s Universidad
A8 Zaragoza

1542

Trabajo Fin de Master

Desarrollo de una red social y herramientas para
cantantes mediante una aplicacién Android

Creation of a social network and tools for singers through an
Android application

Rouffineau Frédéric

Directores

José Ramon Beltran Blazquez
Victor Vinials Yufera

Escuela de Ingenieria y Arquitectura

\

&
=
<
=

TRABAJOS DE FIN DE GRADO / FIN DE

Ingenieria y Arquitectura

.ﬁl Escuela de DECLARACION DE
UniversidadZaragoza AUTORIA Y ORIGINALIDAD

(Este documento debe acompafiar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Méster (TFM) cuando sea depositado para su evaluacion).

D./D2, Bedise ROUETTMEAU)

con n? de DNI VQBSSW‘SS en aplicacion de lo dispuesto en el art.
\dtE

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo

de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el présente Trabajo de Fin de (Grado/Méster)'

% - T o ., (Thulo del Trabajo)

priiediantd Sram ac\)\\‘}aclgn Ar;rl‘-}.'a,l

An rln-u'r\ A:\::?\\‘ca\ S \

r

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

_ debidamente.

Zaragoza, | . o T P 2041 -

Fdo: /é%gty
o

P

Agradecimientos

Un sincero agradecimiento para mi director de trabajo J.R Beltrdn que mostré un au-
téntico interés por el trabajo y con quien he podido compartir varias cosas acerca de
la musica. No se puede olvidar a mi ponente V.Y. Vifials cuyo soporte ha sido cons-
tante a lo largo del méster. Por iltimo, este trabajo estd dedicado a todos mis amigos
musicos y no musicos, y a mis colegas de trabajo en Hiberus del departamento Ma-
gento, que facilitaron mucho la realizacién de este proyecto y de esta memoria, por
su presencia, comprension, flexibilidad, y apoyo.

Resumen

Universidad de Zaragoza- Escuela de Ingenieria y Arquitectura
Master en Ingenieria Informatica

Desarrollo de una red social y de herramientas para cantantes mediante una
aplicacion Android

por Frédéric ROUFFINEAU

Hoy en dia, empezar el canto no es cosa fécil sin formar parte de una familia de mu-
sicos, la falta de confianza y de un seguimiento apropiado puede impedir el disfrute
de este sencillo placer. Este proyecto, es una aplicacién para Android llamada Sing-
vibes. Tiene como préposito ofrecer herramientas que ayuden a cantantes o personas
que quieran empezar a cantar. Singvibes combina una red social con herramientas
de andlisis de sonido y de voz usando el algoritmo Fast-Lifting-Wavelet-Transform
basado en las wavelets de Haar, que proporciona la informacién en tiempo real de
la afinacién del canto. La red social tiene como propésito poder compartir las graba-
ciones y encontrar a otros cantantes que pueden compartir su opinién, aportar una
ayuda y un oido humano imprescindible para mejorar en canto, creando un espacio
positivo.

Para realizar este doble proyecto (aplicacién de andlisis vocal cliente Android y
red social basada sobre un servidor desarrollado integralmente personalmente) fue
necesario el uso de una gran parte de los conocimientos ensefiados en Ingenieria
Informaética. Eso incluye los campos siguiente:

» Adquisicién y procesamiento de una sefial digital en tiempo real

= Bases de datos (relacionales): disefio, esquema en estrella, data warehouse, flu-
jos de datos, MySQL y SQLite

= Administracién de servidor y Cloud, estando el servidor desplegado en el
cloud de Amazon.

» Arquitectura distribuida: fueron necesarios varios patrones de disefio para im-
plementar correctamente el paradigma cliente->servidor y gestionar la concu-
rrencia entre usuarios.

= Redesy sistemas: tomar medidas para asegurar disponibilidad, seguridad, fia-
bilidad, coherencia y consistencia de los datos. Limitar tanto como sea posible
el trafico mediante un cacheado de la base de datos en los dispositivos clientes.

» Conocimientos en disefio y desarrollo de aplicaciones Web: webservicios, APIs,
contenido estatico y dinamico y paradigma Modelo-Vista-Controlador

» Programacion orientada a objetos: lado cliente y lado servidor

= Calidad en el desarrollo: prestando mucha atencién a la modularidad, extensi-
bilidad, con uso de sistema de versioning (git)

= Computacién de altas prestaciones: paralelizacién, multi-threading

= Sistemas empotrados: uso del framework android y uso de sensores (micré-
fono) para procesar y comunicar datos

Este proyecto estd ahora en estado Beta, con las funcionas centrales implemen-
tadas, pero con varias funcionalidades adicionales que se deben implementar antes
de la publicacién en el Google Play (plataforma de aplicaciones para Android). Se
introducird también un plan de explotaciones y una presentacion de las dreas de
mejoras.

https://www.unizar.es/
https://eina.unizar.es

Abstract

Universidad de Zaragoza- Escuela de Ingenieria y Arquitectura
Master en Ingenieria Informética

Creation of a social network and tools for singers through an Android
application

by Frédéric ROUFFINEAU

Singing is not an easy thing to master for someone wihout a musical background.
The lack of trust and relevant mentoring can quickly put off people from enjoying
this simple pleasure. This project, an application for Android called Singvibes, ho-
pes to provide a set of tools for beginners or advanced singers, accompanying their
training and opening them new prospects by obtaining some advice from other peo-
ple just like them through a collaborative-sharing system. Indeed, Singvibes aims
to combine a social network with a training companion doing some real time voice
analysis using the embedded phone microphone sending the signal to a Fast Lifting
Wavelet Transform algorithm (with the Haar wavelet) in order to provide useful
information to the singer.

A wide range of Computing Engineering knowledge has been required to deve-
lop this double project:

= Digital signal real-time processing and reconstruction

= Relational databases: design, star-shaped schemas, data warehousing, data stream
processing, MySQL and SQLite systems

= Server and Cloud management

» Distributed Architecture: client-server paradigm and underlying notions rela-
ted to it: concurrent connections, session management, work load

» Network and distributed systems: take measures to ensure a decent enough
level of availability, safety, security, reliability, consistency and coherency of
the data while exchanging various types of data, and limiting the exchanged
volume as much as possible

= Knowledge about the internet and web applications: webservices, APIs, dy-
namic and static content management, and structured code production - front
end controller pattern and Model-Viwe-Controller

= OOP (Object-Oriented-Programming) - server and client side using various
abstractions and packages to make some reusable and modular code

» Quality software development: best practices through an extensive documen-
tation of what it is currently done by professionals all across the world

» High-demand computation: parallel execution, multithreading

= Embedded systems: Android framework for mobiles, allowing the use of sen-
sors, real-time processing, display and exchange of information with a remote
system

This projectly currently lies in its beta version. The core funcionalities are wor-
king, but before pushing up to the Google Play platform, it needs some more ma-
turing and improvements which will be described at the end of this report. A long-
term business plan including advertisment, sponsoring and a you get what you paid
for=policy have been thought and will be executed as soon as possible.

https://www.unizar.es/
https://eina.unizar.es

Indice general

[Declaracion de autoria y originalidad) 2
[Agradecimientos| 3
[Resumen| 4
[Abstract 5
[indice general| 6
(L. Introduction| 9
[LI. Objetivos| oo 9
[1.1.1. Singvibes: un "oido virtual” para cantantes| 9

[1.1.2. Una oportunidad de encontrar a otros masicos|. 9

(I.2. Estadodelartel. 10
[L.2.1. Bases tedricas y cientificas| 10

[1.2.2. Ejemplos de aplicaciones ya existentes|. 10

[1.2.3. Diferenciacion del proyecto] 10

[1.3. Requisitos y tipos de problemas|. 11
[1.3.1. Experienciausuario (UX)| 11

[1.3.2. Disponibilidad, fiabilidad] 11

1.3.3. Rendimiento y tiempos de ejecucion| L. 11

(1.4. Metodologial 12
[1.4.1. La gestion del tiempo y las etapas importantes del proyecto| . . 12

[1.4.2. Las fuentes de informaciony deayuda] 12

1.4.3. La produccion de codigo modular y facil de entender y mani- |

| pularf . ..o 13
[1.5. Presentacion corta de las secciones y anexos|. 14

[2. Diseno de la deteccién de la afinacion del canto en tiempo real 15
1. Conceptos| o 15
R.11. Sonidoyondassonoras| 15

212 Notasyarmdnicos| 15

2.1.3. Escala crométicay afinacién]. 16

R.2. Ladetecciondeltonol 18
2.2.1. Analisis temporal, analisis frecuencial y deteccion de tono en |

| tiemporeall L o 18
[2.2.2. El Fast-Lifting-Wavelet-Transform (FLWT)] 18
2.2.3." Elalgoritmo FLWT basado en las Waveletsde Haar] 19

. Disefio de la red social y elaboracién de una arquitectura distribuida] 21
B.1. Elparadigma cliente-servidor] 21
B.1.1. Presentacion de los actores y de la topologia del sistema] 21

B.1.2. Tiposdedatosybasededatos 21

3.1.3. Intercambios de datos, mensajes y protocolos|. 22

B.2. Funcionalidades y problemas mayores en el disefio y Ia implementa- |

i6 jall ... 24

3.2.1. Seguridad ysesiones| Lo 24

[3.2.2. Comunicacién entre usuarios y puesta en contacto]. 26

. Elservidor: elaboracion e implementacién) 27
1. Elservidor y suorganizaciéninternal 27
M4.11. Presentaciéndelservidor 27

4.1.2. Prosy contras de varios frameworks MVC| 27

4.1.3. Diseno: front controller, organizacion de los ficheros|. 28

@.2. LeafStormMVC: implementacion propia del paradigma MVC| 28
4.2.1. Request flow: routing y controladores| 28

422, Tosmodelos 30

4.2.3. Lasvistas: gestiondel frontend| 30

[5. Singvibes para Android| 31
B.1. Estructura de la aplicacién y organizacion del c6digo] 31
b.1.1. Presentacion global de Ia aplicacién| 31

b.1.2. Organizacion del codigo y modularidad]. 32

5.1.3. Multithreadingen Android| 32

[p.2. Laimplementacion del pitch tracker| 33
b.21. Recuperarlasenal 33

b.2.2. Procesar la senal: el pitch tracker] 33

5.2.3. Mostrar/Dibujar los resultados] 34

b.2.4. Convertir Ia sefial en fichero: WAV y después comprimirlo| . . . 36

(.2.5. Guardar los resultados y publicacion hasta el servidor] 36

p.3. Laimplementaciondelaredsocial| 37
b.3.1. Queries asincronas, HTIPS y refresco de Tas vistas|. 37

b.32. Basededatoslocall 38

[6. Resultados, conclusiones, trabajo futuro| 39
[61. Resultados| 39
[6.1.1. Una herramienta facil de usar util para visualizar el canto y |
ncontrar I ntantes| o000 39

[6.1.2. Pitch tracking: desde el modelo hasta la implementacion: en- |

[seflanzas y comparatival 39
[6.1.3. LeafStormMVC + App Android: base para otras aplicaciones| . 39

[6-2. Areasdemejoral 40
6.2.1. Fallos del pitch tracker|. 40

6.22. Seguridad| oo 40

6.2.3. Normalizacion del codigo| 41

6.2.4. Mejor gestion de los intercambios de datos y caches| 41

6.2.5. Funcionalidades adicionales y ventaja competitiva sobre las |

| otrasaplicaciones| Lo oL 41
[6.3. Plan de explotacién de Ta aplicacién| 42
6.3.1. Google play, publicidad| 42

6.3.2. Funcionalidades premium para financiar el servidor] 42

6.3.3. Unaescenaabiertal 42
Bibliografia 44

Indice general 8
IA. Arbol de las carpetas/clases del servidor y de LeafStormMVC| 45
[B. Arbol comentado de las clases de la aplicacién Android| 47
[C. Cédigo del detector de tono: PitchDetector.javal 48
[D. Cédigo del grabador: Recorder.javal 54
[E. Diagrama de secuencia general del proceso de grabacion| 57
[Esquema de Ia base de datos con Ias claves ajenas| 58
[G. Repositorios de codigo y aplicacion| 59
[indice de figuras| 60

1 Introduction

1.1. Objetivos

1.1.1. Singvibes: un ‘oido virtual” para cantantes

Hoy en dia, se puede oir con bastante frecuencia afirmaciones del tipo siguiente:
‘el canto, es innato’. O "tienes la voz o no la tienes’, o "sé que canto muy mal’, 0 'no
tengo oido’. Pero hay muchas personas a quién les gusta cantar, aunque sea algunos
minutos para animar el dia o la ejecucion de tareas rutinarias. Hay un conjunto de
creencias que hace que dentro de todas las personas interesadas por el canto, pocas lo
intentan de verdad pensando que les falta oido o talento para hacerlo. Sin embargo,
cualquier cantante profesional sabe la cantidad de horas que hay que practicar para
cantar afinado y con un timbre de voz a veces muy lejos de la voz 'natural” que cada
uno tiene.

De eso surgi6 la idea de crear una aplicacién que incite a la gente a probar el
canto, y ver que también pueden emitir notas, mds o menos afinadas, igual que los
demas, proveyendo un feedback en tiempo real objetivo (la comparacién de la nota
cantada con la nota més cerca de un piano por ejemplo).

La aplicacién que se va a presentar, Singvibes, estd pensada como un oido artifi-
cial capaz de compensar y entrenar al usuario para que cante mejor, y mds afinado,
reforzando su nivel de conciencia mediante la grabaciéon por el micréfono del telé-
fono usando simultdneamente técnicas de anélisis de sonido en tiempo real.

1.1.2. Una oportunidad de encontrar a otros misicos

Para cantar bien, no basta solo con cantar las notas afinadas y en ritmo. Hay que
tener una cierta comprensién de la musica, una cierta practica y conocimiento de
su propio instrumento (la voz), cuya complejidad viene dada, en gran medida, por
su cardcter individual. Entonces, el andlisis del sonido, por muy potente que sea,
no serd suficiente para mejorar el canto de alguien. Hay también que enfrentarse al
publico y a sus opiniones, y eso puede generar ansiedad y miedo.

Asf que, una manera concreta de mejorar es escucharse y obtener también la opi-
nién de los demaés, a todos los niveles. Los principiantes tienen la ventaja de com-
partir la ansiedad y la decepcién que uno puede experimentar a la hora de empezar
a cantar y darse cuenta de que la grabacién no es buena. Y los més experimentados
pueden compartir su experiencia y obtener satisfaccion de ello. Aqui esta el segun-
do objetivo de Singvibes: crear un espacio positivo de encuentro entre gente que
comparte la misma aficién, donde se puede obtener una opinién cuando es necesa-
ria, que afiade al oido virtual objetivo, un oido humano subjetivo fundamental para
ganar soltura en canto.

Capitulo 1. Introduction 10

1.2. Estado del arte

1.2.1. Bases tedricas y cientificas

Cumplir los objetivos mencionados antes no se puede hacer sin el trabajo enor-
me que hicieron muchos grandes matemaéticos y fisicos sobre el sonido y la musica,
como Helmholtz y sus resonadores o Fourier y sus series.

En efecto, la fisica ondulatoria estd bastante desarrollada y hay muchos modelos
y ecuaciones sobre las ondas y, por tanto, el sonido que son entendidas, estableci-
das y consideradas como buenas aproximaciones de la realidad (la definicién de un
modelo) desde hace mucho tiempo.

Las nociones usadas para construir el detector de tono seran detalladas més ade-
lante.

1.2.2. Ejemplos de aplicaciones ya existentes

Debido a la facilidad de entender lo que es una onda, un sonido y una nota, y
viendo el potencial hoy en dia de las redes sociales como Facebook, Twitter o Insta-
gram, han aparecido varios proyectos similares de ‘red social para cantantes’. Uno
de los mas populares es Smule. Smule es una aplicacién que permite grabarse, al
mismo tiempo ver las letras, y compartir la grabacién. Desde hace poco se ha afia-
dido una funcionalidad que también permite detectar el tono y compararlo con una
secuencia de notas de referencia pregrabadas.

Otro proyecto analogo: SingSharp. Mucho maés restrictivo que Smule, ofrece sin
embargo una pantalla que permite seguir el tono de voz de manera grafica y sencilla.

Esos proyectos muestran el interés que la gente tiene para el canto y la posibili-
dad de implementar detectores de tono en tiempo real.

1.2.3. Diferenciacién del proyecto

A la vista de lo anterior, uno se podria preguntar por el interés real de este pro-
yecto, si ya existen cosas similares. Pues es cierto que la deteccién de tono, obtener
la grabacién y publicarla en una red social es un concepto que no es nuevo.

Aqui estdn ejemplos de fuentes de diferenciacién de este proyecto:

» Experiencia usuario: sencillez, rapidez, disponibilidad, velocidad
» El pitch tracker y su implementacién propia
= El control concreto sobre el pitch tracker y algunos pardmetros internos

= El hecho de que se puede grabar y obtener andlisis de manera libre sobre cual-
quier cosa, con musica o no, en base de datos o no

= Las visualizaciones que se ofrecen sobre la afinacién, coherencia ritmica...

= Funcionalidades adicionales: como un creador de fichero MIDI y, por tanto, de
la partitura (no totalmente implementado a dia de hoy)

= Funcionamiento de la red social: nivel de rapidez del servidor...
= El soporte de varios idiomas

= La estética general...

Capitulo 1. Introduction 11

Esta aplicacién no pretende generar un tréfico tan denso como lo podria hacer
una aplicacion profesional como Smule funcionando desde afios. Pero si que podria
ofrecer otro enfoque, quizas mds pedagogico dando una visiéon mads fisica y prag-
matica del canto por ser una realizacién tnica, igual que los videojuegos, que entre
ellos pueden parecer muy similares, pero que no son competidores directos (es po-
sible jugar a varios).

1.3. Requisitos y tipos de problemas

1.3.1. Experiencia usuario (UX)

Esta claro que para que este proyecto sea un éxito, hace falta valorar mucho la
experiencia usuario sobre todo a nivel de sencillez de uso, rapidez y estabilidad. La
estética es también algo muy importante.

Se tomaron varias decisiones de disefio en este sentido. Entre ellas se pueden
destacar la elecciéon de un estilo grafico homogéneo basado en 2 colores, con un
disefio calificado de flat, o el hecho que cada funcionalidad de la aplicacién puede
ser alcanzada en tan solo 2 clics.

Se dedic6 una atencién muy intensa al aspecto de la respuesta (responsive) de
la aplicacién y de su velocidad por una separacién en varios hilos de ejecuciéon que
estardn detallados en el capitulo 5, que garantiza una fluidez de uso.

1.3.2. Disponibilidad, fiabilidad

Crear una red social y una aplicacién que se conecta de manera frecuente a in-
ternet sin fallos no es trivial. La disponibilidad debe ser tan alta como sea posible,
condicionada en gran medida por la red pero sobre todo por el servidor y la ges-
tion de las peticiones entrantes. Eso plantea problemas de arquitectura, gestion de
conexién concurrentes, protocolos de intercambios de datos, etc.

Las probleméticas planteadas requieren del uso de muchos patrones de disefio
usados en infinidad de proyectos a gran escala.

Asegurar los intercambios de datos, que sean fiables, exactos a nivel de datos,
protegidos para que solo el destinatario acceda a los datos, es otro enfoque que ne-
cesita muchas precauciones (por ejemplo, evitar que los usuarios sean capaces de
ver datos que no les pertenezca).

1.3.3. Rendimiento y tiempos de ejecucién

Debido al hecho de que el proyecto se trata por una parte de una aplicaciéon mévil
y por otra parte de un servidor remoto, aparecieron varios requisitos y limitaciones
adicionales.

En efecto, hay una gran cantidad de teléfonos Android, con tamafios de pantalla
y caracteristicas muy diversas. Hay que asegurarse de que la aplicacién necesite una
cantidad de recursos razonable para evitar fallos en otros moéviles.Por ejemplo, en
Android: si el thread Ul principal estd ocupado consecutivamente durante mas de
30 segundos sin ser capaz de ejecutar sus handlers para refrescar o mandar eventos
al sistema, el sistema operativo va a intentar cerrar la aplicaciéon y considerarla caida.

A nivel de servidor: el mayor problema estd a nivel de las conexiones entrantes.
Tienen que ser tan limitadas como sea posible, para evitar una especie de DoS (De-
nial of Service) espontaneo, que se suele traducir por una devolucién de un cédigo
de respuesta 503 (Service Unavailable) hasta que se tomen medidas concretas para

Capitulo 1. Introduction 12

levantar el servidor. No s6lo el niimero de conexiones pero también el tiempo de
procesamiento de cada una de ellas debe ser restringido. Eso implica una necesidad
de ejecutar cuantas menos instrucciones posibles, y estd necesidad se refleja mucho
en las tecnologias usadas y la implementacién, que se presentaran en los capitulos 3

y 4.

1.4. Metodologia

1.4.1. La gestion del tiempo y las etapas importantes del proyecto

Debido a la diversidad de los problemas, fue imprescindible implementar una
buena gestion del tiempo y de las prioridades para poder presentar un prototipo
funcional. El proceso que se sigui6 es el siguiente: para cada funcionalidad que se
quiere implementar:

= Hacer un listado de los objetivos concretos

= Hacer un anélisis de cada uno de los objetivos: requisitos y problemas, el tiem-
po que se puede dedicar a ellos. Si hay subproblemas, objetivos o sub- fun-
cionalidades emergentes, empezar de nuevo desde la etapa anterior para cada
uno de ellos.

= Separar en tareas concretas, generalmente cortas de unos 30 minutos, 1 hora
como méximo. Hacer una estimacién de tiempo de cada tarea y ver si hay un
orden natural o necesario entre las diferentes tareas.

= Hacer busquedas para conjuntar todo el conocimiento necesario para la buena
realizacién. Eso se repetira tantas veces como sea necesario durante la realiza-
cién de dichas tareas.

= Fase de disefio de solucién: intentar medir los pros y los contras de cada solu-
cién factible que surge, y preparar la organizacion del cédigo y de los objetos,
secuencias de acciones a ejecutar.

» Fase de implementacién: redactar el cédigo, muchas veces empezando por
pseudo c6digo escrito en etapas. Separar cada etapa en una funcién. Si dicha
funcién se aplica sobre un conjunto de variable muy peculiar (datos de una
nota por ejemplo), crear un objeto que encapsule esta 16gica. Reorganizar las
carpetas si necesario y hacer tantos commits gracias a un sistema de versioning
(git) como haga falta para garantizar la posibilidad de volver atras.

= Fase de prueba: asegurarse de que los requisitos estan superados. Si hay bugs,
largos de corregir e investigar, apuntarlos para afiadirlos a la lista de tareas
después de las tareas mas prioritarias.

La figura|l.1{a continuacién permite ver las tareas seguidas y las semanas dedi-
cadas a ellas. Es aproximativo porque las tareas una vez acabadas entran en la fase
de pruebas y mejora continua.

1.4.2. Las fuentes de informacién y de ayuda

Algo esta claro: no se puede ser experto en todas las tecnologias hoy en dia.
Sobre todo en un proyecto como éste que usa las tecnologias siguientes: Java, An-
droid, Php, Nginx, las bases de datos MySQL y SQLite, los lenguajes de paginas

Capitulo 1. Introduction 13

Mayo 2016 Junio Julio Agosto Septiembre Octubre Noviembre Dicembre Enero 2017 Febrero
| | I | | I I | I L
1 1] T 1]] 1] >
Planteamiento
| Analisis |
Busquedas
SERVIDOR | p—

LeafStormMVC | LeafStormMVC

Configuracién servidor
AWS, NGINX,
HTTPS, DNS...
Base de Base de
datos datos
API ‘ API ‘
APLICACION | Android |
Tipo de tareas Ul ‘
[oo Ul |
[Aprendizaje ‘ Detector de tono ‘ ‘ Detector de tono ‘
Analisis/Disefio
[Implementacion ‘ Red social ‘ Red social ‘
‘ Mensajeria ‘ Mensajeria ‘

FIGURA 1.1: Cronologia de las tareas realizadas

web (HTML, CSS, Javascript), los sistemas de cache como Redis, de mensajeria (Rab-
bitMQ...), los servicios de Cloud de Amazon, las tecnologias de criptografia de co-
municaciones HTTPS...

No solo sobre las tecnologias. Elaborar un pitch tracker y una aplicacién con
objetivos de esta magnitud necesita muchos conocimientos matemaéticos y fisicos, y
una cierta experiencia de lo que se puede hacer o no, sobre todo, en tiempo real. Asi
que unas de las claves de la realizacién de este proyecto fue la blisqueda constante
de informacién, un problema cada vez, poco a poco, mediante internet y foros de
todo tipo, documentaciones oficiales, y muy importante: las preguntas y consultas a
investigadores o a ingenieros experimentados y personas cualificadas (referirse a la
pégina de Agradecimientos).

Tampoco se deben olvidar los usuarios finales y probar la aplicacién con varios
de ellos fue una gran ayuda para retocar disefios y funcionalidades.

Elaborar este trabajo ha consistido entonces, sobre todo, en buscar y analizar
informacién, més que utilizarlas y producir cédigo, lo que justifica la cronologia
mostrada antes.

1.4.3. La produccién de c6digo modular y facil de entender y manipular

Debido a la variedad de los objetivos y problemas que hay que enfrentar para
realizar una aplicacién Android y un servidor pensado para una red social, se nece-
sita una organizaciéon muy metddica del codigo.

Es importante remarcar que algo que salvé varias veces la progresién de este
proyecto ha sido el sistema de versioning: git, en este caso. Este proyecto tiene dos
repositorios git diferentes: uno para el servidor, otro para el cliente, y antes de hacer
cualquier cambio importante o después de haber implementado una funcionalidad

Capitulo 1. Introduction 14

dificil siempre suele haber un commit para poder volver atrds si aparecen después
regresiones sin razones aparentes (y con tecnologias tan abiertas y 'caprichosas’ co-
mo puede ser Android, eso ocurrié unas cuantas veces).

Otro punto clave. La organizacion en carpetas y las abstracciones. Un punto que
estard més detallado en los apartados siguientes. Estar acostumbrado a la programa-
cién orientada a objetos y las patrones de disefio comunes como Factory, Observer,
FactoryMethod, frontend controller, y mucho otros, es una ayuda inestimable. En el
c6digo que se presentard y entregard, todo es objeto. No hay cédigo o script suel-
tos, excepto los de creacién de la base de datos en sql. La Ul siempre estd separada
de la l6gica, el acceso a la base de datos siempre se hace mediante modelos y una
DBInterface, lado servidor o lado cliente. La modularidad del cédigo condiciona su
facilidad de entenderlo y de extenderlo y se dedic6 mucho tiempo a construir arbo-
les de clases y paquetes coherentes. Ver los anexos A y B y las secciones siguientes
para mas informacion.

1.5. Presentacion corta de las secciones y anexos

El resto de este documento se ordena siguiendo unos de los planos generales
para abordar un problema o una funcionalidad en ingenierfa: una parte orientada
a disefio (incluye una anélisis tedrica y préctica) en las secciones 2 y 3, y otra sobre
los aspectos més técnicos, la implementacion, en las secciones 4 y 5. Se alternan las
partes tratando del servidor, y las tratando de la aplicacion. Una reflexiéon sobre el
proyecto, sus puntos fuertes y areas de mejoras, y posible plan de explotacién, se
encuentran en la ultima seccién (seccion 6).

Los anexos A hasta F contienen varios diagramas y comentarios acerca de los
aspectos mds técnicos de la memoria. El c6digo completo desarrollado, se puede
encontrar en el Anexo G mediante los repositorios Github ajuntados.

Por fin, se accede al servidor y a informaciones oficiales a destinacién de los
usuarios o interesados mediante el nombre de dominio "singvibes.com’.

15

2 Diseifio de la deteccion de la
afinacion del canto en tiempo real

2.1. Conceptos

2.1.1. Sonido y ondas sonoras

La musica es una suma de sonidos y un sonido es una vibracién, la mayoria de
las veces, del aire (puede haber sonido, por ejemplo, en el agua). Un sonido, en térmi-
nos fisicos, es una onda progresiva longitudinal la cual se propaga con vibraciones
consecutivas de las moléculas que constituyen el medio de propagacic’)n.

Un sonido puede ser representado con su forma de onda. Los sonidos son adi-
tivos, es decir, dos sonidos sumados se comportan como un mismo sonido a nivel
de onda. Nota interesante: para reproducir un sonido hay que reproducir su forma
de onda y eso se hace haciendo vibrar la membrana de un altavoz siguiendo exac-
tamente esta forma de onda. Eso es muy importante para entender el concepto de
grabacién, que se hace mediante la vibracién de una membrana que se encarga de
transmitir la amplitud de un forma de onda a un procesador.

2.1.2. Notas y armonicos

Una nota es un sonido producido por un instrumento de musica. Esta caracteri-
zada por varios pardmetros:

= Su frecuencia (fundamental): en Hz, cuanto mas alta mds aguda

= Su intensidad: o amplitud

= Su duracién

= Su timbre: lo que permite diferenciar el sonido de un piano de una flauta, por
ejemplo.

La intensidad y la duracién son dos propiedades faciles de entender. La amplitud
se suele medir en dBs y cuando el oido humano percibe una variacién que le parece
lineal de intensidad, la variacién real de la intensidad de sonido es exponencial.

La frecuencia y el timbre son dos caracteristicas que requieren una atencién es-
pecial para la problemética del andlisis de un tono. Para entenderlo bien, hay que
recordar una propiedad muy interesante que se aplica a cada sefial continua, perié-
dica o pseudo-periddica: la descomposicién en series de Fourier.

Una sefial continua pseudo-periddica de frecuencia f (llamado fundamental) se
puede escribir como una serie de Fourier

ft) = % + i an * cos(2mn ft) + by, * sin(2wn ft)

n=1

"Nociones de fisica ondulatoria explicadas en el libro Physique Tout-en-un MPSI-PTSI, [3]

Capitulo 2. Disefio de la deteccion de la afinacién del canto en tiempo real 16

Con

1/f
anp = f - f(z) % cos(2mnfx)

1/f
by, = f i f(x) * sin(2rnfx)

Cuando se toca un La, por ejemplo el La4 de frecuencia fundamental 440Hz al
piano, el sonido generado no es un sonido perfectamente sinusoidal. En realidad
aparece una sinusoidal de frecuencia 440Hz y sus armonicos (sinusoidales de fre-
cuencias multiples de la frecuencia fundamental, cuyas amplitudes decaen normal-
mente hasta 0 con el aumento del valor del arménico).

La transformacion de Fourier permite obtener la intensidad de cada arménico
(intensidad = f(frecuencia)) en vez de intensidad como funcién del tiempo. La curva
intensidad /frecuencia se llama espectro.

Determinar el tono de una nota, al fin y al cabo, es buscar la frecuencia funda-
mental de esa nota. jOjo! hay ejemplos de sonidos en los cuales la frecuencia funda-
mental no estéd pero todos sus armoénicos estdn (este caso se conoce como frecuencia
fundamental aparente) y también es necesario identificarla.

Los problemas, como se puede imaginar, surgen cuando hay varias notas al mis-
mo tiempo y hay que determinar qué armoénico o qué componente del espectro per-
tenece a cada nota. A dia de hoy, este problema todavia no se ha resuelto. El resto de
este documento hara referencia al canto monofénico (una nota a la vez), obviando
asi este problema.

2.1.3. Escala cromética y afinacién

Este aparatado va a introducir el concepto de afinacién y una métrica concreta
para estimarla y devolverla al cantante.

En misica, existen varias escalas para ordenar las notas dependiendo de su fre-
cuencia fundamental. Una de las mds conocidas, y la que se utilizard aqui, es la
escala cromatica. Es la escala que se utiliza en un piano. Doce notas por octava, y
para subir de octava hay que multiplicar la frecuencia fundamental por dos.

Eso se puede explicar con la férmula siguiente, siendo i el indice de la nota (en el
teclado por ejemplo):

fir12 = 2fi

En efecto, la distribucién de las notas de musica no es lineal. Considerando una
nota de indice i: i siendo, de manera préctica y visual, su nimero de tecla de piano
por ejemplo. Para obtener la frecuencia fundamental de la préxima nota en la escala
cromatica (fi+1) se hace mediante el cdlculo siguiente:

fir =212, 2.1)

Siendo una férmula definida por recurrencia y una secuencia geométrica, necesi-
ta una inicializacién. Estd inicializacion se hace de manera practica eligiendo el La4,
generalmente tomado alrededor de 440Hz.

El origen y justificacién matematico/fisico/cognitivo de esto no es el objetivo de
este trabajo, pero toma su base de los trabajos de Pitagoras y esta condicionado por
el funcionamiento del oido humano.

A partir de aqui se puede crear una métrica que permite evaluar si el cantante
canta afinado o no. Cantar afinado significa emitir sonidos justo a la frecuencia fun-
damental de una de las notas de la escala musical elegida, aqui cromaética. Es mucho

Capitulo 2. Disefio de la deteccion de la afinacién del canto en tiempo real 17

Frecuemcia iHz
fis f. f. fi.s
= L3
Log base 2 de la Frecusncia
I_ﬂ}g: E.'_ LII‘E_‘ f L!'“‘E:'r L‘”E:’ f;-l
| = X - 3
113 I/l

FIGURA 2.1: Definicién visual de la afinacion

mas dificil de lo que puede parecer y sin un oido entrenado y una constante escucha
de musica o referencias, hay un alto riesgo de trasladar todas las notas hacia arriba
o abajo.

El problema es cuantificar estd afinacion. La idea basica usada es la siguiente:
cuanto més cerca de una frecuencia fundamental mejor. Esto introduce el concepto
de distancia. La afinaciéon depende de la frecuencia emitida fx, y de la escala musical
elegida porque condiciona la nota mds cercana.

Sea fx la frecuencia fundamental de la nota emitida, su tono. La primera cosa que
habra que hacer es encontrar cual es la nota mds cercana, de indice i.

La afinacién (a) puede ser definida de manera sencilla gracias a la figura 2.1 y
se basa sobre una propiedad muy importante inducida por la escala cromatica: la
distancia entre los logaritmos de cualquier frecuencia fundamental de una nota de
la escala cromaética es constante y vale 1/12

Demostracion: el punto de partida es la ecuacién (1)

fiv1 = 2%fi
loga(fiv1) = loga(272 f;)
1

loga(fit1) — loga(fi) = D

De manera intuitiva se puede definir la afinacién (a) de una nota cantada fx ast:

- loga(fx) — loga(fi)

distanciamax

La distancia maxima de log2(fx) hasta log2(fi) es de 1/24 (por definicién de i
siendo el indice de la nota més cercana):

a= 24.1092(&)

fi

Para obtener un valor en porcentaje mas comodo para trabajar, y para poder
almacenar este valor como un entero, entre -100 (la nota es demasiado baja) y 100 (la

Capitulo 2. Disefio de la deteccion de la afinacién del canto en tiempo real 18

nota es demasiado aguda), se multiplica este valor por 100:

a= 24001092(?)

K3
Todo el problema ahora reside en la deteccién de esté frecuencia fundamental a
partir del sonido grabado por el micréfono, y en tiempo real.

2.2. La deteccion del tono

2.2.1. Anadlisis temporal, andlisis frecuencial y detecciéon de tono en tiem-
po real

La deteccién del tono consiste en la identificacién de la nota que se esta cantando.
Como he dicho antes, una nota no es una sinusoidal, sino una suma de sinusoidales
que corresponden a la fundamental y sus armoénicos. Hay que tener cuidado, sin
embargo, de que la fundamental no siempre estd pero la percepcién humana hace
que la percibamos por sus arménicos (los mismos que la descomposicién en series
de Fourier introducida anteriormente). Por tanto, el problema consiste, de manera
peridédica y en una ventana de tiempo corta, en sacar una frecuencia particular que
va a corresponder con la nota cantada. Afortunadamente, esta fundamental suele
estar definida en las frecuencias més baja de la sefal.

Esté sefial estard, pase lo que pase, dividida en pequefios trozos de una potencia
de dos. 1024 o 2048 para una sefial de 44100Hz suele ser lo habitual para obtener
un tiempo de resolucién de 25ms y 50ms respectivamente. Un sample es un valor
dado por el micréfono, que corresponde a la amplitud de onda durante un instante
determinado (recordamos que un sonido es una vibracién del aire, y que una suma
de sonidos también). El micréfono devuelve una secuencia de samples que, ensam-
bladas, permiten dibujar la forma de onda de lo que esta grabado.

Para obtener mas frecuencias de un bloque de samples, o identificar un patrén,
hay dos tipos de métodos. Los métodos basados sobre un analisis en el dominio
temporal, o un andlisis que basado en una transformacién que permite pasar en el
dominio frecuencial y obtener una curva amplitud/frecuencia, generalmente la de
Fourier (usando la Fast Fourier Transform).

Cada uno de esos métodos tienen ventajas e inconvenientes. Las transformacio-
nes hasta el dominio frecuencial son generalmente mucho maés potentes y permiten
resultados muchos mejores, pero son mucho mas lentas y dificiles de implementar,
y usan muchas funciones trigonométricas, que resultan muy lentas de computar in-
cluso usando tablas precalculadas y las series de Taylor-MacLaurin.

Para este proyecto, se ha considerado como lo més adecuado un analisis de la
sefial poco transformada.

2.2.2. El Fast-Lifting-Wavelet-Transform (FLWT)

Debido al hecho que la frecuencia fundamental de una nota suele ser su frecuen-
cia més baja, o, una divisién por dos de su segundo arménico si la fundamental
no esta (los armoénicos tienen sus frecuencias que son multiples de la fundamental),
una idea espontdnea que surge es la simplificacion de la sefial aplicando un low-
pass filter. Eso descarta informaciones de la sefial que no importan y permiten una
periodicidad que puede no ser obvia en la sefial original (en realidad, las notas son

Capitulo 2. Disefio de la deteccion de la afinacién del canto en tiempo real 19

sefales pseudo periddicas amortiguadas). Una transformacién particularmente sen-
cilla a aplicar y rdpida, puesto que no necesita ninguna clase de computo adicional
ademads del propio de sumas, multiplicaciones y divisiones por dos, es el uso del Fast
Lifting Wavelet Transform Algorithm. Las Wavelets son sefiales sencillas disefiadas
para realizar comparaciones (convoluciones) con una sefial y producir métricas de
similitudes y asi identificar la presencia o no presencia de un patrén (en su princi-
pio maés bésico). Se trata de un algortimp muy usado para simplificar datos y, por lo
tanto, en compresion, al igual que el JPEG2000.

El algoritmo Fast Lifting Transform Wavelet, abreviado en FLTW, consiste en es-
cribir la sefial como una suma de dos curvas: una aproximacién, y un detalle, toman-
do una muestra de cada dos, para simplificar la sefial tal y como se ha dicho antes.
Se suele repetir la operacién sobre la parte aproximada hasta obtener una sefial muy
limpia que contenga solo un par de armoénicos de baja frecuencia.

2.2.3. El algoritmo FLWT basado en las Wavelets de Haar

Para obtener una frecuencia determinada, en muchas ocasiones la mds baja de la
sefal, aplicar el algoritmo FLWT construido a partir de las wavelets de Haar es muy
eficiente. En efecto, matematicos como Daubechies y Sweldens ya demostraron que
las Wavelets de Haar permiten llegar a la definiciéon de la aproximacién y del detalle
sacados con las ecuaciones siguientes:

2n) + z(2n + 1)
2

a(n) = il

din) =z(2n+1) —z(2n)

Para encontrar la demostracion y la explicacion del FLTW con las wavelets de
Haar, referirse a los trabajos siguientes: [2]: Factoring Wavelet Transforms into Lifting
Steps

n es el nimero de sample dentro del bloque de samples elegido, x la sefial, a la
aproximacion y d el detalle (que se descarta aqui). Esas ecuaciones dependen del tipo
de Wavelet usado y no se va a hacer la demostracién aqui. Lo importante es que los
resultados pueden ser manipulados como enteros y son sencillas. Dos caracteristicas
fundamentales para la resolucién en tiempo real.

Aqui estdn las etapas del algoritmo:

» A partir de los samples de la ventana elegida, crear la aproximacién a (que
contiene dos veces menos samples y que se comporta como un low pass filter).

» Calcular las variaciones extremas de amplitud.

= Contar los méximos, minimos, detectar dénde estan, para ver si se destaca una
frecuencia particular.

= Sino se detecta una frecuencia cuya convolucioén a la sefial no da un resultado
bueno, empezar de nuevo. Si ya estd alcanzado el nimero maximo de iteracio-
nes, parar y concluir sobre el hecho que no se puede detectar tono aqui, porqué
no hay nota.

Este trabajo, y este algoritmo, se basa sobre el trabajo siguiente: [1]: Real-Time
Time-Domain Pitch Tracking Using Wavelets. Para mejorar el algoritmo y su fiabili-
dad, se ha integrado un procesamiento dindmico que consiste en comparar el valor
detectado con el anterior. Si hay una variacién enorme en muy poco tiempo, pro-
bablemente los valores sean erréneos y hay que descartarlos o aplicarles un valor
de confianza més débil. En efecto, en el canto, la voz humana, por muy entrenada

Capitulo 2. Disefio de la deteccion de la afinacién del canto en tiempo real 20

que sea, no se puede mover de los bajos a los agudos de manera instantdnea. Se
encontraré el coddigo del detector de tono en el anexo C.

Este algoritmo es muy eficiente y consume poca memoria, inicamente manipula
enteros, por lo que minimiza el impacto de usar un lenguaje de tan alto nivel como

Java.

21

3 Disefio de la red social y
elaboracién de una arquitectura
distribuida

3.1. El paradigma cliente-servidor

3.1.1. Presentacion de los actores y de la topologia del sistema

El sistema utiliza el paradigma cliente-servidor. Consiste en la implementaciéon
de un servidor capaz de intercambiar datos con uno o varios clientes. Eso supone
que el servidor es capaz de escuchar a las conexiones entrantes, decodificar la peti-
cién, procesarla, a veces almacenar datos y ejecutar computaciones dependiendo de
esta misma peticién, construir una respuesta y devolverla al cliente que mand6 la
peticion.

En nuestro caso, la aplicacién movil tiene el papel de cliente, conectado al servi-
dor mediante internet (red celular, o wifi generalmente). El servidor esta localizado
en una instancia EC2 (elastic-cloud) de Amazon. Nginx permite hacer la interfaz
entre los ficheros del servidor y el trafico entrante/saliendo mediante el protoco-
lo HTTPS. El uso de este protocolo estd implementado mediante un protocolo SSL
obtenido por un proveedor de certificado automatico llamado Let’s Encrypt. Mdas
informacion se puede encontrar en el enlace de la bibliografia [11].

Un esquema de la estructura bésica del sistema se encuentra en la figura

3.1.2. Tipos de datos y base de datos
Los datos son de varios tipos.

» Datos de usuarios: datos personales como el nombre, correo electrénico, “di-
gest’ de la contrasefia, seguidores, mensajes privados...

= Datos de las grabaciones: ficheros audio, resultados de la analisis por el detec-
tor de tono, cancion asociada

= Datos sobre las canciones: artistas, titulos, letras
= Imédgenes: las de perfil de usuarios por ejemplo

Para realizar una base de datos fécil de usar sin redundancia entre los datos, se
aplic6 un esquema cumpliendo los requisitos de la forma normal de Boyce Codd
(una clave primaria por tabla, no dependencias funcionales entre los atributos no
claves).

Ademas, se realiz6 un esquema similar a un esquema en estrella cuyo centro,
o tabla de hechos, son los Recordings (grabaciones). Las grabaciones tienen varias
dimensiones: una dimensién para los usuarios, una para las canciones, una para el
tiempo. Se plantea hacer un andlisis de los datos para mejorar la aplicacién, destacar

Capitulo 3. Disefio de la red social y elaboracién de una arquitectura distribuida 22

FIGURA 3.1: Arquitectura del sistema

AMAZON CLOUD

Instancia EC2 (Servidor) Ve

LeafStormMVC Nginx e N

Base de Edge/3G/4G/Wifi
datos

ciertos perfiles de usuarios, las canciones mds populares, para al final llevar a cabo
estudios y producir informes como se haria en un contexto de Big Data con todas las
problematicas de Data Warehouse asociadas (con un proceso ETL sencillo por tener
los datos generados por la aplicacién, fuente tinica, datos almacenados de manera
continua en la base de datos).

El diagrama UML representando el esquema de la base de datos se puede en-
contrar en el anexo [F Tal como estd ahora, es bastante comodo a nivel operativo,
los controladores nunca necesitan mds de un join para devolver los datos necesarios
para la aplicacién.

La gestion de los datos de sesién requiere una atencién muy peculiar, gestiona-
da mediante la tabla Tokens, cuya justificacién y disefio serd explicado en la seccién
siguiente y permite implementar un cierto control de acceso sobre los datos conjun-
tamente a un cierto disefio de los controladores de los websevicios, introducidos en
la parte siguiente.

3.1.3. Intercambios de datos, mensajes y protocolos

Los datos son de varios tipos y generados mayoritariamente desde la aplica-
cion cliente. La aplicacién cliente dispone de clases permitiendo el uso del protocolo
HTTPS (peticion HTTP cuyo contenido esté criptado mediante el protocolo SSL, cu-
yo funcionamiento y decodificaciéon se puede hacer mediante un certificado).

El servidor devuelve sus respuestas a la aplicacién cliente en JSON, formato muy
conciso para representar objetos, que son el resultado del patrén de disefio DAO,
Data Access Object extiendo la clase ModelAbstract (ver la parte sobre el Modelo
Vista Controlador en la parte 4).

También puede devolver ocasionalmente binario a la aplicacién cliente, cuando
se solicita un fichero audio o una imagen.

Capitulo 3. Disefio de la red social y elaboracién de una arquitectura distribuida 23

El servidor, usado mediante un navegador con urls cuyo frontname es diferente
de “api’, en lugar de devuelve JSON en texto plano devuelve html.
Aqui estd una lista de las rutas de la API implementadas, pardmetros necesarios,

y tipos de repuesta:
Ruta Paramétros nece- | Variables en el J[SON si | Resumen
sarios éxito
/login email, password success, token, message | Devuelve un token de sesiéon
/logout token success Destruye el token de sesién y marca el usuario
como desconectado
/register email, password, | success, message Crea un nuevo usuario
username
/account/get token, user_id success, user Devuelve datos del usuario user_id
/account /edit token, user_data success Edita los datos de usuario aplicando los cam-
pos contenidos en la tabla user_data
/account /follow | token, user_id success Hace que el usuario siga al usuario con el id:
user_id
/account /unfo- | token, user_id success Usada para parar de seguir a un usuario

llow

/account /follo-
wedby

token, user_id,
last_updated_at

success, users=[], follo-
wers=|[]

Obtiene la lista de los seguidores (los users) del
usuario con id "user_id’, y devuelve las relacio-
nes Followers

/account /follo-
wing

token, user_id,
last_updated_at

success, users=[], follo-
wers=[]

Lo mismo, pero esta vez para obtener los usua-
rios que estdn seguidos por el user con id
user_id

/account /search

token, needle

success, users

devuelve una colleccién de usuarios cuyo user-
name, firstname, lastname concatenados con-
tienen la cadena 'needle’

/messages/get

token,
last_updated_at
email

success, messages

Obtiene los mensajes recibidos a partir de
"last_updated_at” hasta ahora del usuario

/messages /send | token, user_id, | success Manda un mensaje (‘content’) al usuario con id
content user_id
/news /news- | token, success, multilocales, | Recupera un conjunto de datos utilizado para
feed last_updated_at announcements, ne- | construir el newsfeed en la aplicaciéon a partir
wer_recordings, follo- | de las grabaciones...
wed_people_recordings
/news/popular | token success, popular_songs | Devuelve las canciones mas grabadas por los
miembros
/news /notifica- | token, success, fo- | Devuelve lis nuevos comentarios y nuevos se-
tions last_updated_at llow_queries, com- | guidores

ments_on_my_recording
new_likes

2

7

/recording /get | token, success, recording Obtiene los datos del Recording cuyo id es re-
last_updated_at, cording_id
recording_id
/recording token, success, recordings Recordings contiene todos los recordings pu-
/ getby last_updated_at, blicos hechos por el usuario identificado por

user_id

user_id

Capitulo 3. Disefio de la red social y elaboracién de una arquitectura distribuida 24

/recording /edit | token, success Permite editar los datos de un recording
last_updated_at,
recording_id,
recording_data
/recording /u- | token, recording, | success Almacena una nueva grabacion en el servidor,
pload audio haciéndola ptblica
/recording token, success, comments Devuelve los comentarios de una grabaciéon
/loadcomments last_updated_at,
recording_id
/recording token, success Deja un comentario ‘comment’ en el recording
/comment last_updated_at, identificado por 'recording_id’
recording_id,
comment

CUADRO 3.1: Tabla de las rutas de la API: pardmetros, respuesta y
descripciéon

Hecho a notar: todas las peticiones se hacen con el verbo HTTP POST, porque
pasar el token de sesién es necesario para cualquier peticién de la API excepto la de
login y de register. Pasarlo por GET, (por la URL) es peligroso y no recomendable
porque este token debe ser solo conocido por el servidor y la aplicacién cliente, y los
parametros en la URL se pueden recuperar con facilidad.

3.2. Funcionalidades y problemas mayores en el disefio y la
implementacién de la red social

3.2.1. Seguridad y sesiones

Una red social se basa sobre un conjunto de usuarios, que deben poder acceder
al mismo tiempo de forma concurrente a la aplicacién y que, dependiendo de su
identidad, no tenga acceso a los mismos datos que otro usuario.

Entonces el primer problema a resolver es la identidad y el proceso de auten-
ticacién (reconocimiento por el servidor de estd identidad): Singvibes identifica un
usuario gracias a su correo electrénico durante la autenticacion, le devuelve un to-
ken de sesién, almacenado en base de datos juntamente al id del usuario en la tabla
Tokens y una fecha de expiraciéon (30 minutos después de ser emitido). Este token
sirve de sustitucién a los credenciales hasta que expire, para ser sustituido por otro.
(referirse a las clases SessionManager.php y TokenManager.php del servidor, en rai-
z/base/security)

Los controladores de API, salvo el Index (que permite hacer el login) siempre
comprueban la existencia del token en los pardmetros mandados por la aplicacién
cliente en los parametros POST de las peticiones HTTPS antes de devolver una res-
puesta para garantizar que solo miembros de Singvibes inscritos puedan recuperar
los datos.

Sin embargo, el uso de redes inseguras inaldmbricas hace posibles ataques de
tipo Man In The Middle entre otras cosas, o replay. El libro [4]: Hacking for Dummies
provee varias informaciones sobre estos tipos de amenazas.

En la tabla 3.1 se presenta una lista de algunos fallos de seguridad usuales y las
medidas tomadas.

Capitulo 3. Disenio de la red social y elaboracién de una arquitectura distribuida 25

Problema

Soluciones implementadas

Las redes usadas por un teleféno
moévil no son seguras: puede ser
bastante facil de leer/interceptar
paquetes y hacer un ataque de tipo
Man Of The Middle

Uso de un criptaje de cada peticion HTTP con SSL
(HTTPS). También hay tokens de sesién generados
por el servidor, necesarios para utilizar la API. Se
obtiene gracias al login, y el hecho que expire fre-
cuentemente ayuda a mitigar este tipo de ataque.

Cross-scripting (XSS)

Todo el codigo SQL estd autogenerado con valores
escapados. No se puede entonces (en teoria, que
hasta las empresas profesionales como Wordpress
0 Magento tienen o tuvieron fallos de este tipo) al-
macenar c6digo php en la base de datos que enton-
ces podria ejecutarse cuando se imprimen dichos
datos.

Acceso a ficheros del servidor no
deseados y ejecucion remota de c6-
digo

El servidor Nginx estd configurado para solo de-
volver los assets estéticos. Las carpetas escondidas
estdn bloqueadas con una redireccién sistemética a
403 Forbidden. El resto de las peticiones entra en el
index.php, y el Router no sabe hacer nada més que
ejecutar cddigo de los controladores programados.

Ataques Replay, repeticion

este tipo de ataque es problemético por ahora.
Consiste en la estricta repeticién de una peticion.
Es peligroso porque no necesita el conocimiento
del contenido de la peticién o sus parametros pa-
ra funcionar. Los tokens de sesion tienen una du-
racion de vida limitada. También, muchas peticio-
nes requieren un campo ‘last_updated_at” que im-
pide obtener datos mds antiguos que esta fecha.
Una solucién mucho més segura seria combinar el
token de sesién con un token rotativo vélido una
sola vez.

Ataques de tipo DDOS (Denial of
Service, saturacién de un servidor
usando generalmente muchos or-
denadores o robots al mismo tiem-

po)

Por desgracia no hay mucho que se puede hacer,
sino tener otro servidor por delante que recibe las
peticiones y que si se satura por culpa de un DDOS
que al menos el 'verdadero” servidor no sufre las
consecuencias. Un DDOS sin embargo es costoso
de hacer, y por ahora no seria rentable con un pro-
yecto estudiantil como este. De hecho, los DDOS
suelen ser cortos puesto que en general cuesta mu-
cho.

CUADRO 3.2: Amenazas, ejemplos de fallos de seguridad usuales, y
soluciones encontradas

Capitulo 3. Disenio de la red social y elaboracién de una arquitectura distribuida 26

3.2.2. Comunicacién entre usuarios y puesta en contacto

Una red social debe permitir a los usuarios encontrar a otros miembros. Un buen
ejemplo es Facebook, en el cual se inspir6 este proyecto: contiene un newsfeed con-
tinuamente alimentado por publicaciones de otros usuarios, una mensajerfa instan-
tdnea, y un buscador de personas (entre otras cosas). Todo esto favorece la puesta en
contacto natura de los usuarios entre ellos.

La comunicacién entre usuarios debe ser posible mediante el servidor, que alma-
cena mensajes y acciones de los usuarios y las devuelve dependiendo de la identidad
del cliente, que puede ser recuperada gracias a las medidas explicadas en el apartado
anterior.

La mensajeria instantdnea necesit6 mucha reflexién. No hay presupuesto para
aguantar un servidor tan potente como uno de Facebook. La carga de un servidor
depende de varios factores pero los méds importantes son el niimero de usuarios,
numero de conexiones entrantes al segundo y volumen de datos intercambiados en
cada una de las peticiones. Por ahora, la solucién ha sido un refresco periédico de la
ventana de conversacion ‘instantdnea’ cada 1 minuto cuando est4 abierta.

27

4 El servidor: elaboracion e
implementacion

4.1. Elservidor y su organizacién interna

4.1.1. Presentacion del servidor

El servidor tiene la responsabilidad de proveer datos a las aplicaciones clientes
instaladas en los méviles de los usuarios y de darles posibilidad de intercambiar
entre ellos, (paradigma cliente->servidor), como se ha descrito antes.

Esta accesible desde el nombre de dominio: singvibes.com que estd mapeado a
una IP de una instancia EC2 de Amazon, mdquina virtual en el Cloud de Amazon.

Esta instancia tiene el sistema operativo Ubuntu Server, y por ahora aloja toda
la base de datos y los ficheros permitiendo el buen funcionamiento de Singvibes.
La base de datos es una base de datos relacional MySQL cuyo esquema puede ser
encontrado en el anexo [H El cédigo del servidor estd entregado con esta memoria.
Es una carpeta compuesta mayoritariamente de ficheros PHP, enlazados a Nginx,
programa capaz de escuchar a las conexiones entrantes en HTTP(S) y hacer que es-
ta instancia EC2 se comporte como un verdadero servidor invocando los ficheros
necesarios para devolver una respuesta al cliente.

Cuando el tamafio de los datos haya crecido, se plantea utilizar un Amazon S3
para almacenar los datos pero con una disponibilidad razonable.

4.1.2. Prosy contras de varios frameworks MVC

Muchos frameworks estan siendo utilizados para facilitar la construccién de una
aplicaciéon web. Un framework es un conjunto de librerias que permite la estructura-
cién del cédigo de una aplicacion mediante uso de varias clases, varios paradigmas.

Uno de los paradigmas mas usados en la arquitectura view es el Model-View-
Controller. La idea basica es la siguiente: para renderizar una pagina o una respuesta
a una peticién, un controlador examina los pardmetros de la peticién, genera vistas
(generalmente templates que contienen cédigo html completado por instrucciones
que se ejecutan en el servidor), y para renderizar dichas vistas debe interrogar a
modelos, que proveen una interfaz y una manera de manipular datos de una o varias
bases de datos. Generalmente hay un modelo por tabla.

Un framework es muchas veces genérico. Lo que es genérico en informética sue-
le ser muy elegante, pero, por implicar l6gica de alto nivel y anticipacién de muchos
casos particulares, son muy pesados. El mejor ejemplo de esto es Magento, y sobre
todo Magento 2, framework que permite la creacién de tiendas online. Es muy mo-
dular y tiene una gran flexibilidad. Sin embargo, este framework pesa mucho, con
varios miles de ficheros y unas 400 tablas de base de datos. Est4d basado sobre Zend
(y Symphony para Magento 2), otro framework PHP, un poco mas ligero. Otros fra-
meworks como Ruby On Rails parecen ligeros y muy faciles de usar, sin embargo,
Ruby, por ser un lenguaje de alto nivel, ya mostré sus limites en varios proyectos en

Capitulo 4. El servidor: elaboracién e implementacion 28

Ruby on Rails ﬂ Spring MVC, basado sobre Java, tiene muchos automatismos, me-
diante las anotaciones, una ‘magia’ en el vocabulario informético muy potente que
estd totalmente en contradiccién con uno de los requisitos y principios fundamenta-
les que aplico a la hora de escribir c6digo para un servidor: ejecutar cuantas menos
instrucciones posibles. Por tanto, no se va a hacer uso de una méquina virtual Java
que puede consumir hasta tres cuartos de los ciclos de CPU, ni lenguaje de alto nivel
como Ruby que ejecuta mucho cédigo de C por debajo, aunque tenga una sintaxis
muy expresiva. Un compromiso razonable entre tiempo de desarrollo y rendimiento
parece ser el conjunto del servidor Nginx con PHP. El problema es que PHP se puede
volver dificil de organizar y es muy dificil de usar, por permitir tanta libertad a par-
tir de tantas funciones ﬂ Pero, con un cierto control, patrones de disefios adecuados,
el establecimiento de routing apropiado y de un autoloader, permite hacer mucho
en pocas lineas y pocas instrucciones ejecutadas.

Por eso, como este proyecto no exige mucho a nivel de frontend, o a nivel de ope-
raciones sino tinicamente obtener datos, comprobar cosas y devolverlas, parecié mds
razonable utilizar un pequefio framework MVC casero desarrollado justo a medida
para este proyecto, con solo las funcionalidades necesaria. Este micro framework
estard presentado brevemente en la seccién siguiente.

4.1.3. Disefio: front controller, organizacién de los ficheros

Una manera muy cémoda, comun a todos los frameworks comunes usados en
aplicaciones web, de organizar los ficheros y las carpetas del Modelo-Vista-Controlador
es usar un paradigma que se llama el FrontEnd Controller. Bdsicamente consiste en
proporcionar a la aplicacién un punto de entrada tnico, en el caso de una aplicacién
php, un "index.php’. Posteriormente, un fichero ".htaccess” en el caso de un servidor
Apache o un bloque server en el caso de Nginx, redirigira todas las peticiones has-
ta una url del subdominio que no sea un “asset’ (css, imagen, javascript...) hasta el
‘index.php’.

El “index.php’ se encargard después de invocar un router, capaz de instanciar
dependiendo de la url la clase de controlador correcto e iniciar el proceso tipico
del MVC (controlador que genera vistas interrogando la base de datos a través de
modelos).

Si no se hace esto, en php, hay que tener un fichero por url, y en la direccién
indicada por la url, lo que impide toda forma de abstracciéon y de modularidad.

4.2. LeafStormMVC: implementacion propia del paradigma
MVC

4.2.1. Request flow: routing y controladores

Cuando una peticién HTTPS entra en el servidor Nginx, si la peticién no es un
asset (imagen, css, javascript, etc), la peticion estd redirigida hasta el fichero “in-
dex.php’. Este fichero es responsable de invocar dos clases: el Autoloader y el Router.
El autoloader se encarga de encontrar las clases y cargar los ficheros que las contie-
nen cuando estdn invocadas. Eso permite evitar la inclusién de todas las clases PHP
del framework. El router es una clase especial cuya responsabilidad es la de analizar

'Un articulo corto sobre los pros y contras de Ruby on Rails:
https:/ /www.madetech.com /blog/pros-and-cons-of-ruby-on-rails

“Hay que ver la documentacion oficial de PHP y el numero de funciones para darse cuenta.
http:/ /php.net/manual/en/index.php

https://www.madetech.com/blog/pros-and-cons-of-ruby-on-rails
http://php.net/manual/en/index.php

Capitulo 4. El servidor: elaboracién e implementacion 29

la URL y los pardmetros para delegar el procesamiento a un controlador adecuado,
implementando asi el Front Controller pattern, un patrén muy ttil para organizar
el c6digo y tener un mayor grado de control sobre el c6digo ejecutado. En caso de
error, si la url no existe, se devuelve la pagina 404.

Las URL con LeafStormMVC siguen exactamente el mismo patréon que varios
frameworks en los cuales esta inspirado (Magento/Zend). Se componen de 4 partes:
el nombre de dominio, un frontname, un nombre de controlador y, finalmente, una
accion. Puede estar seguida o no de parametros GET (después de un interrogante).

Por ejemplo: la URL https:/ /singvibes.com/api/account/get

Si falta el frontname, el frontname "web’, se aplicard por defecto. Si el controla-
dor o la accién faltan, el IndexController y la indexAction se aplicardn, devolviendo
la home page del servidor. Entonces, esas 4 URLs son equivalentes y devuelven la
homepage:

= https://singvibes.com

https:/ /singvibes.com/web

https:/ /singvibes.com/web/index

https:/ /singvibes.com/web/index/index

Eso da mucha flexibilidad, las rutas existentes s6lo son definidas por la arquitec-
tura de las carpetas. Asi, la generacién de un frontname “api” se hace creando una
carpeta en la localizacién raiz del proyecto /controllers/api. Para crear un Controla-
dor Account se construye una clase llamada AccountController en el fichero proyec-
to /controllers/api/AccountController extediendo de la clase ControllerAbstract,
conteniendo los métodos para gestionar los pardmetros, y una funcién render() que
se encarga de construir la respuesta, cuyo comportamiento esta definido en las clases
derivadas. El framework ya integra dos tipos de controladores:

= ControllerWebAbstract: Los controladores que se extienden de esta clase de-
vuelven cédigo HTML, construido a partir de una inclusién automaética de
templates .phtml localizados en la carpeta raiz/views/web. También permiten
controlar de una manera basica el SEO (Search Engine Optimization, el posi-
cionamiento de un sitio en los motores de bisqueda) con los robots (INDEX
FOLLOW...), y en breve, con los datos estructurados tipo JSON-LD .

= ControllerWsAbstract: Esos controladores proveen varios métodos adecuados
para devolver datos en formato JSON, y averiguar la autenticidad de un usua-
rio basdndose sobre su token de sesién, si estd presente en los parametros
POST. JSON se estandardizé poco a poco sustituyendo a otro formato muy
popular para intercambiar datos en formato texto: el XML, mds verboso.

Para crear un controlador dedicado a la gestién de los datos de usuario devol-
viendo datos en JSON, se debe:

» Crear la carpeta controllers/api si no existe ya
= Crear el fichero controllers/api/AccountController.php

= Crear la clase AccountController dentro de este fichero y que extienda de Con-
trollerWsAbstract, clase formando parte de la base de LeafStormMVC

Capitulo 4. El servidor: elaboracién e implementacion 30

» Crear las acciones: cuya forma mads bdsica es public void nombreAction() {
$this->render(); }, devolviendo el JSON siguiente {’success’:’false’}. Para afiadir
datos al JSON se usa el método addToResponse($key, $object), que se encarga
de, dependiendo el tipo de objeto, afiade al JSON un campo ‘key” conteniendo
la representacién JSON del objeto $object.

Como he explicado antes, el Router ya es capaz con esto de saber qué nuevas
rutas a /api/account/... fueron afiadidas y son accesibles. En el caso de la API, ca-
da método también comprueba si el usuario posee un token de sesiéon que no estd
expirado.

4.2.2. Los modelos

Para implementar a la vez el paradigma Slim Controller (controladores lige-
ros), y el Modelo Vista Controlador, se crearon los modelos. Los modelos, en LeafS-
tormMVC como en varios frameworks como Ruby On Rails, extienden de una cla-
se ModelAbstract. Esta clase provee todos los métodos necesarios para realizar las
CRUD operations (Create, Read, Update, Delete), y eso mediante una clase llamada
DBInterface y la QueryFactory.

Manipular SQL sin errores en texto plano es pesado y fuente de muchos errores.
La clase QueryFactory proporciona métodos para crear peticiones SQL adaptadas
para las operaciones CRUD baésicas (select, insert, update, delete), implementando
el patrén de disefio llamado Factory en el desarrollo de software.

Un controlador, para renderizar las vistas necesita interactuar con los modelos y
cambiar el estado de los datos. Eso se hace de manera sencilla gracias a las clases que
extienden de ModelAbstract. En LeafStormMVC como en Ruby on Rails, se suele
hacer un modelo por tabla, con los campos accessibles definidos antes. No se puede
modificar u obtener los datos de un campo que no estd declarado en dicho modelo.
Eso asegura la encapsulacion de los datos y un control mds potente.

Se puede encontrar el cédigo completo de las clases principales del framework
en el repositorio Github del servidor (enlaces disponibles en el anexo[G) y el codigo
del AccountController que muestra varias aplicaciones de los modelos.

4.2.3. Las vistas: gestion del frontend

El frontend estd gestionado mediante un sistema basico de inclusién de fiche-
ros phtml (html conteniendo inclusiones de php), mediante la clase ControllerWe-
bAbstract, que provee la funciéon addBodyTemplate. Cuando la funcién render() es
llamada, los templates son encadenados y evaluados. Pueden estar localizados en
cualquier sitio dentro de la carpeta raiz/views/web. El css, javascript y otros assets
estdn en raiz/views/assets.

31

5 Singvibes para Android

5.1. Estructura de la aplicacién y organizacién del cédigo

5.1.1. Presentacion global de la aplicacién

Singvibes es una aplicacién sencilla, con un disefio flat, y un pequefio conjun-
to de pestafias/ventanas y muy pocos ments. Las pantallas en Android se llaman
Actividades. Hay dos en toda la aplicacién. La LoginActivity y la MainActivity. La
LoginActivity consiste en un formulario de login/register. Singvibes siendo una red
social, estd pensada para funcionar en linea. La MainActivity estd dividida en 4 frag-
mentos, que son pestafias separadas, y tiene un ment de opciones tal como el idioma
y el login automadtico. Las pestafias son las siguientes:

» NewsFragment: una pestafia conteniendo las canciones populares (las mas
grabadas) y el newsfeed, que muestra grabaciones hechas por varios usuarios.
Pueden ser seguidores, o no y permite al usuario escuchar otras grabaciones
(estd implementado pero por una limitacién por ahora no estd funcionando).

» FriendsFragment: una pestafia que funciona como un mini Whatsapp. Permite
encontrar a personas y hablar con ellos mediante un chat. Muestra también la
actividad reciente: un nuevo seguidor o un nuevo comentario sobre las graba-
ciones hechas.

» SingFragment: La parte mds importante, la que permite grabarse, y visualizar
la curva de afinacion. (mostrar imagen aqui) Una vez acaba la grabacién, se
puede escuchar y ver de nuevo la grafica. También se puede decidir ponerla
en el servidor para que la gente lo escuche.

» HomeFragment: El perfil del usuario de la aplicacién. Contiene un formulario
que permite al usuario cambiar sus datos, dar informaciones para los otros
usuarios o la lista de sus grabaciones hechas previamente. También se puede
consultar aqui la lista de los seguidores.

Esta aplicacion estd pensada para que cada funcionalidad sea disponible en dos
clicks o menos. Disponible en Espafiol, Inglés y Francés, con una interfaz minimalis-
ta e intuitiva.

La aplicacion es capaz de conectarse a la red y hacer peticiones HTTPS para reci-
bir datos desde el servidor que se almacenaran en una base de datos local en SQLite
(nativamente soportada por Android, atinque solo es una solucién temporal por ser
poco segura y protegida). Todos los procesamientos largos tipo descargas o compu-
taciones se hacen en hilos separados Android, reservando el thread principal para la
UI, considerando la aplicacién como bloqueada si el hilo no esté libre durante mds
de 30 segundos, lo que ademas bloquea el usuario.

Capitulo 5. Singvibes para Android 32

5.1.2. Organizacion del cédigo y modularidad

Organizar el c6digo en Android no es cosa facil debido a la 16gica peculiar de ges-
tién de los hilos, de los observadores de eventos y de los listeners (c6digo ejecutado
cuando un evento pasa, como cuando se teclea algo). La mayoria de los tutoriales
muestran la creaciéon de muchas clases privadas dentro de clases ptblicas que no
son reusables y que hacen el cédigo de las actividades muy pesado, mezclando 16-
gica, U], listeners, handlers... Porque, casi cualquier cosa que interactta con la Ul o
con el framework de Android necesita una referencia a un objeto de la clase Context
o Activity, dos objetos que son extremadamente pesados.

Esto obligé a realizar varias reestructuraciones de la carpeta del proyecto hasta
acabar con el anexo C.

Un concepto muy importante en las aplicaciones con interfaz grafica parece ser
la separacién entre la parte légica y grafica, separacién completamente antinatural
en Android debido al hecho de que el hilo principal es el hilo gréfico, y es tinico, s6lo
se pueden ejecutar operaciones de dibujo alli.

La consecuencia fue llevar un disefio por capas. La entrada se hace por las activi-
dades, que instancian varios objetos 16gicos y graficos, y los 16gicos comunican sus
resultados a los graficos que se renderizan invocando el hilo gréafico, muchas veces
de manera asincrona porque los procesamientos largos (peticiones HTTPS, detec-
cién de tono, preparar los puntos de una grafica antes de dibujarlos) se hacen en
otros hilos.

El acceso a la base de datos se hace mediante las mismas clases que con el frame-
work usado en el servidor, adaptadas para Java y SQLite, y tienen el mismo proposi-
to que en el servidor: es decir no preocuparse de escribir lineas de SQL manualmen-
te, y permiten las lineas de las tablas de base de datos como si fueran objetos, que
se pueden instanciar y que dan acceso a sus valores mediante accesores (get, set...).
(patrén de disefio DAO - Data Access Object).

5.1.3. Multithreading en Android

Como se ha mencionado antes, en Android, el tnico hilo que existe al entrar en
la aplicacion es el hilo grafico, el principal, el Gnico que permite dibujar, y el que
intercepta los eventos, los inputs del usuario. Si se mantiene demasiado ocupado,
la aplicacion cierra con un error. Entonces, hay que pensar un ciclo de vida para los
hilos de ejecuciéon muy robusto, que ademads sepa gestionar las interrupciones de la
aplicacién y su vuelta (cuando el telefono se bloquea y desbloquea...).

Una tarea puede ser ejecutada de asincronamente de varias maneras: median-
te un objeto que extiende la clase AsyncTask, Runnable o Thread. Los dos tltimos
funcionan de manera mds o menos igual.

En este momento de desarrollo la aplicacién dispone de varios threads creados
para realizar varias tareas.

» El thread grafico: el principal

» Unas tareas asincronas cada vez que se solicita un acceso a la red para recupe-
rar datos. Actualizan la vista una vez que acaban mediante una funcién llama-
da onPostExecute, que siempre se ejecuta en el hilo principal cuando se acaban
las tareas especificadas en el método doInBackground.

» Varios threads l6gicos, uno para cada tarea costosa: conputacion del tono de
voz en tiempo real, refresco de los puntos de una grafica...

Capitulo 5. Singvibes para Android 33

5.2. Laimplementacion del pitch tracker

5.2.1. Recuperar la senal

Recuperar la sefial de un micréfono en Android se puede hacer de dos maneras.
O usando un objeto que se llama MediaRecorder, que automaticamente es capaz
de convertir el flujo de datos desde una camara o un microfono (o ambos) en un
formato especifico, pero no da acceso al buffer de entrada (entonces no hay acce-
so a las samples), o el AudioRecord. Este objeto es interesante porque alimenta un
buffer de samples que se puede leer de manera continua y se rellena a partir del
micréfono elegido (algunos teléfonos tienen varios). Sin embargo, es la responsabi-
lidad del desarrollador de después ensamblar las muestras en un fichero si se quiere
guardar, y no sera un fichero comprimido (serd un fichero WAV), excepto si se imple-
menta un algoritmo de compresién, o si se consigue usar una librerfa externa como
ffmpeg para convertir la grabacién, cosa dificil de hacer en Android.

Para acceder al micréfono, la aplicaciéon debe tener los permisos declarados en el
AndroidManifest.xml, un fichero declarativo conteniendo varias variables de con-
figuracion general, y dichos permisos deben ser activados en las opciones de las
aplicaciones en los pardmetros Android (estd activaciéon de permisos se hace auto-
maticamente desde el Google Play cuando se instala la aplicacién).

Para utilizar la clase AudioRecord, se cre6 una clase llamada Recorder, que lleva
una referencia hasta una instancia de AudioRecord, y varias constantes ttiles como
el sample rate, el tamafio de los bloques de samples que se van a mandar al detector
de tono, etc. Esta clase Recorder se invoca mediante un botén de grabacién, llaman-
do, a su vez, a dos métodos dependiendo del estado de proceso (grabando o no
grabando), start y stop, que se encargan de iniciar y cerrar el proceso de grabacién.
Cuando se llama a start(), un bucle (ejecutado en un thread separado mediante los
objetos Runnable de Android) se encarga de leer las muestras afiadidas en el buffer
del AudioRecord, y de invocar el detector de tono, que devuelve la frecuencia fun-
damental asociada a este bloque de samples, si existe para esa ventana. Este dato se
envia a la Actividad principal mediante la funcién publishFrequency, ejecutada en
el thread principal (el thread de la interfaz grafica) que puede entonces imprimir los
resultados.

El c6digo de la clase Recorder esta en el Anexo D.

5.2.2. Procesar la seiial: el pitch tracker

Toda la légica de detecciéon de tono estd dentro de una clase llamada PitchDe-
tector, localizada en logic/sound. Contiene un método llamado getPitch(), que re-
cepciona el buffer leido desde el micréfono e invocado de manera asincrona, para
que esta logica se ejecute al mismo tiempo que el refresco de la vista, que es bas-
tante pesado. getPitch() consiste en una implementacién del algoritmo Fast-Lifting-
Wavelet-Transform basada en las wavelets de Haar, algoritmo presentado en la parte
2, apartado 2.2.3.

La implementacién se implementa con operaciones sencillas (comparaciones,
adiciones, diferencias, divisiones por 2) que usan solo tipos primitivos de Java: los
int y double. Hay una diferencia importante entre los objetos Integer y los int, igual
que entre los Double y los double. Por un lado estédn los wrappers, conteniendo mé-
todos tiles tipo toString(), por otro lado son los tipos primitivos que solo contienen
un valor, y no son instancias de ninguna clase, y las operaciones cuestan un poco
menos.

Capitulo 5. Singvibes para Android 34

El codigo completo de esta clase se puede encontrar en los Anexos, anexo[Cly esta
implementada en base a la implementacién Matlab encontrada en el paper accesible
desde la bibliografia: [1]

Sin embargo, detectar el tono no es suficiente y es recomendable compararlo con
el tono previo. En efecto, un error comdn de los detectores de tono es una division
o multiplicacién por dos de la frecuencia real, debido al problema de fundamental
aparente explicado en la seccién 2 apartado 2.1.2. Por eso, se cre6 otra funcién cuya
responsabilidad es la de realizar una comparacién segtn la siguiente l6gica: si el
tono estd muy cerca (menos del 20 % de diferencia en su valor) del previo, es un
valor probable fiable. Sino, hay que ver si corresponde a la mitad, o al doble del valor
previo, aproximadamente. Si es el caso, es probable que se deba a un error de octava
y hay que dar un resultado consistente (generalmente seguir el valor previo, es lo
que se hace en este trozo de c6digo). Si el valor no encaja en esos resultados, entonces
es un valor ‘suelto’ y se descarta debido a que la voz humana y el canto humano,
como muchos fendmenos naturales, no puede contener discontinuidades abruptas y
la voz no puede saltar 3 o 4 octavas en 50ms (resolucién actual del detector de tono),
incluso para los cantantes profesionales.

5.2.3. Mostrar/Dibujar los resultados

Dibujar una grafica representativa de la afinacién, en tiempo real, no es nada
obvio y el disefio fue pensado de manera esquematica, adoptando una estética sin
ninguna clase de chartjunk EI y lleva colores evocadoras (rojo: lejos de la afinacién
correcta, verde, correcto).

Se decidié implementar un piano roll. Un piano roll es una grafica que contiene
un teclado de piano, y, con el tiempo, desfilan las notas como puntos hasta o desde
su tecla correspondiente, horizontalmente o verticalmente.

Para tener un cierto nivel de control, y ser fiel a los principios de modularidad
enunciados en la introduccién, varias se han creado varias abstracciones para pro-
ducir un c6digo mantenible y facil de leer.

Estas abstracciones estdn en la carpeta ui puesto que son abstracciones gestionan-
do elementos gréficos, como puntos, gréficas, y teclado virtual. Son las siguientes:

= PianoChart: una clase que extiende la clase Android SurfaceView, que provee
una 4rea de pixeles sobre la que dibujar, conteniendo todos los objetos Point,
y el Piano, gestionando el thread responsable de la actualizacion de la vista, el
ViewThread

» ViewThread: una clase que extiende de la clase Java Thread, cuya responsabili-
dad es la de, con un ntiimero de actualizaciones (FPS) determinado, ordenar el
refresco del PianoChart por el thread UI principal en cuanto esta libre llaman-
do a la funcién de dibujo del PianoChart, funcién conteniendo el rendering del
Piano y de la gréfica (conjunto de Points).

= Point: una clase que contiene todos los datos necesarios para dibujar un punto.
Sus coordenadas, y componentes de color R, G, B, alpha.

= Piano: una clase que contiene métodos para gestionar y renderizar las teclas
Key

'El chartjunk se refiere a un uso de simbolos, o procesos estilisticos superfluos que no aportan nada
y pueden molestar la buena interpretacién de la grafica y de los datos que contiene, esta terminologia
estd sacado de los principios de Gestalt incluidos en el libro [6]

Capitulo 5. Singvibes para Android 35

© O W4 59%M 23:31

2
Dy
b
(oo

sing

Pitch accuracy
Fa#2 Frequency 191Hz
~ Piano Roll

4

FIGURA 5.1: Vista durante la grabacién y ejemplo de grafica de la
afinacién en tiempo real

= Key: clase que encapsula toda la l6gica acerca de una tecla, sus coordenadas,
su color, y las instrucciones necesarias para su rendering

Referirse al anexo[E] para el diagrama de secuencia completo del proceso de gra-
bacién y refresco de las vistas.

La figura 5.1jmuestra un ejemplo de resultado dibujado en tiempo real-

Cuando el Recorder invoca el método publishFrequency(), se almacena infor-
macién sobre la nota y el tono detectado en un objeto llamado Note (conteniendo
informaciones sobre la nota detectada: la frecuencia, amplitud media, tiempo cuan-
do ocurrid, octava, semitono, nimero de tecla...). Este objeto Note se afiade a un
ArrayList<Note>(tabla ordenada de instancias de la clase Note en java). También
se invoca el método addPoint() del PianoChart, que afiade un punto en la grafica a
partir del objeto Note construido.

Todo este proceso se hace sobre el thread principal gréafico, dejando libre el thread
(Runnable) de grabaciéon y de procesado de las muestras de manera continua. Es
interesante recordar que el refresco de los puntos (de sus coordenadas, color, etc) se
hace de manera asincrona en otro thread: el viewThread. Explicaciones se pueden
encontrar més detalladas en el anexo

Estas abstracciones permitieron la implementacién de funcionalidades comple-
jas sin grandes dificultades como la posibilidad de mover el teclado (el eje 'x” que
representa la frecuencia y el eje 'y’ el tiempo) para poder ver la zona grafica que in-
teresa mas mediante un listener sobre la superficie del PianoChart. Si el usuario toca
la parte izquierda, la grafica se traslada de manera continua con el teclado hasta la
derecha para que se vea la parte de la gréfica oculta a la izquieeda. La misma l6gica
se aplica para ver la parte derecha oculta.

Esta implementacion se hace mediante una variable que gestiona la velocidad
y la translacion sobre el eje X, actualizada continuamente por el ViewThread y por

Capitulo 5. Singvibes para Android 36

la accién de usuario: tocar/no tocar la pantalla, mediante objetos Android OnTou-
chListener que proveen una manera de asociar la ejecuciéon de un c6digo después de
un evento, aqui el evento OnTouch.

5.2.4. Convertir la sefial en fichero: WAV y después comprimirlo

Una vez que la grabacién se acaba, se desea guardar el fichero de sonido. Como
se ha dicho antes, en Android no se puede a la vez procesar las muestras una por
una y guardar el fichero puesto que no se usa la misma clase para hacer una u otra
cosa (ver diferencia entre los MediaRecord y AudioRecord). Asi que hay que recons-
truir un fichero manualmente a partir de las muestras (que, recordamos, son de tipo
integer, signed, de 16 bits (2 bytes), y contienen la amplitud de la sefial).

La primera etapa es la construcciéon de un fichero no comprimido, un fichero
.WAV. Sin entrar en los detalles, un fichero WAV tiene una cabecera, y todas las
muestras escritas de una cierta manera, secuencialmente en formato binario.

Se encontré un cédigo Java que crear un fichero WAV desde sus muestras. El
problema de un WAV reside en su tamafio, que podemos calcular facilmente del
siguiente modo (para un WAV mono, con un solo canal):

size = header Length + sampleSize.sample Rate.durationInSeconds

Un header son 42 bytes (referirse a la especificacién del formato WAV cuya re-
ferencia estd en la bibliografia), en calidad CD el sampleRate es de 44100Hz, y se
cuantifica con 16 bits por muestra, por tanto, cada una de las muestras necesita 2
bytes. Una grabaciéon de 5 minutos ocupa 42 + 88200 * 300 = 26 460 042 bytes, apro-
ximadamente 25 MB para un WAV mono.

Entonces, una vez creado el fichero WAV, para implementar completamente los
objetivos de la aplicacién, hay que comprimir con Android, el fichero WAV en un
formato usual tipo MP3.

El problema principal es que MP3 no es un formato libre. Hay que utilizar una
libreria ya creada que lo permita. El plan, que no se pudo llevar a cabo a la hora
de redactar esta memoria, es de utilizar el NDK de Android que proporciona una
manera de ejecutar ciertas librerias precompiladas hechas en C++, para asi ser capaz
de ejecutar una version alterada de una libreria como ffmpeg como si se dispusiera
de un acceso a un terminal para lanzar un ejecutable compilado.

5.2.5. Guardar los resultados y publicacién hasta el servidor

Los ficheros de audio grabados (WAV por ahora, MP3 en el futuro) se guardan en
una carpeta en la memoria interna del teléfono, por ahora una carpeta oculta que es-
td localizada en la carpeta /data/data/'nombre del paquete de la aplicacion’/files.
El nombre de este fichero es el resultado de una funcién de hash que convierte la
concatenacion del id del usuario en el servidor del usuario con su correo electrénico
y la fecha més la hora de la grabacién. Eso permite asegurar que cada fichero, una
vez mandado al servidor, tenga un nombre tinico, pese a ser generado por la aplica-
cion. En efecto, el usuario puede decidir no compartir su grabacién hasta un cierto
tiempo y se queda entonces solamente almacenada en el teléfono de este usuario.

Después de eso, se instancia un modelo que representa la grabaciéon, un Recor-
ding, que contiene los datos de la grabacién: titulo de la cancién, artista, descripcion,
el id del usuario que lo hizo, y un campo data que es:

Cada nota son 2 enteros y un double separados por coma: tiempo, intensidad,
frecuencia detectada. Por ahora, este campo datos es una string.

Capitulo 5. Singvibes para Android 37

(O~] © ® W4 60%H 23:36
te]
€ & 4 &
My profile

k-

- v
& FOLLOWERS

General Information

First Name Frédéric
Last Name Rouffineau
Country France

Hi welcome to Singvibes. | am the développer,
feel free to contact me to submit a bug, give
your opinion... Have a nice day and an enjoyable
experience with Singvibes and it's members!

Activity

You do not have recordings for now

FIGURA 5.2: HomeFragment: vista del perfil de usuario

En un desarrollo posterior se espera que una nota sea un cadena binaria en el
servidor, almacenada en un campo de tipo BLOB en MySQL, conteniendo un entero
de 4 bytes, el tiempo en millisegundos, otro de 1 byte con la intensidad, y un double
de 4 bytes para la frecuencia (9 bytes por nota).

Eso forma parte de las mejoras imprescindibles para poder hacer ptblica la apli-
cacién que estardn presentadas en la ultima seccién (6).

Un diagrama resumiendo todo el proceso desde el principio de la grabacién has-
ta el post processing esta en el Anexo E.

5.3. Laimplementacion de la red social

5.3.1. Queries asincronas, HTTPS y refresco de las vistas

En Android, como se ha dicho mads arriba, el thread principal debe estar tan poco
ocupado como sea posible para garantizar al usuario una experiencia fluida en la
aplicaciéon. Ademads, el moévil del usuario puede estar conectado o no, dependien-
do del estado de la red y de la conectividad. Descargar los datos desde el servidor
puede costar un tiempo variable, y entonces se debe ejecutar de manera asincrona,
y cuando los datos estdn disponibles es posible refrescar las vistas.

La figura5.2l muestra la pagina de perfil personal. Las informaciones se cargan y
se muestran poco a poco mientras que los datos se recuperan desde o el servidor, o
la base de datos.

Este concepto estd implementado con las siguientes clases:

» Las clases de la carpeta de la aplicacion logic/network/ queries: hay clases que
gestionan las tareas asincronas para recuperar los datos desde el servidor y
una vez recuperados, se encargan de refrescar la base de datos y la vista. Ex-
tienden la clase AsyncTask del framework Android, conteniendo 2 métodos

Capitulo 5. Singvibes para Android 38

muy importantes: doInBackground (ejecutado en un hilo por separado), y on-
PostExecute, ejecutado en el thread principal, usado para actualizar las vistas
cuando se acaba la tarea ejecutada en el doInBackground. Para una lista de
completa de las urls, referirse a la figura

= Una tarea consiste en la llamada de un método llamado execute() de una ins-
tancia de la clase Task, definida en raiz/logic/network/Task.java. Este método
utiliza los parametros dados durante la instanciacion, entre otros la url, los pa-
rametros POST, que contienen siempre el token de sesiéon del usuario que per-
mite al servidor identificar el usuario, y un campo llamado ‘last_updated_at’,
utilizado para limitar los datos mandados por el servidor. El método execute()
acepta un booleano que activa o no el almacenamiento de los datos recibido en
el teléfono.

= El método Task::execute() invoca otra clase raiz/logic/network/HttpsRetrie-
verjava, que tiene la responsabilidad de comprobar el estado de la conexién,
ejecutar la peticion HTTPS hasta el servidor, esperar la respuesta y devolver el
JSON recibido.

= Sihay que refrescar la base de datos, se invoca el método refreshDB de la clase
DBInterface (raiz/logic/db/DBInterface.java), dandole la url, y la respuesta
JSON. Esta clase posee un método llamado jsonToDB, que crea peticiones SQL,
con las mismas clases que LeafStormMVC adaptadas para funcionar con Java
y SQLite, para almacenar los datos.

» Las actividades y componentes gréficos tienen entonces la posibilidad de ins-
tanciar modelos, (igual que LeafStormMVC), clase Model java, para manipular
colecciones de datos de un golpe.

5.3.2. Base de datos local

Para evitar un trafico demasiado denso hasta el servidor, los resultados traidos
desde el webservice se guardan en una base de datos SQLite y con una duracién
de expiracién variable dependiendo del contenido. Cada vez que se necesitan datos,
por ejemplo al hacer un clic para ver el perfil de un usuario, se buscan en la base
de datos local. Si estan, no se hace la peticion hasta el servidor y se cargan los datos
desde la base de datos. Si no, se actualizan los datos. Este mecanismo esta imple-
mentado por una clase dedicada, la DBInterface, que contiene un método genérico
llamado refreshDB, capaz de convertir el JSON devuelto por el servidor en ordenes
SQL para que se almacene la informacion.

La l6gica de los modelos del servidor presentadas en la seccién 4 fue adaptada
para funcionar también con Android. Se puede, a partir de una QueryFactory, recu-
perar un ArrayList de modelos (una coleccién ordenada de modelos que se pueden
manipular de manera sencilla gracias a la implementaciéon de java del patrén de
disefio Tterator).

’El patrén de disefio consiste en la implementacién de un objeto conveniente que permite iterar
sobre una coleccién de objetos de una clase determinada. Iterar significa recoger la coleccién uno por
uno, con la posibilidad a cada etapa de acceder y ejecutar operaciones sobre este proyecto. Su forma
mas bdsica y visual estd presente en cada implementacién de los bucles de tipo foreach (para cada
uno).

39

6 Resultados, conclusiones, trabajo
futuro

6.1. Resultados

6.1.1. Una herramienta facil de usar ttil para visualizar el canto y encon-
trar a otros cantantes

A nivel funcional, la aplicacién alcanza los objetivos propuestos. Permite cantar,
visualizar con una gréfica en tiempo real la altura y la afinacion del canto, grabar y
escuchar las grabaciones, y poder utilizar un servicio de mensajeria para hablar con
otros miembros de la aplicacién. Es una herramienta que se puede usar durante una
sesién de entrenamiento de canto o vocalizacién y, desde la experiencia de uso per-
sonal, bastante comoda. Los usuarios se pueden encontrar facilmente mediante una
funcionalidad de btisqueda, y atin mds cuando las notificaciones estén disponibles,
permitird encontrar a gente que cantaron las mismas canciones que el usuario, por
ejemplo.

6.1.2. Pitch tracking: desde el modelo hasta la implementacién: ensefian-
zas y comparativa

El detector de tono fue unas de las partes més dificiles de implementar pese al he-
cho de tener disponible una base en c6digo Matlab. Habia que buscar bastante para
encontrar un método que diera resultados consistentes y, sobre todo, que se pudie-
ra calcular en tiempo real a una resolucién adecuada. Para hacer esto en Java hubo
que superar varios retos. Fue imprescindible Utilizar tipos primitivos y operaciones
del nivel mds bajo. Pero, no solo fue suficiente implementar el algoritmo. Toda una
parte del trabajo residi6 en las pruebas con diferentes pardmetros para obtener un
resultado explotable. Por ejemplo, la idea intuitiva de utilizar la descomposicién en
series de Fourier es completamente impracticable en tiempo real. Y no es suficiente
con aislar la fundamental (los armoénicos a veces son més fuertes que la fundamen-
tal que, en algunos casos, ni siquiera estd), pero calcular series de cosenos y senos es
algo costoso, incluso utilizando las series de Taylor-MacLaurin. Utilizar las wavelets
de Haar y el Fast-Lifting-Wavelet-Transform permite tener una resolucion al menos
3 veces superior a utilizar la FFT (Fast-Fourier-Transform), y ademads se entiende
mejor. Fue una buena ensefianza ver que la teoria matemdtica y conocimientos fisi-
cos son imprescindibles, pero es necesario disponer también de un cierto nivel de
conocimientos a la hora de la implementacién, no solo basta con "hacer calculos’.

6.1.3. LeafStormMVC + App Android: base para otras aplicaciones

Unos de los resultados mdas importantes de este proyecto es el hecho de tener
un framework, un conjunto de clases, funcional y usable para cualquier otro proyec-
to. En efecto, LeafStormMVC esta disefiado para poder soportar aplicaciones web

Capitulo 6. Resultados, conclusiones, trabajo futuro 40

de todo tipo (preferencialmente de tamafio reducido, porque si no mejor usar un
framework mds grande que tenga mas funcionalidades y se evita asi ‘reinventar la
rueda’, por ejemplo Magento para las tiendas en linea).

Programar para Android tampoco es algo trivial para obtener una aplicacion
estable. En efecto, el hecho de que todas las computaciones gréficas se deben ejecutar
sobre el thread principal hace que la gestién de los hilos debe estar pensada en una
manera completamente inversa a la mayoria de las aplicaciones, por ejemplo las
escritas en C++ utilizando los frameworks Qt o GTK. La estructura de cédigo que
fue encontrada para separar de manera razonablemente limpia la l6gica de la parte
gréfica, y la ejecucién asincrona de las peticiones en Https del resto son cosas que
serdn reusadas en préximos proyectos de magnitud mds grande.

Mas de un 70 % de las clases desarrolladas pueden usadas tal cual en cualquier
otro proyecto involucrando una aplicacién Android conectandose a un webservi-
ce, y aseguran una implementacion robusta del paradigma cliente-servidor, y muy
extensible. Referirse a los repositorios ajuntados, anexo[G|

6.2. Areas de mejora

6.2.1. Fallos del pitch tracker

El pitch tracker funciona bastante bien cuando hay una sola voz, y poco ruido
ambiente. Si no, se comporta de manera completamente cadtica, aunque se tomaron
varias medidas para limitar los errores, como medir la intensidad de los sonidos
entrantes y solo tomar el tono detectado cuando la media sobre todo el bloque de
samples es superior a un valor que se puede determinar dentro de la aplicacién.

Estd adaptado también para una voz humana. Un sonido tan lleno de harmo-
nicos como uno del piano puede poner en dificultad el detector de tono. Se podria
mejorar mediante una andlisis y una comparacién de los tonos previos, y hacer una
interpolacién. Pero, no hay que olvidar el requisito del tiempo real, que genera mu-
chas restricciones.

En el caso de un ruido ambiente continuo como el de un coche el detector es muy
poco usable. Finalmente, un verdadero cantante usa mucho lo que se denomina el
"vibrato’. El tono oscila al alrededor de la nota que se quiere alcanzar para dar un
efecto interesante sobre todo al final de algunas frases melédicas. Tal como estd aho-
ra, el detector de tono es incapaz de saber si las vibraciones son intencionales o si
son el resultado de una mala técnica/afinacion. Para obtener un resultado mucho
mas fiable, no se puede descartar la idea de utilizar una técnica de aprendizaje, de
tipo deep learning, por refuerzo, alimentado manualmente por cantantes profesio-
nales por ejemplo, comparando las grabaciones entre ellas dependiendo del nivel
del usuario.

6.2.2. Seguridad

La seguridad de la aplicacion por ahora cuenta mucho con el protocolo SSL y
el certificado obtenido utilizando el método de Let’s Encrypt, servicio gratis. Si el
ssl esta roto o un hackeador intercepta los datos y los decripta, se podria alterar la
cuenta de usuario que intercept6é (mediante un ataque de tipo Man In The Middle)

Una mejora posible serfa implementar el protocolo OAuth 2 para asegurar las
sesiones. Pero tampoco esta exento de fallos.

Capitulo 6. Resultados, conclusiones, trabajo futuro 41

Lo bueno de la aplicaciéon es que no lleva datos sensible, lo que limita los dafios
de un posible ataque. Sin embargo, no se ha podido llegar a una solucién contra los
ataques por DDoS (Denial Of Service).

6.2.3. Normalizacién del cédigo

Unos de los objetivos de este proyecto era también la realizacién completa de una
aplicacién web, con un enfoque pedagégico. Es uno de los elementos que motivaron
la decisién de implementar muchas cosas a mano, hasta el router y el autoloader del
servidor.

Al no ser profesional y completamente full stack atin, algunas normas no estan
cumplidas y unas de las préximas etapas de este proyecto sera la normalizacion del
coédigo, por ejemplo aplicando las normas PSR para el cédigo php que da especifi-
caciones ayudando a la comprensién del cédigo y limitando los fallos y las vulnera-
bilidades, permitiendo una cierta estandardizacién muy dtil a la hora de colaborar
con un equipo.

6.2.4. Mejor gestién de los intercambios de datos y caches

Unos de los objetivos, a largo plazo, de este proyecto, es hacer que cada dato
del servidor sea mandando una sola vez a cada usuario, mediante el sistema de
replicacién progresivo de base de datos introducido en la seccién 5, que permite
limitar el nimero de peticiones hasta el servidor y entonces la carga.

La integracién con RabbitMQ esta planeada para el mes préximo que permite
dejar abiertos canales de comunicacion y evitar este refresco periédico y permitien-
do un verdadero tiempo real y por tanto un ahorro considerable de carga servidor.
RabbitMQ es un sistema de mensajeria, consistiendo en un servidor RabbitMQ, y
clientes para varios tipos de clientes, la mayoria de las tecnologias siendo soporta-
das (entre otros Java/Android y PHP). La desventaja es que RabbitMQ debe tener
una maquina adecuada para funcionar bien porque mantendria abierta un canal por
usuario autentificado y es dificil conseguir una estimacién de las caracteristicas nece-
sarias del servidor para este proyecto sin tener una idea sobre el numero de usuarios
que descargarian la aplicacién una vez puesta en el Google Play.

Se considera también integrar Redis a LeafStormMVC, el sistema de cache por
base de datos muy ftil para los sitios internet que tienen un front end particular-
mente denso y el almacenamiento de las sesiones de usuario.

6.2.5. Funcionalidades adicionales y ventaja competitiva sobre las otras
aplicaciones

Muchas funcionalidades han quedado por implementar para alcanzar todos los
objetivos que surgieron durante el disefio y el desarrollo de la aplicacién. Estas in-
cluyen:

» El upload y la descarga en streaming de las grabaciones ptblicas de los usua-
rios (que pueden elegir qué grabacion publicar o no)

= Un sistema de notificaciones

= Mejoras a nivel de Ul y de UX: sefhalar los nuevos mensajes...

= Activar el newsfeed (depende del upload de las grabaciones)

= Proponer més opciones para controlar el algoritmo y la visualizaciéon

= Utilizar el NDK de Android para poder convertir el detector de tono en libreria
C++ precompilada e integrarla para ganar en eficiencia

Capitulo 6. Resultados, conclusiones, trabajo futuro 42

= Poder convertir las grabaciones en fichero MIDI para que se puedan usar para
escribir una partitura

= Poder tener otro tipo de visualizacién, como una partitura

= Recuperar las letras de las canciones e imprimirlas

= Poner un informe mucho mds detallado acerca de una grabacién, con analisis
de ritmo por ejemplo

= Poner un sistema de puntuacién que permite a un usuario de comparar sus
grabaciones

= Poder superponer la grafica de otra grabacién a la que se estd construyendo
para poder tener una referencia que seguir

6.3. Plan de explotacién de la aplicacién

6.3.1. Google play, publicidad

Esta aplicacién, una vez acabada, tiene la ventaja de tratar de un tema que intere-
sa mucho, las aplicaciones de musica y de canto suelen generar muchas descargas
y tienen mucho éxito. Hay muchas maneras de diferenciarse de las que existen, y,
se pueden utilizar varias aplicaciones sin exclusividad. Asi qué, el primer paso para
hacer una aplicacién Android publica es subir la aplicacién a la plataforma Google
play. Dependiendo de la calidad de la aplicacién, los usuarios pueden atribuir no-
tas y comentarios ayudando al posicionamiento de la aplicaciéon en los listados de
Google.

La publicidad es una realidad comtn en las aplicaciones, y no se descarta incluir
anuncios discretos en la aplicacién automatizados tipo Google Ads que permiten
generar una pequefia cantidad de dinero cada vez que un usuario ve un anuncio.

La integracion con otros redes sociales como Facebook parece también una nece-
sidad para alcanzar més gente y dejar la libertad de compartir sus resultados alli, y
al mismo tiempo hacer que més gente conozcan a Singvibes.

6.3.2. Funcionalidades premium para financiar el servidor

El dinero no es la prioridad de este proyecto, antes de todo, este proyecto es pe-
dagdgico. Sin embargo, un servidor no es gratis. Un Amazon S3, quizas combinado
con un Glacier para el contenido que apenas genera trafico, va a ser necesario para
alojar las grabaciones de los usuarios y las imagenes. Combinado a una instancia
EC2 decente, la factura puede rapidamente subir, hasta unos 100 euros al mes sin
mucho problema para una aplicacién que no es profesional y mucho maés si tiene
éxito. Asi que, para limitar los riesgos, la idea serfa implementar un sistema de pago
por uso. Si el usuario quiere alojar mas que 30Mb de grabaciones mds imégenes, ten-
dra que suscribir a un abono anual por ejemplo de 5 euros mds o menos, lo necesario
para amortiguar el coste de almacenamiento, junto a la publicidad. Esas decisiones
no se pueden tomar sin saber el éxito que puede tener la aplicaciéon. Sin embargo, se
debe anticipar para evitar el escenario de, por ejemplo Pokémon GO, que funcion6
mal durante todo el verano por haber subestimado el trafico.

6.3.3. Una escena abierta

Otra manera de disfrutar de un posible éxito de este proyecto es promocionar
a los cantantes o a los trabajos musicales. Ha habido estos dltimos afios un cambio
dréstico en la mente de la gente y sobre todo de los jovenes, que usan de manera

Capitulo 6. Resultados, conclusiones, trabajo futuro 43

intensa las redes sociales como Facebook o Instagram para compartir absolutamente
todo de lo que se les ocurre. Eso, también puede pasar por el canto. Quizas hacer
de Singvibes el Instagram del canto, un poco como Smule intenta hacerlo, pero con
una dimensién mucho mds colaborativa y enfocado a la mejora de los principiantes.
Eso, para una disciplina como el canto que exige un alto nivel de confianza y de
apoyo parece importante y puede haber una oportunidad de lanzar una nueva clase
de actividad. Un coaching vocal colaborativo donde todos ganan. Los que ayudan
ganan en respeto, estima, y visibilidad para sus trabajos, y los principiantes ganan
bastante confianza para empezar en serio el canto, con la ayuda de un profesor por
ejemplo. Esta aplicacion no pretende sustituir clases profesionales de canto, pero
quizds podria dar la chispa que falta a algunos para probar el canto o interesarse en
la musica en general.

44

Bibliografia

[1] Eric Larson, Ross Maddox Real-Time Time-Domain Pitch Tracking Using Wavelets
https://courses.physics.illinois.edu/phys406/NSF_REU_Reports/2005_reu/
Real-Time_Time-Domain_Pitch_ Tracking_ Using Wavelets.pdf
Illinois Physics Research Department, 2015

[2] Daubechies, Ingrid and Wim Sweldens Factoring Wavelet Transforms into Lifting
Steps Anal. Appl, 1998

[3] Bernard Salamito, Stéphane Cardini, Damien Jurine, Marie-Noélle Sanz Physique
Tout-en-un MPSI-PTSI. (Francés) [Manual de Fisica para alumnos de MPSI-PTSI].
Dunod, 2016.

[4] Kevin Beaver Hacking for Dummies, 5th edition. For Dummies, December 21, 2015.

[5] A.Dannhauser Teoria de la miisica. Ricordi Americana, Sociedad Anénima Edito-
rial y Comercial

[6] Wolfgang Kohler,Gestalt Psychology: The Definitive Statement of the Gestalt Theory.
Liveright, January 17, 1970

[7] Manual oficial PHP,
http://www.php.net/manual/en/

[8] PHP Standards Recommendations: PSR,
http://www.php-fig.org/psr/

[9] Documentacion oficial Android,
https://developer.android.com/reference/packages.html

[10] Stackoverflow: més de 100 problemas diferentes,
http://stackoverflow.com/

[11] Mitchell Anicas, How To Secure Nginx with Let’s Encrypt on Ubuntu 14.04
https://www.digitalocean.com/community/tutorials/
how-to-secure—nginx-with-let-s—-encrypt-on-ubuntu-14-04,

para Digital Ocean, December 17, 2015

45

A Arbol de las carpetas/clases del
servidor y de LeafStormMVC

singvibes_server

La parte central de LeafStormMVC: no depende del proyecto, una vez acabada no se deberia modificar
Contiene las clases abstractas de modelos v controladores para implementar el Modelo-Vista-Controlador
Interfaz con la base de datos v gestion de las operaciones CRUD. contiene un constructor de peticiones SQL
Clases genéricas que pueden ser invocadas desde cualquier sitio, como el Logger o el Mailer
Clases ayudando a la creacion de componentes html como los form en los ficheros . phtml
Contienen las clases gestionando nociones claves en seguridad como las sesiones v los tokens de sesion
El Router, elige v ejecuta la accion de controlador apropiada dependiendo de la URL v de sus parametros
Los controladores del paradigma MVC, organizados por frontname (web o api)

Contiene varis ficheros de configuracion. los ficheros cacheados v los scripts de creacion de la base de datos

Los modelos del paradigma MVC, extiendo de base/abstract/ModelAbstract.php

Las vistas del paradigma MVC,

Las imagenes, los css, javascript

Las plantillas html de correos electronicos

Paginas html estaticas sin ninguna clase de computo (404...)

Ficheros .phtml (html conteniendo inclusiones de codigo php). del frontname web. ordenados por controlador
.phtml usados por el controlador web/DebugController

.phtml usadoes por el controlador web/IndexController

Footer genérico

Parte <head> de la respuesta html. genérica

Header genérico

Estructura de la respuesta v de los templates .phtml invocados (head, header, cuerpo, footer)
El Autoloader. Encargado de encontrar e incluir las clases cuando estan invocadas, para solo cargar lo necesario

El Autoloader. Encargado de encontrar e incluir las clases cuando estan invocadas. para solo cargar lo necesario

Apéndice A. Arbol de las carpetas/clases del servidor y de LeafStormMVC

<<Base>>
Autslosdor

<<Duse/Abstracts>

Controbesbstract

Sessiontanages

<<BaselAbstracts>
2

P ———

P
TorrMarger

<< Dase/ Datn: << Base/Data=+ <~Base/Abstract>
DEConnection (Singiston) Quaryfactary Modelabstract
open: boole

<<Base/Dutar> <<Dase/Data>s | [<<Basa/Datar> | [<<Dase/Datar>
Querylelste Queryinsert QueryUpdate QuerySelect
ke B -u

+eacute | + mmscute {|

47

B Arbol comentado de las clases de
la aplicacién Android

Parte logica de la aplicacion que no interactua directamente con la UL

Interfaz con la base de datos v gestion de las operaciones CRUD

Grupos de funciones tiles que pueden ser llamadas por cualquier clase

Objetos v entidades manipuladas por la aplicacion, tal como una nota, un usuario, una conversacion...
Clases que gestionan el trafico internet

Tareas asineronas: al menos una por url de APl — ordena el refresco de la vista adecuada cuando se acaba
Construye v manda la peticion HTTPS, se encarga de recibir el JSON y devolverlo a la Task que lo invoco
Una clase capaz de ejecutar una secuencia de Task(s) v planificarlas

Invoca el HttpsRetriever v la DBInterface para refresear la DB y da acceso al JSON devuelto

Clases gestionando los datos audio: el grabador, el detector de tono ¥ los constructores de ficheros
Constructor de ficheros MIDI (ne implementadoe aun)

Detector de tono

Gestiona el micréfono v todo el proceso de grabacion, ordena perodicamente el refresco de la vista
Construye ficheros WAV a partir de un conjunto de samples

Componentes graficos o encapsulando légica grafica

Constructores de listas (listas Android), linea por linea
Pestanas popup conteniendo funcionalidad adicional imensajeria, opciones...)

Piano: gestor del teclado y teclas
Clases no implementadas ain que permitiran visualisar datos acerca del sonido

Encapsula la logica acerca de la grafica de la afinacién con el teclado de piano, extiende SwrfaceView
Punto de la grafica (contiene las coordenadas v datos sobre el color ¥ 1a manera de dibujarlo)
Serd otro tipo de representacion en tiempo real: una partitura que se construye poco a poco

Hilo ordenando un refresco pérodico de la grafica durante el proceso de grabacién

Clases fundamentales de Android gestionando el ciclo de vida de la aplicacion, que
invocan todas las clases anteriores por capas, son asociadas a layouts, ficheros declarativos
de Android que permiten declarar v configurar los componentes graficos que se van a
mostrar. Dichas funciones deben ser ejecutadas en el hilo principal de Android: el hilo grafico

48

C Codigo del detector de tono:
PitchDetector.java

package com.frederic_rouffineau.singvibes.logic.sound;
import com.frederic_rouffineau.singvibes.logic.helpers.Hmath;

/%%
* Created by frederic on 5/11/16.
* Based on the paper:
https://courses.physics.illinois.edu/phys406/NSF_REU_Reports/2005_reu/Real-Time_T
*/
public class PitchDetector ({
private double pitch;
private double previousPitch = -1;
private double pitchConfidence = -1;

// WAVELET ALGORITHM CONFIGURATION

public final static int maxFLWTlevels = 6;

public final static double maxF = 3000.;

public final static int differencelevelsN = 3;

public final static double maximaThresholdRatio = 0.75;
private int samplingRate = 44100;

// WAVELET STATE VARIABLES

private double amplitudeThreshold; // Max amplitude authorized
(max amplitude x k)

private double samplesAvg;

private int currentSamplesNumber;

private double[] currentSamples;

private int currentIteration;

1 distances;

private int|[
private int[] mins;
[

private int[] maxs;
private double curModeDistance = -1.;

public PitchDetector (int samplingRate) {
this.samplingRate = samplingRate;
this.resetPitchDetector();

public void resetPitchDetector () {
this.previousPitch = -1;
this.pitchConfidence = -1;

}

public double getPitch(double[] samples, double first, int
length) {
initializeState (length);
prepareSamples (samples, first, length);
computeAmplitudeThreshold() ;

Apéndice C. Cédigo del detector de tono: PitchDetector.java 49

while(this.currentIteration < maxFLWTlevels &&
this.currentSamplesNumber >= 2) {
if(this.currentIteration > 0) {
resample(); // Extracts the approximation component
from the samples

}

int delta = (int)
(this.samplingRate/ (Hmath.pow2 (this.currentIteration) *smaxF)) ;

double dv;

double previousDV = -1000;

int nbMins = 0;

int nbMaxs = 0;

int lastMinIndex = -1000000;

int lastmaxIndex = -1000000;

boolean findMax = false;

boolean findMin = false;

double si, sil;

// LOOP: the idea is to find the mins and the maxs

for (int i = 2; 1 < this.currentSamplesNumber; i++) {
si = this.currentSamples[i] - samplesAvg;
sil = this.currentSamples[i-1] - samplesAvg;

if (sil <= 0 && si > 0) findMax = true;
if (sil >= 0 && si < 0) findMin true;

// min or max ?
dv = si - sil;

if (previousDV > -1000) {
if (findMin && previousDV < 0 && dv >= 0) {
// minimum
if (Hmath.abs(si) >= this.amplitudeThreshold) {
if (i > lastMinIndex + delta) {

mins [nbMins++] = 1i;
lastMinIndex = 1i;
findMin = false;

if (findMax && previousDV > 0 && dv <= 0) {
// maximum
if (Hmath.abs(si) >= this.amplitudeThreshold) {
if (i > lastmaxIndex + delta) {

maxs [nbMaxs++] = 1i;
lastmaxIndex = 1i;
findMax = false;

previousDV = dv;

Apéndice C. Cédigo del detector de tono: PitchDetector.java

50

// If peaks are found

if (nbMins != 0 || nbMaxs != 0) {
int d;
distances = new int[length];
for (int 1 = 0; i < nbMins; i++) {
for (int j = 1; j < differencelevelsN; Jj++) {
if (1 + j < nbMins) {
d = Hmath.abs(mins[i] - mins[i + 3]);
distances([d] = distances[d] + 1;
}
}
}
< nbMaxs; 1i++) {

for (int 1 = 0;
for (int j =
if (1 + j < nbMaxs) {

i
1; j < differencelevelsN; j++) {

d = Hmath.abs(maxs[i] - maxs[i + J]);
distances([d] = distances[d] + 1;

// find best summed distance

int bestDistance = -1;

int bestValue = -1;

for (int i = 0; 1 < this.currentSamplesNumber; i++)
int summed = 0;
for (int j = —-delta; j <= delta; j++) {

if (1 + J >= 0 && 1 + j <
this.currentSamplesNumber)
summed += distances[i + Jj];

}

if (summed == bestValue) {
if (i == 2 » bestDistance)
bestDistance = i;

} else if (summed > bestValue) {
bestValue = summed;
bestDistance = i;

double distAvg = 0.0;
double nbDists = 0;
for (int j = -delta; J <= delta; j++)

if (bestDistance + j >= 0 && bestDistance + j <

length) {

int nbDist = distances[bestDistance + jl;

if (nbDist > 0) {
nbDists += nbDist;
distAvg += (bestDistance + j)

}
distAvg /= nbDists;

if (curModeDistance > -1.) {

* nbDist;

Apéndice C. Cédigo del detector de tono: PitchDetector.java

51

if (Hmath.abs (distAvg » 2 - curModeDistance)

delta) {
this.pitch = this.samplingRate /

(Hmath.pow2 (this.currentIteration - 1)

curModeDistance) ;
break;

}

curModeDistance = distAvg;
} else {
break;

}

this.currentIteration++;

return this.adjustWithPreviousPitch(this.pitch);

public void initializeState (int length) {
this.currentIteration = 0;
this.pitch = 0.0; // Pitch final
distances = new int[length];
mins = new int[length];
maxs new int[length];
curModeDistance = -1.;

public void prepareSamples (double[] samples, double
length) {
length = Hmath.getFirstSuperiorPowerOf2 (length);
this.currentSamples = new double[length];
for(int i=0; i<length; i++) {
this.currentSamples[i] = samples[i] + first;

}

this.currentSamplesNumber = length;

private void computeAmplitudeThreshold() {
this.samplesAvg = 0.0;

first,

double maxValue = 0.0;

double minValue = 0.0;

double sample;

for (int i = 0; i1 < this.currentSamplesNumber;i++) {

sample = this.currentSamples[i];
this.samplesAvg = this.samplesAvg + sample;
if (sample > maxValue) maxValue = sample;
if (sample < minValue) minValue = sample;

<=

*

2

int

*

this.samplesAvg = this.samplesAvg/this.currentSamplesNumber;

maxValue = maxValue - samplesAvg;
minValue = minValue - samplesAvg;
this.amplitudeThreshold = (maxValue > -minValue ? maxValue

-minValue) * maximaThresholdRatio;

Apéndice C. Cédigo del detector de tono: PitchDetector.java 52

// This method takes only half of the samples, by converting
each consecutive pair to its mean value

// This actually performs the FLTW by isolating the
approximation from the detail in the signal

public void resample() {
for (int 1 = 0; i < this.currentSamplesNumber/2; i++) {
this.currentSamples[i] = (this.currentSamples[2*1i] +

this.currentSamples([2xi + 1]1)/2.;
}

this.currentSamplesNumber /= 2;

private double adjustWithPreviousPitch (double pitch) {
// equivalence

if (pitch == 0.0) pitch = -1.0;
double estimatedPitch = -1;
double acceptedError = 0.2f;
int maxConfidence = 5;

// If a pitch has been detected

if (pitch !'= -1) {
// If there is no previous pitch
if (this.previousPitch == -1) {

estimatedPitch = pitch;
this.previousPitch = pitch;
this.pitchConfidence = 1;

// Else If the two pitches are less distant than 20%,
raise confidence

} else if (Hmath.abs(this.previousPitch - pitch)/pitch <
acceptedError) {
this.previousPitch = pitch;
estimatedPitch = pitch;
this.pitchConfidence = Hmath.min (maxConfidence,

this.pitchConfidence + 1); // maximum 3

// Else, if the confidence level is high enough, and the
same applyes to this pitch multiplied per 2 (IE:
octava error)

} else if ((this.pitchConfidence >= maxConfidence-2) &&
Hmath.abs (this.previousPitch - 2.xpitch)/ (2.*xpitch) <
acceptedError) {

// close to half the last pitch, which is trusted
estimatedPitch = 2.xpitch;
this.previousPitch = estimatedPitch;

// Else, if same goes for the pitch divided by two

} else if ((this.pitchConfidence >= maxConfidence-2) &&
Hmath.abs (this.previousPitch - 0.5*pitch)/(0.5%pitch)
< acceptedError) {

// close to twice the last pitch, which is trusted
estimatedPitch = 0.5xpitch;
this.previousPitch = estimatedPitch;
// Else, the value has nothing to do with it
} else {
// nothing like this : very different value
if (this.pitchConfidence >= 1) {
// previous trusted : keep previous
estimatedPitch = this.previousPitch;

Apéndice C. Cédigo del detector de tono: PitchDetector.java

53

this.pitchConfidence = Hmath.max (0,
this.pitchConfidence - 1);
} else {
// previous not trusted : take current
estimatedPitch = pitch;
this.previousPitch = pitch;
this.pitchConfidence = 1;

}
// Else, 1f no pitch has been detected this time

} else {
// If there was a pitch before and it is trusted enough,
take it
if (this.previousPitch != -1) {

if (this.pitchConfidence >= 1) {
estimatedPitch = this.previousPitch;
this.pitchConfidence = Hmath.max (0,

this.pitchConfidence - 1);

} else {
this.previousPitch = -1;
estimatedPitch = -1.;
this.pitchConfidence = 0;

if (this.pitchConfidence >= 1) {
pitch = estimatedPitch;

} else {
pitch = -1;
}
if (pitch == -1) { pitch = 0.0; }

return pitch;

54

D Codigo del grabador:
Recorder.java

package com.frederic_rouffineau.singvibes.logic.sound;

/ * %
* Created by frouffineau on 8/11/16.

*

https://www.newventuresoftware.com/blog/record-play-and-visualize-raw-audio-data-
http://stackoverflow.com/questions/8499042/android-audiorecord-example

http://stackoverflow.com/questions/11985518/android-record-sound-in-mp3-format
*/

import android.media.AudioFormat;
import android.media.AudioRecord;
import android.media.MediaRecorder;
import android.os.Handler;

import android.util.Log;

import com.frederic_rouffineau.singvibes.MainActivity;
import com.frederic_rouffineau.singvibes.SingFragment;
import com.frederic_rouffineau.singvibes.logic.helpers.Hfiles;
import com.frederic_rouffineau.singvibes.logic.helpers.Hmath;
import com.frederic_rouffineau.singvibes.ui.PianoChart;

import java.io.FileOutputStream;
import java.util.ArrayList;

public class Recorder {

public final static int sampleRate = 44100;

public final static int audioSource =
MediaRecorder.AudioSource.MIC; // Audio source 1s the device
MIC

public final static int channelConfig =
AudioFormat .CHANNEL_IN_MONO; // Recording in mono

public final static int audioEncoding =
AudioFormat .ENCODING_PCM_16BIT; // Records in 16bit

public final static int blockSize = 1024; // must be a power of
two

public final static int timeInterval = 50;

public final static double MINIMUM_INTENSITY = 1000;

private MainActivity activity;
private SingFragment singFragment;

private boolean isRecording = false;

Apéndice D. Cédigo del grabador: Recorder.java 55

private long startRecording = 0;

private AudioRecord audioRecord;

private PitchDetector pitchDetector;
private double f;

private double intensity;

private Handler handler = new Handler ();
private WaveBuilder waveBuilder;

private ArrayList<Short> pcm_array;
private PianoChart pianoChart;

public Recorder (MainActivity a, SingFragment sf, PianoChart pc)
{
this.activity = a;
this.singFragment = sf;
this.pianoChart = pc;

public boolean isRecording () {
return isRecording;

public void start () {
Log.i ("INFO", "Recording start");
if (!'this.isRecording) {
this.isRecording = true;
try{
int bufferSize =
AudioRecord.getMinBufferSize (sampleRate,
channelConfig, audioEncoding);
this.audioRecord = new AudioRecord(audioSource,
sampleRate, channelConfig, audioEncoding,
bufferSize);
this.pitchDetector = new PitchDetector (sampleRate);
pianoChart.startThread();
pcm_array = new ArrayList<>();
Log.i ("INFO", "Recording start");
audioRecord.startRecording () ;
this.startRecording = System.currentTimeMillis();
handler.postDelayed(getPitch, timelInterval);
}
catch (Exception e) {
e.printStackTrace () ;

public void stop () {
if(this.isRecording && this.audioRecord != null) {

this.isRecording = false;

pianoChart.stopThread() ;

audioRecord.stop () ;

Short[] pcma = pcm_array.toArray (new
Short [pcm_array.size()1);

waveBuilder = new WaveBuilder (sampleRate, (short) 1,
pcma, 0, pcm_array.size());

waveBuilder.wroteToFile (Hfiles.getFilePath(this.activity,
"tmp.wav"));

Apéndice D. Cédigo del grabador: Recorder.java 56

//waveBuilder.convertToMP3 ("tmp.wav", this.activity);

Runnable getPitch = new Runnable () {
public void run() {

short[] buffer = new short[blockSize];// Save the raw PCM
samples as short bytes

double[] samples = new double[blockSize];

int bufferReadResult =
Recorder.this.audioRecord.read (buffer, 0, blockSize);

double samplesLength = Hmath.min (blockSize,
bufferReadResult) ;

for (int i = 0; 1 < samplesLength; i++) {
samples[i] = (double) buffer([i]; // signed 16 bit
intensity += Hmath.abs (samples[i]);
pcm_array.add (bufferfil]);

}

intensity /= samplesLength;

f = pitchDetector.getPitch (samples, samples[O0],
blockSize);

activity.runOnUiThread (publish);

if (isRecording) {
handler.postDelayed (getPitch, 0);

}i

Runnable publish = new Runnable() {
public void run() {
Long s = System.currentTimeMillis () - startRecording;

singFragment.publishFrequency(f, s, intensity);

bi

E Diagrama de secuencia general
del proceso de grabacion

SingFragment ‘

newl

‘ Recorder ‘

newl b

starttr

Bucle de codigo ejecutado en su propio hile (separado del hilo
prineipal)

‘ PianoChart ‘

57

Pia

ewl) ‘

no

newu‘ AudioRecord ‘

new) ViewThread |,

| newl) ‘ PitchDetector ‘ | |
| | i | |
startThreadi b ! !
! | ! : setKeys() |

i | set Running()
: . start(h . I
I startRecording() ! While(r'u'nni.ng) [
getPitch() | i !
i read() ! | |
| getPiteh() ! drawl) i i
publish(! ! | render() |
publishFrequencyt) i I drawChart() | I
addPeint() ; ; [
. | |
. ! | |

stopl) | | |

- ~ stopThread() ! !
WaveBuilder -+ stopRecording() | , . .
]]

;wm teTaFilei} '

58

F Esquema de la base de datos con
las claves ajenas

— (lave ajena

Apps Devices
Messages #Had Ad
Users . . .
#id version version
#1id - from_user name name
picture_url - to_user description description
Username content created_at created_at
Email r——r / =
: nstalls
Digest = y -
first_name _ #i) T
last_name - USET_Ild
Description Followers App_id o
Hobbies #1d Device_id i
deactivated_at la—| follower created_at
is_logged -t following
login_failures Created_at Comments
Privacy_filter Updated_at #d
created_at - user_id
updated_at recording_id
- parent_id ———®
[Content
T Created_at Artists
S~ Recordin, Updated_at
‘‘_‘.‘. _- g8 pdated_a #d
Multilocales T User id name
#id sone id S Country_id
identifier g_‘ . » ongs picture_url
. Announcements Desecription .
translation d Data #id —
. rtist_id
?rir;]:d at Header multilocale Privacy_level Zlb:;n;ltiﬂe
= - Content_multilocale created_at car
[Url Updated_at y
- . title
Priority Likes .
created_at file_key yrics
— = youtube_url

59

G Repositorios de cédigo y
aplicacion

El c6digo completo del proyecto estd disponible en Github y seguird evolucio-
nando.

= https://github.com/fredrfn/Singvibes-Server
= https://github.com/fredrfn/Singvibes-For-Android

Ademds, se puede encontrar méas informacién en el sitio oficial de la aplicacién:
https:/ /singvibes.com. Para cualquier informacién, o si se desea sefialar un bug, se
puede usar el formulario de contacto https://singvibes.com/contact, o abrir una
issue en Github.

https://github.com/fredrfn/Singvibes-Server
https://github.com/fredrfn/Singvibes-For-Android
https://singvibes.com
https://singvibes.com/contact

60

Indice de figuras

[L.1. Cronologia de las tareas realizadas| 13

17

[3.1. Arquitecturadelsistemal 00 0 0L 22
[p.1. Vista durante la grabacion y ejemplo de gratfica de la afinacion en |

| tiemporeall 35
b.2. HomeFragment: vista del perfil de usuario] 37

	DeclaraciÃ³n de autorÃ­a y originalidad
	Agradecimientos
	Resumen
	Abstract
	Índice general
	Introduction
	Objetivos
	Singvibes: un 'oído virtual' para cantantes
	Una oportunidad de encontrar a otros músicos

	Estado del arte
	Bases teóricas y científicas
	Ejemplos de aplicaciones ya existentes
	Diferenciación del proyecto

	Requisitos y tipos de problemas
	Experiencia usuario (UX)
	Disponibilidad, fiabilidad
	Rendimiento y tiempos de ejecución

	Metodología
	La gestión del tiempo y las etapas importantes del proyecto
	Las fuentes de información y de ayuda
	La producción de código modular y fácil de entender y manipular

	Presentación corta de las secciones y anexos

	Diseño de la detección de la afinación del canto en tiempo real
	Conceptos
	Sonido y ondas sonoras
	Notas y armónicos
	Escala cromática y afinación

	La detección del tono
	Análisis temporal, análisis frecuencial y detección de tono en tiempo real
	El Fast-Lifting-Wavelet-Transform (FLWT)
	El algoritmo FLWT basado en las Wavelets de Haar

	Diseño de la red social y elaboración de una arquitectura distribuida
	El paradigma cliente-servidor
	Presentación de los actores y de la topología del sistema
	Tipos de datos y base de datos
	Intercambios de datos, mensajes y protocolos

	Funcionalidades y problemas mayores en el diseño y la implementación de la red social
	Seguridad y sesiones
	Comunicación entre usuarios y puesta en contacto

	El servidor: elaboración e implementación
	El servidor y su organización interna
	Presentación del servidor
	Pros y contras de varios frameworks MVC
	Diseño: front controller, organización de los ficheros

	LeafStormMVC: implementación propia del paradigma MVC
	Request flow: routing y controladores
	Los modelos
	Las vistas: gestión del frontend

	Singvibes para Android
	Estructura de la aplicación y organización del código
	Presentación global de la aplicación
	Organización del código y modularidad
	Multithreading en Android

	La implementación del pitch tracker
	Recuperar la señal
	Procesar la señal: el pitch tracker
	Mostrar/Dibujar los resultados
	Convertir la señal en fichero: WAV y después comprimirlo
	Guardar los resultados y publicación hasta el servidor

	La implementación de la red social
	Queries asíncronas, HTTPS y refresco de las vistas
	Base de datos local

	Resultados, conclusiones, trabajo futuro
	Resultados
	Una herramienta fácil de usar útil para visualizar el canto y encontrar a otros cantantes
	Pitch tracking: desde el modelo hasta la implementación: enseñanzas y comparativa
	LeafStormMVC + App Android: base para otras aplicaciones

	Areas de mejora
	Fallos del pitch tracker
	Seguridad
	Normalización del código
	Mejor gestión de los intercambios de datos y caches
	Funcionalidades adicionales y ventaja competitiva sobre las otras aplicaciones

	Plan de explotación de la aplicación
	Google play, publicidad
	Funcionalidades premium para financiar el servidor
	Una escena abierta

	Bibliografía
	Árbol de las carpetas/clases del servidor y de LeafStormMVC
	Árbol comentado de las clases de la aplicación Android
	Código del detector de tono: PitchDetector.java
	Código del grabador: Recorder.java
	Diagrama de secuencia general del proceso de grabación
	Esquema de la base de datos con las claves ajenas
	Repositorios de código y aplicación
	Índice de figuras

