A Optimizaciones NEON

El codigo que se ha optimizado es el siguiente:

const float factorPI = (float)(CV_PI/180.f);
static void computeOrbDescriptor(const KeyPoint& kpt,
const Mat& img, const Pointx pattern, ucharsx

desc)

)

{
float angle = (float)kpt.anglexfactorPI;
float a = (float)cos(angle), b = (float)sin(angle);
const ucharx center = &img. at<uchar>(cvRound (kpt.pt.y)
cvRound (kpt . pt.x)
const int step = (int)img.step;
#define GETVALUE(idx) \
center [cvRound (pattern [idx |.x*b + pattern [idx].yxa)xstep + \
cvRound (pattern [idx |.x*a — pattern[idx].yxb)]
for (int i = 0; i < 32; ++i, pattern += 16)
{
int t0, t1, val;
t0 = GET.VALUE(0); t1 = GET.VALUE(1);
val = t0 < t1;
t0 = GET.VALUE(2); t1 = GET.VALUE(3);
val |= (t0 < t1) << 1;
t0 = GET.VALUE(4); t1 = GET.VALUE(5);
val |= (t0 < t1) << 2;
t0 = GET.VALUE(6); t1 = GET.VALUE(7);
val |= (t0 < t1) << 3;
t0 = GET.VALUE(8); t1 = GET.VALUE(9);
val |= (t0 < t1) << 4;
t0 = GET.VALUE(10); t1 = GET.VALUE(11);
val |= (t0 < t1) << 5;
t0 = GET.VALUE(12); t1 = GET.VALUE(13);
val |= (t0 < t1) << 6;
t0 = GET.VALUE(14); t1 = GET.VALUE(15);
val |= (t0 < t1) << 7;
desc[i] = (uchar)val;
}
#undef GET_VALUE
}

La optimizacién comienza en la entrada del bucle de la funcién. El calculo
de las variables que se encuentran antes del inicio del bucle no pueden ser
optimizadas mediante instrucciones NEON ya que dichas variables son co-
munes para todos los descriptores y solo es necesario calcularlas una vez, por
lo que esta parte de la funciéon se mantendra igual.

En primer lugar se realiza la carga de los
datos. Contamos con instrucciones NEON memory
que permiten la carga simultanea de datos "
contiguos en memoria. También nos ofrecen .
la posibilidad de realizar cargas con desen- | “ o\
trelazado, que consisten en cargar los datos 3 \
de forma que se distribuyan en varios reg-
istros del procesador de forma intercalada
como puede verse en la figura ?7?7. En nuestro Figure A.1:
caso es perfecto para dejar los datos prepara-
dos para la siguiente operaciéon que se realiza
con ellos.

Una vez que ya se han cargado los datos del patrén, las x’s en un registro
y las y’es en otro, ya pueden empezar a realizarse las primeras operaciones
multiples. En primer lugar se realizan las multiplicaciones de pattern[idx].x
tanto por a como por b, recordemos que nuestros datos son floats de 32 bytes
por lo que el maximo de multipliaciones que podemos realizar al mismo
tiempo son 4. El siguiente término a calcular son las multiplicaciones de pat-
tern[idx].y por a y b, NEON cuenta con una instruccién que permite realizar
multiplicaciones y ademads permite realizar una suma o resta del resultado
obtenido con otro registro, por lo que de esta forma podemos realizar al
mismo tiempo las sumas y restas.

VLD216 (d0, d1 |, [0]

Carga desentre-
lazada

VMUL.F32 q2,q1,q0 VMLA ¢2,q1,q0[0]

3| =2 | x| a0 | gl va | w2 | w1 | w | qO N] al y3 [52 [yl |30 | P
ONONONO)

xEy0 [x2y0 [ayo [00|

+ + + + | q2

OMOMONO) afafals]

0 e @

Figure A.2: Multiplicacién vector por
vector

o oo

Figure A.3: Vector por escalar mas
vector

El siguiente paso es redondear los resultados obtenidos convirtiéndolos en
ints para sumar los resultados y asi obtener el indice con el que acceder al
array denominado ”center”, antes de realizar la suma es necesario multiplicar
el primer término por step. Para realizar la multiplicacién se usara una
instruccion NEON que multiplica los datos de un registro por un escalar y
suma el resultado con otro registro, de esta forma evitamos realizar la suma
de los términos en otra instruccion separada.

A continuacion es necesario acceder a memoria, en este caso no se puede
realizar una carga simultanea de datos ya que los accesos a memoria no son
contiguos por lo que sera necesario realizar las diferentes cargas de forma
independiente.

La ultima parte del algoritmo consiste
en realizar comparaciones de datos dos a VEXT.F32 q0,q0,q1

dos para obtener el descriptor. Las com- o
paraciones se pueden realizar en grupos de N _ @
> [[o]=]]

8 datos ya que son del tipo unsigned char n
de 8 bits. En primer lugar es necesario colo-

car los datos que van a ser comparados en Figure A.4: Extraccion

un mismo registro ya que al realizar la carga

no podemos especificarle el lugar del registro

que queremos que ocupe, para ello se van a

utilizar las instrucciones del tipo vext que cogen el primer dato de un registro
y lo anaden al principio de otro realizando un desplazamiento del registro ob-
jetivo y eliminando el ultimo de sus datos.

Una vez organizados los registros se puede realizar la comparacion de
los mismos con una sola instruccion. El 1ltimo paso para obtener el valor
binario(0 6 1) que corresponde al descriptor consiste en realizar una operacién
AND sobre los registros ya que los resultados obtenidos tras la comparacion
son los 8 bits a 0 o 1 y nosotros necesitamos que solo el bit de menor valor
este activado o desactivado. Tras esta iteracion se ha obtenido el primer
byte de los 32 bytes totales que forman el descriptor por lo que es necesario
repetir el proceso descrito hasta tener todos los bytes necesarios, para evitar
realizar el menor nimero de escrituras en memoria los datos obtenidos en las
comparaciones se guardan en un registro hasta que se llena el registro y asi
almacenar el mayor niimero de datos posibles con una sola instruccion.

A continuacion se muestra el codigo desarrollado:

const int xp = (int=*)pattern;
uint8x8_t results;
for (int i = 0; i < 32; ++i, p += 32){

//Carga el patron separado por z’s e y’s
int32x4x4_t pattern0 = vld4q-s32(p);
int32x4x4_t patternl = vld4q-s32(p + 16);
int32x4x2_t patternX0 = vzipq_-s32(pattern0.val]
pattern0.val |
int32x4x2_t patternY0 = vzipq_-s32(pattern0.val]
pattern0.val |
int32x4x2_t patternX1 = vzipq-s32(patternl.val]
patternl.val|
int32x4x2_t patternY1l = vzipq_s32(patternl.val]
patternl.val|
//Conversion a float
float32x4_t xPattern0 = vevtq_-f32_s32
float32x4_t yPattern0 = vevtq_f32_s32
float32x4_t xPatternl vevtq_f32_s32
float32x4_t yPatternl vevtq_f32_s32
float32x4_t xPattern2 vevtq_f32_s32
float32x4_t yPattern2 vevtq-f32_s32
float32x4_t xPattern3 vevtq-f32_s32
float32x4_t yPattern3 = vevtq_f32_s32
//Multiplicaciones 0
float32x4_t firstTerm0O = vmulq_.n_f32(xPattern0, b);
float32x4_t secondTerm0 = vmulq-n_f32 (xPattern0, a)
float32x4_t firstTerm2 = vmulq_-n_f32(xPattern2, b);
2)
)

patternX0. val |
patternYO0.val |
patternX0.val |
patternYO.val |
[
[
[
[

patternX1.val
patternY1.val
patternX1.val
patternY1.val

PRy

float32x4_t secondTerm2 = vmulq-n_f32(xPattern2,
firstTerm0 = vmlaq.n_f32(firstTerm0 , yPattern0, a
secondTerm0 = vmlsq_n_f32 (secondTerm0O, yPattern0, b);
firstTerm2 = vmlaq.n_f32(firstTerm2, yPattern2, a);
secondTerm2 = vmlsq-n_f32 (secondTerm2, yPattern2, b);
//Multiplicaciones 1

float32x4_t firstTerml = vmulq-n_f32(xPatternl, b)
float32x4_t secondTerml = vmulq_n_f32(xPatternl , a
float32x4_t firstTerm3 = vmulq_n_f32(xPattern3, b);
float32x4_t secondTerm3 = vmulq-n_f32 (xPattern3, a)
firstTerml = vmlaq.n_f32(firstTerml, yPatternl, a);
secondTerml = vmlsq-n_f32 (secondTerml, yPatternl, b);
firstTerm3 = vmlaq.n_f32(firstTerm3 , yPattern3, a);
secondTerm3 = vmlsq_n_f32 (secondTerm3, yPattern3, b);

int32x4_t firstRound0 = vcvtq-s32_f32 (firstTerm0);
int32x4_t secondRound0 = vevtq-s32_f32 (secondTerm0);
int32x4_t firstRoundl = vevtq-s32_f32 (firstTerml);
int32x4_t secondRoundl = vecvtq_s32_f32 (secondTerml);
int32x4_t firstRound2 = vevtq_s32_f32 (firstTerm2);

int32x4_t secondRound2 = vcvtq-s32_f32 (secondTerm?2);
int32x4_t firstRound3 = vevtq-s32_f32 (firstTerm3);

int32x4_t secondRound3 =

vevtqos32_£32 (secondTerm3);

//Multiplicar por step y suma de terminos
firstRound0 = vmlaq-n_s32 (secondRound0, firstRoundO ,
firstRoundl = vmlaq_-n_s32(secondRoundl, firstRoundl ,
firstRound2 = vmlaq_-n_s32(secondRound2, firstRound?2 ,
firstRound3 = vmlaq.n_s32(secondRound3, firstRound3,
//Acceso a la imagen, intercalado

uint8x8_t value0 = vldl_u8(center + firstRound0[0]);
uint8x8_t valuel = vldl_-u8(center + firstRound0[1]);
uint8x8_t value2 = vldl_u8(center + firstRound0[2]);
uint8x8_t value3 = vldl_u8(center + firstRound0 [3]);
uint8x8_t valued = vldl_u8(center + firstRoundl [0]);
uint8x8_t valueb5 = vldl_u8(center + firstRoundl [1]);
uint8x8_t value6 = vldl_u8(center + firstRoundl [2]);
uint8x8_t value7 = vld1_u8(center + firstRoundl [3]);
uint8x8_t value8 = vldl_u8(center + firstRound2[0]);
uint8x8_t value9 = vldl_u8(center + firstRound2[1]);
uint8x8_t valuel0 = vldl_u8(center + firstRound2[2]);
uint8x8_t valuell = vldl_-u8(center + firstRound2[3]);
uint8x8_t valuel2 = vld1_.u8(center + firstRound3[0]);
uint8x8_t valuel3 = vldl_u8(center + firstRound3[1]);
uint8x8_t valueld = vldl_u8(center + firstRound3[2]);
uint8x8_t valueld5 = vldl_u8(center + firstRound3[3]);

//Reordena los datos

value0 = vrev64_u8(value0); //Toma
valuel = vrev64_u8(valuel); //Toma
value0 = vext_u8(value0, value2, 1
valuel = vext_u8(valuel , valued, 1
value0 = vext_u8(value0, valued, 1
valuel = vext_u8(valuel, value5, 1
value0 = vext_u8(value0, value6, 1
valuel = vext_u8(valuel, value7, 1
value0) = vext_u8(value0, value8, 1
valuel = vext_u8(valuel, value9, 1
value0 = vext_u8(value0, valuelO,
valuel = vext_u8(valuel, valuell,
value0 = vext_u8(value0, valuel2,
valuel = vext_u8(valuel , valuel3,
value0 = vext_u8(value0, valueld,
valuel = vext_u8(valuel, valuelb,
//Comparacion less than

value0 = veclt_u8(value0, valuel);
//Transformacion resultados a 0,1
uint8_t one = 1;

uint8x8_t ones = vdup_n_u8(one);
value0 = vand_u8(value0, ones);

//Compone el descriptor

€
€

)
)
i
)
)
i

)

);
)i
)
)
)
)i
)i
)
1
1
1
1
1
1

)
)
)
)
)i
)

I primer dato
I primer dato

i
)
)
)
)

i

value0 [0] |= valueO[1] << 1;

value0 [0] |= value0[2] << 2;

value0 [0] |= value0[3] << 3;

value0 [0] |= value0[4] << 4;

value0 [0] |= value0O[5] << 5;

value0 [0] |= value0[6] << 6;

value0 [0] |= valueO[7] << T7;
//Almacena resultado

results = vext_u8(results, value0, 1);

if (1i%8=—7) {
//Escribe en memoria
vstl_u8(desc + i — 7, results);

B (Guia de compilacion de ORB-SLAM2
para Android

La libreria se ha compilado en un PC con sistema operativo Ubuntu 16.04 y
como entorno de desarrollo se ha utilizado Android Studio 2.2.2.
Para la compilacién de ORB-SLAM?2 se necesita:

e Compilador de C++11 6 C++0x, se ha usado gcc 5.4.0.

e NDK de Android, versién utilizada 13.1.
https://developer.android.com/ndk/downloads/index.html

e OpenCV for Android, version minima 2.4., en el proyecto se ha utilizado
la version 2.4.8 proporcionada por NVIDIA, que cuenta con optimiza-
ciones para los procesadores Tegra.
http://opencv.org/downloads.html
https://developer.nvidia.com/AndroidWorks-TADP-Archive

e Eigen, versién minima 3.1.; se ha usado la 3.2.
http://eigen.tuxfamily.org/index.php?title=Main_Page

e DBoW2 y g20, incluidas en ORB-SLAM2.
https://github.com/raulmur/0RB_SLAM2

Instrucciones

Para compilar utilizando el NDK junto con CMake es necesario configurar
los siguientes flags a la hora de compilar:

e -DANDROID_NDK: indica la ruta donde se encuentra el NDK.

e -DANDROID_ABI: para especificar la arquitectura para la que se quiere
compilar, en nuestro caso "armeabi-v7a with NEON”.

e -DANDROID_API_LEVEL: indica la version de la API utilizada, en el
proyecto se ha utilizado la 19.

e -DCMAKE_BUILD_TYPE: para indicar el tipo de compilaciéon, por
ejemplo Release.

e -DCMAKE_TOOLCHAIN _FILE: para indicar la ruta de la toolchain a
utilizar.

e -DANDROID_TOOLCHAIN_NAME: indica el nombre de la toolchain
a utilizar, se ha usado arm-linux-androideabi-gcc-4.9.

https://developer.android.com/ndk/downloads/index.html
http://opencv.org/downloads.html
https://developer.nvidia.com/AndroidWorks-TADP-Archive
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://github.com/raulmur/ORB_SLAM2

Un ejemplo para realizar la compilacion seria:

cmake . —DANDROIDNDK=/Android /Sdk/ndk—bundle
—DANDROID_ABEarmeabi—v7a with NEON
—DANDROID NATIVE_API LEVEL=19
—DCMAKE BUILD_TYPE=Release
—DCMAKE.-TOOLCHAIN FILE=/Android /Sdk/cmake /3.6.3155560/
android . toolchain .cmake
—DANDROID_TOOLCHAIN NAME=arm—linux —androideabi—gcc —4.9

Tras haber descargado ORB-SLAM2 y sus dependencias, hay que seguir
los siguientes pasos para lograr su compilacion:

1. Modificar el fichero CMakeLists.txt de la libreria DBoW?2 para incluir
los siguientes flags de compilaciéon: -march=armv7-a, -mfpu=neon -
mfloat-abi=softfp. También puede incluirse el flag -mtune=cortex-
alb para indicar el procesador exacto para el que se quiere compilar.
Ademas también hay que incluir la nueva libreria de OpenCV para
Android. Una vez realizados estos ajustes ya puede iniciarse la compi-
lacién como se ha indicado al inicio de esta seccidn.

2. Para la libreria g2o0 el proceso es similar que con DBoW2, hay que
modificar también su fichero CMakeLists.txt para incluir los mismos
flags de compilacién y en este caso también hay que incluir las cabeceras
de la libreria Eigen descargada. Después iniciar la compilacién.

3. Por ultimo queda compilar ORB-SLAM2, de la misma forma que con
las dos librerias anteriores en primer lugar se anadiran los flags de
compilacién a su fichero CMakeLists.txt. También es necesario incluir
la libreria de OpenCV utilizada y eliminar todas las referencias de
Pangolin del codigo. Por tltimo, antes de lanzar la compilacion hay
que asegurarse que la ruta donde se encuentran las librerias compiladas
de DBoW2 y g20 es la misma que la que se encuentra definida en el
fichero CMakeLists.txt y una vez todo esto esta listo se puede iniciar
la compilacion.

Una vez que ya se tiene la libreria compilada es necesario anadirla al
proyecto de la aplicacion, en el caso de este proyecto se ha realizado con el
soporte de CMake que tiene Android Studio. El proceso se puede ver en la
siguiente guia:
https://developer.android.com/studio/projects/add-native-code.html?
hl=es-419

https://developer.android.com/studio/projects/add-native-code.html?hl=es-419
https://developer.android.com/studio/projects/add-native-code.html?hl=es-419

C Guia de uso

Pantalla principal

En la pantalla principal el usuario puede acceder a la generaciéon de un nuevo
modelo del entorno o iniciar la visualizacion de un modelo que haya sigo
generado previamente.

A la izquierda de la pantalla se incluye una lista con los modelos que se
han generado mediante la aplicaciéon. Para acceder a uno de estos modelos
es necesario pulsar sobre el nombre del modelo que se quiere cargar, si la
pulsacion es prolongada se ofrece la posibilidad de borrar el modelo.

En la esquina inferior derecha de la pantalla se encuentra el botén que
inicia la generacién de un nuevo modelo, al pulsarlo se inicia ORB-SLAM y
se comienza el proceso de generacion.

3D Mapper App :

ARM 320
Habitacion
Habitacion1
Salon ARM 640

habitacion3

Figure C.1: Pantalla principal de la app

Pantalla de generacién de modelo

La mayor parte de la pantalla la ocupa el visualizador, donde se puede ob-
servar el mapa generado. A la hora de visualizar el mapa se permite activar
algunas opciones mediante los botones situados en la parte superior de la
pantalla y en la esquina inferior del visualizador.

e Follow: permite activar el seguimiento de la trayectoria seguido por
la camara, es decir, si se desea que la visualizacion del mapa se haga
desde el punto donde se encuentra la camara o desde uno fijo.

o Keyframes: activa el dibujado de los keyframes.
e Reconstruction: muestra la nube de puntos que se va generando.

e Pausa: detiene la generacion del mapa y el modelo momentaneamente
hasta que vuelva a pulsarse el boton.

e Stop: lanza un didlogo que permite terminar la generacién del modelo
y guardarlo introduciendo un nombre.

En las esquinas superiores derecha e izquierda, se pueden observar respec-
tivamente las imégenes a color capturadas por la cAmara en las se pintan los
puntos de interés detectados por ORB-SLAM y imagen de profundidad cap-
tada por la camara.

Follow On Keyframes Off Reconstruction Off

FPS: 8.849558
KeyFrames: 1
RefPoints: 299
MapPoints: 299
DepthPoints: 12634

Figure C.2: Pantalla de generacion de modelo

10

Pantalla de visualizacién de modelos

La navegacion principal se realiza mediante gestos en la pantalla tactil.

El primero de los gestos es el deslizamiento en una direccion, este gesto
provoca la rotacion de la cdmara en la direccion en la que se realice el desliza-
miento, si el gesto se realiza con dos dedos la camara se trasladara en lugar
de rotar.

El otro gesto admitido es el de acercar/alejar dos dedos, que producird
un cambio en el nivel de zoom en la visualizacién dependiendo de si el gesto
es de acercamiento o alejamiento.

El resto de acciones se realizan mediante los botones en pantalla:

e Mapa: cambia la visualizacién a vista cenital.
e Rosa de los vientos: devuelve la cdmara a la posicién original.

e Flechas: permiten avanzar o retroceder la camara en la direccién en la
que esta observando.

Figure C.3: Pantalla de visualizaciéon de modelos de la app

11

