
A Optimizaciones NEON

El código que se ha optimizado es el siguiente:

const f loat f a c t o rPI = (f loat) (CV PI /180 . f) ;
stat ic void computeOrbDescriptor (const KeyPoint& kpt ,

const Mat& img , const Point∗ pattern , uchar∗ desc)
{

f loat ang le = (f loat) kpt . ang le ∗ f a c t o rPI ;
f loat a = (f loat) cos (ang le) , b = (f loat) s i n (ang le) ;

const uchar∗ cente r = &img . at<uchar>(cvRound (kpt . pt . y) ,
cvRound (kpt . pt . x)) ;

const int s tep = (int) img . s tep ;

#d e f i n e GET VALUE(idx) \
cente r [cvRound (pattern [idx] . x∗b + pattern [idx] . y∗a)∗ s tep + \

cvRound (pattern [idx] . x∗a − pattern [idx] . y∗b)]

for (int i = 0 ; i < 32 ; ++i , pattern += 16)
{

int t0 , t1 , va l ;
t0 = GET VALUE(0) ; t1 = GET VALUE(1) ;
va l = t0 < t1 ;
t0 = GET VALUE(2) ; t1 = GET VALUE(3) ;
va l |= (t0 < t1) << 1 ;
t0 = GET VALUE(4) ; t1 = GET VALUE(5) ;
va l |= (t0 < t1) << 2 ;
t0 = GET VALUE(6) ; t1 = GET VALUE(7) ;
va l |= (t0 < t1) << 3 ;
t0 = GET VALUE(8) ; t1 = GET VALUE(9) ;
va l |= (t0 < t1) << 4 ;
t0 = GET VALUE(1 0) ; t1 = GET VALUE(1 1) ;
va l |= (t0 < t1) << 5 ;
t0 = GET VALUE(1 2) ; t1 = GET VALUE(1 3) ;
va l |= (t0 < t1) << 6 ;
t0 = GET VALUE(1 4) ; t1 = GET VALUE(1 5) ;
va l |= (t0 < t1) << 7 ;

desc [i] = (uchar) va l ;
}

#undef GET VALUE
}

1

La optimización comienza en la entrada del bucle de la función. El cálculo
de las variables que se encuentran antes del inicio del bucle no pueden ser
optimizadas mediante instrucciones NEON ya que dichas variables son co-
munes para todos los descriptores y solo es necesario calcularlas una vez, por
lo que esta parte de la función se mantendrá igual.

Figure A.1: Carga desentre-
lazada

En primer lugar se realiza la carga de los
datos. Contamos con instrucciones NEON
que permiten la carga simultanea de datos
contiguos en memoria. También nos ofrecen
la posibilidad de realizar cargas con desen-
trelazado, que consisten en cargar los datos
de forma que se distribuyan en varios reg-
istros del procesador de forma intercalada
como puede verse en la figura ??. En nuestro
caso es perfecto para dejar los datos prepara-
dos para la siguiente operación que se realiza
con ellos.

Una vez que ya se han cargado los datos del patrón, las x’s en un registro
y las y’es en otro, ya pueden empezar a realizarse las primeras operaciones
múltiples. En primer lugar se realizan las multiplicaciones de pattern[idx].x
tanto por a como por b, recordemos que nuestros datos son floats de 32 bytes
por lo que el máximo de multipliaciones que podemos realizar al mismo
tiempo son 4. El siguiente término a calcular son las multiplicaciones de pat-
tern[idx].y por a y b, NEON cuenta con una instrucción que permite realizar
multiplicaciones y además permite realizar una suma o resta del resultado
obtenido con otro registro, por lo que de esta forma podemos realizar al
mismo tiempo las sumas y restas.

VMUL.F32 q2,q1,q0

Figure A.2: Multiplicación vector por
vector

VMLA q2,q1,q0[0]

Figure A.3: Vector por escalar mas
vector

2

El siguiente paso es redondear los resultados obtenidos convirtiéndolos en
ints para sumar los resultados y aśı obtener el ı́ndice con el que acceder al
array denominado ”center”, antes de realizar la suma es necesario multiplicar
el primer término por step. Para realizar la multiplicación se usará una
instrucción NEON que multiplica los datos de un registro por un escalar y
suma el resultado con otro registro, de esta forma evitamos realizar la suma
de los términos en otra instrucción separada.

A continuación es necesario acceder a memoria, en este caso no se puede
realizar una carga simultanea de datos ya que los accesos a memoria no son
contiguos por lo que será necesario realizar las diferentes cargas de forma
independiente.

VEXT.F32 q0,q0,q1

Figure A.4: Extracción

La última parte del algoritmo consiste
en realizar comparaciones de datos dos a
dos para obtener el descriptor. Las com-
paraciones se pueden realizar en grupos de
8 datos ya que son del tipo unsigned char
de 8 bits. En primer lugar es necesario colo-
car los datos que van a ser comparados en
un mismo registro ya que al realizar la carga
no podemos especificarle el lugar del registro
que queremos que ocupe, para ello se van a
utilizar las instrucciones del tipo vext que cogen el primer dato de un registro
y lo añaden al principio de otro realizando un desplazamiento del registro ob-
jetivo y eliminando el último de sus datos.

Una vez organizados los registros se puede realizar la comparación de
los mismos con una sola instrucción. El último paso para obtener el valor
binario(0 ó 1) que corresponde al descriptor consiste en realizar una operación
AND sobre los registros ya que los resultados obtenidos tras la comparación
son los 8 bits a 0 o 1 y nosotros necesitamos que solo el bit de menor valor
este activado o desactivado. Tras esta iteración se ha obtenido el primer
byte de los 32 bytes totales que forman el descriptor por lo que es necesario
repetir el proceso descrito hasta tener todos los bytes necesarios, para evitar
realizar el menor número de escrituras en memoria los datos obtenidos en las
comparaciones se guardan en un registro hasta que se llena el registro y aśı
almacenar el mayor número de datos posibles con una sola instrucción.

3

A continuación se muestra el código desarrollado:

const int ∗p = (int ∗) pattern ;
u in t8x8 t r e s u l t s ;
for (int i = 0 ; i < 32 ; ++i , p += 32){

//Carga e l patron separado por x ’ s e y ’ s
i n t32x4x4 t pattern0 = vld4q s32 (p) ;
in t32x4x4 t pattern1 = vld4q s32 (p + 1 6) ;
in t32x4x2 t patternX0 = vz ipq s32 (pattern0 . va l [0] ,

pattern0 . va l [2]) ;
i n t32x4x2 t patternY0 = vz ipq s32 (pattern0 . va l [1] ,

pattern0 . va l [3]) ;
i n t32x4x2 t patternX1 = vz ipq s32 (pattern1 . va l [0] ,

pattern1 . va l [2]) ;
i n t32x4x2 t patternY1 = vz ipq s32 (pattern1 . va l [1] ,

pattern1 . va l [3]) ;
//Conversion a f l o a t
f l o a t 3 2 x 4 t xPattern0 = v c v t q f 3 2 s 3 2 (patternX0 . va l [0]) ;
f l o a t 3 2 x 4 t yPattern0 = v c v t q f 3 2 s 3 2 (patternY0 . va l [0]) ;
f l o a t 3 2 x 4 t xPattern1 = v c v t q f 3 2 s 3 2 (patternX0 . va l [1]) ;
f l o a t 3 2 x 4 t yPattern1 = v c v t q f 3 2 s 3 2 (patternY0 . va l [1]) ;
f l o a t 3 2 x 4 t xPattern2 = v c v t q f 3 2 s 3 2 (patternX1 . va l [0]) ;
f l o a t 3 2 x 4 t yPattern2 = v c v t q f 3 2 s 3 2 (patternY1 . va l [0]) ;
f l o a t 3 2 x 4 t xPattern3 = v c v t q f 3 2 s 3 2 (patternX1 . va l [1]) ;
f l o a t 3 2 x 4 t yPattern3 = v c v t q f 3 2 s 3 2 (patternY1 . va l [1]) ;
//Mu l t i p l i c a c i on e s 0
f l o a t 3 2 x 4 t f i r s tTerm0 = vmulq n f32 (xPattern0 , b) ;
f l o a t 3 2 x 4 t secondTerm0 = vmulq n f32 (xPattern0 , a) ;
f l o a t 3 2 x 4 t f i r s tTerm2 = vmulq n f32 (xPattern2 , b) ;
f l o a t 3 2 x 4 t secondTerm2 = vmulq n f32 (xPattern2 , a) ;
f i r s tTerm0 = vmlaq n f32 (f i rstTerm0 , yPattern0 , a) ;
secondTerm0 = vmlsq n f32 (secondTerm0 , yPattern0 , b) ;
f i r s tTerm2 = vmlaq n f32 (f i rstTerm2 , yPattern2 , a) ;
secondTerm2 = vmlsq n f32 (secondTerm2 , yPattern2 , b) ;
//Mu l t i p l i c a c i on e s 1
f l o a t 3 2 x 4 t f i r s tTerm1 = vmulq n f32 (xPattern1 , b) ;
f l o a t 3 2 x 4 t secondTerm1 = vmulq n f32 (xPattern1 , a) ;
f l o a t 3 2 x 4 t f i r s tTerm3 = vmulq n f32 (xPattern3 , b) ;
f l o a t 3 2 x 4 t secondTerm3 = vmulq n f32 (xPattern3 , a) ;
f i r s tTerm1 = vmlaq n f32 (f i rstTerm1 , yPattern1 , a) ;
secondTerm1 = vmlsq n f32 (secondTerm1 , yPattern1 , b) ;
f i r s tTerm3 = vmlaq n f32 (f i rstTerm3 , yPattern3 , a) ;
secondTerm3 = vmlsq n f32 (secondTerm3 , yPattern3 , b) ;

i n t 3 2 x 4 t f i r s tRound0 = v c v t q s 3 2 f 3 2 (f i r s tTerm0) ;
i n t 3 2 x 4 t secondRound0 = v c v t q s 3 2 f 3 2 (secondTerm0) ;
i n t 3 2 x 4 t f i r s tRound1 = v c v t q s 3 2 f 3 2 (f i r s tTerm1) ;
i n t 3 2 x 4 t secondRound1 = v c v t q s 3 2 f 3 2 (secondTerm1) ;
i n t 3 2 x 4 t f i r s tRound2 = v c v t q s 3 2 f 3 2 (f i r s tTerm2) ;

4

i n t 3 2 x 4 t secondRound2 = v c v t q s 3 2 f 3 2 (secondTerm2) ;
i n t 3 2 x 4 t f i r s tRound3 = v c v t q s 3 2 f 3 2 (f i r s tTerm3) ;
i n t 3 2 x 4 t secondRound3 = v c v t q s 3 2 f 3 2 (secondTerm3) ;
//Mu l t i p l i c a r por s t ep y suma de terminos
f i r s tRound0 = vmlaq n s32 (secondRound0 , f i rstRound0 , s tep) ;
f i r s tRound1 = vmlaq n s32 (secondRound1 , f i rstRound1 , s tep) ;
f i r s tRound2 = vmlaq n s32 (secondRound2 , f i rstRound2 , s tep) ;
f i r s tRound3 = vmlaq n s32 (secondRound3 , f i rstRound3 , s tep) ;
//Acceso a l a imagen , i n t e r c a l a do
u in t8x8 t value0 = vld1 u8 (cente r + f i r s tRound0 [0]) ;
u in t8x8 t value1 = vld1 u8 (cente r + f i r s tRound0 [1]) ;
u in t8x8 t value2 = vld1 u8 (cente r + f i r s tRound0 [2]) ;
u in t8x8 t value3 = vld1 u8 (cente r + f i r s tRound0 [3]) ;
u in t8x8 t value4 = vld1 u8 (cente r + f i r s tRound1 [0]) ;
u in t8x8 t value5 = vld1 u8 (cente r + f i r s tRound1 [1]) ;
u in t8x8 t value6 = vld1 u8 (cente r + f i r s tRound1 [2]) ;
u in t8x8 t value7 = vld1 u8 (cente r + f i r s tRound1 [3]) ;
u in t8x8 t value8 = vld1 u8 (cente r + f i r s tRound2 [0]) ;
u in t8x8 t value9 = vld1 u8 (cente r + f i r s tRound2 [1]) ;
u in t8x8 t value10 = vld1 u8 (cente r + f i r s tRound2 [2]) ;
u in t8x8 t value11 = vld1 u8 (cente r + f i r s tRound2 [3]) ;
u in t8x8 t value12 = vld1 u8 (cente r + f i r s tRound3 [0]) ;
u in t8x8 t value13 = vld1 u8 (cente r + f i r s tRound3 [1]) ;
u in t8x8 t value14 = vld1 u8 (cente r + f i r s tRound3 [2]) ;
u in t8x8 t value15 = vld1 u8 (cente r + f i r s tRound3 [3]) ;
//Reordena l o s datos
value0 = vrev64 u8 (value0) ; //Toma e l primer dato
value1 = vrev64 u8 (value1) ; //Toma e l primer dato
value0 = vext u8 (value0 , value2 , 1) ;
va lue1 = vext u8 (value1 , value3 , 1) ;
va lue0 = vext u8 (value0 , value4 , 1) ;
va lue1 = vext u8 (value1 , value5 , 1) ;
va lue0 = vext u8 (value0 , value6 , 1) ;
va lue1 = vext u8 (value1 , value7 , 1) ;
va lue0 = vext u8 (value0 , value8 , 1) ;
va lue1 = vext u8 (value1 , value9 , 1) ;
va lue0 = vext u8 (value0 , value10 , 1) ;
va lue1 = vext u8 (value1 , value11 , 1) ;
va lue0 = vext u8 (value0 , value12 , 1) ;
va lue1 = vext u8 (value1 , value13 , 1) ;
va lue0 = vext u8 (value0 , value14 , 1) ;
va lue1 = vext u8 (value1 , value15 , 1) ;
//Comparacion l e s s than
value0 = v c l t u 8 (value0 , va lue1) ;
//Transformacion r e s u l t a d o s a 0 ,1
u i n t 8 t one = 1 ;
u in t8x8 t ones = vdup n u8 (one) ;
va lue0 = vand u8 (value0 , ones) ;
//Compone e l d e s c r i p t o r

5

value0 [0] |= value0 [1] << 1 ;
va lue0 [0] |= value0 [2] << 2 ;
va lue0 [0] |= value0 [3] << 3 ;
va lue0 [0] |= value0 [4] << 4 ;
va lue0 [0] |= value0 [5] << 5 ;
va lue0 [0] |= value0 [6] << 6 ;
va lue0 [0] |= value0 [7] << 7 ;
//Almacena r e su l t a do
r e s u l t s = vext u8 (r e s u l t s , value0 , 1) ;
i f (i % 8 == 7) {

// Escr i be en memoria
vst1 u8 (desc + i − 7 , r e s u l t s) ;

}
}

6

B Gúıa de compilación de ORB-SLAM2
para Android

La libreŕıa se ha compilado en un PC con sistema operativo Ubuntu 16.04 y
como entorno de desarrollo se ha utilizado Android Studio 2.2.2.
Para la compilación de ORB-SLAM2 se necesita:

• Compilador de C++11 ó C++0x, se ha usado gcc 5.4.0.

• NDK de Android, versión utilizada 13.1.
https://developer.android.com/ndk/downloads/index.html

• OpenCV for Android, versión mı́nima 2.4., en el proyecto se ha utilizado
la versión 2.4.8 proporcionada por NVIDIA, que cuenta con optimiza-
ciones para los procesadores Tegra.
http://opencv.org/downloads.html

https://developer.nvidia.com/AndroidWorks-TADP-Archive

• Eigen, versión mı́nima 3.1., se ha usado la 3.2.
http://eigen.tuxfamily.org/index.php?title=Main_Page

• DBoW2 y g2o, incluidas en ORB-SLAM2.
https://github.com/raulmur/ORB_SLAM2

Instrucciones

Para compilar utilizando el NDK junto con CMake es necesario configurar
los siguientes flags a la hora de compilar:

• -DANDROID NDK: indica la ruta donde se encuentra el NDK.

• -DANDROID ABI: para especificar la arquitectura para la que se quiere
compilar, en nuestro caso ”armeabi-v7a with NEON”.

• -DANDROID API LEVEL: indica la versión de la API utilizada, en el
proyecto se ha utilizado la 19.

• -DCMAKE BUILD TYPE: para indicar el tipo de compilación, por
ejemplo Release.

• -DCMAKE TOOLCHAIN FILE: para indicar la ruta de la toolchain a
utilizar.

• -DANDROID TOOLCHAIN NAME: indica el nombre de la toolchain
a utilizar, se ha usado arm-linux-androideabi-gcc-4.9.

7

https://developer.android.com/ndk/downloads/index.html
http://opencv.org/downloads.html
https://developer.nvidia.com/AndroidWorks-TADP-Archive
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://github.com/raulmur/ORB_SLAM2

Un ejemplo para realizar la compilación seŕıa:

cmake . −DANDROID NDK=/Android/Sdk/ndk−bundle
−DANDROID ABI=armeabi−v7a with NEON
−DANDROID NATIVE API LEVEL=19
−DCMAKE BUILD TYPE=Release
−DCMAKE TOOLCHAIN FILE=/Android/Sdk/cmake /3 .6 .3155560/

android . t o o l c h a i n . cmake
−DANDROID TOOLCHAIN NAME=arm−l inux−androideabi−gcc −4.9

Tras haber descargado ORB-SLAM2 y sus dependencias, hay que seguir
los siguientes pasos para lograr su compilación:

1. Modificar el fichero CMakeLists.txt de la libreŕıa DBoW2 para incluir
los siguientes flags de compilación: -march=armv7-a, -mfpu=neon -
mfloat-abi=softfp. También puede incluirse el flag -mtune=cortex-
a15 para indicar el procesador exacto para el que se quiere compilar.
Además también hay que incluir la nueva libreŕıa de OpenCV para
Android. Una vez realizados estos ajustes ya puede iniciarse la compi-
lación como se ha indicado al inicio de esta sección.

2. Para la libreŕıa g2o el proceso es similar que con DBoW2, hay que
modificar también su fichero CMakeLists.txt para incluir los mismos
flags de compilación y en este caso también hay que incluir las cabeceras
de la libreŕıa Eigen descargada. Después iniciar la compilación.

3. Por último queda compilar ORB-SLAM2, de la misma forma que con
las dos libreŕıas anteriores en primer lugar se añadirán los flags de
compilación a su fichero CMakeLists.txt. También es necesario incluir
la libreŕıa de OpenCV utilizada y eliminar todas las referencias de
Pangolin del código. Por último, antes de lanzar la compilación hay
que asegurarse que la ruta donde se encuentran las libreŕıas compiladas
de DBoW2 y g2o es la misma que la que se encuentra definida en el
fichero CMakeLists.txt y una vez todo esto esta listo se puede iniciar
la compilación.

Una vez que ya se tiene la libreŕıa compilada es necesario añadirla al
proyecto de la aplicación, en el caso de este proyecto se ha realizado con el
soporte de CMake que tiene Android Studio. El proceso se puede ver en la
siguiente gúıa:
https://developer.android.com/studio/projects/add-native-code.html?

hl=es-419

8

https://developer.android.com/studio/projects/add-native-code.html?hl=es-419
https://developer.android.com/studio/projects/add-native-code.html?hl=es-419

C Gúıa de uso

Pantalla principal

En la pantalla principal el usuario puede acceder a la generación de un nuevo
modelo del entorno o iniciar la visualización de un modelo que haya sigo
generado previamente.

A la izquierda de la pantalla se incluye una lista con los modelos que se
han generado mediante la aplicación. Para acceder a uno de estos modelos
es necesario pulsar sobre el nombre del modelo que se quiere cargar, si la
pulsación es prolongada se ofrece la posibilidad de borrar el modelo.

En la esquina inferior derecha de la pantalla se encuentra el botón que
inicia la generación de un nuevo modelo, al pulsarlo se inicia ORB-SLAM y
se comienza el proceso de generación.

Figure C.1: Pantalla principal de la app

9

Pantalla de generación de modelo

La mayor parte de la pantalla la ocupa el visualizador, donde se puede ob-
servar el mapa generado. A la hora de visualizar el mapa se permite activar
algunas opciones mediante los botones situados en la parte superior de la
pantalla y en la esquina inferior del visualizador.

• Follow: permite activar el seguimiento de la trayectoria seguido por
la cámara, es decir, si se desea que la visualización del mapa se haga
desde el punto donde se encuentra la cámara o desde uno fijo.

• Keyframes: activa el dibujado de los keyframes.

• Reconstruction: muestra la nube de puntos que se va generando.

• Pausa: detiene la generación del mapa y el modelo momentáneamente
hasta que vuelva a pulsarse el botón.

• Stop: lanza un diálogo que permite terminar la generación del modelo
y guardarlo introduciendo un nombre.

En las esquinas superiores derecha e izquierda, se pueden observar respec-
tivamente las imágenes a color capturadas por la cámara en las se pintan los
puntos de interés detectados por ORB-SLAM y imagen de profundidad cap-
tada por la cámara.

Figure C.2: Pantalla de generación de modelo

10

Pantalla de visualización de modelos

La navegación principal se realiza mediante gestos en la pantalla táctil.
El primero de los gestos es el deslizamiento en una dirección, este gesto

provoca la rotación de la cámara en la dirección en la que se realice el desliza-
miento, si el gesto se realiza con dos dedos la cámara se trasladará en lugar
de rotar.

El otro gesto admitido es el de acercar/alejar dos dedos, que producirá
un cambio en el nivel de zoom en la visualización dependiendo de si el gesto
es de acercamiento o alejamiento.

El resto de acciones se realizan mediante los botones en pantalla:

• Mapa: cambia la visualización a vista cenital.

• Rosa de los vientos: devuelve la cámara a la posición original.

• Flechas: permiten avanzar o retroceder la cámara en la dirección en la
que esta observando.

Figure C.3: Pantalla de visualización de modelos de la app

11

