor p, probabilidad que tiene ese efecto a ser nulo. 
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-. Tabla 9: Resumen de los efectos de las variable de operación sobre la 

carbonatación de cenizas de carbón.- 

Variable Significancia Valor del efecto Valor p 

Temperatura +++ 4,23 0 

Tiempo +++ 2,18 0,0001 

Vagua --- -3,23 0 

NaCl - -0,57 0,0264 

pH --- -1,25 0,0011 

EDTA --- -1,18 0,0014 

Temperatura*tiempo --- -1,61 0,0003 

Temperatura*Vagua +++ 2,69 0 

Tiempo*Vagua +++ 2,25 0,0001 

Temperatura*NaCl - -0,59 0,024 

Tiempo*NaCl NS 0,12 0,5453 

Vagua*NaCl -- -0,89 0,0048 

NaCl*pH NS 0,32 0,138 

 

Los resultados de la tabla 9 muestran que todos los efectos, con la 

excepción de los dobles, tiempo*NaCL y NaCl*pH, son significativos al 95% 

(p<0,05). En valor absoluto se puede deducir que hay tres efectos principales como 

son temperatura, volumen de disolución y tiempo de reacción. Asimismo son 

importantes por su magnitud los efectos dobles temperatura*tiempo, 

temperatura*volumen de agua y tiempo*volumen de agua. Al contrario que el efecto 

principal del volumen de agua, negativo, las interacciones de esta variable con 

temperatura y tiempo son positivas, lo que podría indicar falta de linealidad. Lo 

mismo ocurre con la interacción temperatura*tiempo, que es negativa frente a los 

valores positivos de los efectos individuales. Los coeficientes negativos de NaCl y 

EDTA nos llevarían a su supresión en el sistema, ya que su concentración no 

puede ser inferior a cero. El caso del pH es más complejo debido a que el rango 

utilizado es mucho menor que el disponible en solución acuosa. 

A continuación se presentan en la figura 16 los efectos de las variables de 

operación de forma gráfica y posteriormente se describen estos efectos. De forma 

general se observa que los efectos de las variables de operación en la 

carbonatación de las cenizas de carbón de Mequinenza no varían de forma lineal, 

asunción del método factorial para el análisis de los efectos. El valor central de las 

distintas variables ofrece resultados muy favorables, en ocasiones similares a los 

resultados con valores de las variables altos o bajos, según la variable de operación 

observada. 
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-. Figura 16: Efecto de las variables de operación en la carbonatación  de las 

cenizas de carbón.- 

 
El efecto de la temperatura constituye un aspecto muy importante en el 

proceso objeto de estudio. Se ha observado que la temperatura provoca dos 

efectos opuestos en la velocidad de carbonatación. A temperaturas altas la 

lixiviación del calcio de la matriz de cenizas es más rápida pero la solubilidad del 

CO2 en la solución disminuye. Se muestra en la figura 16 una mejora en la 

carbonatación de las cenizas a temperaturas altas, entre 55 y 80ºC. Estos 

resultados concuerdan con los observados por Wouter J. y cols. [31] quienes 

determinaron que la carbonatación aumenta a temperaturas entre 25 y 175 ºC. En 

estos estudios se dispone de un reactor autoclave de 450 ml siendo la temperatura 

óptima cercana a los 200 ºC, temperatura alta en la instalación que se ha diseñado 

para la realización de este proyecto, puesto que se trabaja con agua. También 

determinaron que en los primeros minutos sobre el 40% del calcio esta 

carbonatado, mientras que sólo el 13% reacciona al aumentar el tiempo hasta los 

30 minutos y Gerdemann S.J. y cols. [32] señalaron que es posible transformar en 

calcita el 80% del calcio en menos de una hora. En las cenizas de carbón de 

Mequinenza se comprobó que tiempos medios (véase figura 16) eran suficientes 

para capturar un alto porcentaje de CO2. 
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Un aumento de la conversión resulta de disminuir el volumen de disolución, 

aumentando el ratio sólido-líquido. Este aumento de la carbonatación no tiene fácil 

explicación pero podría atribuirse a una mejor agitación de la disolución debido a 

que tiene menos masa de agua que agitar, lo que haría que el efecto fuese 

dependiente del sistema experimental y no del proceso de carbonatación. 

Asimismo, Huntzinger y cols. [30] también observaron que los porcentajes de 

captura de CO2 eran mayores para ratios menores de agua respecto a la cantidad 

de cenizas. 

El efecto que el pH va a tener sobre el resultado final se encuentra 

íntimamente relacionado con la disolución de CO2. Valores bajos de pH se oponen 

a la disolución del CO2 y previenen la formación del carbonato. Se comprobó que el 

pH de la disolución disminuye con el incremento del grado de carbonatación, debido 

a la disolución del CO2. A pH de 7,8 o mayores en la disolución aumenta la 

solubilidad del CO2 y la formación posterior del carbonato. Dilmore R. y cols. [33] 

determinaron que el pH óptimo de carbonatación en un reactor con agitación y en 

condiciones ambiente era 10,37. En el proceso estudiado los mejores resultados 

fueron obtenidos a pH 7, utilizando como disolución tampon el imidazol, compuesto 

orgánico que favorece la disolución del CO2. Inicialmente se empleó fosfato de 

sodio, compuesto habitual para la preparación de las disoluciones tampón a ese 

pH, sin embargo, debido a la formación de fosfato cálcico, que reducía el calcio 

utilizable para la precipitación de carbonato cálcico, se decidió usar imidazol. 

Finalmente se estudiaron los efectos de adicionar NaCl y EDTA y se apreció 

que la adición de cantidades bajas de ambos compuestos favorecía la 

carbonatación. A pH 7 (imidazol) presentan mejor resultado que en las restantes 

condiciones, algo que ocurre también con las demás variables y que podría ser 

atribuido a un efecto del tampón orgánico de imidazol utilizado para este fin. En 

cualquier caso, su significancia es pequeña y negativa, lo que nos llevaría al límite 

de concentración cero. 

4.1.2. Optimización 
 

Mediante el método Simplex modificado (anexo E) se optimizó el % de CO2 

capturado por las cenizas de carbón. Para comenzar a aplicar el método de 

optimización Simplex se eligieron los cinco experimentos del diseño experimental 

con los mejores resultados de carbonatación (N = n +1, siendo n = nº de variables a 

optimizar (Tª, pH, volumen de disolución y tiempo)). De los resultados obtenidos en 

el diseño factorial se dedujo que las variables NaCl y EDTA conducían al valor 
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mínimo posible (cero) por lo que se descartaron para esta etapa, quedando para 

optimizar las cuatro variables principales temperatura, tiempo, volumen de agua y 

pH. 

Para las cenizas de carbón se realizaron los experimentos de optimización 

mostrados en la tabla 10: 

 

-. Tabla 10: Experimentos de optimización para las cenizas de carbón (Ca).- 

Nº exp. T (oC) t (min) V (ml) pH %CO2 

S1-Ca(E13-Ca) 80 50 80 9,0 13,624 

S2-Ca(E18-Ca) 80 10 40 9,0 12,761 

S3-Ca(E19-Ca) 30 50 40 9,0 12,041 

S4-Ca(E14-Ca) 80 50 40 5,0 11,816 

S5-Ca(E6-Ca) 55 30 60 7,0 11,637 

S6-Ca 80 50 40 9,0 19,014 

S7-Ca 93 60 30 10,0 18,271 

S8-Ca 55 30 60 13,0 18,394 

S9-Ca 118 20 70 11,0 imposible 

S10-Ca 52 43 48 9,5 11,866 

S11-Ca 96 28 63 10,5 15,723 

S12-Ca 75 69 81 11,8 17,957 

S13-Ca 73 38 42 13,1 16,719 

S14-Ca 46 66 49 12,9 17,296 

S15-Ca 55 69 73 10,2 14,239 

S16-Ca 69 46 50 12,4 17,630 

S17-Ca 93 31 66 10,1 14,661 

S18-Ca 58 57 53 12,2 12,263 

S19-Ca 80 50 40 9,0 17,652 

S20-Ca 42 55 80 16,0 imposible 

S21-Ca 71 51 50 10,8 16,594 

S22-Ca 69 46 65 12,3 17,640 

S23-Ca 71 51 74 10,6 15,129 

S24-Ca 69 47 56 12,0 18,333 

S25-Ca 55 30 60 13,0 16,720 

S26-Ca 92 76 61 9,5 17,786 

S27-Ca 89 75 54 8,8 17,020 

 

Se aplicó el método Simplex modificado hasta que el valor del % de CO2 

captado por las cenizas no mejoraba de forma significativa durante varios 

experimentos. 

Los cinco mejores experimentos de optimización para las cenizas de carbón 

son los que se encuentran coloreados en la tabla 10. Observando estos 

experimentos se apreció que la variable con mayor variación era el pH, por ello se 
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fijaron el resto de las variables a valores medios y se varió el pH tal y como se 

muestra en la tabla 11.  

 

-. Tabla 11: Optimización final para las cenizas de carbón.- 

 tiempo Temperatura Volumen pH 0,1 M %CO2  

O1-Ca 

60 min 75 oC 60 ml 

9 

NaCO3+NaHCO3 

18,025 

O2-Ca 9,5 18,272 

O3-Ca 10 17,890 

O4-Ca 10,5 

NaCO3 

18,855 

O5-Ca 11 18,874 

O6-Ca 11,5 19,637 

O7-Ca 12 19,341 

O8-Ca 12,5 18,465 

O9-Ca 13 NaOH 18,335 

 

Con los experimentos de la tabla 11 se logró el resultado óptimo para la 

carbonatación de las cenizas de carbón capturando el 19,64% de CO2. Este óptimo 

se ha conseguido a pH 11,5 con una disolución tampon de carbonato. Observando 

los resultados obtenidos (tabla 11) se demuestra que el pH es una variable difícil de 

ajustar. Asimismo resulta difícil justificar las diferencias encontradas entre los 

distintos resultados de los experimentos. A partir de los resultados obtenidos, se 

podría determinar que la carbonatación de cenizas de carbón es óptima a pH 

básicos, ya que tal y como se ha explicado anteriormente a pH básicos aumenta la 

solubilidad del CO2 y la formación posterior del carbonato. Además, y como se verá 

en la discusión de resultados (apartado 5), los pH básicos disuelven la anhidrita 

(CaSO4) aumentando el calcio accesible al CO2. 
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4.2. CARBONATACIÓN DE CENIZAS DE ESCOMBRERA 

 
4.2.1. Diseño factorial 

 
A continuación en la tabla 12 se presenta el porcentaje de CO2 calculado 

mediante análisis termogravimétrico de las cenizas de escombrera carbonatadas en 

cada experimento. 

-. Tabla 12: Resultados del diseño experimental para las cenizas de escombrera.- 

Experimento T (oC) t (min) Vagua (ml) NaCl (g/l) pH EDTA (g/l) %CO2 b.s. 

E1 80 10 80 1 5 1 16,242 

E2 80 10 80 25 5 0 15,509 

E3 80 10 40 25 9 1 14,702 

E4 30 10 40 1 5 0 14,019 

E5 30 50 80 1 5 0 16,114 

E6 55 30 60 13 7 0,5 16,799 

E7 55 30 60 13 7 0,5 15,879 

E8 30 10 80 25 9 0 1,357 

E9 80 50 80 25 9 1 15,599 

E10 30 10 80 1 9 1 2,337 

E11 80 50 40 1 5 1 16,232 

E12 30 10 40 25 5 1 13,704 

E13 80 50 80 1 9 0 15,465 

E14 80 50 40 25 5 0 16,320 

E15 30 50 40 1 9 1 10,004 

E16 55 30 60 13 7 0,5 15,723 

E17 30 50 80 25 5 1 13,097 

E18 80 10 40 1 9 0 15,689 

E19 30 50 40 25 9 0 14,695 

 

Con el objeto de justificar la eficacia del análisis y determinar la repetibilidad 

se calculó la desviación estándar. La desviación estándar de los tres experimentos 

marcados en la tabla 12, realizados en valores centro de las variables de operación, 

es 0,474. A la vista de este valor se puede considerar que la repetibilidad de los 

resultados experimentales es aceptable. 

En la tabla 13 se resumen la significancia y el valor del efecto de cada 

variable y de sus interacciones que tienen sobre la carbonatación de cenizas de 

escombrera, obtenidos mediante el análisis de los porcentajes de CO2 (tabla 12), a 

través de la herramienta informática “The Unscrambler X”. Asimismo se observa el 

valor p, valor estadístico que muestra la probabilidad de que una variable sea nula. 
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-. Tabla 13: Resumen de los efectos de las variable de operación sobre la 

carbonatación de cenizas de escombrera.- 

Variable Significancia Valor del efecto Valor p 

Temperatura +++ 5,05 0,0002 

Tiempo +++ 3 0,0022 

Vagua -- -2,46 0,0053 

NaCl NS -0,14 0,7992 

pH --- -3,92 0,0007 

EDTA NS -0,91 0,1428 

Temperatura*tiempo --- -2,63 0,004 

Temperatura*Vagua ++ 2,42 0,0056 

Tiempo*Vagua +++ 3,21 0,0016 

Temperatura*NaCl NS -0,23 0,6716 

Tiempo*NaCl NS 0,61 0,2924 

Vagua*NaCl NS -1 0,1108 

NaCl*pH NS 0,85 0,1625 

 

Los resultados de la tabla 13 muestran que los efectos NaCl y EDTA y los 

efectos dobles en los que está presente el NaCl son no significativos (p>0,05). Se 

puede deducir que el resto de efectos, significativos, son importantes por su 

magnitud en valor absoluto. Al contrario que el efecto principal del volumen de 

agua, negativo, las interacciones de esta variable con temperatura y tiempo son 

positivas, lo que podría indicar falta de linealidad. Lo mismo ocurre con la 

interacción temperatura*tiempo, que es negativa frente a los valores positivos de los 

efectos individuales. El caso del pH es más complejo, debido a que el rango de 

disolución acuosa es mayor al estudiado. 

A continuación en la figura 17 se presentan de forma gráfica los efectos de 

las variables de operación en la carbonatación de cenizas de escombrera. Se 

aprecia que los efectos de las variables de operación en la carbonatación de las 

cenizas de escombrera de Mequinenza no presentan una variación lineal, 

provocando que en el caso de algunas variables los resultados en valores centrales 

sean similares a los obtenidos a valores altos o bajos según la variable. 

Como ya se mencionó anteriormente la temperatura es una variable muy 

importante en la reacción de carbonatación. En la figura 17 se aprecia una mejora 

significante en la carbonatación de las cenizas de escombrera a temperaturas altas, 

entre 55 y 80ºC. 

En las cenizas de escombrera, así como en las de carbón, se confirmó que 

a tiempos medios de 30 minutos ya se captura un alto porcentaje de CO2. Asimismo 
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al disminuir el volumen de disolución se percibe un ligero aumento de la 

carbonatación. 

Los mejores resultados de la carbonatación de cenizas de escombrera 

fueron adquiridos a pH 7. Además se observa en la figura 17 que se obtuvo un 

mayor grado de carbonatación a pH ácido (pH = 5, ácido acético) que a pH básico 

(pH = 9, borax). 

Finalmente se muestran los efectos de adicionar NaCl y EDTA, obteniendo 

resultados similares al añadir 25 ó 1 g/l, respectivamente, o al no agregar estos 

compuestos. Además como ya se observó en la tabla 13 los efectos de estas 

variables no son significativos, por lo que se omitió la adición de dichos compuestos 

para los experimentos de optimización. 

 

-. Figura 17: Efecto de las variables de operación en la carbonatación  de las 

cenizas de escombrera.- 

 
4.2.2. Optimización 

 
Para las cenizas de escombrera se realizaron los experimentos de 

optimización de la tabla 14. Se aplicó el método Simplex modificado descrito en el 

anexo E.  
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-. Tabla 14: Experimentos de optimización para las cenizas de escombrera (Es).- 

Nº exp. T (oC) t (min) V (ml) pH %CO2 b.s. 

S1-Es (E6-Es) 55 30 60 7,0 16,799 

S2-Es (E14-Es) 80 50 40 5,0 16,320 

S3-Es(E1-Es) 80 10 80 5,0 16,242 

S4-Es(E5-Es) 30 50 80 5,0 16,114 

S5-Es(E18-Es) 80 10 40 9,0 15,689 

S6-Es 43 60 90 2,0 15,948 

S7-Es 52 48 78 3,8 16,670 

S8-Es 103 19 49 5,4 Imposible 

S9-Es 85 27 57 5,3 17,309 

S10-Es 56 67 37 5,5 16,469 

S11-Es 44 36 76 5,8 6,566 

S12-Es 71 46 49 5,2 17,009 

S13-Es 75 8 84 5,1 4,561 

S14-Es 61 52 49 5,4 16,355 

S15-Es 84 30 30 7,7 17,130 

S16-Es 87 14 49 7,2 17,870 

S17-Es 108 29 32 5,7 Imposible 

S18-Es 95 29 39 6,0 19,631 

S19-Es 104 4 38 7,9 Imposible 

S20-Es 96 14 41 7,2 20,347 

S21-Es 97 12 63 5,1 18,855 

S22-Es 103 8 39 7,5 Imposible 

S23-Es 98 13 43 6,9 17,464 

S24-Es 89 22 52 5,8 13,951 

S25-Es 96 15 46 6,7 15,591 

 

Al contemplar los experimentos con mejores resultados de la tabla 14 

(sombreados) se decidió realizar una optimización final para intentar ajustar el pH, 

ya que es la variable de operación que mayor efecto presenta. Para ello se fijó un 

valor medio para el resto de variables, tiempo a 15 minutos, temperatura a 95 ºC y 

volumen de disolución a 50 ml. Asimismo se estudió el pH entre 5 y 7,5 del modo 

que se presenta en la tabla 15. 

 

-. Tabla 15: Optimización final  para las cenizas de escombrera.- 

Nº exp. Tiempo Temperatura Volumen pH 0,1 M %CO2 b.s. 

O1-Es 

15 min 95 oC 50 ml 

4.5 

ácido cítrico 

18,696 

O2-Es 5 19,120 

O3-Es 5,5 18,761 

O4-Es 6 18,704 

O5-Es 6,5 

Imidazol 

16,326 

O6-Es 7 17,753 

O7-Es 7,5 18,882 

O8-Es 8 18,604 
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Con el ajuste final del pH no se consigue mejorar el resultado obtenido en el 

experimento S20-Es en el que se captura un 20,35% de CO2. En función de los 

resultados obtenidos en la tabla 15 se puede determinar que la carbonatación no 

varía de forma lineal con el pH. Además se aprecia un comportamiento extraño con 

el ácido cítrico, aspecto que se comenta en el anexo F. 

Finalmente se decidió estudiar el comportamiento de las cenizas de 

escombrera próximas a las condiciones reales. Para ello se realizó el experimento 

O7-Es (95ºC, 50 ml de disolución y pH = 7,5) con el mismo caudal de gas (117 

cm3/min) pero con un 15% CO2 y 85% N2, ya que en los gases de combustión el 

CO2 que se espera encontrar constituye aproximadamente el 15% en volumen. En 

la figura 18 se observa que una hora y media es necesaria para conseguir el mismo 

porcentaje de gas capturado (18,9%) que se logró en 15 min con una corriente pura 

de CO2. 
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-. Figura 18: Carbonatación con un flujo del 15% de CO2.- 
 
 

4.3. COMPARACIÓN DE RESULTADOS ÓPTIMOS 

A continuación se presenta un cuadro resumen de los mejores resultados de 

carbonatación obtenidos para las cenizas de ambos combustibles. El experimento 

con mayor porcentaje de CO2 capturado para las cenizas de cada combustible se 

realizó bajo las mismas condiciones para las cenizas del combustible contrario, es 

decir, se cruzaron las condiciones. 

 

-. Tabla 16: Resumen de los mejores resultados obtenidos.- 

T (oC) t (min) V (ml) pH %CO2 - Ca %CO2 - Es 

75 60 60 11,5 (NaCO3) 19,6 21,8 

96 14 41 7,2 (imizadol) 12,9 20,3 
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En la tabla 16 se observa un aumento del porcentaje de CO2 capturado 

(21,8%) hasta ahora por las cenizas de escombrera (20,3%), apreciando un 

incremento considerable bajo las condiciones del mejor experimento para las 

cenizas de carbón, a pH 11,5. Habría que realizar una nueva optimización para las 

cenizas de escombrera. Al aplicar el método se encontró un óptimo local entorno a 

pH 7 pero en la tabla 16 se confirma que habría otro óptimo local a pH básico. 

El óptimo encontrado para la carbonatación de las cenizas de carbón y de 

las cenizas de escombrera es a pH 11,5, utilizando 60 ml de disolución tampon de 

carbonato de sodio 0,1M, a una temperatura de 75 ºC y durante un tiempo de 

reacción de una hora. 
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5.1. CASOS POSIBLES EN LA CARBONATACIÓN 

Se analizaron mediante XRD dos experimentos, el experimento E11 a pH ácido 

(figura 19) y el experimento E13 a pH básico (figura 20). Las figuras indican la 

desaparición del óxido de calcio y la aparición del pico de carbonato cálcico, con 

intensidades relativas diferentes en función del grado de carbonatación.  

  

-. Figura 19: Difractogramas del experimento E11 de las cenizas de escombrera (a) y 

de carbón (b).- 

  

-. Figura 20: Difractogramas del experimento E13 de las cenizas de escombrera (a) y 

de carbón (b)- 

La diferencia más notable entre la figura 19 y 20 se observa en el caso E13, 

con la desaparición de la especie anhidrita (sulfato de calcio). Estos resultados 

permiten suponer que la anhidrita se disuelve en medio básico. Asimismo se debe 

considerar la posibilidad de que el calcio liberado en la descomposición de la anhidrita 

reaccione con el CO2 recristalizando como carbonato cálcico, tal y como se muestra en 

la figura 21b para un experimento de carbonatación a baja temperatura. La 

a b 

a b 
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carbonatación del óxido de calcio forma sobre la partícula pequeños cristales de 

carbonato cálcico tal y como se aprecia en la figura 21a.  

   
 

-. Figura 21: Cristales de carbonato cálcico, sobre partícula de ceniza de escombrera 

carbonatada (øp<125μm) en el experimento E13(a), y en sección transversal de 

partícula de ceniza de escombrera carbonatada (øp>800μm) en experimento con agua 

destilada a 30ºC y t=18 min (b).- 

De esta forma, se pueden considerar tres situaciones posibles en los 

experimentos realizados.  

Caso 1.- Sólo el CaO libre captura CO2. 

Caso 2.- Se disuelve el CaSO4 pero este Ca no forma CaCO3. 

Caso 3.- Se disuelve el CaSO4 y todo el Ca precipita como CaCO3. 

A continuación, en las tablas 17 y 18 se muestran las composiciones que 

poseerán las cenizas finales para cada caso. El porcentaje de anhidrita que se 

muestra (tablas 17 y 18) se determinó en base al azufre disponible en las cenizas del 

combustible. La calcita se calcula considerando el porcentaje de cal disponible en las 

cenizas iniciales, valorado en base al calcio disponible en las cenizas iniciales menos 

el calcio presente en la anhidrita. Los inertes, que fueron considerados cuarzo y 

silicatos en baja concentración, observados mediante XRD, se obtuvieron ajustando el 

balance de las cenizas iniciales y se entiende que se mantienen constantes durante 

los experimentos. Finalmente el porcentaje de CO2 se calcula en base al porcentaje de 

calcita obtenida. El peso final de las cenizas en cada caso será el total mostrado en 

cada tabla. 

En el caso 2 se anula la concentración de sulfato de calcio pero los inertes y la 

calcita que se va a formar es la misma que en el caso 1, por lo que se reduce el peso 

b a 
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total del producto final, aumentando así el porcentaje de CO2, y por consiguiente 

disminuye el rendimiento de la carbonatación. En el caso 3 aumenta el calcio libre en 

las cenizas por la disolución de la anhidrita, con lo que  aumenta la calcita que se 

forma y los porcentajes de CO2. 

-. Tabla 17: Composición teórica de las cenizas de carbón en cada caso (%).- 

      %CO2 

Caso nº CaO CaSO4 inerte CaCO3 Total Peso inicial Peso final 

Cenizas iniciales 22,42 30,05 

47,54 

0 100 - - 

1 

0 

30,05 40,03 117,61 17,61 14,98 

2 0 40,03 87,57 17,61 20,11 

3 0 62,13 109,66 27,34 24,93 

-. Tabla 18: Composición teórica de las cenizas de escombrera en cada caso (%).- 

      %CO2 

Caso nº CaO CaSO4 inerte CaCO3 Total Peso inicial Peso final 

Cenizas iniciales 33 23,59 

43,41 

0 100 - - 

1 

0 

23,59 58,93 125,93 25,93 20,59 

2 0 58,93 102,34 25,93 25,34 

3 0 76,28 119,69 33,56 28,04 

 

5.2. INTERPRETACIÓN DE LOS RESULTADOS ÓPTIMOS 

Las cenizas de carbón y escombrera carbonatadas en ambos experimentos 

óptimos fueron caracterizadas, mediante XRD, SEM-EDX y tamaño de partícula. En 

las figuras 22 y 23 se observan los difractogramas de rayos X del experimento óptimo 

de las cenizas de carbón y de las cenizas de escombrera. 

 Al comparar la relación de intensidades entre los pico de cuarzo y de calcita de 

ambos difractogramas se demuestra de forma semicuantitativa que el grado de 

carbonatación es mayor para las cenizas de escombrera. Además se aprecia en 

ambos difractogramas que la anhidrita se disuelve.  

 

-. Figura 22: Difractograma del óptimo de cenizas de carbón carbonatadas.- 
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-. Figura 23: Difractograma del óptimo de cenizas de escombrera carbonatadas.- 

Asimismo se observó la morfología y la composición de las partículas de las 

cenizas carbonatadas mediante SEM-EDX. En la figura 24 se muestra la sección 

transversal de una partícula de carbón y de una partícula de escombrera, 

carbonatadas en los experimentos óptimos. 

   

-. Figura 24: Sección transversal de una partícula de ceniza de carbón (a) y de una 

partícula de ceniza de escombrera (b) carbonatadas en el experimento óptimo. 

   

-. Figura 25: Superficie de una partícula de ceniza de carbón (a) y de una partícula de 

ceniza de escombrera (b) carbonatadas en el experimento óptimo. 

Las microfotografías de SEM indican porosidad en la partícula, debida a la 

solubilización del calcio. El EDX confirma la presencia de carbono, indicando la 

formación de carbonato cálcico. En la figura 25 se aprecia la superficie de una 

b a 

b a 
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partícula de carbón y de una partícula de escombrera, carbonatadas en los 

experimentos óptimos. 

La existencia de microcristales en las superficies de las partículas apunta que 

en estas condiciones se ha producido una recristalización rápida del calcio en forma 

de carbonato cálcico. 

También se ha estudiado la variación de la distribución de los tamaños de 

partícula en los experimentos de captura respecto de la distribución inicial. En la figura 

26 se representa esa distribución para las cenizas iniciales, las correspondientes al 

experimento E11 y los experimentos óptimos tanto para las cenizas de escombrera 

como para las de carbón. 
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-. Figura 26: Distribución de los tamaños de partícula.- 

Se puede observar que de los cuatro casos estudiados sólo el experimento 

E11 en el carbón muestra un ligero aumento en las fracciones de menor tamaño lo que 

conduce a una reducción del tamaño medio de partícula. En el resto de los casos el 

tamaño de partícula ha aumentado, casos en los que la carbonatación ha sido alta. 

Estos resultados, junto con las observaciones de SEM que confirman la presencia de 

cristales de carbonato cálcico, indican que el tamaño de las cenizas carbonatadas es 

mayor que el de las cenizas de partida debido a la mineralización del CO2. 

5.3. BALANCE DE MATERIA DE LA CAPTURA DE CO2 

Para realizar el balance de materia de la captura de CO2 con fines 

comparativos entre la capacidad de captura de la ceniza de escombrera y carbón de 

Mequinenza se ha partido de los siguientes supuestos: 
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1. La combustión ha sido completa, y todo el carbono (tanto el orgánico 

como el de carbonatos) pasa a CO2 (en condiciones reales, la 

combustión no es completa en un lecho fluidizado). 

2. Todas las cenizas generadas se utilizan para la captura (en un lecho 

fluidizado se obtendrían cenizas en al menos tres puntos del combustor, 

con diferentes granulometrías y características). 

3. Tras la captura, las especies existentes en las cenizas son el carbonato 

cálcico y material inerte. 

4. No se van a realizar consideracines sobre el ciclo de vida (se debería 

incluir el CO2 generado en las operaciones y procesos de manejo del 

volumen de cenizas, captura e inyección) ni las consideraciones 

ambientales sobre la composición del agua de tratamiento. 

Teniendo en cuenta los anteriores supuestos, el análisis inmediato y elemental 

de los combustibles (tabla 1) y los valores máximos obtenidos en este proyecto, se 

realiza el balance de materia de la captura de CO2. Los resultados de estos balances 

se muestran a continuación en la tabla 19. 

-. Tabla 19: Balance de materia de la captura de CO2 (kg).- 

 

Combustión Captura 

Combustible 
inicial 

CO2 
emitido 

Cenizas 
producidas 

Sólido tras 
captura 

%CO2 en 
el sólido 

CO2 
capturado 

% CO2 
capturado 

η 

Ca 1000 1232 482 414,18 19,6% 81,34 6,6% 95,8 

Es 1000 878 583,4 503 21,8% 109 12,5% 72,2 

 
Los resultados indican que de cada tonelada de escombrera, en condiciones 

ideales, se puede capturar un 12.5% del CO2 emitido generando 503 kg de cenizas de 

escombrera mineralizadas húmedas a inyección, y en el caso de quemar una tonelada 

de carbón se puede capturar un 6,6% del CO2 emitido generando 414 kg cenizas 

mineralizadas húmedas.  

El resultado óptimo conseguido de CO2 capturado mediante la reacción de 

carbonatación de las cenizas de carbón y de escombrera, como ya se ha comentado 

anteriormente, es 19,64% y 21,83% respectivamente. El resultado óptimo dividido por 

el máximo porcentaje estequiométrico de CO2, calculado en base a la cal presente en 

las cenizas iniciales, dará lugar al rendimiento de la carbonatación (η) para las cenizas 

de carbón y escombrera (tabla 19). 
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Otros estudios señalan porcentajes de captura de CO2 algo menores que los 

conseguidos en este proyecto, aunque en algunos casos bajo condiciones diferentes. 

Huntzinger y cols. [30] realizaron un ensayo de secuestro de CO2 mediante 

carbonatación en medio acuoso utilizando ceniza procedente de hornos industriales 

para la fabricación de cemento. Este tipo de residuo presenta porcentajes similares a 

las cenizas del carbón y escombrera de Mequinenza y obtuvieron porcentajes de 

captura de CO2 en torno al 70% en todos los casos. Fauth y cols. [34] experimentaron 

la carbonatación de cenizas de lecho fluido en medio acuoso y con una solución de 

cloruro de sodio, bajo condiciones de alta presión y temperatura (PCO2 = 75 atm y T = 

185ºC) con retenciones en torno al 50%. Montes y cols. [9] llevaron a cabo un 

completo ensayo de secuestro de CO2 mediante carbonatación húmeda con unas 

cenizas volantes que presentaban un 4,1% wt. de cal, bastante bajo en comparación 

con el combustible de Mequinenza, con porcentajes aproximados del 30%. Utilizaron 

temperaturas de 30ºC y tiempos de ensayo de 2 horas y los resultados finales 

mostraron que una tonelada de cenizas podría secuestrar 26,19 kg de CO2, lo que 

supone un rendimiento del 82%. Los rendimientos obtenidos en este proyecto han 

superado, en el caso del carbón (95,8%), los reportados hasta ahora en literatura. 





 

 

 

 

 

 





Captura de CO2 mediante carbonatación mineral con cenizas                Conclusiones y trabajos futuros 

 

55 

 

6.1. CONCLUSIONES 

En el presente proyecto se ha profundizado sobre la aplicabilidad del 

proceso de captura de CO2 mediante carbonatación mineral en vía húmeda en una 

central térmica. Los resultados obtenidos han dado lugar a una serie de 

conclusiones que se presentan a continuación. 

1. La carbonatación mineral en vía húmeda se perfila como un proceso 

idóneo para capturar el CO2 presente en los gases de combustión de la 

central térmica de Mequinenza, dado que las cenizas procedentes del 

carbón y escombrera poseen unos contenidos de CaO en torno al 30%, 

y que éste se encuentra disponible completamente para la 

carbonatación.  

2. Las cenizas provenientes tanto del carbón como de la escombrera han 

sido caracterizadas: análisis del tamaño de partícula, inmediato, 

elemental y del poder calorífico, ICP-OES, TGA y SEM-EDX. Los 

resultados obtenidos muestran que son adecuadas para el proceso 

objeto de estudio tanto por su composición como por su granulometría. 

3. Se ha realizado un diseño de experimentos a través de la herramienta 

informática “The Unscrambler X”, basado en un factorial fraccional, 

estudiándose diversas variables como: temperatura, tiempo, pH, 

volumen de disolución, [NaCl] y [EDTA]. Se ha determinado que: 

- A temperaturas altas la lixiviación del calcio de la matriz de las 

cenizas es más rápida pero la solubilidad del CO2 en la solución 

disminuye. 

- Valores bajos de pH se oponen a la disolución del CO2 y previenen la 

formación del carbonato. 

- Una disminución del volumen de disolución genera un aumento de la 

conversión. 

- Tiempos medios (≈30 min) son suficientes para capturar un alto 

porcentaje de CO2. 

- La carbonatación se ve favorecida cuando las [NaCl] y [EDTA] son 

nulas. 

4. Se ha llevado a cabo un proceso de optimización mediante la aplicación 

del método “Simplex”. Los mejores resultados que se han logrado y, que 

cumplen satisfactoriamente uno de los objetivos del proyecto, son en el 
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caso de cenizas de carbón y escombrera para pH muy alcalinos de 

19,36% y 21,8% respectivamente.  

5. Los rendimientos de carbonatación alcanzados en carbón y escombrera 

son del 95,8% y 72,2%, respectivamente. Resultados que superan, en el 

caso del carbón, los reportados hasta la fecha en literatura. 

6. Se ha demostrado la viabilidad de la aplicación del proceso de 

carbonatación mineral de cenizas, procedentes de combustibles (carbón 

y escombrera) de la cuenca de Mequinenza, en la central termoeléctrica 

proyectada. 

6.2. TRABAJOS FUTUROS 

 Estudio del proceso de captura de CO2 en vía húmeda bajo condiciones de 

alimentación reales. Para ello se deberá alimentar una corriente de gas que 

posea la composición y condiciones existentes a la salida de la central térmica. 

 Caracterización del agua de vertido (una vez decantadas las cenizas) y, 

estudio de la posibilidad de recirculación de dichas aguas para su posterior 

reutilización en el proceso de captura de CO2. 

 Integración con el proyecto de central existente. Mediante el uso de 

herramientas informáticas se realizará un modelado del proceso, integrando la 

captura de CO2 en vía húmeda al diseño de la central realizado por Foster 

Wheeler. 

 Análisis de ciclo de vida y huella ecológica. Se completará un análisis de 

ciclo de vida del proyecto de central térmica junto con la planta de captura a 

escala completa, para evaluar de manera integral las emisiones de CO2 y los 

consumos de energía imputables a la puesta en marcha de las instalaciones.  
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ANEXO A: COMPUESTOS Y REACTIVOS UTILIZADOS 
 

En la tabla 20 se presenta una descripción de los reactivos empleados en los 

experimentos que se muestran en este proyecto.  

 

 -. Tabla 20: Reactivos empleados.- 

Reactivo Fabricante Pureza (%) Estado Aplicación 

Dióxido de carbono 
Carburos 

metálicos, S.A. 
100 Gas Reacción 

Cloruro de sodio Solvay, S.A. 100 Sólido 
Disólución absorbente 

salina 

EDTA Merck 99 Sólido 
Acomplejante en 

disolución absorbente 

Hidróxido de sodio Fluka  98 Sólido Ajustar pH 

Ácido clorhídrico  
Panreac Química, 

S.A. 
37 Líquido Ajustar pH 

Ácido cítrico 
monohidratado 

Merck 99,5 Sólido Disolución tampon 

Ácido acético Merck 100 Líquido Disolución tampon 

Acetato de sodio F.E.R.O.S.A. 99,5 Sólido Disolución tampon 

Imidazol Fluka 99,5 Sólido Disolución tampon 

Tetraborato de sodio Merck 99,5 Sólido Disolución tampon 

Carbonato de sodio 
Panreac Química, 

S.A. 
99,8 Sólido Disolución tampon 

Hidrogenocarbonato 
de sodio 

Panreac Química, 
S.A. 

99,8 Sólido Disolución tampon 
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ANEXO B: TÉCNICAS DE CARACTERIZACIÓN 
 

 Para la obtención de información sobre las propiedades y composición de 

los combustibles y sus cenizas se han empleado una serie de técnicas de 

caracterización que se enumeran y describen a continuación [35]. 

 

 B1. Difracción de rayos X (XRD) 

Mediante el uso de esta técnica se pretende la caracterización de las 

distintas fases cristalinas presentes en los combustibles y en sus cenizas. 

La difracción de rayos X es fundamentalmente una técnica de 

caracterización estructural de sólidos. Las longitudes de onda de los rayos X 

empleados son del mismo orden que las distancias interatómicas de los cristales, 

que actúan como redes de difracción, difractando los rayos X en direcciones y con 

intensidades determinadas. La señal de difracción de un sólido es reflejo de su 

estructura cristalina. En los experimentos de difracción, las muestras policristalinas, 

montadas en un dispositivo goniométrico, se analizan en función de la disposición 

de los cristales respecto a los haces incidente y difractado. 

La identificación de fases cristalinas constituye uno de los campos de 

aplicación más importantes del método de polvo cristalino, y se basa en el hecho de 

que cada sustancia en estado cristalino tiene un diagrama de rayos X, que le es 

característico. Estos diagramas están coleccionados en fichas, libros y bases de 

datos del Joint Committee on Powder Difraction Standards y agrupados según 

índices de compuestos orgánicos, inorgánicos y minerales. 

El Servicio de Análisis del Instituto de Carboquímica (ICB) dispone de un 

difractómetro de polvo policristalino “Bruker D8 Advance Series 2” (figura 27). Este 

equipo esta dotado de una fuente de rayos X con blanco de cobre y un detector de 

centelleo. Puede trabajar tanto en geometría Bragg-Brentano como con espejos 

Göbel. El sistema óptico "push-plug" del D8 ADVANCE permite cambiar 

rápidamente de la geometría de focalización Bragg-Brentano a la geometría de haz 

paralelo sin alinear el sistema. En este caso se utilizó la geometría Bragg-Brentano, 

en la que la superficie de la muestra forma ángulos iguales con el haz incidente y el 

haz difractado. 

Para la difracción de polvo estándar el D8 ADVANCE con monocromador de 

grafito facilita radiación KαCu (λ = 1,54184 Å) en un goniómetro HZG-4. Para la 
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obtención de los difractogramas que se muestran en este proyecto se ha trabajado 

con un ángulo de barrido (2Ө) entre 10 y 60º. Así mismo se ajustaron el paso 

angular  a 0,05º y el tiempo de medición en cada paso a 3 segundos, de tal manera 

que la calidad de los datos obtenidos fuera la mejor posible con un tiempo de 

adquisición moderado.   

 
 

-. Figura 27: Difractómetro de polvo policristalino “Bruker D8 Advance”.- 

B2. Análisis inmediato 

El Análisis Inmediato es el conjunto de ensayos mediante los cuales se 

determinan los porcentajes de humedad, cenizas y materia volátil. Para la 

realización de estos ensayos, el Servicio de Análisis del ICB dispone de una serie 

de estufas, tanto de ventilación forzada como de atmósfera inerte, para determinar 

la humedad y diferentes hornos de mufla para la determinación de la materia volátil 

y cenizas (figura 28). El conjunto de estos equipos sigue las Normas UNE 

establecidas para este tipo de análisis (anexo C).  

 
 

-. Figura 28: Estufas y muflas para análisis inmediato.- 
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B3. Análisis elemental 

El análisis elemental es una técnica que proporciona el contenido total de 

carbono, hidrógeno, nitrógeno, azufre y oxígeno presente en un amplio rango de 

muestras de naturaleza orgánica e inorgánica tanto sólidas como líquidas. El 

Servicio de Análisis del ICB dispone de un analizador “Carlo Erba 1108” y un 

analizador “Termo Flash 1112” (figura 29) para la determinación de carbono, 

hidrógeno, nitrógeno, azufre y oxígeno con un rango de detección desde 0,05% 

hasta 99,95%.  

Los productos de combustión son separados por cromatografía de gases en 

el analizador “Termo Flash” por combustión en una atmósfera de oxígeno para la 

determinación de carbono, hidrógeno, nitrógeno, azufre y oxígeno, y los porcentajes 

se miden utilizando un detector de conductividad térmica “Carlo Erba” y una placa 

de adquisición de datos. La salida generada por el analizador se puede guardar 

como un documento XLS. El tiempo de análisis para el C, H, N, O y S es de unos 

15 minutos. 

 
 

-. Figura 29: Analizador “Carlo Erba 1108” y analizador “Termo Flash 1112”.- 

B4. Poder calorífico 

El poder calorífico de un combustible representa la cantidad de calor 

generada por la combustión completa de una unidad de masa de dicho combustible 

en recipiente cerrado. 

Para la determinación del poder calorífico de combustibles sólidos y líquidos, 

así como de todo tipo de biocombustibles, el Servicio de Análisis del ICB cuenta 

con un calorímetro isoperibólico “IKA C-2000” que se observa en la figura 30. 

Este calorímetro permite una humedad relativa del 80% y una temperatura 

máxima de 30ºC. La caldera del calorímetro se encuentra refrigerada 
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automáticamente con agua del grifo a una temperatura entre 12 y 28ºC a través de 

un termostato, con un flujo entre 60 y 70 l/h y a una presión de 1,5 bares. Se da el 

llenado automático del recipiente de disgregación con oxígeno a una presión 

máxima de 40 bares.  

El equipo tiene dos métodos de trabajo, el modo dinámico y el modo 

isoperibólico a 25 y a 30ºC. El tiempo de medición aproximado para el modo 

isoperibólico es de 22 minutos y la reproducibilidad de este modo utilizado es de 

0,05% RSD. 

 

-. Figura 30: Calorímetro isoperibólico “IKA C-2000”.- 

B5. Espectroscopia de emisión óptica de plasma acoplado 

inductivamente (ICP-OES) 

El ICP-OES es una técnica de análisis multielemental que utiliza una fuente 

de plasma de acoplamiento inductivo para disociar los átomos o iones que 

constituyen la muestra, excitándolos a un nivel donde emiten luz de una longitud de 

onda característica. Un detector mide la intensidad de la luz emitida y calcula la 

concentración de ese elemento, en particular, de la muestra.  

  El Servicio de Análisis del ICB dispone de un espectrómetro de emisión 

atómica ICP “Jobin Ybon 2000” de configuración radial que se muestra en la figura 

31. 

Este equipo consta de un generador de radiofrecuencia de 40,68 MHz, un 

plasma  totalmente desmontable con una antorcha de 3 mm y un inyector de 

alúmina que introduce 12 l/min. del gas del plasma (Argon). Para introducir la 

muestra en el plasma se disponen de 3 canales con una bomba peristáltica y un 

nebulizador concéntrico de vidrio con una cámara de pulverización ciclónica. 
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Este espectrómetro tiene una óptica única y de calidad ya que dispone de 

una rejilla holográfica grande, de 80 x 100 mm que ofrece una mayor luminosidad y 

una mejor resolución. El JY 2000-2 utiliza un diseño clásico de Czerny-Turner con 

sólo dos 

superficies reflectantes, además de la rejilla y dos monocromadores para los 

diferentes rangos espectrales. El sistema óptico se encuentra termo-regulado, a 

0,64 metros de distancia focal y con una resolución óptica de menos de 9 pm de 

160 a 800 nm de longitud de onda. 

En este proyecto se utiliza este espectrómetro para determinar el Ca en las 

cenizas. El límite de detección típico para el Ca es 0,03 ppb en un plasma de visión 

radial como es este. La visión radial reduce al mínimo las interferencias. Para 

determinar el calcio se prepara la muestra mediante fusión con tetraborato de litio a 

1000ºC y un vertido de HCl 0,05M. 

 
 

-. Figura 31: Espectrómetro de emisión atómica ICP “Jobin Ybon 2000”.- 

B6. Microscopía electrónica de barrido (SEM) 

El microscopio electrónico de barrido (SEM), inicialmente pensado para 

obtener imágenes de gran resolución de los rasgos topográficos superficiales de los 

objetos, se fundamenta en la interacción de un haz primario de electrones con el 

objeto que se pretende estudiar. Se trata de un haz muy fino, intenso y estable que, 

explorando la superficie de la muestra, origina señales diversas que, 

convenientemente tratadas, permiten obtener información tanto morfológica como 

estructural y microanalítica. Una de las características principales de la microscopía 

electrónica de barrido es la gran versatilidad de sus aplicaciones. 

El Servicio de Análisis del ICB dispone de un microscopio SEM - EDX 

“Hitachi S-3400N” de presión variable hasta 270 Pa con analizador EDX “Röntec 

XFlash” de tipo SDD que no requiere nitrógeno líquido (figura 32). Las cenizas en 
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polvo se utilizaron directamente en el SEM para observar la superficie, asimismo 

una parte se pulió y embutió en resina epoxi para observar su sección transversal. 

El microscopio SEM “Hitachi S-3400N” dispone de una alta resolución debido 

al revolucionario haz de electrones automático. Se observan las imágenes en 

tiempo real y dispone de una visualización doble de la imagen. Posee una placa 

motorizada en 5 ejes con alta inclinación (20-90º) y posee una cámara analítica con 

la geometría óptima para la simultaneidad de EDX. 

B7. Espectroscopía de dispersión de rayos X (EDX) 

Espectroscopía de dispersión de rayos-X (EDS o EDX) es una técnica 

analítica utilizada para la caracterización química de una muestra. Es una de las 

variantes de fluorescencia de rayos X de espectroscopia que se basa en la 

investigación de una muestra a través de las interacciones entre la radiación 

electromagnética y la materia, el análisis de los rayos X emitidos por la materia en 

respuesta a ser golpeado con partículas cargadas. Su capacidad de caracterización 

se debe en gran parte al principio fundamental de que cada elemento tiene una 

única estructura atómica permitiendo a los rayos X ser característicos de la 

estructura atómica de un elemento, por lo que se identifican de forma única [36]. 

Para estimular la emisión de rayos X característicos en una muestra un haz 

de alta energía de electrones se centra en la muestra a analizar. El haz incidente 

puede excitar un electrón y se crea un hueco de electrones. Entonces este hueco 

es ocupado por un electrón, en una capa exterior, de mayor energía, y la diferencia 

de energía entre el estado de mayor energía y el de menor energía puede ser 

liberada en forma de rayos-X. El número y la energía de los rayos X emitidos por 

una muestra pueden ser medidos por un espectrómetro de energía dispersiva, lo 

que permite la composición elemental de la muestra a medir. 

El Servicio de Análisis del ICB dispone de un analizador EDX “Röntec 

XFlash” de tipo SDD que no requiere nitrógeno líquido. Asimismo, dispone de un 

equipo de preparación de muestras que incluye el corte, pulido y recubrimiento con 

oro (sputtering) con espesor controlado. 

El detector XFlash Rontec consta de dos partes independientes, el propio 

detector y el sistema de control. El detector se basa en una cámara de silicio. Su 

superficie es de 5 mm2 activos cubiertos por una ventana de 8 μm de espesor. La 
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cámara ha sido instalada en el difractómetro y ajustada a la distancia focal 

adecuada para maximizar la captura de RX procedentes de la muestra. La 

electrónica de control y el software de uso están integrados con los del propio 

microscopio electrónico. 

En este proyecto este equipo ha sido utilizado para caracterizar 

químicamente las cenizas. Las partículas de las cenizas originales y sin tratar se 

utilizaron directamente en el modo de bajo vacío del SEM aunque una parte se 

embutió en resina epoxi y se pulió para observar su sección transversal. 

 
 

-. Figura 32: Microscopio SEM “Hitachi S-3400 N” y EDX “Röntec XFlash”.- 

B8. Análisis de tamaño de partícula por dispersión de luz 

La medida de la distribución del tamaño de partícula de una muestra se basa 

en el análisis del patrón de dispersión generado al interactuar la luz (un láser) con la 

muestra. Este patrón de dispersión está formado por la intensidad de la luz como 

función del ángulo de dispersión. Para poder calcular la distribución de tamaño, el 

patrón de dispersión compuesto es transformado en un número de funciones 

individuales pero aditivas, una por cada clasificación de tamaño y la amplitud 

relativa de cada patrón se usa para medir el volumen relativo de partículas esféricas 

de ese tamaño. Esta descomposición está basada en las teorías de dispersión de la 

luz de Fraunhofer o de Mie. 

El Servicio de Análisis del ICB dispone de un equipo “LS 13 320 de Beckman 

Coulter” consistente en un banco óptico y tres módulos de muestreo: un módulo de 

líquido universal, un sistema tornado de polvo seco y un módulo de microanálisis 

para cantidades pequeñas de muestra. El sistema permite analizar distribuciones 

de tamaño de partícula desde 0.04 hasta 2000 μm. 
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En este proyecto se analizaron las muestras de cenizas y de combustibles 

con el módulo de polvo seco mediante el modelo óptico Fraunhofer. Este método de 

análisis exige una cantidad de muestra mínima de 25 gramos y dispone de un 

rango de medida de 0,4 a 2000 μm, aunque el modelo óptico de Fraunhofer es 

aplicable a partículas de tamaño superior a 5 μm, por debajo de este tamaño es 

más preciso el modelo de Mie. El tiempo aproximado de análisis es de 15 a 90 

segundos. 

 

-. Figura 33: Equipo “LS 13 320 de Beckman Coulter”.- 

B9. Análisis termogravimétrico y calorimetría diferencial de 

barrido (TGA-DSC) 

La termogravimetría (TG) está basada en la medida de la variación de la 

masa de una muestra cuando se la somete a un cambio de temperatura en una 

atmósfera controlada. Esta variación puede ser una pérdida o una ganancia de 

masa. El registro de estos cambios nos dará información sobre si la muestra se 

descompone o reacciona con otros componentes. La termogravimetría puede 

utilizarse conjuntamente con otras técnicas, como por ejemplo ATD o DSC, ya que 

permiten obtener información complementaria sobre el comportamiento térmico de 

una muestra. 

La Calorimetría de barrido diferencial (DSC) es una técnica termoanalítica 

en la que la diferencia de calor entre una muestra y una referencia es medida como 

una función de la temperatura. La muestra y la referencia son mantenidas 

aproximadamente a la misma temperatura durante el experimento. Generalmente, 

el programa de temperatura para un análisis DSC es diseñado de tal modo que la 

temperatura del portador de muestra aumenta linealmente como función del tiempo. 

La muestra de referencia debería tener una capacidad calorífica bien definida en el 

intervalo de temperaturas en que vaya a tener lugar el barrido. El principio básico 

subyacente a esta técnica es que, cuando la muestra experimenta una 
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transformación física tal como una transición de fase, se necesitará que fluya más 

(o menos) calor a la muestra que a la referencia para mantener ambas a la misma 

temperatura. El que fluya más o menos calor a la muestra depende de si el proceso 

es exotérmico o endotérmico. Determinando la diferencia de flujo calorífico entre la 

muestra y la referencia, los calorímetros DSC son capaces de medir la cantidad de 

calor absorbido o eliminado durante tales transiciones. 

Para realizar los análisis de las cenizas carbonatadas en este proyecto se 

utilizó una termobalanza “SDT Q600 de TA Instruments” (figura 34). Esta 

termobalanza proporciona mediciones reales de cambio de peso (TGA) y de flujo de 

calor (DSC) en una muestra, en un intervalo desde temperatura ambiente hasta 

1500°C. Este equipo ofrece una alta fiabilidad debido a su diseño de doble brazo 

horizontal de cerámica. Cada brazo posee un mecanismo de balanza y un termopar 

de platino-rodio en la base del portamuestras. Este instrumento tiene una precisión 

de temperatura isotérmica de ± 0,1ºC y una precisión de pesado de 0,01%. 

La unidad cuenta con un robusto y fiable horno, encerrado en una cubierta 

de acero inoxidable perforado. El diseño horizontal asegura la temperatura de los 

programas de forma exacta y precisa. El diseño también le ofrece al operador la 

facilidad de uso, debido a la apertura automática del horno y a la carga fácil de la 

muestra. El equipo también posee un sistema de purga de gases que incluye un 

controlador de flujo másico y automatización avanzada a través de un software 

específico. El diseño impide difusión y elimina eficazmente los productos de 

descomposición de la muestra. Un sistema separado permite la entrada de manera 

eficiente del gas reactivo a la muestra.  

La muestra se puede colocar en viales de platino y de cerámica. Los viales 

de platino se recomiendan para temperaturas máximas de 1000°C, por ello son 

utilizados en los análisis realizados durante este proyecto. 

 

-. Figura 34: Termobalanza “SDT Q600 de TA Instruments”.- 
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ANEXO C: NORMAS PARA LA CARACTERIZACIÓN 

 
 Para la obtención de información sobre las propiedades y composición de 

los combustibles se han empleado una serie de técnicas de caracterización que 

cumple ciertas normas ISO que se describen brevemente a continuación [37]. 

 C1. ISO 589:2008: Determinación de humedad total 

Se describen dos métodos para la determinación del contenido de humedad 

total de los carbones: 

B) La muestra se seca en un horno en un temperatura entre 105 y 110ºC en 

una corriente de nitrógeno y la humedad es calculada por la pérdida en la masa. 

C2. ISO 1171:1976: Determinación de las cenizas 

Especifica un método para la determinación de las cenizas de todos los 

combustibles minerales sólidos. 

Se introduce en una mufla una muestra del combustible hasta los 750ºC 

siguiendo un programa estándar. Luego se pesa y se vuelve a introducir en la 

mufla, repitiendo el proceso hasta que el peso de la muestra no varíe más del 

0,25% entre pesadas. La diferencia entre el peso inicial y el final después del 

proceso de combustión dividido entre el peso inicial, es el porcentaje de cenizas. 

C3. ISO 5623:1974: Determinación de la materia volátil 

Se utiliza el método de tiempo constante en el que se introduce la muestra 

en crisol con tapa en una mufla previamente calentada a 900ºC, manteniéndola en 

ella durante 7 minutos exactos. Al cabo de ese tiempo se retira el crisol y se deja 

A) La muestra es calentada en un matraz bajo las condiciones de reflujo con 

tolueno hirviendo. La humedad del carbón es arrastrada por el vapor de tolueno y 

llevada a un condensador con un matraz graduado. El agua ya está separada en el 

matraz graduado mientras el tolueno en exceso es devuelto al matraz de destilación 

por reflujo. La humedad en el carbón es calculada por el volumen del agua 

recogido. 
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enfriar en un desecador. Una vez frío, se pesa el crisol y se calcula la pérdida de 

peso, el porcentaje de volátiles desprendido. 

C4. ISO 1928:2009: Determinación del poder calorífico 

Especifica un método para la determinación del poder calorífico de un 

combustible mineral sólido en un calorímetro de bomba. Proporciona fórmulas para 

calcular el poder calorífico neto, a presión constante y volumen, y en la temperatura 

de referencia de 25ºC en un calorímetro de bomba, calibrado por la combustión de 

ácido benzoico certificado.  

El resultado obtenido es el poder calorífico de la muestra de análisis a un 

volumen constante con toda el agua de los productos de combustión como agua 

líquida. En la práctica, el combustible se quema a presión constante (presión 

atmosférica) y el agua no se condensa, pero se elimina en forma de vapor con los 

gases de combustión. En estas condiciones, el calor de la combustión operativo es 

el poder calorífico inferior del combustible a presión constante.  
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ANEXO D: DISEÑO DE EXPERIMENTOS 
 

Se podría definir el Diseño Estadístico de Experimentos, también 

denominado diseño experimental [38], como una metodología basada en útiles 

matemáticos y estadísticos cuyo objetivo es ayudar al experimentador a: 

1. Seleccionar la estrategia experimental óptima que permita obtener la 

información buscada con el mínimo coste. 

2. Evaluar los resultados experimentales obtenidos, garantizando la máxima 

fiabilidad en las conclusiones que se obtengan. 

Procedimiento de la aplicación del DEE 

La aplicación del diseño de experimentos requiere considerar las siguientes 

etapas que se comentarán a continuación y que se muestran mediante un esquema 

en la figura 32: 

1. Comprender el problema y definir claramente el objetivo. 

2. Identificar los factores que potencialmente podrían influir en la función 

objetivo, y los valores que éstos pueden tomar. Entre estos valores se buscará la 

información necesaria. 

Es muy importante identificar y listar todos los factores (las variables 

independientes) que se cree que pueden tener influencia en el proceso y en la 

respuesta, aunque se crea que pueden tener poca importancia.  

El experimentador debe ser consciente de la influencia potencial de podría 

tener cada factor en la respuesta. Los factores no controlados pueden introducir 

variaciones en la respuesta que dificultan el análisis de los resultados 

experimentales.  

Para cada factor se debe definir el intervalo de valores que puede tomar 

(dominio experimental). La combinación del dominio de todos los factores configura 

el dominio experimental posible (o dominio de los factores). Éste contiene los 

experimentos que, en principio, se podrían realizar.  
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Hay que notar que la elección de los factores y de su dominio experimental 

no suele ser fácil. Es el experimentador quien decide donde es interesante estudiar 

dichos factores. Esta decisión requiere un conocimiento previo del sistema, 

obtenido de referencias bibliográficas, experiencia previa en el laboratorio, etc.  

3. Establecer una estrategia experimental, llamada plan de experimentación. 

Si el objetivo es el estudio de los factores una vez se han identificado 

(seleccionado) los pocos factores más importantes (k), el siguiente paso suele ser 

estudiar cuantitativamente su efecto sobre la respuesta y sus interacciones. Para 

obtener la matriz de experimentos se pueden utilizar los diseños factoriales 2k y los 

factoriales fraccionados 2k-r, estos últimos contemplan un número menor de 

experimentos que los factoriales completos, a costa de no obtener ciertas 

informaciones que a priori se consideran irrelevantes.  

4. Efectuar los experimentos con los valores de los factores decididos en el 

punto 3 para obtener los valores de las respuestas estudiadas.  

El diseño experimental escogido suele estar descrito mediante variables 

codificadas. Estas se particularizan para los factores en estudio, se comprueba si 

los experimentos son posibles y, si es así, se realiza la experimentación en orden 

aleatorio respecto al orden en el cual están listados. La ejecución en orden aleatorio 

es necesaria para asegurar que los factores no contemplados introduzcan 

confusión y sesgo en los resultados. 

5. Responder las preguntas planteadas, sea directamente o utilizando un 

modelo matemático. Si es necesario, volver a la etapa 1. 

Una vez se dispone de los resultados experimentales se pueden calcular los 

efectos de los factores, así como sus interacciones. Los tests estadísticos permiten 

comprobar si los efectos calculados son significativos comparándolos con el error 

experimental.  

Es importante notar que la realización de estas etapas es cíclica. La 

información obtenida al realizar una serie de experimentos se debe integrar para 

planificar la experimentación posterior. Quizás entonces se comprende mejor el 

problema y se pueden redefinir o concretar más los objetivos, se pueden descartar 

factores que se ha visto que no eran importantes, o modificar su dominio 
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experimental, con ello se  planea una nueva experimentación, y así sucesivamente. 

Por este motivo, se prefiere normalmente efectuar los experimentos en pequeñas 

series. 

 

-. Figura 35: Etapas de la aplicación del DEE.- 

Ventajas del DEE o diseño experimental [39]: 

 Número limitado, fijo (y pequeño) de experimentos.  

 El mejor método de manejar la variación experimental es de 

examinarla sistemáticamente.  

 El DEE puede incluir interacciones (a diferencia del variar-un-factor-

cada-vez (VUFCV)).  

 Existen herramientas de software para el DEE (por ejemplo “The 

Unscrambler X”) que también permiten usar restricciones prácticas 

(por ejemplo ausente independencia de los factores, factores de 

mezcla, factores alternativos, experimentos fracasados...). 

 Las herramientas de software para DEE realizan automáticamente el 

análisis de datos estadísticos de los resultados de los experimentos, 

así el usuario no necesita tener muchos conocimientos previos de 

estadística.  

 Facilita el desarrollo más rápido de productos, y a más bajo coste, por 

lo que el DEE juega un papel fundamental desde el punto de vista 

industrial y proporciona una ventaja competitiva importante para la 

empresa que lo usa. 
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ANEXO E: MÉTODO DE OPTIMIZACIÓN SIMPLEX 
 

El fin del proceso de optimización es conseguir el máximo beneficio [40]. El 

método utilizado para alcanzar el objetivo consiste en dividir el problema en 

pequeñas unidades y aplicar un método adecuado de optimización para cada 

unidad. Las cinco etapas principales del proceso de optimización son: 

1. Definir claramente la estrategia y los objetivos. 

2. Considerar y clasificar el proceso para conseguir los objetivos. 

3. Introducir los procesos de optimización matemáticos. 

4. Optimización de los parámetros de entrada. 

5. Automatización del análisis de datos y ajuste de parámetros. 

El sistema técnico de optimización es el proceso de ajuste de las variables 

de control para encontrar el valor que consigue la mejor respuesta de salida. 

El método simplex está basado en una designación inicial de n + 1 ensayos, 

donde n es el número de variables [41]. Con dos variables el primer simplex está 

basado en tres ensayos, para tres variables son cuatro ensayos. Este número de 

pruebas es el mínimo necesario para definir una dirección de mejora.  

Después de las pruebas iniciales, el simplex es un proceso secuencial, con 

la adición y evaluación de una nueva prueba cada vez. El simplex busca 

sistemáticamente el mejor nivel de control de variables. La optimización termina 

cuando se consigue el objetivo marcado o cuando la respuesta no puede ser 

mejorada. 

El algoritmo básico del simplex consiste en las siguientes reglas: 

 La primera regla es eliminar la prueba cuyo valor respuesta sea menos 

favorable en el simplex actual. 

 Se calcula un nuevo conjunto de valores de la variable de control por 

reflexión del espacio de la variable de control, opuesto al resultado rechazado. Este 

nuevo experimento reemplaza al menos favorable en el simplex. Esto conlleva una 

nueva respuesta menos favorable que a su vez da lugar a un nuevo experimento. 

En cada etapa nos alejamos de las condiciones menos favorables. Por ello el 

simplex se moverá gradualmente hacia unas condiciones más favorables. 
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 La segunda regla consiste en no volver nunca a los valores rechazados. 

 La reflexión calculada para las variables de control puede también producir 

un resultado todavía peor. Sin esta segunda regla el simplex oscilaría entre dos 

valores. Este problema se evita eligiendo la segunda condición menos favorable y 

alejándose de ella. 

 La tercera regla es la posibilidad de reevaluación 

 Los experimentos retenidos en el simplex para un número específico de 

etapas se pueden evaluar de nuevo, para evitar que el simplex se “atasque” 

alrededor de una respuesta favorable falsa. 

 La cuarta regla es el establecimiento de límites para las variables. 

 Los ensayos calculados que están fuera de los límites efectivos de las 

variables de control no se tienen en cuenta. En caso contrario, podría obtenerse 

una respuesta muy desfavorable forzando al simplex a moverse fuera de los 

límites. 

 El algoritmo de optimización permite una modificación o ajuste del tamaño y 

forma del simplex: expandiéndolo en la dirección de las condiciones más 

favorables o contrayéndolo si el movimiento se ha realizado en la dirección de 

las condiciones menos favorables. 

 Los procedimientos de contracción y expansión permiten al simplex 

acelerarse a través de un camino exitoso de mejora y alcanzar las condiciones 

óptimas. El grado de contracción depende de lo desfavorable que sea la respuesta 

o de la proximidad al óptimo. 

 La figura 36 muestra los diferentes movimientos con las modificaciones del 

método simplex, siendo W el ensayo rechazo, R el ensayo de reflexión, E el 

ensayo de expansión, C+ el de contracción positiva y C- el de contracción negativa. 
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-. Figura 36: Movimientos de los diferentes simplex a partir de las condiciones del 

ensayo rechazado (W). 

 
 
 En la figura 37 se presenta un ejemplo de una secuencia de optimización 

típica del método simplex. 

 

-. Figura 37: Ejemplo de una secuencia de optimización típica con el método 

simplex: cambio en los niveles para dos variables de control y cambio en la 

respuesta.- 

 

Los cálculos del algoritmo Simplex modificado utilizan el esquema de trabajo 

que se observa en la figura 38. Para cada simplex se utilizan las siguientes etapas: 

W para el ensayo menos favorable o que va a ser eliminado, B para el ensayo más 

favorable y Nw para el segundo peor ensayo. 
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-. Figura 38: Algoritmo Simplex modificado.- 

 

  
 El método simplex es especialmente apropiado cuando: 

 El rendimiento del proceso cambia con el tiempo. 

 Hay más de tres variables de perturbación o control. 

 El proceso requiere una nueva optimización con cada nuevo lote de 

material. 

 La dependencia de las variables optimizadas con los parámetros de 

reacción es desconocida. 
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ANEXO F: DISOLUCIONES TAMPON RECHAZADAS 
 

En el análisis termogravimétrico de las cenizas carbonatadas en los 

experimentos en los que se utilizó como disolución tampon ácido cítrico 0,1M se 

observó un comportamiento singular, la segunda pérdida de peso era mayor que en 

el resto de análisis, tal y como se observa en la figura 39.  

 

-. Figura 39: Termograma de cenizas de escombrera carbonatadas en un 

experimento con disolución tampon de ácido cítrico.- 

Con objeto de conocer lo que ocurría se caracterizaron mediante XRD 

cenizas carbonatadas de algunos experimentos en los que inicialmente se empleó 

ácido cítrico, se comprobó que no había carbonato de calcio, lo que se formaba era 

citrato cálcico (figura 40). En la descomposición térmica de este citrato se forma 

calcita [42], por ello mediante el análisis termogravimétrico se observa la pérdida de 

peso correspondiente [43], pero no es causada por la captura de CO2. 

 

-. Figura 40: Difractograma de cenizas de escombrera carbonatadas en un 

experimento con disolución tampon de ácido cítrico.- 
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Asimismo, como ya se mencionó anteriormente, también fue rechaza la 

disolución tampón con fosfato de sodio, que inicialmente se empleó para la 

preparación de las disoluciones tampon a pH 7, sin embargo, debido a la formación 

de fosfato cálcico, se reducía el calcio utilizable para la precipitación de carbonato 

cálcico, obteniendo unos resultados desfavorables, tal y como se observa en los 

termogramas de la figura 41. Por ello se decidió usar imidazol para las disoluciones 

tampon a pH 7. 

          

-. Figura 41: Termograma de cenizas de escombrera (a) y carbón (b) carbonatadas 

en un experimento con disolución tampon de  fosfato de sodio.- 
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