
Trabajo Fin de Máster

Desarrollo de una red social y herramientas para
cantantes mediante una aplicación Android

Creation of a social network and tools for singers through an
Android application

Rouffineau Frédéric

Directores

José Ramón Beltrán Blázquez
Víctor Viñals Yúfera

Escuela de Ingeniería y Arquitectura

 Mayo 2016 ­ Febrero 2017

3

Agradecimientos
Un sincero agradecimiento para mi director de trabajo J.R Beltrán que mostró un au-
téntico interés por el trabajo y con quien he podido compartir varias cosas acerca de
la música. No se puede olvidar a mi ponente V.Y. Viñals cuyo soporte ha sido cons-
tante a lo largo del máster. Por último, este trabajo está dedicado a todos mis amigos
músicos y no músicos, y a mis colegas de trabajo en Hiberus del departamento Ma-
gento, que facilitaron mucho la realización de este proyecto y de esta memoria, por
su presencia, comprensión, flexibilidad, y apoyo.

4

Resumen
Universidad de Zaragoza- Escuela de Ingeniería y Arquitectura

Máster en Ingeniería Informática

Desarrollo de una red social y de herramientas para cantantes mediante una
aplicacion Android

por Frédéric ROUFFINEAU

Hoy en día, empezar el canto no es cosa fácil sin formar parte de una familia de mú-
sicos, la falta de confianza y de un seguimiento apropiado puede impedir el disfrute
de este sencillo placer. Este proyecto, es una aplicación para Android llamada Sing-
vibes. Tiene como próposito ofrecer herramientas que ayuden a cantantes o personas
que quieran empezar a cantar. Singvibes combina una red social con herramientas
de análisis de sonido y de voz usando el algoritmo Fast-Lifting-Wavelet-Transform
basado en las wavelets de Haar, que proporciona la información en tiempo real de
la afinación del canto. La red social tiene como propósito poder compartir las graba-
ciones y encontrar a otros cantantes que pueden compartir su opinión, aportar una
ayuda y un oído humano imprescindible para mejorar en canto, creando un espacio
positivo.

Para realizar este doble proyecto (aplicación de análisis vocal cliente Android y
red social basada sobre un servidor desarrollado integralmente personalmente) fue
necesario el uso de una gran parte de los conocimientos enseñados en Ingeniería
Informática. Eso incluye los campos siguiente:

Adquisición y procesamiento de una señal digital en tiempo real
Bases de datos (relacionales): diseño, esquema en estrella, data warehouse, flu-
jos de datos, MySQL y SQLite
Administración de servidor y Cloud, estando el servidor desplegado en el
cloud de Amazon.
Arquitectura distribuida: fueron necesarios varios patrones de diseño para im-
plementar correctamente el paradigma cliente->servidor y gestionar la concu-
rrencia entre usuarios.
Redes y sistemas: tomar medidas para asegurar disponibilidad, seguridad, fia-
bilidad, coherencia y consistencia de los datos. Limitar tanto como sea posible
el tráfico mediante un cacheado de la base de datos en los dispositivos clientes.
Conocimientos en diseño y desarrollo de aplicaciones Web: webservicios, APIs,
contenido estático y dínamico y paradigma Modelo-Vista-Controlador
Programación orientada a objetos: lado cliente y lado servidor
Calidad en el desarrollo: prestando mucha atención a la modularidad, extensi-
bilidad, con uso de sistema de versioning (git)
Computación de altas prestaciones: paralelización, multi-threading
Sístemas empotrados: uso del framework android y uso de sensores (micró-
fono) para procesar y comunicar datos

Este proyecto está ahora en estado Beta, con las funcionas centrales implemen-
tadas, pero con varias funcionalidades adicionales que se deben implementar antes
de la publicación en el Google Play (plataforma de aplicaciones para Android). Se
introducirá también un plan de explotaciones y una presentación de las áreas de
mejoras.

https://www.unizar.es/
https://eina.unizar.es

5

Abstract
Universidad de Zaragoza- Escuela de Ingeniería y Arquitectura

Máster en Ingeniería Informática

Creation of a social network and tools for singers through an Android
application

by Frédéric ROUFFINEAU

Singing is not an easy thing to master for someone wihout a musical background.
The lack of trust and relevant mentoring can quickly put off people from enjoying
this simple pleasure. This project, an application for Android called Singvibes, ho-
pes to provide a set of tools for beginners or advanced singers, accompanying their
training and opening them new prospects by obtaining some advice from other peo-
ple just like them through a collaborative-sharing system. Indeed, Singvibes aims
to combine a social network with a training companion doing some real time voice
analysis using the embedded phone microphone sending the signal to a Fast Lifting
Wavelet Transform algorithm (with the Haar wavelet) in order to provide useful
information to the singer.

A wide range of Computing Engineering knowledge has been required to deve-
lop this double project:

Digital signal real-time processing and reconstruction
Relational databases: design, star-shaped schemas, data warehousing, data stream
processing, MySQL and SQLite systems
Server and Cloud management
Distributed Architecture: client-server paradigm and underlying notions rela-
ted to it: concurrent connections, session management, work load
Network and distributed systems: take measures to ensure a decent enough
level of availability, safety, security, reliability, consistency and coherency of
the data while exchanging various types of data, and limiting the exchanged
volume as much as possible
Knowledge about the internet and web applications: webservices, APIs, dy-
namic and static content management, and structured code production - front
end controller pattern and Model-Viwe-Controller
OOP (Object-Oriented-Programming) - server and client side using various
abstractions and packages to make some reusable and modular code
Quality software development: best practices through an extensive documen-
tation of what it is currently done by professionals all across the world
High-demand computation: parallel execution, multithreading
Embedded systems: Android framework for mobiles, allowing the use of sen-
sors, real-time processing, display and exchange of information with a remote
system

This projectly currently lies in its beta version. The core funcionalities are wor-
king, but before pushing up to the Google Play platform, it needs some more ma-
turing and improvements which will be described at the end of this report. A long-
term business plan including advertisment, sponsoring and a ÿou get what you paid
for-̈policy have been thought and will be executed as soon as possible.

https://www.unizar.es/
https://eina.unizar.es

6

Índice general

Declaración de autoría y originalidad 2

Agradecimientos 3

Resumen 4

Abstract 5

Índice general 6

1. Introduction 9
1.1. Objetivos . 9

1.1.1. Singvibes: un ’oído virtual’ para cantantes 9
1.1.2. Una oportunidad de encontrar a otros músicos 9

1.2. Estado del arte . 10
1.2.1. Bases teóricas y científicas . 10
1.2.2. Ejemplos de aplicaciones ya existentes 10
1.2.3. Diferenciación del proyecto . 10

1.3. Requisitos y tipos de problemas . 11
1.3.1. Experiencia usuario (UX) . 11
1.3.2. Disponibilidad, fiabilidad . 11
1.3.3. Rendimiento y tiempos de ejecución 11

1.4. Metodología . 12
1.4.1. La gestión del tiempo y las etapas importantes del proyecto . . 12
1.4.2. Las fuentes de información y de ayuda 12
1.4.3. La producción de código modular y fácil de entender y mani-

pular . 13
1.5. Presentación corta de las secciones y anexos 14

2. Diseño de la detección de la afinación del canto en tiempo real 15
2.1. Conceptos . 15

2.1.1. Sonido y ondas sonoras . 15
2.1.2. Notas y armónicos . 15
2.1.3. Escala cromática y afinación . 16

2.2. La detección del tono . 18
2.2.1. Análisis temporal, análisis frecuencial y detección de tono en

tiempo real . 18
2.2.2. El Fast-Lifting-Wavelet-Transform (FLWT) 18
2.2.3. El algoritmo FLWT basado en las Wavelets de Haar 19

3. Diseño de la red social y elaboración de una arquitectura distribuida 21
3.1. El paradigma cliente-servidor . 21

3.1.1. Presentación de los actores y de la topología del sistema 21
3.1.2. Tipos de datos y base de datos 21

7

3.1.3. Intercambios de datos, mensajes y protocolos 22
3.2. Funcionalidades y problemas mayores en el diseño y la implementa-

ción de la red social . 24
3.2.1. Seguridad y sesiones . 24
3.2.2. Comunicación entre usuarios y puesta en contacto 26

4. El servidor: elaboración e implementación 27
4.1. El servidor y su organización interna . 27

4.1.1. Presentación del servidor . 27
4.1.2. Pros y contras de varios frameworks MVC 27
4.1.3. Diseño: front controller, organización de los ficheros 28

4.2. LeafStormMVC: implementación propia del paradigma MVC 28
4.2.1. Request flow: routing y controladores 28
4.2.2. Los modelos . 30
4.2.3. Las vistas: gestión del frontend 30

5. Singvibes para Android 31
5.1. Estructura de la aplicación y organización del código 31

5.1.1. Presentación global de la aplicación 31
5.1.2. Organización del código y modularidad 32
5.1.3. Multithreading en Android . 32

5.2. La implementación del pitch tracker . 33
5.2.1. Recuperar la señal . 33
5.2.2. Procesar la señal: el pitch tracker 33
5.2.3. Mostrar/Dibujar los resultados 34
5.2.4. Convertir la señal en fichero: WAV y después comprimirlo . . . 36
5.2.5. Guardar los resultados y publicación hasta el servidor 36

5.3. La implementación de la red social . 37
5.3.1. Queries asíncronas, HTTPS y refresco de las vistas 37
5.3.2. Base de datos local . 38

6. Resultados, conclusiones, trabajo futuro 39
6.1. Resultados . 39

6.1.1. Una herramienta fácil de usar útil para visualizar el canto y
encontrar a otros cantantes . 39

6.1.2. Pitch tracking: desde el modelo hasta la implementación: en-
señanzas y comparativa . 39

6.1.3. LeafStormMVC + App Android: base para otras aplicaciones . 39
6.2. Areas de mejora . 40

6.2.1. Fallos del pitch tracker . 40
6.2.2. Seguridad . 40
6.2.3. Normalización del código . 41
6.2.4. Mejor gestión de los intercambios de datos y caches 41
6.2.5. Funcionalidades adicionales y ventaja competitiva sobre las

otras aplicaciones . 41
6.3. Plan de explotación de la aplicación . 42

6.3.1. Google play, publicidad . 42
6.3.2. Funcionalidades premium para financiar el servidor 42
6.3.3. Una escena abierta . 42

Bibliografía 44

Índice general 8

A. Árbol de las carpetas/clases del servidor y de LeafStormMVC 45

B. Árbol comentado de las clases de la aplicación Android 47

C. Código del detector de tono: PitchDetector.java 48

D. Código del grabador: Recorder.java 54

E. Diagrama de secuencia general del proceso de grabación 57

F. Esquema de la base de datos con las claves ajenas 58

G. Repositorios de código y aplicación 59

Índice de figuras 60

9

1 Introduction

1.1. Objetivos

1.1.1. Singvibes: un ’oído virtual’ para cantantes

Hoy en día, se puede oír con bastante frecuencia afirmaciones del tipo siguiente:
’el canto, es innato’. O ’tienes la voz o no la tienes’, o ’sé que canto muy mal’, o ’no
tengo oído’. Pero hay muchas personas a quién les gusta cantar, aunque sea algunos
minutos para animar el día o la ejecucióń de tareas rutinarias. Hay un conjunto de
creencias que hace que dentro de todas las personas interesadas por el canto, pocas lo
intentan de verdad pensando que les falta oído o talento para hacerlo. Sin embargo,
cualquier cantante profesional sabe la cantidad de horas que hay que practicar para
cantar afinado y con un timbre de voz a veces muy lejos de la voz ’natural’ que cada
uno tiene.

De eso surgió la idea de crear una aplicación que incite a la gente a probar el
canto, y ver que también pueden emitir notas, más o menos afinadas, igual que los
demás, proveyendo un feedback en tiempo real objetivo (la comparación de la nota
cantada con la nota más cerca de un piano por ejemplo).

La aplicación que se va a presentar, Singvibes, está pensada como un oído artifi-
cial capaz de compensar y entrenar al usuario para que cante mejor, y más afinado,
reforzando su nivel de conciencia mediante la grabación por el micrófono del telé-
fono usando simultáneamente técnicas de análisis de sonido en tiempo real.

1.1.2. Una oportunidad de encontrar a otros músicos

Para cantar bien, no basta solo con cantar las notas afinadas y en ritmo. Hay que
tener una cierta comprensión de la música, una cierta práctica y conocimiento de
su propio instrumento (la voz), cuya complejidad viene dada, en gran medida, por
su carácter individual. Entonces, el análisis del sonido, por muy potente que sea,
no será suficiente para mejorar el canto de alguien. Hay también que enfrentarse al
público y a sus opiniones, y eso puede generar ansiedad y miedo.

Así que, una manera concreta de mejorar es escucharse y obtener también la opi-
nión de los demás, a todos los niveles. Los principiantes tienen la ventaja de com-
partir la ansiedad y la decepción que uno puede experimentar a la hora de empezar
a cantar y darse cuenta de que la grabación no es buena. Y los más experimentados
pueden compartir su experiencia y obtener satisfacción de ello. Aquí está el segun-
do objetivo de Singvibes: crear un espacio positivo de encuentro entre gente que
comparte la misma afición, donde se puede obtener una opinión cuando es necesa-
ria, que añade al oído virtual objetivo, un oído humano subjetivo fundamental para
ganar soltura en canto.

Capítulo 1. Introduction 10

1.2. Estado del arte

1.2.1. Bases teóricas y científicas

Cumplir los objetivos mencionados antes no se puede hacer sin el trabajo enor-
me que hicieron muchos grandes matemáticos y físicos sobre el sonido y la música,
como Helmholtz y sus resonadores o Fourier y sus series.

En efecto, la física ondulatoria está bastante desarrollada y hay muchos modelos
y ecuaciones sobre las ondas y, por tanto, el sonido que son entendidas, estableci-
das y consideradas como buenas aproximaciones de la realidad (la definición de un
modelo) desde hace mucho tiempo.

Las nociones usadas para construir el detector de tono serán detalladas más ade-
lante.

1.2.2. Ejemplos de aplicaciones ya existentes

Debido a la facilidad de entender lo que es una onda, un sonido y una nota, y
viendo el potencial hoy en dia de las redes sociales como Facebook, Twitter o Insta-
gram, han aparecido varios proyectos similares de ’red social para cantantes’. Uno
de los más populares es Smule. Smule es una aplicación que permite grabarse, al
mismo tiempo ver las letras, y compartir la grabación. Desde hace poco se ha aña-
dido una funcionalidad que también permite detectar el tono y compararlo con una
secuencia de notas de referencia pregrabadas.

Otro proyecto análogo: SingSharp. Mucho más restrictivo que Smule, ofrece sin
embargo una pantalla que permite seguir el tono de voz de manera gráfica y sencilla.

Esos proyectos muestran el interés que la gente tiene para el canto y la posibili-
dad de implementar detectores de tono en tiempo real.

1.2.3. Diferenciación del proyecto

A la vista de lo anterior, uno se podría preguntar por el interés real de este pro-
yecto, si ya existen cosas similares. Pues es cierto que la detección de tono, obtener
la grabación y publicarla en una red social es un concepto que no es nuevo.

Aquí están ejemplos de fuentes de diferenciación de este proyecto:

Experiencia usuario: sencillez, rapidez, disponibilidad, velocidad

El pitch tracker y su implementación propia

El control concreto sobre el pitch tracker y algunos parámetros internos

El hecho de que se puede grabar y obtener análisis de manera libre sobre cual-
quier cosa, con música o no, en base de datos o no

Las visualizaciones que se ofrecen sobre la afinación, coherencia rítmica...

Funcionalidades adicionales: como un creador de fichero MIDI y, por tanto, de
la partitura (no totalmente implementado a día de hoy)

Funcionamiento de la red social: nivel de rapidez del servidor...

El soporte de varios idiomas

La estética general...

Capítulo 1. Introduction 11

Esta aplicación no pretende generar un tráfico tan denso como lo podría hacer
una aplicación profesional como Smule funcionando desde años. Pero sí que podría
ofrecer otro enfoque, quizás más pedagógico dando una visión más física y prag-
mática del canto por ser una realización única, igual que los videojuegos, que entre
ellos pueden parecer muy similares, pero que no son competidores directos (es po-
sible jugar a varios).

1.3. Requisitos y tipos de problemas

1.3.1. Experiencia usuario (UX)

Está claro que para que este proyecto sea un éxito, hace falta valorar mucho la
experiencia usuario sobre todo a nivel de sencillez de uso, rapidez y estabilidad. La
estética es también algo muy importante.

Se tomaron varias decisiones de diseño en este sentido. Entre ellas se pueden
destacar la elección de un estilo gráfico homogéneo basado en 2 colores, con un
diseño calificado de flat, o el hecho que cada funcionalidad de la aplicación puede
ser alcanzada en tan solo 2 clics.

Se dedicó una atención muy intensa al aspecto de la respuesta (responsive) de
la aplicación y de su velocidad por una separación en varios hilos de ejecución que
estarán detallados en el capítulo 5, que garantiza una fluidez de uso.

1.3.2. Disponibilidad, fiabilidad

Crear una red social y una aplicación que se conecta de manera frecuente a in-
ternet sin fallos no es trivial. La disponibilidad debe ser tan alta como sea posible,
condicionada en gran medida por la red pero sobre todo por el servidor y la ges-
tión de las peticiones entrantes. Eso plantea problemas de arquitectura, gestión de
conexión concurrentes, protocolos de intercambios de datos, etc.

Las problemáticas planteadas requieren del uso de muchos patrones de diseño
usados en infinidad de proyectos a gran escala.

Asegurar los intercambios de datos, que sean fiables, exactos a nivel de datos,
protegidos para que solo el destinatario acceda a los datos, es otro enfoque que ne-
cesita muchas precauciones (por ejemplo, evitar que los usuarios sean capaces de
ver datos que no les pertenezca).

1.3.3. Rendimiento y tiempos de ejecución

Debido al hecho de que el proyecto se trata por una parte de una aplicación móvil
y por otra parte de un servidor remoto, aparecieron varios requisitos y limitaciones
adicionales.

En efecto, hay una gran cantidad de teléfonos Android, con tamaños de pantalla
y características muy diversas. Hay que asegurarse de que la aplicación necesite una
cantidad de recursos razonable para evitar fallos en otros móviles.Por ejemplo, en
Android: si el thread UI principal está ocupado consecutivamente durante más de
30 segundos sin ser capaz de ejecutar sus handlers para refrescar o mandar eventos
al sistema, el sistema operativo va a intentar cerrar la aplicación y considerarla caída.

A nivel de servidor: el mayor problema está a nivel de las conexiones entrantes.
Tienen que ser tan limitadas como sea posible, para evitar una especie de DoS (De-
nial of Service) espontáneo, que se suele traducir por una devolución de un código
de respuesta 503 (Service Unavailable) hasta que se tomen medidas concretas para

Capítulo 1. Introduction 12

levantar el servidor. No sólo el número de conexiones pero también el tiempo de
procesamiento de cada una de ellas debe ser restringido. Eso implica una necesidad
de ejecutar cuantas menos instrucciones posibles, y está necesidad se refleja mucho
en las tecnologías usadas y la implementación, que se presentarán en los capítulos 3
y 4.

1.4. Metodología

1.4.1. La gestión del tiempo y las etapas importantes del proyecto

Debido a la diversidad de los problemas, fue imprescindible implementar una
buena gestión del tiempo y de las prioridades para poder presentar un prototipo
funcional. El proceso que se siguió es el siguiente: para cada funcionalidad que se
quiere implementar:

Hacer un listado de los objetivos concretos

Hacer un análisis de cada uno de los objetivos: requisitos y problemas, el tiem-
po que se puede dedicar a ellos. Si hay subproblemas, objetivos o sub- fun-
cionalidades emergentes, empezar de nuevo desde la etapa anterior para cada
uno de ellos.

Separar en tareas concretas, generalmente cortas de unos 30 minutos, 1 hora
como máximo. Hacer una estimación de tiempo de cada tarea y ver si hay un
orden natural o necesario entre las diferentes tareas.

Hacer búsquedas para conjuntar todo el conocimiento necesario para la buena
realización. Eso se repetirá tantas veces como sea necesario durante la realiza-
ción de dichas tareas.

Fase de diseño de solución: intentar medir los pros y los contras de cada solu-
ción factible que surge, y preparar la organización del código y de los objetos,
secuencias de acciones a ejecutar.

Fase de implementación: redactar el código, muchas veces empezando por
pseudo código escrito en etapas. Separar cada etapa en una función. Si dicha
función se aplica sobre un conjunto de variable muy peculiar (datos de una
nota por ejemplo), crear un objeto que encapsule esta lógica. Reorganizar las
carpetas si necesario y hacer tantos commits gracias a un sistema de versioning
(git) como haga falta para garantizar la posibilidad de volver atrás.

Fase de prueba: asegurarse de que los requisitos están superados. Si hay bugs,
largos de corregir e investigar, apuntarlos para añadirlos a la lista de tareas
después de las tareas más prioritarias.

La figura 1.1 a continuación permite ver las tareas seguidas y las semanas dedi-
cadas a ellas. Es aproximativo porque las tareas una vez acabadas entran en la fase
de pruebas y mejora continua.

1.4.2. Las fuentes de información y de ayuda

Algo está claro: no se puede ser experto en todas las tecnologías hoy en día.
Sobre todo en un proyecto como éste que usa las tecnologías siguientes: Java, An-
droid, Php, Nginx, las bases de datos MySQL y SQLite, los lenguajes de páginas

Capítulo 1. Introduction 13

FIGURA 1.1: Cronología de las tareas realizadas

web (HTML, CSS, Javascript), los sistemas de cache como Redis, de mensajería (Rab-
bitMQ...), los servicios de Cloud de Amazon, las tecnologías de criptografía de co-
municaciones HTTPS...

No solo sobre las tecnologías. Elaborar un pitch tracker y una aplicación con
objetivos de esta magnitud necesita muchos conocimientos matemáticos y físicos, y
una cierta experiencia de lo que se puede hacer o no, sobre todo, en tiempo real. Así
que unas de las claves de la realización de este proyecto fue la búsqueda constante
de información, un problema cada vez, poco a poco, mediante internet y foros de
todo tipo, documentaciones oficiales, y muy importante: las preguntas y consultas a
investigadores o a ingenieros experimentados y personas cualificadas (referirse a la
página de Agradecimientos).

Tampoco se deben olvidar los usuarios finales y probar la aplicación con varios
de ellos fue una gran ayuda para retocar diseños y funcionalidades.

Elaborar este trabajo ha consistido entonces, sobre todo, en buscar y analizar
información, más que utilizarlas y producir código, lo que justifica la cronología
mostrada antes.

1.4.3. La producción de código modular y fácil de entender y manipular

Debido a la variedad de los objetivos y problemas que hay que enfrentar para
realizar una aplicación Android y un servidor pensado para una red social, se nece-
sita una organización muy metódica del código.

Es importante remarcar que algo que salvó varias veces la progresión de este
proyecto ha sido el sistema de versioning: git, en este caso. Este proyecto tiene dos
repositorios git diferentes: uno para el servidor, otro para el cliente, y antes de hacer
cualquier cambio importante o después de haber implementado una funcionalidad

Capítulo 1. Introduction 14

difícil siempre suele haber un commit para poder volver atrás si aparecen después
regresiones sin razones aparentes (y con tecnologías tan abiertas y ’caprichosas’ co-
mo puede ser Android, eso ocurrió unas cuantas veces).

Otro punto clave. La organización en carpetas y las abstracciones. Un punto que
estará más detallado en los apartados siguientes. Estar acostumbrado a la programa-
ción orientada a objetos y las patrones de diseño comunes como Factory, Observer,
FactoryMethod, frontend controller, y mucho otros, es una ayuda inestimable. En el
código que se presentará y entregará, todo es objeto. No hay código o script suel-
tos, excepto los de creación de la base de datos en sql. La UI siempre está separada
de la lógica, el acceso a la base de datos siempre se hace mediante modelos y una
DBInterface, lado servidor o lado cliente. La modularidad del código condiciona su
facilidad de entenderlo y de extenderlo y se dedicó mucho tiempo a construir árbo-
les de clases y paquetes coherentes. Ver los anexos A y B y las secciones siguientes
para más información.

1.5. Presentación corta de las secciones y anexos

El resto de este documento se ordena siguiendo unos de los planos generales
para abordar un problema o una funcionalidad en ingeniería: una parte orientada
a diseño (incluye una análisis teórica y práctica) en las secciones 2 y 3, y otra sobre
los aspectos más técnicos, la implementación, en las secciones 4 y 5. Se alternan las
partes tratando del servidor, y las tratando de la aplicación. Una reflexión sobre el
proyecto, sus puntos fuertes y áreas de mejoras, y posible plan de explotación, se
encuentran en la ultima sección (sección 6).

Los anexos A hasta F contienen varios diagramas y comentarios acerca de los
aspectos más técnicos de la memoria. El código completo desarrollado, se puede
encontrar en el Anexo G mediante los repositorios Github ajuntados.

Por fín, se accede al servidor y a informaciones oficiales a destinación de los
usuarios o interesados mediante el nombre de dominio ’singvibes.com’.

15

2 Diseño de la detección de la
afinación del canto en tiempo real

2.1. Conceptos

2.1.1. Sonido y ondas sonoras

La música es una suma de sonidos y un sonido es una vibración, la mayoría de
las veces, del aire (puede haber sonido, por ejemplo, en el agua). Un sonido, en térmi-
nos físicos, es una onda progresiva longitudinal la cual se propaga con vibraciones
consecutivas de las moléculas que constituyen el medio de propagación. 1

Un sonido puede ser representado con su forma de onda. Los sonidos son adi-
tivos, es decir, dos sonidos sumados se comportan como un mismo sonido a nivel
de onda. Nota interesante: para reproducir un sonido hay que reproducir su forma
de onda y eso se hace haciendo vibrar la membrana de un altavoz siguiendo exac-
tamente esta forma de onda. Eso es muy importante para entender el concepto de
grabación, que se hace mediante la vibración de una membrana que se encarga de
transmitir la amplitud de un forma de onda a un procesador.

2.1.2. Notas y armónicos

Una nota es un sonido producido por un instrumento de música. Está caracteri-
zada por varios parámetros:

Su frecuencia (fundamental): en Hz, cuanto más alta más aguda
Su intensidad: o amplitud
Su duración
Su timbre: lo que permite diferenciar el sonido de un piano de una flauta, por
ejemplo.

La intensidad y la duración son dos propiedades fáciles de entender. La amplitud
se suele medir en dBs y cuando el oído humano percibe una variación que le parece
lineal de intensidad, la variación real de la intensidad de sonido es exponencial.

La frecuencia y el timbre son dos características que requieren una atención es-
pecial para la problemática del análisis de un tono. Para entenderlo bien, hay que
recordar una propiedad muy interesante que se aplica a cada señal continua, perió-
dica o pseudo-periódica: la descomposición en series de Fourier.

Una señal continua pseudo-periódica de frecuencia f (llamado fundamental) se
puede escribir como una serie de Fourier

f(t) =
a0
2

+
∞∑
n=1

an ∗ cos(2πnft) + bn ∗ sin(2πnft)

1Nociones de física ondulatoria explicadas en el libro Physique Tout-en-un MPSI-PTSI, [3]

Capítulo 2. Diseño de la detección de la afinación del canto en tiempo real 16

Con

an = f

∫ 1/f

x=0
f(x) ∗ cos(2πnfx)

bn = f

∫ 1/f

x=0
f(x) ∗ sin(2πnfx)

Cuando se toca un La, por ejemplo el La4 de frecuencia fundamental 440Hz al
piano, el sonido generado no es un sonido perfectamente sinusoidal. En realidad
aparece una sinusoidal de frecuencia 440Hz y sus armónicos (sinusoidales de fre-
cuencias múltiples de la frecuencia fundamental, cuyas amplitudes decaen normal-
mente hasta 0 con el aumento del valor del armónico).

La transformación de Fourier permite obtener la intensidad de cada armónico
(intensidad = f(frecuencia)) en vez de intensidad como función del tiempo. La curva
intensidad/frecuencia se llama espectro.

Determinar el tono de una nota, al fin y al cabo, es buscar la frecuencia funda-
mental de esa nota. ¡Ojo! hay ejemplos de sonidos en los cuales la frecuencia funda-
mental no está pero todos sus armónicos están (este caso se conoce como frecuencia
fundamental aparente) y también es necesario identificarla.

Los problemas, como se puede imaginar, surgen cuando hay varias notas al mis-
mo tiempo y hay que determinar qué armónico o qué componente del espectro per-
tenece a cada nota. A día de hoy, este problema todavía no se ha resuelto. El resto de
este documento hará referencia al canto monofónico (una nota a la vez), obviando
así este problema.

2.1.3. Escala cromática y afinación

Este aparatado va a introducir el concepto de afinación y una métrica concreta
para estimarla y devolverla al cantante.

En música, existen varias escalas para ordenar las notas dependiendo de su fre-
cuencia fundamental. Una de las más conocidas, y la que se utilizará aquí, es la
escala cromática. Es la escala que se utiliza en un piano. Doce notas por octava, y
para subir de octava hay que multiplicar la frecuencia fundamental por dos.

Eso se puede explicar con la fórmula siguiente, siendo i el índice de la nota (en el
teclado por ejemplo):

fi+12 = 2fi

En efecto, la distribución de las notas de música no es lineal. Considerando una
nota de índice i: i siendo, de manera práctica y visual, su número de tecla de piano
por ejemplo. Para obtener la frecuencia fundamental de la próxima nota en la escala
cromática (fi+1) se hace mediante el cálculo siguiente:

fi+1 = 2
1
12 fi (2.1)

Siendo una fórmula definida por recurrencia y una secuencia geométrica, necesi-
ta una inicialización. Está inicialización se hace de manera práctica eligiendo el La4,
generalmente tomado alrededor de 440Hz.

El origen y justificación matemático/físico/cognitivo de esto no es el objetivo de
este trabajo, pero toma su base de los trabajos de Pitágoras y está condicionado por
el funcionamiento del oído humano.

A partir de aquí se puede crear una métrica que permite evaluar si el cantante
canta afinado o no. Cantar afinado significa emitir sonidos justo a la frecuencia fun-
damental de una de las notas de la escala musical elegida, aquí cromática. Es mucho

Capítulo 2. Diseño de la detección de la afinación del canto en tiempo real 17

FIGURA 2.1: Definición visual de la afinación

más difícil de lo que puede parecer y sin un oído entrenado y una constante escucha
de música o referencias, hay un alto riesgo de trasladar todas las notas hacía arriba
o abajo.

El problema es cuantificar está afinación. La idea básica usada es la siguiente:
cuanto más cerca de una frecuencia fundamental mejor. Esto introduce el concepto
de distancia. La afinación depende de la frecuencia emitida fx, y de la escala musical
elegida porque condiciona la nota más cercana.

Sea fx la frecuencia fundamental de la nota emitida, su tono. La primera cosa que
habrá que hacer es encontrar cual es la nota más cercana, de índice i.

La afinación (a) puede ser definida de manera sencilla gracias a la figura 2.1 y
se basa sobre una propiedad muy importante inducida por la escala cromática: la
distancia entre los logaritmos de cualquier frecuencia fundamental de una nota de
la escala cromática es constante y vale 1/12

Demostración: el punto de partida es la ecuación (1)

fi+1 = 2
1
12 fi

log2(fi+1) = log2(2
1
12 fi)

log2(fi+1)− log2(fi) =
1

12

De manera intuitiva se puede definir la afinación (a) de una nota cantada fx así:

a =
log2(fx)− log2(fi)

distanciamax

La distancia máxima de log2(fx) hasta log2(fi) es de 1/24 (por definición de i
siendo el índice de la nota más cercana):

a = 24.log2(
fx
fi
)

Para obtener un valor en porcentaje más cómodo para trabajar, y para poder
almacenar este valor como un entero, entre -100 (la nota es demasiado baja) y 100 (la

Capítulo 2. Diseño de la detección de la afinación del canto en tiempo real 18

nota es demasiado aguda), se multiplica este valor por 100:

a = 2400.log2(
fx
fi
)

Todo el problema ahora reside en la detección de está frecuencia fundamental a
partir del sonido grabado por el micrófono, y en tiempo real.

2.2. La detección del tono

2.2.1. Análisis temporal, análisis frecuencial y detección de tono en tiem-
po real

La detección del tono consiste en la identificación de la nota que se está cantando.
Como he dicho antes, una nota no es una sinusoidal, sino una suma de sinusoidales
que corresponden a la fundamental y sus armónicos. Hay que tener cuidado, sin
embargo, de que la fundamental no siempre está pero la percepción humana hace
que la percibamos por sus armónicos (los mismos que la descomposición en series
de Fourier introducida anteriormente). Por tanto, el problema consiste, de manera
periódica y en una ventana de tiempo corta, en sacar una frecuencia particular que
va a corresponder con la nota cantada. Afortunadamente, esta fundamental suele
estar definida en las frecuencias más baja de la señal.

Está señal estará, pase lo que pase, dividida en pequeños trozos de una potencia
de dos. 1024 o 2048 para una señal de 44100Hz suele ser lo habitual para obtener
un tiempo de resolución de 25ms y 50ms respectivamente. Un sample es un valor
dado por el micrófono, que corresponde a la amplitud de onda durante un instante
determinado (recordamos que un sonido es una vibración del aire, y que una suma
de sonidos también). El micrófono devuelve una secuencia de samples que, ensam-
bladas, permiten dibujar la forma de onda de lo que está grabado.

Para obtener mas frecuencias de un bloque de samples, o identificar un patrón,
hay dos tipos de métodos. Los métodos basados sobre un análisis en el dominio
temporal, o un análisis que basado en una transformación que permite pasar en el
dominio frecuencial y obtener una curva amplitud/frecuencia, generalmente la de
Fourier (usando la Fast Fourier Transform).

Cada uno de esos métodos tienen ventajas e inconvenientes. Las transformacio-
nes hasta el dominio frecuencial son generalmente mucho más potentes y permiten
resultados muchos mejores, pero son mucho más lentas y difíciles de implementar,
y usan muchas funciones trigonométricas, que resultan muy lentas de computar in-
cluso usando tablas precalculadas y las series de Taylor-MacLaurin.

Para este proyecto, se ha considerado como lo más adecuado un análisis de la
señal poco transformada.

2.2.2. El Fast-Lifting-Wavelet-Transform (FLWT)

Debido al hecho que la frecuencia fundamental de una nota suele ser su frecuen-
cia más baja, o, una división por dos de su segundo armónico si la fundamental
no está (los armónicos tienen sus frecuencias que son múltiples de la fundamental),
una idea espontánea que surge es la simplificación de la señal aplicando un low-
pass filter. Eso descarta informaciones de la señal que no importan y permiten una
periodicidad que puede no ser obvia en la señal original (en realidad, las notas son

Capítulo 2. Diseño de la detección de la afinación del canto en tiempo real 19

señales pseudo periódicas amortiguadas). Una transformación particularmente sen-
cilla a aplicar y rápida, puesto que no necesita ninguna clase de cómputo adicional
además del propio de sumas, multiplicaciones y divisiones por dos, es el uso del Fast
Lifting Wavelet Transform Algorithm. Las Wavelets son señales sencillas diseñadas
para realizar comparaciones (convoluciones) con una señal y producir métricas de
similitudes y así identificar la presencia o no presencia de un patrón (en su princi-
pio más básico). Se trata de un algortimp muy usado para simplificar datos y, por lo
tanto, en compresión, al igual que el JPEG2000.

El algoritmo Fast Lifting Transform Wavelet, abreviado en FLTW, consiste en es-
cribir la señal como una suma de dos curvas: una aproximación, y un detalle, toman-
do una muestra de cada dos, para simplificar la señal tal y como se ha dicho antes.
Se suele repetir la operación sobre la parte aproximada hasta obtener una señal muy
limpia que contenga solo un par de armónicos de baja frecuencia.

2.2.3. El algoritmo FLWT basado en las Wavelets de Haar

Para obtener una frecuencia determinada, en muchas ocasiones la más baja de la
señal, aplicar el algoritmo FLWT construido a partir de las wavelets de Haar es muy
eficiente. En efecto, matemáticos como Daubechies y Sweldens ya demostraron que
las Wavelets de Haar permiten llegar a la definición de la aproximación y del detalle
sacados con las ecuaciones siguientes:

a(n) =
x(2n) + x(2n+ 1)

2

d(n) = x(2n+ 1)− x(2n)

Para encontrar la demostración y la explicación del FLTW con las wavelets de
Haar, referirse a los trabajos siguientes: [2]: Factoring Wavelet Transforms into Lifting
Steps

n es el número de sample dentro del bloque de samples elegido, x la señal, a la
aproximación y d el detalle (que se descarta aquí). Esas ecuaciones dependen del tipo
de Wavelet usado y no se va a hacer la demostración aquí. Lo importante es que los
resultados pueden ser manipulados como enteros y son sencillas. Dos características
fundamentales para la resolución en tiempo real.

Aquí están las etapas del algoritmo:

A partir de los samples de la ventana elegida, crear la aproximación a (que
contiene dos veces menos samples y que se comporta como un low pass filter).
Calcular las variaciones extremas de amplitud.
Contar los máximos, mínimos, detectar dónde están, para ver si se destaca una
frecuencia particular.
Si no se detecta una frecuencia cuya convolución a la señal no da un resultado
bueno, empezar de nuevo. Si ya está alcanzado el número máximo de iteracio-
nes, parar y concluir sobre el hecho que no se puede detectar tono aquí, porqué
no hay nota.

Este trabajo, y este algoritmo, se basa sobre el trabajo siguiente: [1]: Real-Time
Time-Domain Pitch Tracking Using Wavelets. Para mejorar el algoritmo y su fiabili-
dad, se ha integrado un procesamiento dinámico que consiste en comparar el valor
detectado con el anterior. Si hay una variación enorme en muy poco tiempo, pro-
bablemente los valores sean erróneos y hay que descartarlos o aplicarles un valor
de confianza más débil. En efecto, en el canto, la voz humana, por muy entrenada

Capítulo 2. Diseño de la detección de la afinación del canto en tiempo real 20

que sea, no se puede mover de los bajos a los agudos de manera instantánea. Se
encontrará el código del detector de tono en el anexo C.

Este algoritmo es muy eficiente y consume poca memoria, únicamente manipula
enteros, por lo que minimiza el impacto de usar un lenguaje de tan alto nivel como
Java.

21

3 Diseño de la red social y
elaboración de una arquitectura
distribuida

3.1. El paradigma cliente-servidor

3.1.1. Presentación de los actores y de la topología del sistema

El sistema utiliza el paradigma cliente-servidor. Consiste en la implementación
de un servidor capaz de intercambiar datos con uno o varios clientes. Eso supone
que el servidor es capaz de escuchar a las conexiones entrantes, decodificar la peti-
ción, procesarla, a veces almacenar datos y ejecutar computaciones dependiendo de
esta misma petición, construir una respuesta y devolverla al cliente que mandó la
petición.

En nuestro caso, la aplicación móvil tiene el papel de cliente, conectado al servi-
dor mediante internet (red celular, o wifi generalmente). El servidor está localizado
en una instancia EC2 (elastic-cloud) de Amazon. Nginx permite hacer la interfaz
entre los ficheros del servidor y el trafico entrante/saliendo mediante el protoco-
lo HTTPS. El uso de este protocolo está implementado mediante un protocolo SSL
obtenido por un proveedor de certificado automático llamado Let’s Encrypt. Más
información se puede encontrar en el enlace de la bibliografía [11].

Un esquema de la estructura básica del sistema se encuentra en la figura 3.1.

3.1.2. Tipos de datos y base de datos

Los datos son de varios tipos.

Datos de usuarios: datos personales como el nombre, correo electrónico, ’di-
gest’ de la contraseña, seguidores, mensajes privados...

Datos de las grabaciones: ficheros audio, resultados de la análisis por el detec-
tor de tono, canción asociada

Datos sobre las canciones: artistas, títulos, letras

Imágenes: las de perfil de usuarios por ejemplo

Para realizar una base de datos fácil de usar sin redundancia entre los datos, se
aplicó un esquema cumpliendo los requisitos de la forma normal de Boyce Codd
(una clave primaria por tabla, no dependencias funcionales entre los atributos no
claves).

Además, se realizó un esquema similar a un esquema en estrella cuyo centro,
o tabla de hechos, son los Recordings (grabaciones). Las grabaciones tienen varias
dimensiones: una dimensión para los usuarios, una para las canciones, una para el
tiempo. Se plantea hacer un análisis de los datos para mejorar la aplicación, destacar

Capítulo 3. Diseño de la red social y elaboración de una arquitectura distribuida 22

FIGURA 3.1: Arquitectura del sistema

ciertos perfiles de usuarios, las canciones más populares, para al final llevar a cabo
estudios y producir informes como se haría en un contexto de Big Data con todas las
problemáticas de Data Warehouse asociadas (con un proceso ETL sencillo por tener
los datos generados por la aplicación, fuente única, datos almacenados de manera
continua en la base de datos).

El diagrama UML representando el esquema de la base de datos se puede en-
contrar en el anexo F. Tal como está ahora, es bastante cómodo a nivel operativo,
los controladores nunca necesitan más de un join para devolver los datos necesarios
para la aplicación.

La gestión de los datos de sesión requiere una atención muy peculiar, gestiona-
da mediante la tabla Tokens, cuya justificación y diseño será explicado en la sección
siguiente y permite implementar un cierto control de acceso sobre los datos conjun-
tamente a un cierto diseño de los controladores de los websevicios, introducidos en
la parte siguiente.

3.1.3. Intercambios de datos, mensajes y protocolos

Los datos son de varios tipos y generados mayoritariamente desde la aplica-
ción cliente. La aplicación cliente dispone de clases permitiendo el uso del protocolo
HTTPS (petición HTTP cuyo contenido está criptado mediante el protocolo SSL, cu-
yo funcionamiento y decodificación se puede hacer mediante un certificado).

El servidor devuelve sus respuestas a la aplicación cliente en JSON, formato muy
conciso para representar objetos, que son el resultado del patrón de diseño DAO,
Data Access Object extiendo la clase ModelAbstract (ver la parte sobre el Modelo
Vista Controlador en la parte 4).

También puede devolver ocasionalmente binario a la aplicación cliente, cuando
se solicita un fichero audio o una imagen.

Capítulo 3. Diseño de la red social y elaboración de una arquitectura distribuida 23

El servidor, usado mediante un navegador con urls cuyo frontname es diferente
de ’api’, en lugar de devuelve JSON en texto plano devuelve html.

Aquí está una lista de las rutas de la API implementadas, parámetros necesarios,
y tipos de repuesta:

Ruta Paramétros nece-
sarios

Variables en el JSON si
éxito

Resumen

/login email, password success, token, message Devuelve un token de sesión
/logout token success Destruye el token de sesión y marca el usuario

como desconectado
/register email, password,

username
success, message Crea un nuevo usuario

/account/get token, user_id success, user Devuelve datos del usuario user_id
/account /edit token, user_data success Edita los datos de usuario aplicando los cam-

pos contenidos en la tabla user_data
/account /follow token, user_id success Hace que el usuario siga al usuario con el id:

user_id
/account /unfo-
llow

token, user_id success Usada para parar de seguir a un usuario

/account /follo-
wedby

token, user_id,
last_updated_at

success, users=[], follo-
wers=[]

Obtiene la lista de los seguidores (los users) del
usuario con id ’user_id’, y devuelve las relacio-
nes Followers

/account /follo-
wing

token, user_id,
last_updated_at

success, users=[], follo-
wers=[]

Lo mismo, pero esta vez para obtener los usua-
rios que están seguidos por el user con id
user_id

/account /search token, needle success, users devuelve una collección de usuarios cuyo user-
name, firstname, lastname concatenados con-
tienen la cadena ’needle’

/messages/get token,
last_updated_at
email

success, messages Obtiene los mensajes recibidos a partir de
’last_updated_at’ hasta ahora del usuario

/messages /send token, user_id,
content

success Manda un mensaje (’content’) al usuario con id
user_id

/news /news-
feed

token,
last_updated_at

success, multilocales,
announcements, ne-
wer_recordings, follo-
wed_people_recordings

Recupera un conjunto de datos utilizado para
construir el newsfeed en la aplicación a partir
de las grabaciones...

/news/popular token success, popular_songs Devuelve las canciones más grabadas por los
miembros

/news /notifica-
tions

token,
last_updated_at

success, fo-
llow_queries, com-
ments_on_my_recordings,
new_likes

Devuelve lis nuevos comentarios y nuevos se-
guidores

/recording /get token,
last_updated_at,
recording_id

success, recording Obtiene los datos del Recording cuyo id es re-
cording_id

/recording
/getby

token,
last_updated_at,
user_id

success, recordings Recordings contiene todos los recordings pú-
blicos hechos por el usuario identificado por
user_id

Capítulo 3. Diseño de la red social y elaboración de una arquitectura distribuida 24

/recording /edit token,
last_updated_at,
recording_id,
recording_data

success Permite editar los datos de un recording

/recording /u-
pload

token, recording,
audio

success Almacena una nueva grabación en el servidor,
haciéndola pública

/recording
/loadcomments

token,
last_updated_at,
recording_id

success, comments Devuelve los comentarios de una grabación

/recording
/comment

token,
last_updated_at,
recording_id,
comment

success Deja un comentario ’comment’ en el recording
identificado por ’recording_id’

CUADRO 3.1: Tabla de las rutas de la API: parámetros, respuesta y
descripción

Hecho a notar: todas las peticiones se hacen con el verbo HTTP POST, porque
pasar el token de sesión es necesario para cualquier petición de la API excepto la de
login y de register. Pasarlo por GET, (por la URL) es peligroso y no recomendable
porque este token debe ser solo conocido por el servidor y la aplicación cliente, y los
parámetros en la URL se pueden recuperar con facilidad.

3.2. Funcionalidades y problemas mayores en el diseño y la
implementación de la red social

3.2.1. Seguridad y sesiones

Una red social se basa sobre un conjunto de usuarios, que deben poder acceder
al mismo tiempo de forma concurrente a la aplicación y que, dependiendo de su
identidad, no tenga acceso a los mismos datos que otro usuario.

Entonces el primer problema a resolver es la identidad y el proceso de auten-
ticación (reconocimiento por el servidor de está identidad): Singvibes identifica un
usuario gracias a su correo electrónico durante la autenticación, le devuelve un to-
ken de sesión, almacenado en base de datos juntamente al id del usuario en la tabla
Tokens y una fecha de expiración (30 minutos después de ser emitido). Este token
sirve de sustitución a los credenciales hasta que expire, para ser sustituido por otro.
(referirse a las clases SessionManager.php y TokenManager.php del servidor, en rai-
z/base/security)

Los controladores de API, salvo el Index (que permite hacer el login) siempre
comprueban la existencia del token en los parámetros mandados por la aplicación
cliente en los parámetros POST de las peticiones HTTPS antes de devolver una res-
puesta para garantizar que solo miembros de Singvibes inscritos puedan recuperar
los datos.

Sin embargo, el uso de redes inseguras inalámbricas hace posibles ataques de
tipo Man In The Middle entre otras cosas, o replay. El libro [4]: Hacking for Dummies
provee varias informaciones sobre estos tipos de amenazas.

En la tabla 3.1 se presenta una lista de algunos fallos de seguridad usuales y las
medidas tomadas.

Capítulo 3. Diseño de la red social y elaboración de una arquitectura distribuida 25

Problema Soluciones implementadas
Las redes usadas por un telefóno
móvil no son seguras: puede ser
bastante fácil de leer/interceptar
paquetes y hacer un ataque de tipo
Man Of The Middle

Uso de un criptaje de cada petición HTTP con SSL
(HTTPS). También hay tokens de sesión generados
por el servidor, necesarios para utilizar la API. Se
obtiene gracias al login, y el hecho que expire fre-
cuentemente ayuda a mitigar este tipo de ataque.

Cross-scripting (XSS) Todo el código SQL está autogenerado con valores
escapados. No se puede entonces (en teoría, que
hasta las empresas profesionales como Wordpress
o Magento tienen o tuvieron fallos de este tipo) al-
macenar código php en la base de datos que enton-
ces podría ejecutarse cuando se imprimen dichos
datos.

Acceso a ficheros del servidor no
deseados y ejecución remota de có-
digo

El servidor Nginx está configurado para solo de-
volver los assets estáticos. Las carpetas escondidas
están bloqueadas con una redirección sistemática a
403 Forbidden. El resto de las peticiones entra en el
index.php, y el Router no sabe hacer nada más que
ejecutar código de los controladores programados.

Ataques Replay, repetición este tipo de ataque es problemático por ahora.
Consiste en la estricta repetición de una petición.
Es peligroso porque no necesita el conocimiento
del contenido de la petición o sus parámetros pa-
ra funcionar. Los tokens de sesión tienen una du-
ración de vida limitada. También, muchas peticio-
nes requieren un campo ’last_updated_at’ que im-
pide obtener datos más antiguos que está fecha.
Una solución mucho más segura sería combinar el
token de sesión con un token rotativo válido una
sola vez.

Ataques de tipo DDOS (Denial of
Service, saturación de un servidor
usando generalmente muchos or-
denadores o robots al mismo tiem-
po)

Por desgracia no hay mucho que se puede hacer,
sino tener otro servidor por delante que recibe las
peticiones y que si se satura por culpa de un DDOS
que al menos el ’verdadero’ servidor no sufre las
consecuencias. Un DDOS sin embargo es costoso
de hacer, y por ahora no sería rentable con un pro-
yecto estudiantil como este. De hecho, los DDOS
suelen ser cortos puesto que en general cuesta mu-
cho.

CUADRO 3.2: Amenazas, ejemplos de fallos de seguridad usuales, y
soluciones encontradas

Capítulo 3. Diseño de la red social y elaboración de una arquitectura distribuida 26

3.2.2. Comunicación entre usuarios y puesta en contacto

Una red social debe permitir a los usuarios encontrar a otros miembros. Un buen
ejemplo es Facebook, en el cual se inspiró este proyecto: contiene un newsfeed con-
tinuamente alimentado por publicaciones de otros usuarios, una mensajería instan-
tánea, y un buscador de personas (entre otras cosas). Todo esto favorece la puesta en
contacto natura de los usuarios entre ellos.

La comunicación entre usuarios debe ser posible mediante el servidor, que alma-
cena mensajes y acciones de los usuarios y las devuelve dependiendo de la identidad
del cliente, que puede ser recuperada gracias a las medidas explicadas en el apartado
anterior.

La mensajería instantánea necesitó mucha reflexión. No hay presupuesto para
aguantar un servidor tan potente como uno de Facebook. La carga de un servidor
depende de varios factores pero los más importantes son el número de usuarios,
número de conexiones entrantes al segundo y volumen de datos intercambiados en
cada una de las peticiones. Por ahora, la solución ha sido un refresco periódico de la
ventana de conversación ’instantánea’ cada 1 minuto cuando está abierta.

27

4 El servidor: elaboración e
implementación

4.1. El servidor y su organización interna

4.1.1. Presentación del servidor

El servidor tiene la responsabilidad de proveer datos a las aplicaciones clientes
instaladas en los móviles de los usuarios y de darles posibilidad de intercambiar
entre ellos, (paradigma cliente->servidor), como se ha descrito antes.

Está accesible desde el nombre de dominio: singvibes.com que está mapeado a
una IP de una instancia EC2 de Amazon, máquina virtual en el Cloud de Amazon.

Esta instancia tiene el sistema operativo Ubuntu Server, y por ahora aloja toda
la base de datos y los ficheros permitiendo el buen funcionamiento de Singvibes.
La base de datos es una base de datos relacional MySQL cuyo esquema puede ser
encontrado en el anexo F. El código del servidor está entregado con esta memoria.
Es una carpeta compuesta mayoritariamente de ficheros PHP, enlazados a Nginx,
programa capaz de escuchar a las conexiones entrantes en HTTP(S) y hacer que es-
ta instancia EC2 se comporte como un verdadero servidor invocando los ficheros
necesarios para devolver una respuesta al cliente.

Cuando el tamaño de los datos haya crecido, se plantea utilizar un Amazon S3
para almacenar los datos pero con una disponibilidad razonable.

4.1.2. Pros y contras de varios frameworks MVC

Muchos frameworks están siendo utilizados para facilitar la construcción de una
aplicación web. Un framework es un conjunto de librerías que permite la estructura-
ción del código de una aplicación mediante uso de varias clases, varios paradigmas.

Uno de los paradigmas más usados en la arquitectura view es el Model-View-
Controller. La idea básica es la siguiente: para renderizar una página o una respuesta
a una petición, un controlador examina los parámetros de la petición, genera vistas
(generalmente templates que contienen código html completado por instrucciones
que se ejecutan en el servidor), y para renderizar dichas vistas debe interrogar a
modelos, que proveen una interfaz y una manera de manipular datos de una o varias
bases de datos. Generalmente hay un modelo por tabla.

Un framework es muchas veces genérico. Lo que es genérico en informática sue-
le ser muy elegante, pero, por implicar lógica de alto nivel y anticipación de muchos
casos particulares, son muy pesados. El mejor ejemplo de esto es Magento, y sobre
todo Magento 2, framework que permite la creación de tiendas online. Es muy mo-
dular y tiene una gran flexibilidad. Sin embargo, este framework pesa mucho, con
varios miles de ficheros y unas 400 tablas de base de datos. Está basado sobre Zend
(y Symphony para Magento 2), otro framework PHP, un poco más ligero. Otros fra-
meworks como Ruby On Rails parecen ligeros y muy faciles de usar, sin embargo,
Ruby, por ser un lenguaje de alto nivel, ya mostró sus limites en varios proyectos en

Capítulo 4. El servidor: elaboración e implementación 28

Ruby on Rails 1. Spring MVC, basado sobre Java, tiene muchos automatismos, me-
diante las anotaciones, una ’magia’ en el vocabulario informático muy potente que
está totalmente en contradicción con uno de los requisitos y principios fundamenta-
les que aplico a la hora de escribir código para un servidor: ejecutar cuantas menos
instrucciones posibles. Por tanto, no se va a hacer uso de una máquina virtual Java
que puede consumir hasta tres cuartos de los ciclos de CPU, ni lenguaje de alto nivel
como Ruby que ejecuta mucho código de C por debajo, aunque tenga una sintaxis
muy expresiva. Un compromiso razonable entre tiempo de desarrollo y rendimiento
parece ser el conjunto del servidor Nginx con PHP. El problema es que PHP se puede
volver dificil de organizar y es muy difícil de usar, por permitir tanta libertad a par-
tir de tantas funciones 2. Pero, con un cierto control, patrones de diseños adecuados,
el establecimiento de routing apropiado y de un autoloader, permite hacer mucho
en pocas lineas y pocas instrucciones ejecutadas.

Por eso, como este proyecto no exige mucho a nivel de frontend, o a nivel de ope-
raciones sino únicamente obtener datos, comprobar cosas y devolverlas, pareció más
razonable utilizar un pequeño framework MVC casero desarrollado justo a medida
para este proyecto, con solo las funcionalidades necesaria. Este micro framework
estará presentado brevemente en la sección siguiente.

4.1.3. Diseño: front controller, organización de los ficheros

Una manera muy cómoda, común a todos los frameworks comunes usados en
aplicaciones web, de organizar los ficheros y las carpetas del Modelo-Vista-Controlador
es usar un paradigma que se llama el FrontEnd Controller. Básicamente consiste en
proporcionar a la aplicación un punto de entrada único, en el caso de una aplicación
php, un ’index.php’. Posteriormente, un fichero ’.htaccess’ en el caso de un servidor
Apache o un bloque server en el caso de Nginx, redirigirá todas las peticiones has-
ta una url del subdominio que no sea un ’asset’ (css, imagen, javascript...) hasta el
’index.php’.

El ’index.php’ se encargará después de invocar un router, capaz de instanciar
dependiendo de la url la clase de controlador correcto e iniciar el proceso típico
del MVC (controlador que genera vistas interrogando la base de datos a través de
modelos).

Si no se hace esto, en php, hay que tener un fichero por url, y en la dirección
indicada por la url, lo que impide toda forma de abstracción y de modularidad.

4.2. LeafStormMVC: implementación propia del paradigma
MVC

4.2.1. Request flow: routing y controladores

Cuando una petición HTTPS entra en el servidor Nginx, si la petición no es un
asset (imagen, css, javascript, etc), la petición está redirigida hasta el fichero ’in-
dex.php’. Este fichero es responsable de invocar dos clases: el Autoloader y el Router.
El autoloader se encarga de encontrar las clases y cargar los ficheros que las contie-
nen cuando están invocadas. Eso permite evitar la inclusión de todas las clases PHP
del framework. El router es una clase especial cuya responsabilidad es la de analizar

1Un articulo corto sobre los pros y contras de Ruby on Rails:
https://www.madetech.com/blog/pros-and-cons-of-ruby-on-rails

2Hay que ver la documentación oficial de PHP y el número de funciones para darse cuenta.
http://php.net/manual/en/index.php

https://www.madetech.com/blog/pros-and-cons-of-ruby-on-rails
http://php.net/manual/en/index.php

Capítulo 4. El servidor: elaboración e implementación 29

la URL y los parámetros para delegar el procesamiento a un controlador adecuado,
implementando así el Front Controller pattern, un patrón muy útil para organizar
el código y tener un mayor grado de control sobre el código ejecutado. En caso de
error, si la url no existe, se devuelve la página 404.

Las URL con LeafStormMVC siguen exactamente el mismo patrón que varios
frameworks en los cuales está inspirado (Magento/Zend). Se componen de 4 partes:
el nombre de dominio, un frontname, un nombre de controlador y, finalmente, una
acción. Puede estar seguida o no de parámetros GET (después de un interrogante).

Por ejemplo: la URL https://singvibes.com/api/account/get
Si falta el frontname, el frontname ’web’, se aplicará por defecto. Si el controla-

dor o la acción faltan, el IndexController y la indexAction se aplicarán, devolviendo
la home page del servidor. Entonces, esas 4 URLs son equivalentes y devuelven la
homepage:

https://singvibes.com

https://singvibes.com/web

https://singvibes.com/web/index

https://singvibes.com/web/index/index

Eso da mucha flexibilidad, las rutas existentes sólo son definidas por la arquitec-
tura de las carpetas. Así, la generación de un frontname ’api’ se hace creando una
carpeta en la localización raíz del proyecto /controllers/api. Para crear un Controla-
dor Account se construye una clase llamada AccountController en el fichero proyec-
to /controllers/api/AccountController extediendo de la clase ControllerAbstract,
conteniendo los métodos para gestionar los parámetros, y una función render() que
se encarga de construir la respuesta, cuyo comportamiento está definido en las clases
derivadas. El framework ya integra dos tipos de controladores:

ControllerWebAbstract: Los controladores que se extienden de esta clase de-
vuelven código HTML, construido a partir de una inclusión automática de
templates .phtml localizados en la carpeta raiz/views/web. También permiten
controlar de una manera básica el SEO (Search Engine Optimization, el posi-
cionamiento de un sitio en los motores de búsqueda) con los robots (INDEX
FOLLOW...), y en breve, con los datos estructurados tipo JSON-LD .

ControllerWsAbstract: Esos controladores proveen varios métodos adecuados
para devolver datos en formato JSON, y averiguar la autenticidad de un usua-
rio basándose sobre su token de sesión, si está presente en los parámetros
POST. JSON se estandardizó poco a poco sustituyendo a otro formato muy
popular para intercambiar datos en formato texto: el XML, más verboso.

Para crear un controlador dedicado a la gestión de los datos de usuario devol-
viendo datos en JSON, se debe:

Crear la carpeta controllers/api si no existe ya

Crear el fichero controllers/api/AccountController.php

Crear la clase AccountController dentro de este fichero y que extienda de Con-
trollerWsAbstract, clase formando parte de la base de LeafStormMVC

Capítulo 4. El servidor: elaboración e implementación 30

Crear las acciones: cuya forma más básica es public void nombreAction() {
$this->render(); }, devolviendo el JSON siguiente {’success’:’false’}. Para añadir
datos al JSON se usa el método addToResponse($key, $object), que se encarga
de, dependiendo el típo de objeto, añade al JSON un campo ’key’ conteniendo
la representación JSON del objeto $object.

Como he explicado antes, el Router ya es capaz con esto de saber qué nuevas
rutas a /api/account/... fueron añadidas y son accesibles. En el caso de la API, ca-
da método también comprueba si el usuario posee un token de sesión que no está
expirado.

4.2.2. Los modelos

Para implementar a la vez el paradigma Slim Controller (controladores lige-
ros), y el Modelo Vista Controlador, se crearon los modelos. Los modelos, en LeafS-
tormMVC como en varios frameworks como Ruby On Rails, extienden de una cla-
se ModelAbstract. Está clase provee todos los métodos necesarios para realizar las
CRUD operations (Create, Read, Update, Delete), y eso mediante una clase llamada
DBInterface y la QueryFactory.

Manipular SQL sin errores en texto plano es pesado y fuente de muchos errores.
La clase QueryFactory proporciona métodos para crear peticiones SQL adaptadas
para las operaciones CRUD básicas (select, insert, update, delete), implementando
el patrón de diseño llamado Factory en el desarrollo de software.

Un controlador, para renderizar las vistas necesita interactuar con los modelos y
cambiar el estado de los datos. Eso se hace de manera sencilla gracias a las clases que
extienden de ModelAbstract. En LeafStormMVC como en Ruby on Rails, se suele
hacer un modelo por tabla, con los campos accessibles definidos antes. No se puede
modificar u obtener los datos de un campo que no está declarado en dicho modelo.
Eso asegura la encapsulación de los datos y un control más potente.

Se puede encontrar el código completo de las clases principales del framework
en el repositorio Github del servidor (enlaces disponibles en el anexo G, y el código
del AccountController que muestra varias aplicaciones de los modelos.

4.2.3. Las vistas: gestión del frontend

El frontend está gestionado mediante un sístema básico de inclusión de fiche-
ros phtml (html conteniendo inclusiones de php), mediante la clase ControllerWe-
bAbstract, que provee la función addBodyTemplate. Cuando la función render() es
llamada, los templates son encadenados y evaluados. Pueden estar localizados en
cualquier sitio dentro de la carpeta raiz/views/web. El css, javascript y otros assets
están en raiz/views/assets.

31

5 Singvibes para Android

5.1. Estructura de la aplicación y organización del código

5.1.1. Presentación global de la aplicación

Singvibes es una aplicación sencilla, con un diseño flat, y un pequeño conjun-
to de pestañas/ventanas y muy pocos menús. Las pantallas en Android se llaman
Actividades. Hay dos en toda la aplicación. La LoginActivity y la MainActivity. La
LoginActivity consiste en un formulario de login/register. Singvibes siendo una red
social, está pensada para funcionar en línea. La MainActivity está dividida en 4 frag-
mentos, que son pestañas separadas, y tiene un menú de opciones tal como el idioma
y el login automático. Las pestañas son las siguientes:

NewsFragment: una pestaña conteniendo las canciones populares (las más
grabadas) y el newsfeed, que muestra grabaciones hechas por varios usuarios.
Pueden ser seguidores, o no y permite al usuario escuchar otras grabaciones
(está implementado pero por una limitación por ahora no está funcionando).

FriendsFragment: una pestaña que funciona como un mini Whatsapp. Permite
encontrar a personas y hablar con ellos mediante un chat. Muestra también la
actividad reciente: un nuevo seguidor o un nuevo comentario sobre las graba-
ciones hechas.

SingFragment: La parte más importante, la que permite grabarse, y visualizar
la curva de afinación. (mostrar imagen aquí) Una vez acaba la grabación, se
puede escuchar y ver de nuevo la gráfica. También se puede decidir ponerla
en el servidor para que la gente lo escuche.

HomeFragment: El perfil del usuario de la aplicación. Contiene un formulario
que permite al usuario cambiar sus datos, dar informaciones para los otros
usuarios o la lista de sus grabaciones hechas previamente. También se puede
consultar aquí la lista de los seguidores.

Esta aplicación está pensada para que cada funcionalidad sea disponible en dos
clicks o menos. Disponible en Español, Inglés y Francés, con una interfaz minimalis-
ta e intuitiva.

La aplicación es capaz de conectarse a la red y hacer peticiones HTTPS para reci-
bir datos desde el servidor que se almacenarán en una base de datos local en SQLite
(nativamente soportada por Android, aúnque solo es una solución temporal por ser
poco segura y protegida). Todos los procesamientos largos tipo descargas o compu-
taciones se hacen en hilos separados Android, reservando el thread principal para la
UI, considerando la aplicación como bloqueada si el hilo no está libre durante más
de 30 segundos, lo que además bloquea el usuario.

Capítulo 5. Singvibes para Android 32

5.1.2. Organización del código y modularidad

Organizar el código en Android no es cosa fácil debido a la lógica peculiar de ges-
tión de los hilos, de los observadores de eventos y de los listeners (código ejecutado
cuando un evento pasa, como cuando se teclea algo). La mayoría de los tutoriales
muestran la creación de muchas clases privadas dentro de clases públicas que no
son reusables y que hacen el código de las actividades muy pesado, mezclando ló-
gica, UI, listeners, handlers... Porque, casí cualquier cosa que interactúa con la UI o
con el framework de Android necesita una referencia a un objeto de la clase Context
o Activity, dos objetos que son extremadamente pesados.

Esto obligó a realizar varias reestructuraciones de la carpeta del proyecto hasta
acabar con el anexo C.

Un concepto muy importante en las aplicaciones con interfaz gráfica parece ser
la separación entre la parte lógica y gráfica, separación completamente antinatural
en Android debido al hecho de que el hilo principal es el hilo gráfico, y es único, sólo
se pueden ejecutar operaciones de dibujo allí.

La consecuencia fue llevar un diseño por capas. La entrada se hace por las activi-
dades, que instancian varios objetos lógicos y gráficos, y los lógicos comunican sus
resultados a los gráficos que se renderizan invocando el hilo gráfico, muchas veces
de manera asíncrona porque los procesamientos largos (peticiones HTTPS, detec-
ción de tono, preparar los puntos de una gráfica antes de dibujarlos) se hacen en
otros hilos.

El acceso a la base de datos se hace mediante las mismas clases que con el frame-
work usado en el servidor, adaptadas para Java y SQLite, y tienen el mismo proposi-
to que en el servidor: es decir no preocuparse de escribir lineas de SQL manualmen-
te, y permiten las líneas de las tablas de base de datos como si fueran objetos, que
se pueden instanciar y que dan acceso a sus valores mediante accesores (get, set...).
(patrón de diseño DAO - Data Access Object).

5.1.3. Multithreading en Android

Como se ha mencionado antes, en Android, el único hilo que existe al entrar en
la aplicación es el hilo gráfico, el principal, el único que permite dibujar, y el que
intercepta los eventos, los inputs del usuario. Si se mantiene demasiado ocupado,
la aplicación cierra con un error. Entonces, hay que pensar un ciclo de vida para los
hilos de ejecución muy robusto, que además sepa gestionar las interrupciones de la
aplicación y su vuelta (cuando el telefono se bloquea y desbloquea...).

Una tarea puede ser ejecutada de asíncronamente de varias maneras: median-
te un objeto que extiende la clase AsyncTask, Runnable o Thread. Los dos últimos
funcionan de manera más o menos igual.

En este momento de desarrollo la aplicación dispone de varios threads creados
para realizar varias tareas.

El thread gráfico: el principal

Unas tareas asíncronas cada vez que se solicita un acceso a la red para recupe-
rar datos. Actualizan la vista una vez que acaban mediante una función llama-
da onPostExecute, que siempre se ejecuta en el hilo principal cuando se acaban
las tareas especificadas en el método doInBackground.

Varios threads lógicos, uno para cada tarea costosa: conputación del tono de
voz en tiempo real, refresco de los puntos de una gráfica...

Capítulo 5. Singvibes para Android 33

5.2. La implementación del pitch tracker

5.2.1. Recuperar la señal

Recuperar la señal de un micrófono en Android se puede hacer de dos maneras.
O usando un objeto que se llama MediaRecorder, que automáticamente es capaz
de convertir el flujo de datos desde una camara o un microfono (o ambos) en un
formato específico, pero no da acceso al buffer de entrada (entonces no hay acce-
so a las samples), o el AudioRecord. Este objeto es interesante porque alimenta un
buffer de samples que se puede leer de manera continua y se rellena a partir del
micrófono elegido (algunos teléfonos tienen varios). Sin embargo, es la responsabi-
lidad del desarrollador de después ensamblar las muestras en un fichero si se quiere
guardar, y no será un fichero comprimido (será un fichero WAV), excepto si se imple-
menta un algoritmo de compresión, o si se consigue usar una librería externa como
ffmpeg para convertir la grabación, cosa difícil de hacer en Android.

Para acceder al micrófono, la aplicación debe tener los permisos declarados en el
AndroidManifest.xml, un fichero declarativo conteniendo varias variables de con-
figuración general, y dichos permisos deben ser activados en las opciones de las
aplicaciones en los parámetros Android (está activación de permisos se hace auto-
máticamente desde el Google Play cuando se instala la aplicación).

Para utilizar la clase AudioRecord, se creó una clase llamada Recorder, que lleva
una referencia hasta una instancia de AudioRecord, y varias constantes útiles como
el sample rate, el tamaño de los bloques de samples que se van a mandar al detector
de tono, etc. Esta clase Recorder se invoca mediante un botón de grabación, llaman-
do, a su vez, a dos métodos dependiendo del estado de proceso (grabando o no
grabando), start y stop, que se encargan de iniciar y cerrar el proceso de grabación.
Cuando se llama a start(), un bucle (ejecutado en un thread separado mediante los
objetos Runnable de Android) se encarga de leer las muestras añadidas en el buffer
del AudioRecord, y de invocar el detector de tono, que devuelve la frecuencia fun-
damental asociada a este bloque de samples, si existe para esa ventana. Este dato se
envía a la Actividad principal mediante la función publishFrequency, ejecutada en
el thread principal (el thread de la interfaz gráfica) que puede entonces imprimir los
resultados.

El código de la clase Recorder está en el Anexo D.

5.2.2. Procesar la señal: el pitch tracker

Toda la lógica de detección de tono está dentro de una clase llamada PitchDe-
tector, localizada en logic/sound. Contiene un método llamado getPitch(), que re-
cepciona el buffer leído desde el mícrófono e invocado de manera asíncrona, para
que esta lógica se ejecute al mismo tiempo que el refresco de la vista, que es bas-
tante pesado. getPitch() consiste en una implementación del algoritmo Fast-Lifting-
Wavelet-Transform basada en las wavelets de Haar, algoritmo presentado en la parte
2, apartado 2.2.3.

La implementación se implementa con operaciones sencillas (comparaciones,
adiciones, diferencias, divisiones por 2) que usan solo tipos primitivos de Java: los
int y double. Hay una diferencia importante entre los objetos Integer y los int, igual
que entre los Double y los double. Por un lado están los wrappers, conteniendo mé-
todos útiles tipo toString(), por otro lado son los tipos primitivos que solo contienen
un valor, y no son instancias de ninguna clase, y las operaciones cuestan un poco
menos.

Capítulo 5. Singvibes para Android 34

El código completo de esta clase se puede encontrar en los Anexos, anexo C y está
implementada en base a la implementación Matlab encontrada en el paper accesible
desde la bibliografia: [1]

Sin embargo, detectar el tono no es suficiente y es recomendable compararlo con
el tono previo. En efecto, un error común de los detectores de tono es una división
o multiplicación por dos de la frecuencia real, debido al problema de fundamental
aparente explicado en la sección 2 apartado 2.1.2. Por eso, se creó otra función cuya
responsabilidad es la de realizar una comparación según la siguiente lógica: si el
tono está muy cerca (menos del 20 % de diferencia en su valor) del previo, es un
valor probable fiable. Si no, hay que ver si corresponde a la mitad, o al doble del valor
previo, aproximadamente. Si es el caso, es probable que se deba a un error de octava
y hay que dar un resultado consistente (generalmente seguir el valor previo, es lo
que se hace en este trozo de código). Si el valor no encaja en esos resultados, entonces
es un valor ’suelto’ y se descarta debido a que la voz humana y el canto humano,
como muchos fenómenos naturales, no puede contener discontinuidades abruptas y
la voz no puede saltar 3 o 4 octavas en 50ms (resolución actual del detector de tono),
incluso para los cantantes profesionales.

5.2.3. Mostrar/Dibujar los resultados

Dibujar una gráfica representativa de la afinación, en tiempo real, no es nada
obvio y el diseño fue pensado de manera esquemática, adoptando una estética sin
ninguna clase de chartjunk 1 y lleva colores evocadoras (rojo: lejos de la afinación
correcta, verde, correcto).

Se decidió implementar un piano roll. Un piano roll es una gráfica que contiene
un teclado de piano, y, con el tiempo, desfilan las notas como puntos hasta o desde
su tecla correspondiente, horizontalmente o verticalmente.

Para tener un cierto nivel de control, y ser fiel a los principios de modularidad
enunciados en la introducción, varias se han creado varias abstracciones para pro-
ducir un código mantenible y fácil de leer.

Estas abstracciones están en la carpeta ui puesto que son abstracciones gestionan-
do elementos gráficos, como puntos, gráficas, y teclado virtual. Son las siguientes:

PianoChart: una clase que extiende la clase Android SurfaceView, que provee
una área de píxeles sobre la que dibujar, conteniendo todos los objetos Point,
y el Piano, gestionando el thread responsable de la actualización de la vista, el
ViewThread

ViewThread: una clase que extiende de la clase Java Thread, cuya responsabili-
dad es la de, con un número de actualizaciones (FPS) determinado, ordenar el
refresco del PianoChart por el thread UI principal en cuanto está libre llaman-
do a la función de dibujo del PianoChart, función conteniendo el rendering del
Piano y de la gráfica (conjunto de Points).

Point: una clase que contiene todos los datos necesarios para dibujar un punto.
Sus coordenadas, y componentes de color R, G, B, alpha.

Piano: una clase que contiene métodos para gestionar y renderizar las teclas
Key

1El chartjunk se refiere a un uso de símbolos, o procesos estilisticos superfluos que no aportan nada
y pueden molestar la buena interpretación de la gráfica y de los datos que contiene, esta terminología
está sacado de los principios de Gestalt incluídos en el libro [6]

Capítulo 5. Singvibes para Android 35

FIGURA 5.1: Vista durante la grabación y ejemplo de gráfica de la
afinación en tiempo real

Key: clase que encapsula toda la lógica acerca de una tecla, sus coordenadas,
su color, y las instrucciones necesarias para su rendering

Referirse al anexo E para el diagrama de secuencia completo del proceso de gra-
bación y refresco de las vistas.

La figura 5.1 muestra un ejemplo de resultado dibujado en tiempo real-
Cuando el Recorder invoca el método publishFrequency(), se almacena infor-

mación sobre la nota y el tono detectado en un objeto llamado Note (conteniendo
informaciones sobre la nota detectada: la frecuencia, amplitud media, tiempo cuan-
do ocurrió, octava, semitono, número de tecla...). Este objeto Note se añade a un
ArrayList<Note>(tabla ordenada de instancias de la clase Note en java). También
se invoca el método addPoint() del PianoChart, que añade un punto en la gráfica a
partir del objeto Note construido.

Todo este proceso se hace sobre el thread principal gráfico, dejando libre el thread
(Runnable) de grabación y de procesado de las muestras de manera continua. Es
interesante recordar que el refresco de los puntos (de sus coordenadas, color, etc) se
hace de manera asíncrona en otro thread: el viewThread. Explicaciones se pueden
encontrar más detalladas en el anexo E.

Estas abstracciones permitieron la implementación de funcionalidades comple-
jas sin grandes dificultades como la posibilidad de mover el teclado (el eje ’x’ que
representa la frecuencia y el eje ’y’ el tiempo) para poder ver la zona gráfica que in-
teresa más mediante un listener sobre la superficie del PianoChart. Si el usuario toca
la parte izquierda, la gráfica se traslada de manera continua con el teclado hasta la
derecha para que se vea la parte de la gráfica oculta a la izquieeda. La misma lógica
se aplica para ver la parte derecha oculta.

Esta implementación se hace mediante una variable que gestiona la velocidad
y la translación sobre el eje X, actualizada continuamente por el ViewThread y por

Capítulo 5. Singvibes para Android 36

la acción de usuario: tocar/no tocar la pantalla, mediante objetos Android OnTou-
chListener que proveen una manera de asociar la ejecución de un código después de
un evento, aquí el evento OnTouch.

5.2.4. Convertir la señal en fichero: WAV y después comprimirlo

Una vez que la grabación se acaba, se desea guardar el fichero de sonido. Como
se ha dicho antes, en Android no se puede a la vez procesar las muestras una por
una y guardar el fichero puesto que no se usa la misma clase para hacer una u otra
cosa (ver diferencia entre los MediaRecord y AudioRecord). Así que hay que recons-
truir un fichero manualmente a partir de las muestras (que, recordamos, son de tipo
integer, signed, de 16 bits (2 bytes), y contienen la amplitud de la señal).

La primera etapa es la construcción de un fichero no comprimido, un fichero
.WAV. Sin entrar en los detalles, un fichero WAV tiene una cabecera, y todas las
muestras escritas de una cierta manera, secuencialmente en formato binario.

Se encontró un código Java que crear un fichero WAV desde sus muestras. El
problema de un WAV reside en su tamaño, que podemos calcular fácilmente del
siguiente modo (para un WAV mono, con un solo canal):

size = headerLength+ sampleSize.sampleRate.durationInSeconds

Un header son 42 bytes (referirse a la especificación del formato WAV cuya re-
ferencia está en la bibliografía), en calidad CD el sampleRate es de 44100Hz, y se
cuantifica con 16 bits por muestra, por tanto, cada una de las muestras necesita 2
bytes. Una grabación de 5 minutos ocupa 42 + 88200 * 300 = 26 460 042 bytes, apro-
ximadamente 25 MB para un WAV mono.

Entonces, una vez creado el fichero WAV, para implementar completamente los
objetivos de la aplicación, hay que comprimir con Android, el fichero WAV en un
formato usual tipo MP3.

El problema principal es que MP3 no es un formato libre. Hay que utilizar una
librería ya creada que lo permita. El plan, que no se pudo llevar a cabo a la hora
de redactar esta memoria, es de utilizar el NDK de Android que proporciona una
manera de ejecutar ciertas librerías precompiladas hechas en C++, para así ser capaz
de ejecutar una versión alterada de una librería como ffmpeg como si se dispusiera
de un acceso a un terminal para lanzar un ejecutable compilado.

5.2.5. Guardar los resultados y publicación hasta el servidor

Los ficheros de audio grabados (WAV por ahora, MP3 en el futuro) se guardan en
una carpeta en la memoria interna del teléfono, por ahora una carpeta oculta que es-
tá localizada en la carpeta /data/data/’nombre del paquete de la aplicación’/files.
El nombre de este fichero es el resultado de una función de hash que convierte la
concatenación del id del usuario en el servidor del usuario con su correo electrónico
y la fecha más la hora de la grabación. Eso permite asegurar que cada fichero, una
vez mandado al servidor, tenga un nombre único, pese a ser generado por la aplica-
ción. En efecto, el usuario puede decidir no compartir su grabación hasta un cierto
tiempo y se queda entonces solamente almacenada en el teléfono de este usuario.

Después de eso, se instancia un modelo que representa la grabación, un Recor-
ding, que contiene los datos de la grabación: título de la canción, artista, descripción,
el id del usuario que lo hizo, y un campo data que es:

Cada nota son 2 enteros y un double separados por coma: tiempo, intensidad,
frecuencia detectada. Por ahora, este campo datos es una string.

Capítulo 5. Singvibes para Android 37

FIGURA 5.2: HomeFragment: vista del perfil de usuario

En un desarrollo posterior se espera que una nota sea un cadena binaria en el
servidor, almacenada en un campo de tipo BLOB en MySQL, conteniendo un entero
de 4 bytes, el tiempo en millisegundos, otro de 1 byte con la intensidad, y un double
de 4 bytes para la frecuencia (9 bytes por nota).

Eso forma parte de las mejoras imprescindibles para poder hacer pública la apli-
cación que estarán presentadas en la ultima sección (6).

Un diagrama resumiendo todo el proceso desde el principio de la grabación has-
ta el post processing está en el Anexo E.

5.3. La implementación de la red social

5.3.1. Queries asíncronas, HTTPS y refresco de las vistas

En Android, como se ha dicho más arriba, el thread principal debe estar tan poco
ocupado como sea posible para garantizar al usuario una experiencia fluida en la
aplicación. Además, el móvil del usuario puede estar conectado o no, dependien-
do del estado de la red y de la conectividad. Descargar los datos desde el servidor
puede costar un tiempo variable, y entonces se debe ejecutar de manera asíncrona,
y cuando los datos están disponibles es posible refrescar las vistas.

La figura 5.2 muestra la página de perfil personal. Las informaciones se cargan y
se muestran poco a poco mientras que los datos se recuperan desde o el servidor, o
la base de datos.

Este concepto está implementado con las siguientes clases:

Las clases de la carpeta de la aplicación logic/network/queries: hay clases que
gestionan las tareas asíncronas para recuperar los datos desde el servidor y
una vez recuperados, se encargan de refrescar la base de datos y la vista. Ex-
tienden la clase AsyncTask del framework Android, conteniendo 2 métodos

Capítulo 5. Singvibes para Android 38

muy importantes: doInBackground (ejecutado en un hilo por separado), y on-
PostExecute, ejecutado en el thread principal, usado para actualizar las vistas
cuando se acaba la tarea ejecutada en el doInBackground. Para una lista de
completa de las urls, referirse a la figura 3.1.

Una tarea consiste en la llamada de un método llamado execute() de una ins-
tancia de la clase Task, definida en raiz/logic/network/Task.java. Este método
utiliza los parámetros dados durante la instanciación, entre otros la url, los pa-
rámetros POST, que contienen siempre el token de sesión del usuario que per-
mite al servidor identificar el usuario, y un campo llamado ’last_updated_at’,
utilizado para limitar los datos mandados por el servidor. El método execute()
acepta un booleano que activa o no el almacenamiento de los datos recibido en
el teléfono.

El método Task::execute() invoca otra clase raiz/logic/network/HttpsRetrie-
ver.java, que tiene la responsabilidad de comprobar el estado de la conexión,
ejecutar la petición HTTPS hasta el servidor, esperar la respuesta y devolver el
JSON recibido.

Si hay que refrescar la base de datos, se invoca el método refreshDB de la clase
DBInterface (raiz/logic/db/DBInterface.java), dándole la url, y la respuesta
JSON. Esta clase posee un método llamado jsonToDB, que crea peticiones SQL,
con las mismas clases que LeafStormMVC adaptadas para funcionar con Java
y SQLite, para almacenar los datos.

Las actividades y componentes gráficos tienen entonces la posibilidad de ins-
tanciar modelos, (igual que LeafStormMVC), clase Model.java, para manipular
colecciones de datos de un golpe.

5.3.2. Base de datos local

Para evitar un tráfico demasiado denso hasta el servidor, los resultados traídos
desde el webservice se guardan en una base de datos SQLite y con una duración
de expiración variable dependiendo del contenido. Cada vez que se necesitan datos,
por ejemplo al hacer un clic para ver el perfil de un usuario, se buscan en la base
de datos local. Si están, no se hace la petición hasta el servidor y se cargan los datos
desde la base de datos. Si no, se actualizan los datos. Este mecanismo está imple-
mentado por una clase dedicada, la DBInterface, que contiene un método genérico
llamado refreshDB, capaz de convertir el JSON devuelto por el servidor en ordenes
SQL para que se almacene la información.

La lógica de los modelos del servidor presentadas en la sección 4 fue adaptada
para funcionar también con Android. Se puede, a partir de una QueryFactory, recu-
perar un ArrayList de modelos (una colección ordenada de modelos que se pueden
manipular de manera sencilla gracias a la implementación de java del patrón de
diseño Iterator 2).

2El patrón de diseño consiste en la implementación de un objeto conveniente que permite iterar
sobre una colección de objetos de una clase determinada. Iterar significa recoger la colección uno por
uno, con la posibilidad a cada etapa de acceder y ejecutar operaciones sobre este proyecto. Su forma
más básica y visual está presente en cada implementación de los bucles de tipo foreach (para cada
uno).

39

6 Resultados, conclusiones, trabajo
futuro

6.1. Resultados

6.1.1. Una herramienta fácil de usar útil para visualizar el canto y encon-
trar a otros cantantes

A nivel funcional, la aplicación alcanza los objetivos propuestos. Permite cantar,
visualizar con una gráfica en tiempo real la altura y la afinación del canto, grabar y
escuchar las grabaciones, y poder utilizar un servicio de mensajería para hablar con
otros miembros de la aplicación. Es una herramienta que se puede usar durante una
sesión de entrenamiento de canto o vocalización y, desde la experiencia de uso per-
sonal, bastante cómoda. Los usuarios se pueden encontrar fácilmente mediante una
funcionalidad de búsqueda, y aún más cuando las notificaciones estén disponibles,
permitirá encontrar a gente que cantaron las mismas canciones que el usuario, por
ejemplo.

6.1.2. Pitch tracking: desde el modelo hasta la implementación: enseñan-
zas y comparativa

El detector de tono fue unas de las partes más difíciles de implementar pese al he-
cho de tener disponible una base en código Matlab. Había que buscar bastante para
encontrar un método que diera resultados consistentes y, sobre todo, que se pudie-
ra calcular en tiempo real a una resolución adecuada. Para hacer esto en Java hubo
que superar varios retos. Fue imprescindible Utilizar tipos primitivos y operaciones
del nivel más bajo. Pero, no solo fue suficiente implementar el algoritmo. Toda una
parte del trabajo residió en las pruebas con diferentes parámetros para obtener un
resultado explotable. Por ejemplo, la idea intuitiva de utilizar la descomposición en
series de Fourier es completamente impracticable en tiempo real. Y no es suficiente
con aislar la fundamental (los armónicos a veces son más fuertes que la fundamen-
tal que, en algunos casos, ni siquiera está), pero calcular series de cosenos y senos es
algo costoso, incluso utilizando las series de Taylor-MacLaurin. Utilizar las wavelets
de Haar y el Fast-Lifting-Wavelet-Transform permite tener una resolución al menos
3 veces superior a utilizar la FFT (Fast-Fourier-Transform), y además se entiende
mejor. Fue una buena enseñanza ver que la teoría matemática y conocimientos físi-
cos son imprescindibles, pero es necesario disponer también de un cierto nivel de
conocimientos a la hora de la implementación, no solo basta con ’hacer cálculos’.

6.1.3. LeafStormMVC + App Android: base para otras aplicaciones

Unos de los resultados más importantes de este proyecto es el hecho de tener
un framework, un conjunto de clases, funcional y usable para cualquier otro proyec-
to. En efecto, LeafStormMVC está diseñado para poder soportar aplicaciones web

Capítulo 6. Resultados, conclusiones, trabajo futuro 40

de todo tipo (preferencialmente de tamaño reducido, porque si no mejor usar un
framework más grande que tenga más funcionalidades y se evita así ’reinventar la
rueda’, por ejemplo Magento para las tiendas en linea).

Programar para Android tampoco es algo trivial para obtener una aplicación
estable. En efecto, el hecho de que todas las computaciones gráficas se deben ejecutar
sobre el thread principal hace que la gestión de los hilos debe estar pensada en una
manera completamente inversa a la mayoría de las aplicaciones, por ejemplo las
escritas en C++ utilizando los frameworks Qt o GTK. La estructura de código que
fue encontrada para separar de manera razonablemente limpia la lógica de la parte
gráfica, y la ejecución asíncrona de las peticiones en Https del resto son cosas que
serán reusadas en próximos proyectos de magnitud más grande.

Más de un 70 % de las clases desarrolladas pueden usadas tal cual en cualquier
otro proyecto involucrando una aplicación Android conectándose a un webservi-
ce, y aseguran una implementación robusta del paradigma cliente-servidor, y muy
extensible. Referirse a los repositorios ajuntados, anexo G.

6.2. Areas de mejora

6.2.1. Fallos del pitch tracker

El pitch tracker funciona bastante bien cuando hay una sola voz, y poco ruido
ambiente. Si no, se comporta de manera completamente caótica, aunque se tomaron
varias medidas para limitar los errores, como medir la intensidad de los sonidos
entrantes y solo tomar el tono detectado cuando la media sobre todo el bloque de
samples es superior a un valor que se puede determinar dentro de la aplicación.

Está adaptado también para una voz humana. Un sonido tan lleno de harmó-
nicos como uno del piano puede poner en dificultad el detector de tono. Se podría
mejorar mediante una análisis y una comparación de los tonos previos, y hacer una
interpolación. Pero, no hay que olvidar el requisito del tiempo real, que genera mu-
chas restricciones.

En el caso de un ruido ambiente continuo como el de un coche el detector es muy
poco usable. Finalmente, un verdadero cantante usa mucho lo que se denomina el
’vibrato’. El tono oscila al alrededor de la nota que se quiere alcanzar para dar un
efecto interesante sobre todo al final de algunas frases melódicas. Tal como está aho-
ra, el detector de tono es incapaz de saber si las vibraciones son intencionales o si
son el resultado de una mala técnica/afinación. Para obtener un resultado mucho
más fiable, no se puede descartar la idea de utilizar una técnica de aprendizaje, de
tipo deep learning, por refuerzo, alimentado manualmente por cantantes profesio-
nales por ejemplo, comparando las grabaciones entre ellas dependiendo del nivel
del usuario.

6.2.2. Seguridad

La seguridad de la aplicación por ahora cuenta mucho con el protocolo SSL y
el certificado obtenido utilizando el método de Let’s Encrypt, servicio gratis. Si el
ssl está roto o un hackeador intercepta los datos y los decripta, se podría alterar la
cuenta de usuario que interceptó (mediante un ataque de tipo Man In The Middle)

Una mejora posible sería implementar el protocolo OAuth 2 para asegurar las
sesiones. Pero tampoco está exento de fallos.

Capítulo 6. Resultados, conclusiones, trabajo futuro 41

Lo bueno de la aplicación es que no lleva datos sensible, lo que limita los daños
de un posible ataque. Sin embargo, no se ha podido llegar a una solución contra los
ataques por DDoS (Denial Of Service).

6.2.3. Normalización del código

Unos de los objetivos de este proyecto era también la realización completa de una
aplicación web, con un enfoque pedagógico. Es uno de los elementos que motivaron
la decisión de implementar muchas cosas a mano, hasta el router y el autoloader del
servidor.

Al no ser profesional y completamente full stack aún, algunas normas no están
cumplidas y unas de las próximas etapas de este proyecto será la normalización del
código, por ejemplo aplicando las normas PSR para el código php que da especifi-
caciones ayudando a la comprensión del código y limitando los fallos y las vulnera-
bilidades, permitiendo una cierta estandardización muy útil a la hora de colaborar
con un equipo.

6.2.4. Mejor gestión de los intercambios de datos y caches

Unos de los objetivos, a largo plazo, de este proyecto, es hacer que cada dato
del servidor sea mandando una sola vez a cada usuario, mediante el sistema de
replicación progresivo de base de datos introducido en la sección 5, que permite
limitar el número de peticiones hasta el servidor y entonces la carga.

La integración con RabbitMQ está planeada para el mes próximo que permite
dejar abiertos canales de comunicación y evitar este refresco periódico y permitien-
do un verdadero tiempo real y por tanto un ahorro considerable de carga servidor.
RabbitMQ es un sistema de mensajería, consistiendo en un servidor RabbitMQ, y
clientes para varios tipos de clientes, la mayoría de las tecnologías siendo soporta-
das (entre otros Java/Android y PHP). La desventaja es que RabbitMQ debe tener
una máquina adecuada para funcionar bien porque mantendría abierta un canal por
usuario autentificado y es difícil conseguir una estimación de las características nece-
sarias del servidor para este proyecto sin tener una idea sobre el numero de usuarios
que descargarían la aplicación una vez puesta en el Google Play.

Se considera también integrar Redis a LeafStormMVC, el sistema de cache por
base de datos muy útil para los sitios internet que tienen un front end particular-
mente denso y el almacenamiento de las sesiones de usuario.

6.2.5. Funcionalidades adicionales y ventaja competitiva sobre las otras
aplicaciones

Muchas funcionalidades han quedado por implementar para alcanzar todos los
objetivos que surgieron durante el diseño y el desarrollo de la aplicación. Estas in-
cluyen:

El upload y la descarga en streaming de las grabaciones públicas de los usua-
rios (que pueden elegir qué grabación publicar o no)
Un sistema de notificaciones
Mejoras a nivel de UI y de UX: señalar los nuevos mensajes...
Activar el newsfeed (depende del upload de las grabaciones)
Proponer más opciones para controlar el algoritmo y la visualización
Utilizar el NDK de Android para poder convertir el detector de tono en librería
C++ precompilada e integrarla para ganar en eficiencia

Capítulo 6. Resultados, conclusiones, trabajo futuro 42

Poder convertir las grabaciones en fichero MIDI para que se puedan usar para
escribir una partitura
Poder tener otro tipo de visualización, como una partitura
Recuperar las letras de las canciones e imprimirlas
Poner un informe mucho más detallado acerca de una grabación, con análisis
de ritmo por ejemplo
Poner un sistema de puntuación que permite a un usuario de comparar sus
grabaciones
Poder superponer la gráfica de otra grabación a la que se está construyendo
para poder tener una referencia que seguir

6.3. Plan de explotación de la aplicación

6.3.1. Google play, publicidad

Esta aplicación, una vez acabada, tiene la ventaja de tratar de un tema que intere-
sa mucho, las aplicaciones de música y de canto suelen generar muchas descargas
y tienen mucho éxito. Hay muchas maneras de diferenciarse de las que existen, y,
se pueden utilizar varias aplicaciones sin exclusividad. Así qué, el primer paso para
hacer una aplicación Android pública es subir la aplicación a la plataforma Google
play. Dependiendo de la calidad de la aplicación, los usuarios pueden atribuir no-
tas y comentarios ayudando al posicionamiento de la aplicación en los listados de
Google.

La publicidad es una realidad común en las aplicaciones, y no se descarta incluir
anuncios discretos en la aplicación automatizados tipo Google Ads que permiten
generar una pequeña cantidad de dinero cada vez que un usuario ve un anuncio.

La integración con otros redes sociales como Facebook parece también una nece-
sidad para alcanzar más gente y dejar la libertad de compartir sus resultados allí, y
al mismo tiempo hacer que más gente conozcan a Singvibes.

6.3.2. Funcionalidades premium para financiar el servidor

El dinero no es la prioridad de este proyecto, antes de todo, este proyecto es pe-
dagógico. Sin embargo, un servidor no es gratis. Un Amazon S3, quizás combinado
con un Glacier para el contenido que apenas genera trafico, va a ser necesario para
alojar las grabaciones de los usuarios y las imágenes. Combinado a una instancia
EC2 decente, la factura puede rápidamente subir, hasta unos 100 euros al mes sin
mucho problema para una aplicación que no es profesional y mucho más si tiene
éxito. Así que, para limitar los riesgos, la idea sería implementar un sistema de pago
por uso. Si el usuario quiere alojar mas que 30Mb de grabaciones más imágenes, ten-
drá que suscribir a un abono anual por ejemplo de 5 euros más o menos, lo necesario
para amortiguar el coste de almacenamiento, junto a la publicidad. Esas decisiones
no se pueden tomar sin saber el éxito que puede tener la aplicación. Sin embargo, se
debe anticipar para evitar el escenario de, por ejemplo Pokémon GO, que funcionó
mal durante todo el verano por haber subestimado el trafico.

6.3.3. Una escena abierta

Otra manera de disfrutar de un posible éxito de este proyecto es promocionar
a los cantantes o a los trabajos musicales. Ha habido estos últimos años un cambio
drástico en la mente de la gente y sobre todo de los jóvenes, que usan de manera

Capítulo 6. Resultados, conclusiones, trabajo futuro 43

intensa las redes sociales como Facebook o Instagram para compartir absolutamente
todo de lo que se les ocurre. Eso, también puede pasar por el canto. Quizás hacer
de Singvibes el Instagram del canto, un poco como Smule intenta hacerlo, pero con
una dimensión mucho más colaborativa y enfocado a la mejora de los principiantes.
Eso, para una disciplina como el canto que exige un alto nivel de confianza y de
apoyo parece importante y puede haber una oportunidad de lanzar una nueva clase
de actividad. Un coaching vocal colaborativo donde todos ganan. Los que ayudan
ganan en respeto, estima, y visibilidad para sus trabajos, y los principiantes ganan
bastante confianza para empezar en serio el canto, con la ayuda de un profesor por
ejemplo. Está aplicación no pretende sustituir clases profesionales de canto, pero
quizás podría dar la chispa que falta a algunos para probar el canto o interesarse en
la música en general.

44

Bibliografía

[1] Eric Larson, Ross Maddox Real-Time Time-Domain Pitch Tracking Using Wavelets
https://courses.physics.illinois.edu/phys406/NSF_REU_Reports/2005_reu/
Real-Time_Time-Domain_Pitch_Tracking_Using_Wavelets.pdf
Illinois Physics Research Department, 2015

[2] Daubechies, Ingrid and Wim Sweldens Factoring Wavelet Transforms into Lifting
Steps Anal. Appl, 1998

[3] Bernard Salamito, Stéphane Cardini, Damien Jurine, Marie-Noëlle Sanz Physique
Tout-en-un MPSI-PTSI. (Francés) [Manual de Física para alumnos de MPSI-PTSI].
Dunod, 2016.

[4] Kevin Beaver Hacking for Dummies, 5th edition. For Dummies, December 21, 2015.

[5] A. Dannhauser Teoría de la música. Ricordi Americana, Sociedad Anónima Edito-
rial y Comercial

[6] Wolfgang Kohler,Gestalt Psychology: The Definitive Statement of the Gestalt Theory.
Liveright, January 17, 1970

[7] Manual oficial PHP,
http://www.php.net/manual/en/

[8] PHP Standards Recommendations: PSR,
http://www.php-fig.org/psr/

[9] Documentación oficial Android,
https://developer.android.com/reference/packages.html

[10] Stackoverflow: más de 100 problemas diferentes,
http://stackoverflow.com/

[11] Mitchell Anicas, How To Secure Nginx with Let’s Encrypt on Ubuntu 14.04
https://www.digitalocean.com/community/tutorials/
how-to-secure-nginx-with-let-s-encrypt-on-ubuntu-14-04,
para Digital Ocean, December 17, 2015

45

A Árbol de las carpetas/clases del
servidor y de LeafStormMVC

Apéndice A. Árbol de las carpetas/clases del servidor y de LeafStormMVC 46

47

B Árbol comentado de las clases de
la aplicación Android

48

C Código del detector de tono:
PitchDetector.java

package com.frederic_rouffineau.singvibes.logic.sound;
import com.frederic_rouffineau.singvibes.logic.helpers.Hmath;

/**
* Created by frederic on 5/11/16.

* Based on the paper:
https://courses.physics.illinois.edu/phys406/NSF_REU_Reports/2005_reu/Real-Time_Time-Domain_Pitch_Tracking_Using_Wavelets.pdf

*/
public class PitchDetector {

private double pitch;
private double previousPitch = -1;
private double pitchConfidence = -1;

// WAVELET ALGORITHM CONFIGURATION
public final static int maxFLWTlevels = 6;
public final static double maxF = 3000.;
public final static int differenceLevelsN = 3;
public final static double maximaThresholdRatio = 0.75;
private int samplingRate = 44100;

// WAVELET STATE VARIABLES
private double amplitudeThreshold; // Max amplitude authorized

(max amplitude * k)
private double samplesAvg;
private int currentSamplesNumber;
private double[] currentSamples;
private int currentIteration;
private int[] distances;
private int[] mins;
private int[] maxs;
private double curModeDistance = -1.;

public PitchDetector(int samplingRate) {
this.samplingRate = samplingRate;
this.resetPitchDetector();

}

public void resetPitchDetector() {
this.previousPitch = -1;
this.pitchConfidence = -1;

}
public double getPitch(double[] samples, double first, int

length) {
initializeState(length);
prepareSamples(samples, first, length);
computeAmplitudeThreshold();

Apéndice C. Código del detector de tono: PitchDetector.java 49

while(this.currentIteration < maxFLWTlevels &&
this.currentSamplesNumber >= 2) {
if(this.currentIteration > 0) {

resample(); // Extracts the approximation component
from the samples

}
int delta = (int)

(this.samplingRate/(Hmath.pow2(this.currentIteration)*maxF));
double dv;
double previousDV = -1000;

int nbMins = 0;
int nbMaxs = 0;
int lastMinIndex = -1000000;
int lastmaxIndex = -1000000;
boolean findMax = false;
boolean findMin = false;
double si, si1;

// LOOP: the idea is to find the mins and the maxs
for (int i = 2; i < this.currentSamplesNumber; i++) {

si = this.currentSamples[i] - samplesAvg;
si1 = this.currentSamples[i-1] - samplesAvg;

if (si1 <= 0 && si > 0) findMax = true;
if (si1 >= 0 && si < 0) findMin = true;

// min or max ?
dv = si - si1;

if (previousDV > -1000) {
if (findMin && previousDV < 0 && dv >= 0) {

// minimum
if (Hmath.abs(si) >= this.amplitudeThreshold) {

if (i > lastMinIndex + delta) {
mins[nbMins++] = i;
lastMinIndex = i;
findMin = false;

}
}

}

if (findMax && previousDV > 0 && dv <= 0) {
// maximum
if (Hmath.abs(si) >= this.amplitudeThreshold) {

if (i > lastmaxIndex + delta) {
maxs[nbMaxs++] = i;
lastmaxIndex = i;
findMax = false;

}
}

}
}

previousDV = dv;
}

Apéndice C. Código del detector de tono: PitchDetector.java 50

// If peaks are found
if (nbMins != 0 || nbMaxs != 0) {

int d;
distances = new int[length];
for (int i = 0; i < nbMins; i++) {

for (int j = 1; j < differenceLevelsN; j++) {
if (i + j < nbMins) {

d = Hmath.abs(mins[i] - mins[i + j]);
distances[d] = distances[d] + 1;

}
}

}
for (int i = 0; i < nbMaxs; i++) {

for (int j = 1; j < differenceLevelsN; j++) {
if (i + j < nbMaxs) {

d = Hmath.abs(maxs[i] - maxs[i + j]);
distances[d] = distances[d] + 1;

}
}

}

// find best summed distance
int bestDistance = -1;
int bestValue = -1;
for (int i = 0; i < this.currentSamplesNumber; i++) {

int summed = 0;
for (int j = -delta; j <= delta; j++) {

if (i + j >= 0 && i + j <
this.currentSamplesNumber)
summed += distances[i + j];

}
if (summed == bestValue) {

if (i == 2 * bestDistance)
bestDistance = i;

} else if (summed > bestValue) {
bestValue = summed;
bestDistance = i;

}
}

double distAvg = 0.0;
double nbDists = 0;
for (int j = -delta; j <= delta; j++) {

if (bestDistance + j >= 0 && bestDistance + j <
length) {
int nbDist = distances[bestDistance + j];
if (nbDist > 0) {

nbDists += nbDist;
distAvg += (bestDistance + j) * nbDist;

}
}

}
distAvg /= nbDists;

if (curModeDistance > -1.) {

Apéndice C. Código del detector de tono: PitchDetector.java 51

if (Hmath.abs(distAvg * 2 - curModeDistance) <= 2 *
delta) {
this.pitch = this.samplingRate /

(Hmath.pow2(this.currentIteration - 1) *
curModeDistance);

break;
}

}
curModeDistance = distAvg;

} else {
break;

}
this.currentIteration++;

}

return this.adjustWithPreviousPitch(this.pitch);
}

public void initializeState(int length) {
this.currentIteration = 0;
this.pitch = 0.0; // Pitch final
distances = new int[length];
mins = new int[length];
maxs = new int[length];
curModeDistance = -1.;

}

public void prepareSamples(double[] samples, double first, int
length) {
length = Hmath.getFirstSuperiorPowerOf2(length);
this.currentSamples = new double[length];
for(int i=0; i<length; i++) {

this.currentSamples[i] = samples[i] + first;
}
this.currentSamplesNumber = length;

}

private void computeAmplitudeThreshold() {
this.samplesAvg = 0.0;
double maxValue = 0.0;
double minValue = 0.0;

double sample;
for (int i = 0; i < this.currentSamplesNumber;i++) {

sample = this.currentSamples[i];
this.samplesAvg = this.samplesAvg + sample;
if (sample > maxValue) maxValue = sample;
if (sample < minValue) minValue = sample;

}

this.samplesAvg = this.samplesAvg/this.currentSamplesNumber;
maxValue = maxValue - samplesAvg;
minValue = minValue - samplesAvg;
this.amplitudeThreshold = (maxValue > -minValue ? maxValue :

-minValue) * maximaThresholdRatio;
}

Apéndice C. Código del detector de tono: PitchDetector.java 52

// This method takes only half of the samples, by converting
each consecutive pair to its mean value

// This actually performs the FLTW by isolating the
approximation from the detail in the signal

public void resample() {
for (int i = 0; i < this.currentSamplesNumber/2; i++) {

this.currentSamples[i] = (this.currentSamples[2*i] +
this.currentSamples[2*i + 1])/2.;

}
this.currentSamplesNumber /= 2;

}

private double adjustWithPreviousPitch(double pitch) {
// equivalence
if (pitch == 0.0) pitch = -1.0;

double estimatedPitch = -1;
double acceptedError = 0.2f;
int maxConfidence = 5;

// If a pitch has been detected
if (pitch != -1) {

// If there is no previous pitch
if (this.previousPitch == -1) {

estimatedPitch = pitch;
this.previousPitch = pitch;
this.pitchConfidence = 1;

// Else If the two pitches are less distant than 20%,
raise confidence

} else if (Hmath.abs(this.previousPitch - pitch)/pitch <
acceptedError) {
this.previousPitch = pitch;
estimatedPitch = pitch;
this.pitchConfidence = Hmath.min(maxConfidence,

this.pitchConfidence + 1); // maximum 3
// Else, if the confidence level is high enough, and the

same applyes to this pitch multiplied per 2 (IE:
octava error)

} else if ((this.pitchConfidence >= maxConfidence-2) &&
Hmath.abs(this.previousPitch - 2.*pitch)/(2.*pitch) <
acceptedError) {
// close to half the last pitch, which is trusted
estimatedPitch = 2.*pitch;
this.previousPitch = estimatedPitch;

// Else, if same goes for the pitch divided by two
} else if ((this.pitchConfidence >= maxConfidence-2) &&

Hmath.abs(this.previousPitch - 0.5*pitch)/(0.5*pitch)
< acceptedError) {
// close to twice the last pitch, which is trusted
estimatedPitch = 0.5*pitch;
this.previousPitch = estimatedPitch;

// Else, the value has nothing to do with it
} else {

// nothing like this : very different value
if (this.pitchConfidence >= 1) {

// previous trusted : keep previous
estimatedPitch = this.previousPitch;

Apéndice C. Código del detector de tono: PitchDetector.java 53

this.pitchConfidence = Hmath.max(0,
this.pitchConfidence - 1);

} else {
// previous not trusted : take current
estimatedPitch = pitch;
this.previousPitch = pitch;
this.pitchConfidence = 1;

}
}

// Else, if no pitch has been detected this time
} else {

// If there was a pitch before and it is trusted enough,
take it

if (this.previousPitch != -1) {
if (this.pitchConfidence >= 1) {

estimatedPitch = this.previousPitch;
this.pitchConfidence = Hmath.max(0,

this.pitchConfidence - 1);
} else {

this.previousPitch = -1;
estimatedPitch = -1.;
this.pitchConfidence = 0;

}
}

}

if (this.pitchConfidence >= 1) {
pitch = estimatedPitch;

} else {
pitch = -1;

}

if (pitch == -1) { pitch = 0.0; }
return pitch;

}
}

54

D Código del grabador:
Recorder.java

package com.frederic_rouffineau.singvibes.logic.sound;

/**
* Created by frouffineau on 8/11/16.

*
https://www.newventuresoftware.com/blog/record-play-and-visualize-raw-audio-data-in-android

*
http://stackoverflow.com/questions/8499042/android-audiorecord-example

*
http://stackoverflow.com/questions/11985518/android-record-sound-in-mp3-format

*/

import android.media.AudioFormat;
import android.media.AudioRecord;
import android.media.MediaRecorder;
import android.os.Handler;
import android.util.Log;

import com.frederic_rouffineau.singvibes.MainActivity;
import com.frederic_rouffineau.singvibes.SingFragment;
import com.frederic_rouffineau.singvibes.logic.helpers.Hfiles;
import com.frederic_rouffineau.singvibes.logic.helpers.Hmath;
import com.frederic_rouffineau.singvibes.ui.PianoChart;

import java.io.FileOutputStream;
import java.util.ArrayList;

public class Recorder {
public final static int sampleRate = 44100;
public final static int audioSource =

MediaRecorder.AudioSource.MIC; // Audio source is the device
MIC

public final static int channelConfig =
AudioFormat.CHANNEL_IN_MONO; // Recording in mono

public final static int audioEncoding =
AudioFormat.ENCODING_PCM_16BIT; // Records in 16bit

public final static int blockSize = 1024; // must be a power of
two

public final static int timeInterval = 50;
public final static double MINIMUM_INTENSITY = 1000;

private MainActivity activity;
private SingFragment singFragment;

private boolean isRecording = false;

Apéndice D. Código del grabador: Recorder.java 55

private long startRecording = 0;
private AudioRecord audioRecord;
private PitchDetector pitchDetector;
private double f;
private double intensity;
private Handler handler = new Handler();
private WaveBuilder waveBuilder;
private ArrayList<Short> pcm_array;
private PianoChart pianoChart;

public Recorder(MainActivity a, SingFragment sf, PianoChart pc)
{
this.activity = a;
this.singFragment = sf;
this.pianoChart = pc;

}

public boolean isRecording() {
return isRecording;

}

public void start() {
Log.i("INFO", "Recording start");
if(!this.isRecording){

this.isRecording = true;
try{

int bufferSize =
AudioRecord.getMinBufferSize(sampleRate,
channelConfig, audioEncoding);

this.audioRecord = new AudioRecord(audioSource,
sampleRate, channelConfig, audioEncoding,
bufferSize);

this.pitchDetector = new PitchDetector(sampleRate);
pianoChart.startThread();
pcm_array = new ArrayList<>();
Log.i("INFO", "Recording start");
audioRecord.startRecording();
this.startRecording = System.currentTimeMillis();
handler.postDelayed(getPitch, timeInterval);

}
catch(Exception e){

e.printStackTrace();
}

}
}

public void stop() {
if(this.isRecording && this.audioRecord != null){

this.isRecording = false;
pianoChart.stopThread();
audioRecord.stop();
Short[] pcma = pcm_array.toArray(new

Short[pcm_array.size()]);
waveBuilder = new WaveBuilder(sampleRate, (short) 1,

pcma, 0, pcm_array.size());
waveBuilder.wroteToFile(Hfiles.getFilePath(this.activity,

"tmp.wav"));

Apéndice D. Código del grabador: Recorder.java 56

//waveBuilder.convertToMP3("tmp.wav", this.activity);
}

}

Runnable getPitch = new Runnable() {
public void run() {

short[] buffer = new short[blockSize];// Save the raw PCM
samples as short bytes

double[] samples = new double[blockSize];
int bufferReadResult =

Recorder.this.audioRecord.read(buffer, 0, blockSize);
double samplesLength = Hmath.min(blockSize,

bufferReadResult);
for (int i = 0; i < samplesLength; i++) {

samples[i] = (double) buffer[i]; // signed 16 bit
intensity += Hmath.abs(samples[i]);
pcm_array.add(buffer[i]);

}
intensity /= samplesLength;
f = pitchDetector.getPitch(samples, samples[0],

blockSize);

activity.runOnUiThread(publish);
if(isRecording) {

handler.postDelayed(getPitch, 0);
}

}
};

Runnable publish = new Runnable() {
public void run() {

Long s = System.currentTimeMillis() - startRecording;
singFragment.publishFrequency(f, s, intensity);

}
};

}

57

E Diagrama de secuencia general
del proceso de grabación

58

F Esquema de la base de datos con
las claves ajenas

59

G Repositorios de código y
aplicación

El código completo del proyecto está disponible en Github y seguirá evolucio-
nando.

https://github.com/fredrfn/Singvibes-Server

https://github.com/fredrfn/Singvibes-For-Android

Además, se puede encontrar más información en el sitio oficial de la aplicación:
https://singvibes.com. Para cualquier información, o si se desea señalar un bug, se
puede usar el formulario de contacto https://singvibes.com/contact, o abrir una
issue en Github.

https://github.com/fredrfn/Singvibes-Server
https://github.com/fredrfn/Singvibes-For-Android
https://singvibes.com
https://singvibes.com/contact

60

Índice de figuras

1.1. Cronología de las tareas realizadas . 13

2.1. Definición visual de la afinación . 17

3.1. Arquitectura del sistema . 22

5.1. Vista durante la grabación y ejemplo de gráfica de la afinación en
tiempo real . 35

5.2. HomeFragment: vista del perfil de usuario 37

	DeclaraciÃ³n de autorÃ­a y originalidad
	Agradecimientos
	Resumen
	Abstract
	Índice general
	Introduction
	Objetivos
	Singvibes: un 'oído virtual' para cantantes
	Una oportunidad de encontrar a otros músicos

	Estado del arte
	Bases teóricas y científicas
	Ejemplos de aplicaciones ya existentes
	Diferenciación del proyecto

	Requisitos y tipos de problemas
	Experiencia usuario (UX)
	Disponibilidad, fiabilidad
	Rendimiento y tiempos de ejecución

	Metodología
	La gestión del tiempo y las etapas importantes del proyecto
	Las fuentes de información y de ayuda
	La producción de código modular y fácil de entender y manipular

	Presentación corta de las secciones y anexos

	Diseño de la detección de la afinación del canto en tiempo real
	Conceptos
	Sonido y ondas sonoras
	Notas y armónicos
	Escala cromática y afinación

	La detección del tono
	Análisis temporal, análisis frecuencial y detección de tono en tiempo real
	El Fast-Lifting-Wavelet-Transform (FLWT)
	El algoritmo FLWT basado en las Wavelets de Haar

	Diseño de la red social y elaboración de una arquitectura distribuida
	El paradigma cliente-servidor
	Presentación de los actores y de la topología del sistema
	Tipos de datos y base de datos
	Intercambios de datos, mensajes y protocolos

	Funcionalidades y problemas mayores en el diseño y la implementación de la red social
	Seguridad y sesiones
	Comunicación entre usuarios y puesta en contacto

	El servidor: elaboración e implementación
	El servidor y su organización interna
	Presentación del servidor
	Pros y contras de varios frameworks MVC
	Diseño: front controller, organización de los ficheros

	LeafStormMVC: implementación propia del paradigma MVC
	Request flow: routing y controladores
	Los modelos
	Las vistas: gestión del frontend

	Singvibes para Android
	Estructura de la aplicación y organización del código
	Presentación global de la aplicación
	Organización del código y modularidad
	Multithreading en Android

	La implementación del pitch tracker
	Recuperar la señal
	Procesar la señal: el pitch tracker
	Mostrar/Dibujar los resultados
	Convertir la señal en fichero: WAV y después comprimirlo
	Guardar los resultados y publicación hasta el servidor

	La implementación de la red social
	Queries asíncronas, HTTPS y refresco de las vistas
	Base de datos local

	Resultados, conclusiones, trabajo futuro
	Resultados
	Una herramienta fácil de usar útil para visualizar el canto y encontrar a otros cantantes
	Pitch tracking: desde el modelo hasta la implementación: enseñanzas y comparativa
	LeafStormMVC + App Android: base para otras aplicaciones

	Areas de mejora
	Fallos del pitch tracker
	Seguridad
	Normalización del código
	Mejor gestión de los intercambios de datos y caches
	Funcionalidades adicionales y ventaja competitiva sobre las otras aplicaciones

	Plan de explotación de la aplicación
	Google play, publicidad
	Funcionalidades premium para financiar el servidor
	Una escena abierta

	Bibliografía
	Árbol de las carpetas/clases del servidor y de LeafStormMVC
	Árbol comentado de las clases de la aplicación Android
	Código del detector de tono: PitchDetector.java
	Código del grabador: Recorder.java
	Diagrama de secuencia general del proceso de grabación
	Esquema de la base de datos con las claves ajenas
	Repositorios de código y aplicación
	Índice de figuras

