

Proyecto Fin de Carrera

UNA APROXIMACIÓN A LA OPTIMIZACIÓN DE
ALGORITMOS MEDIANTE EL USO DE

MINIMIZACIÓN DE FUNCIONES BOOLEANAS

Autor

Rubén Alejandro Escartín Aparicio

Directores

Javier Campos Laclaustra

Víctor Viñals Yúfera

ESCUELA DE INGENIERÍA Y ARQUITECTURA DE ZARAGOZA
2017

Ingeniería Informática Proyecto Fin de Carrera

2

Agradecimientos
Gracias a mis profesores.

A Javier Campos por ser el mejor profesor que he tenido durante la carrera y permitirme darle salida

a esta locura.

A Víctor Viñals por guiarme con inteligencia.

A todos los profesores que he tenido en la universidad, de todos he aprendido algo.

Mención especial a Pedro Muro por introducirme a Lisp.

Gracias a mi familia.

A mi padre por su esfuerzo, sin el que nunca podría haber estudiado una ingeniería.

A mi hermana por todas las ocasiones en las que ha estado a mi lado.

A Pilar y su familia, porque estos años se ha convertido en la mía.

Gracias a mis amigos, sabéis quienes sois: Jorge, Lucía, Irene, Héctor…

Gracias a todos los compañeros que he conocido durante estos años.

Esto, en cierta forma, es de todos.

Y gracias a mi cabezonería, por no permitirme renunciar nunca.

Ingeniería Informática Proyecto Fin de Carrera

3

Una aproximación a la optimización de algoritmos
mediante el uso de minimización de funciones

booleanas

RESUMEN

Este proyecto explora la posibilidad de optimizar algoritmos utilizando técnicas de minimización de

funciones booleanas.

La idea de partida es que expresar un programa a muy bajo nivel permitirá localizar y eliminar

redundancia. Para ello se trabaja con operaciones bit a bit de lógica booleana. Usamos únicamente

la función NAND para expresar cualquier otra función gracias a su propiedad de completitud

funcional.

Expresar un algoritmo de esta forma nos permite, por un lado, tener una medida del coste del

algoritmo en funciones NAND y, por otro, paralelizarlo.

Mediante minimización, se puede optimizar un circuito lógico equivalente a un fragmento de código

secuencial, que no tenga bucles ni recursividad. Para ello se ha desarrollado una técnica propia de

minimización rápida.

Se han desarrollado técnicas para este proyecto que permiten aplicar la minimización a algoritmos

recursivos. De este modo se eliminan, por ejemplo, operaciones repetidas en diferentes iteraciones

de un bucle.

Para llevar a cabo este trabajo se ha desarrollado una notación propia, parecida a un lenguaje

ensamblador, que permite trabajar con funciones lógicas y recursividad.

Se ha creado una base de datos dónde se definen las funciones recursivas, que pueden representar

desde una puerta lógica hasta un algoritmo como el de la suma.

Se han implementado los métodos de optimización de estas funciones recursivas y un método de

evaluación, mediante el que se ejecutan para comprobar que son correctas. También se han

implementado una serie de utilidades para, por ejemplo, traducir entre diferentes notaciones.

Finalmente se han comparado los resultados con el algoritmo sin optimizar y con la solución que nos

ofrecerían otras herramientas.

Ingeniería Informática Proyecto Fin de Carrera

4

Índice
Agradecimientos ... 2

RESUMEN .. 3

Índice... 4

1 Introducción ... 6

1.1 Motivación y contexto .. 6

1.2 Antecedentes y estado de la técnica .. 6

1.3 Objetivo y alcance ... 6

1.4 Métodos y técnicas ... 7

1.5 Estructura del resto de la memoria .. 7

2 Planteamiento del problema ... 9

3 Solución del problema ... 10

3.1 Notación utilizada ... 10

3.2 Estructuras de datos empleadas ... 12

3.2.1 Representación de valores binarios ... 12

3.2.2 Base de datos de funciones ... 12

3.2.3 Bosque de funciones NAND ... 14

3.3 Técnica propia de minimización de circuitos .. 14

3.3.1 Representación de la Red Booleana .. 15

3.3.2 Funcionamiento del algoritmo ... 17

3.3.3 Complejidad computacional del método de minimización ... 22

3.3.4 Limitaciones del método de minimización .. 23

3.4 Optimización de algoritmos secuenciales ... 24

3.4.1 Traducción a funciones NAND mediante la base de datos .. 24

3.4.2 Método de reconstrucción de funciones ... 24

3.5 Optimización de la parte de secuencial de algoritmos recursivos .. 25

3.5.1 Algoritmo de fisión de nodos ... 25

3.5.2 Algoritmo de fusión de nodos .. 25

3.6 Optimización de la redundancia en algoritmos recursivos .. 25

3.7 Algoritmos que contienen una llamada recursiva .. 28

3.8 Evaluación de funciones/Ejecución de algoritmos ... 28

4 Pruebas y resultados obtenidos ... 30

4.1 Minimización de XOR .. 30

4.1.1 Función minimizada mediante nuestro método .. 30

4.1.2 Función minimizada mediante el algoritmo de Quine–McCluskey 30

Ingeniería Informática Proyecto Fin de Carrera

5

4.1.3 Función minimizada mediante el algoritmo MisII.. 31

4.2 Multiplexor de dos entradas (if-then-else lógico)... 31

4.2.1 Función minimizada mediante nuestro método .. 31

4.2.2 Función minimizada mediante el algoritmo de Quine–McCluskey 31

4.2.3 Función minimizada mediante el algoritmo MisII.. 32

4.3 Expresión general de la suma. .. 32

4.3.1 Caso particular de la suma: ADD de 3 bits ... 33

4.3.2 Caso particular de la suma: ADD de 4 bits ... 36

5 Consideraciones finales ... 39

5.1 Conclusiones ... 39

5.2 Propuestas de desarrollo futuro ... 39

5.2.1 Aplicación a algoritmos más complejos ... 40

5.2.2 Traducción de vuelta del lenguaje intermedio optimizado al lenguaje original 40

5.2.3 Demostración de que el modelo de representación de algoritmos es Turing completo. . 40

5.2.4 Implementación de un método de evaluación en anchura ... 40

5.2.5 Generalización de la optimización de algoritmos recursivos ... 40

5.2.6 Mejoras en la optimización .. 40

6 Bibliografía ... 42

7 Anexos .. 43

7.1 Desarrollo del proyecto .. 43

7.1.1 Implementación ... 43

7.1.2 Imprevistos .. 43

7.2 Métricas .. 44

7.3 Sugerencias para la generalización de la optimización de funciones recursivas 45

7.4 Tabla de verdad de la suma de 4 bits.. 46

7.5 Algoritmo de multiplicación .. 49

7.6 Traza completa de la optimización de la suma modular .. 50

7.6.1 Optimización de la parte secuencial .. 50

7.6.2 Optimización de la redundancia entre iteraciones .. 52

7.7 Traza de ejecución del software de optimización desarrollado ... 57

8 Figuras .. 66

9 Glosario .. 67

Ingeniería Informática Proyecto Fin de Carrera

6

1 Introducción

1.1 Motivación y contexto
Este proyecto es un proyecto de iniciación a la investigación. Nace a propuesta del alumno, a partir

de la intuición de que frente al problema de optimización combinatoria que representa elegir las

instrucciones más adecuadas para implementar un algoritmo, una posible aproximación es

expresarlas todas a más bajo nivel, en un lenguaje de una sola instrucción.

La motivación fundamental del proyecto es la observación de que existe un problema de difícil

solución: los algoritmos rara vez son óptimos. La optimización automática de código se deja

actualmente en manos de los compiladores. Pero ningún compilador puede garantizar que se

obtiene el código más rápido o más pequeño, ya que para hacerlo tendría que resolver el problema

de parada [1], que es indecidible.

En los compiladores tradicionales se optimiza mediante la aplicación de una serie de reglas fijas, en

un orden determinado. Estas reglas y el orden en que se aplican suelen ser lo suficientemente buenas

para producir un código de alto rendimiento, pero eso no quiere decir que no se pueda optimizar

más.

1.2 Antecedentes y estado de la técnica
La optimización tiene muchas vertientes. Hay problemas de optimización de código que son NP-

completos o incluso indecidibles. Este proyecto se centra única y exclusivamente en la optimización

del procesamiento aritmético-lógico.

Algunas técnicas habituales de los compiladores son el “inlining” de funciones, la eliminación de

código muerto, análisis de flujo, selección de instrucciones máquina complejas, etc. Otra de estas

reglas es la supresión de subexpresiones comunes, donde se eliminan operaciones duplicadas [2].

Algunas de estas optimizaciones se aplican una vez el compilador ha generado su código intermedio

y otras en fases posteriores, pero siempre se hace sobre un programa expresado en repertorio

complejo de sentencias o instrucciones.

No se han encontrado en la literatura técnicas de minimización de circuitos aplicadas para optimizar

código.

1.3 Objetivo y alcance
El objetivo del proyecto es explorar la posibilidad de optimizar código con un enfoque diferente. A

fin de validarlo se ha desarrollado un software optimizador.

Para ello se expresan algoritmos al nivel más bajo posible y se elimina la redundancia a ese nivel.

El método de optimización empleado implica transformar el código objeto a un código intermedio y

optimizar este código intermedio. Se utilizará un lenguaje intermedio basado únicamente en la

función lógica booleana NAND y la recursividad. Definimos optimizar como reducir una operación al

mínimo número de operaciones lógicas NAND equivalentes.

Para optimizar este código intermedio, se sintetizan circuitos de lógica booleana a partir del

algoritmo inicial y se minimizarán estos circuitos.

Como paso adicional se podría volver a traducir este código intermedio al código objeto inicial.

“La escultura ya estaba dentro de la piedra.

Yo, únicamente, he debido eliminar el

mármol que le sobraba”- Anónimo

Ingeniería Informática Proyecto Fin de Carrera

7

1.4 Métodos y técnicas
Un fragmento de código secuencial es equivalente a un circuito lógico. A ese circuito se le puede

aplicar una técnica de minimización de funciones booleanas. Con eso se obtiene un circuito

simplificado, que es equivalente al fragmento de código secuencial original optimizado a muy bajo

nivel. El proceso es similar a la supresión de subexpresiones comunes, eliminando operaciones

lógicas bit a bit redundantes.

Este proyecto pretende aprovechar la transformación del código a tan bajo nivel para optimizar y

paralelizar algoritmos en la medida de lo posible.

En 2008 se demostró que el problema de la minimización de circuitos de funciones booleanas es

∑ −𝑃
2 completo [3]. La aproximación para resolver este problema ha de ser por lo tanto heurística.

La implementación del método propuesto para optimizar algoritmos consta de una base de datos

donde se almacenan definiciones. Cada definición se define recursivamente mediante otras

definiciones. Todas las definiciones se construyen a partir de una definición base que es la operación

lógica NAND. La operación NAND representa una puerta lógica universal, mediante la cual es posible

realizar todas las demás operaciones lógicas. Estas definiciones se pueden usar para expresar tanto

algoritmos como instrucciones de código objeto.

Para optimizar un algoritmo, creamos una definición que lo representa, con sus entradas y salidas.

Al construir todas las definiciones a partir de la definición NAND, pueden expresarse únicamente

mediante esta función y la recursividad. Este es el proceso de traducción a un lenguaje intermedio.

Para optimizar un algoritmo secuencial, se traduce a un bosque1 de instrucciones lógicas NAND, en

un proceso similar a la síntesis de un circuito lógico. La optimización de este bosque es equivalente

a minimizar este circuito lógico, que en el caso de muy pocas variables sabríamos resolver mediante

un mapa de Karnaugh. Tradicionalmente, para la minimización de circuitos lógicos se aplican

algoritmos heurísticos como Espresso [4]; en su lugar, aplicaremos una técnica heurística más

sencilla, de coste lineal. La técnica consiste en eliminar las operaciones duplicadas y la doble negación

del circuito. Esta reducción es el núcleo del proceso de optimización.

Para optimizar un algoritmo recursivo se optimiza, tanto la parte secuencial de este, como las

operaciones redundantes entre iteraciones recursivas.

En cuanto al apartado técnico, el optimizador está escrito en Java, que es un lenguaje portable, muy

usado y con excelentes herramientas para la depuración. Se han desarrollado algoritmos para

traducir código objeto a código intermedio, así como para optimizarlo.

Se ha profundizado en el conocimiento adquirido en las asignaturas de Compiladores respecto a los

lenguajes intermedios y en los conocimientos adquiridos en las asignaturas del área de Arquitectura

de Computadores en cuanto a circuitos y su minimización. Además, hemos usado estructuras de

datos arborescentes y múltiples tablas dispersas, aplicando los conocimientos adquiridos en

Estructuras de Datos y Algoritmos.

1.5 Estructura del resto de la memoria
En primer lugar, plantearemos de la forma más sencilla posible el problema al que nos enfrentamos

y los requisitos necesarios para abordarlo. En segundo lugar, explicaremos la solución adoptada,

empezando por la notación empleada, con las estructuras de datos elegidas y los métodos utilizados.

1 Un bosque es un conjunto de árboles. [17]

Ingeniería Informática Proyecto Fin de Carrera

8

Finalmente, compararemos los resultados obtenidos con los proporcionados por una herramienta

de minimización de circuitos y extraeremos conclusiones.

Ingeniería Informática Proyecto Fin de Carrera

9

2 Planteamiento del problema

Para abordar el problema de optimizar algoritmos, lo primero que necesitaremos es un modelo para

representarlos.

Representaremos los algoritmos mediante funciones recursivas, por lo que a partir de ahora se

usarán ambos términos indistintamente.

El modelo de representación elegido está formado por la función lógica universal NAND y la

definición de nuevas funciones. Las nuevas funciones se podrán definir a partir de las funciones que

ya estén definidas y podrán ser recursivas.

Además, será necesario representar de alguna forma los datos de entrada y salida. Para ello

utilizaremos nodos.

Como estamos trabajando con funciones recursivas, necesitaremos que esos nodos puedan dividirse

en subnodos.

Dado que usamos definiciones de funciones a partir de otras funciones, será necesaria una base de

datos donde almacenarlas.

Para resolver este problema necesitaremos representar el algoritmo original, identificar los

segmentos secuenciales del algoritmo, sintetizar el circuito que los represente, minimizarlo y aplicar

las optimizaciones obtenidas al algoritmo.

Además, buscaremos otras formas de aplicar esta optimización de código secuencial a funciones

recursivas.

“La belleza es la purgación de lo superfluo.”

- Miguel Ángel

Ingeniería Informática Proyecto Fin de Carrera

10

3 Solución del problema

3.1 Notación utilizada
La notación tradicional usada en lógica puede resultar bastante redundante, por ejemplo al intentar

representar la función XOR mediante funciones NAND:

𝐴 ⊕ 𝐵 = (𝐴 + 𝐵) (𝐴′ + 𝐵′) = (𝐴′𝐵′)′ (𝐴 𝐵)′ = (((𝐴′𝐵′)′ (𝐴 𝐵)′)′)′

= ((((𝐴 𝐴)′ (𝐵 𝐵)′)′ (𝐴 𝐵)′)′)′

= ((((𝐴 𝐴)′ (𝐵 𝐵)′)′ (𝐴 𝐵)′)′ (((𝐴 𝐴)′ (𝐵 𝐵)′)′ (𝐴 𝐵)′)′)′

Para representar una expresión arbitraria, con un número ilimitado de entradas y salidas locales,

usaremos la siguiente notación:

FUNCIÓN [NodoEn1, NodoEn2, … ; NodoS1, NodoS2,…] =

FUNCIÓN1 [NodoEnL1, NodoEnL2, … ; NodoSL1, NodoSL2,…],

FUNCIÓN2 [NodoEnL1, NodoEnL2, … ; NodoSL1, NodoSL2,…]…

Donde:

 Los nodos representan literales. Un literal es una variable o su complemento.

 NodoEn1, NodoEn2, … representan nodos de entrada de la función principal

 NodoS1, NodoS2 representan nodos de salida de la función principal

 FUNCIÓN1, FUNCIÓN2, …. representan instancias de funciones usadas para definir la

función principal

 NodoEnL1, NodoEnL2, … representan nodos de entrada locales

 NodoSL1, NodoSL2, … representan nodos de salida locales

Dado un sumador completo de 1 bit:

Figura 1: Sumador completo de 1 bit

𝐶𝑜𝑢𝑡 = (𝐴 ⊕ 𝐵)𝐶𝑖𝑛 + 𝐴𝐵

𝑆 = 𝐴 ⊕ 𝐵 ⊕ 𝐶𝑖𝑛

Podemos representarlo como:

Sum[A,B,Cin; S,Cout] =

XOR[A,B; t1], AND[t1,Cin; t3], AND[A,B; t2], OR[t2,t3; Cout], XOR[A,B; t4], XOR[t4, Cin; S]

A B Cin S Cout

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 1 1 1

“Everything should be made as simple as possible, but

not simpler.” – attributed to Albert Einstein

Ingeniería Informática Proyecto Fin de Carrera

11

Además, es posible separar en líneas las funciones según las dependencias que se producen entre

sus nodos. Toda función local, que usa un nodo de entrada, deberá ir siempre después de cualquier

otra que tenga ese mismo nodo como salida.

Sum[A,B,Cin; S,Cout] =

XOR[A,B; t1], AND[A,B; t2], XOR[A,B; t4]

AND[t1, Cin; t3], XOR[t4,C; S]

OR[t2,t3; Cout]

De esta forma, estamos exponiendo el paralelismo de la definición de la función, ya que las

operaciones que están en una misma línea podrían ejecutarse en paralelo.

Dado que las instancias pueden ser recursivas, encontramos la necesidad de dividir los nodos en

subnodos.

La forma de indexar los subnodos de un nodo está inspirada en el lenguaje Lisp. Podemos hacer

referencia al subnodo “final” o al “resto” de subnodos.

En Lisp la estructura de datos primaria es la lista. Se utilizan dos operaciones, “car” y “cdr” para

seleccionar el primer elemento de la lista o el resto de la lista.

Nosotros hacemos algo parecido con los nodos: mediante “último” seleccionamos el último subnodo

que pueda componer un nodo y mediante “resto” seleccionamos todos los demás.

En el caso de que el nodo no tenga subnodos definidos, estaremos seleccionando los bits (“final” o

“resto”) que componen ese dato.

Por lo tanto:

 Para indicar el subnodo final de un nodo, usaremos X{n}

 Para indicar el resto de subnodos, usaremos X{1..n-1}

Por ejemplo, si queremos aplicar la función lógica AND entre un bit y un vector de bits, podemos

imaginar el siguiente circuito:

Figura 2: Circuito de funciones AND entre un bit y un vector de bits

Para representarlo, definiremos la función recursiva:

andRecursivo[0,1; 3(5&4)] =

and [0,1{n}; 4]

andRecursivo[0,1{1..n-1}; 5]

Se utiliza la notación de índice matemático (empezando en el 1) en lugar del convenio usado en los

índices en informática (empezando en el 0) para facilitar su lectura.

Ingeniería Informática Proyecto Fin de Carrera

12

Una desventaja de esta forma de representar los datos es que acceder al primer nodo de una lista

tendría coste lineal, ya que no tenemos acceso directo y habría que iterar todos los nodos uno a uno.

Sin embargo, esto es sólo un modelo para representar un algoritmo, de modo que el coste real no

tiene por qué ser ese.

3.2 Estructuras de datos empleadas

3.2.1 Representación de valores binarios
Utilizamos un tipo de datos para almacenar cadenas de bits, que representan datos procesados por

las funciones. Java SE dispone de la clase BitSet; el problema es que la longitud de las cadenas

depende siempre del número de bits significativos que contenga. Por la naturaleza de las

operaciones que realizamos, necesitamos controlar el número de bits que tiene una cadena y que

no tiene porqué ser el mismo que el de bits significativos. Por ejemplo, una representación del valor

“0” en una arquitectura de 8 bits ha de ser “00000000”. Para ello se ha ampliado la clase BitSet de

Java SE, añadiendo un campo de longitud.

A esta clase ampliada la llamamos fixedBitSet.

También se ha implementado la función NAND que, dados dos objetos fixedBitSet, nos devuelve un

tercer objeto, resultado de aplicar esta operación.

3.2.2 Base de datos de funciones
A fin de trabajar con funciones con la notación descrita, se ha implementado una base de datos de

funciones.

La función NAND está predefinida y se utiliza para definir cualquier otra función. Cada nueva función

que se añade a la base de datos se define mediante otras que ya estén en la base de datos.

No se permite usar funciones que no estén definidas antes en la base de datos, salvo la función que

se está definiendo. De esta forma se permite la recursividad, pero se elimina la posibilidad de que

se dé recursión indirecta.

Sí, por ejemplo, añadimos la definición de la función NOT a la base de datos, nos quedará:

BASE DE DATOS:

not[0; 1] =

nand [0,0; 1]

nand[0,1; 2] =

 nand [0,1; 2]

 Funciones
Las funciones están compuestas por nodos e instancias de otras funciones y su nombre tiene que ser

único. Los nodos representan los datos. Cada función tiene una serie de nodos de entrada y una serie

de nodos de salida.

Las instancias se almacenan en una estructura bidimensional, para poder ordenarlas según las

dependencias entre sus nodos. Si un nodo es salida de una instancia, todas las instancias a funciones

que lo utilicen como entrada irán después.

Ingeniería Informática Proyecto Fin de Carrera

13

Cada función almacena cuáles son las instancias recursivas (de sí misma) y qué instancias contienen

recursividad. Esto es así para facilitar el tratamiento posterior de funciones recursivas.

Un ejemplo de función es:

or[0,1; 2] =

not [0; 3] not [1; 4]

nand [3,4; 2]

3.2.2.1.1 Instancias
Las instancias son referencias a funciones que se usan en la definición de la función principal.

En el ejemplo anterior NOT y NAND son instancias a funciones usadas para definir la función principal

OR.

 Una instancia tiene que tener, por lo tanto, una serie de nodos de entrada, una serie de nodos de

salida y una función, que es la función instanciada. Además, almacenamos la profundidad a la que se

sitúa esa instancia dentro de la estructura de datos bidimensional de instancias de una función, para

facilitar la inserción de nuevas instancias.

3.2.2.1.2 Nodos
Los nodos representan los datos empleados en las funciones.

Un nodo debería tener un subnodo “final” y un subnodo “resto”.

Cada nodo almacena también su nodo padre, si lo hay, si es salida de una instancia y a qué definición

principal pertenece.

 Problemática de los nodos
En ocasiones necesitaremos que un nodo, hijo de algún nodo ya definido, componga un nuevo nodo.

Este caso se da por ejemplo en la definición usada para la suma, que veremos en la Sección 4.3:

tenemos el nodo 10(8{n}&7&11) que necesita para su definición del nodo 8{n}.

 Solución propuesta a la problemática de los nodos
Hasta ahora usábamos los subnodos “final” y “resto” para designar elementos de un nodo.

Figura 3: Nodo con subnodos "resto" y "final".

La solución adoptada ha sido utilizar los subnodos “hijoFinal” y “restoDeHijos” para elegir elementos

y por otro lado unos subnodos “padreFinal” y “restoDePadres” para almacenar la lista de elementos.

Figura 4: Nodo con hijos "restoDeHijos" e "hijoFinal" y padres "restoDePadres" y "padreFinal".

resto final

(a)

restoDePadres

restoDeHijos

padreFinal

hijoFinal

nodo

nodo

Ingeniería Informática Proyecto Fin de Carrera

14

De esta forma los nodos padres cumplen una función parecida a la yuxtaposición usada en la

notación (“&”) y los nodos hijos a los subíndices ({1..n-1} y {n}). Cómo en Lisp, encadenando nodos

podremos representar listas y seleccionar cualquier elemento de ellas.

3.2.3 Bosque de funciones NAND
Además de las estructuras usadas para representar funciones, usamos una estructura de datos

adicional durante el proceso de minimización.

La estructura es un bosque, es decir, un conjunto de árboles de funciones NAND. En este caso los

árboles pueden tener nodos en común.

Un bosque de funciones NAND tiene, por lo tanto, una serie de nodos de entrada y una serie de

nodos de salida. Se utiliza, además, un contador de nodos para facilitar las tareas de representación.

 Nodos NAND
Todos los nodos de esta estructura son indivisibles y, por ello, de igual tamaño.

Cada nodo de esta estructura es, o bien una entrada del bosque de funciones NAND, o bien la salida

de una función NAND.

 Por lo tanto, cada nodo tiene referencias a dos nodos padres, formando así una función NAND de

dos entradas y una salida. Estas referencias están vacías para los nodos de entrada.

El bosque que representa la función NOT es, por ejemplo:

Figura 5: Representación de la función NOT mediante un bosque de funciones NAND

Donde el nodo 0 es el único nodo de entrada, el nodo 1 es el único nodo de salida y las dos entradas

del nodo 1 corresponden al nodo 0.

3.3 Técnica propia de minimización de circuitos
La aproximación moderna a la minimización de circuitos la separa en dos problemas: optimización

independiente de la tecnología y optimización dependiente de la tecnología. [5] El método aquí

propuesto se centra únicamente en la optimización independiente de la tecnología.

Dentro de la optimización independiente de la tecnología existen dos aproximaciones: la

minimización en dos niveles y la minimización multinivel.

La minimización en dos niveles busca una expresión mínima en suma de productos (OR de ANDs) o

producto de sumas (AND de ORs). El objetivo es reducir el número de literales y productos (o sumas)

utilizados.

La minimización multinivel minimiza una expresión con funciones lógicas arbitrarias. El objetivo es

reducir únicamente el número de literales utilizados.

Ingeniería Informática Proyecto Fin de Carrera

15

La minimización en dos niveles tiene un problema de compromiso: minimiza el retraso del circuito a

costa de maximizar el área (puertas y literales).

La minimización multinivel aparece para solucionar ese compromiso y permitir un mayor retraso

minimizando el área del circuito.

El ejemplo clásico de minimización en dos niveles es el uso de un mapa de Karnaugh para expresar

la función algebraica booleana representada como el sumatorio de sus minitérminos o producto de

sus maxitérminos. Este método aprovecha las capacidades humanas de detección de patrones.

El método de Quine–McCluskey es un método determinista en dos niveles para encontrar la

minimización de funciones booleanas como sumas de productos. [6] Este método es más adecuado

para implementarlo en computadores, pero es NP-complejo. El tiempo de resolución del algoritmo

crece de forma exponencial con el aumento del número de variables.

El algoritmo Espresso es el estándar de la industria para la minimización de dos niveles. [5] Se trata

de un algoritmo heurístico, que no tiene por qué encontrar la solución óptima, pero se comporta

suficientemente bien. Fue desarrollado por Robert K. Brayton en la Universidad de California,

Berkeley. [7]

El algoritmo Espresso-exacto (o “mincov”) es una implementación moderna del algoritmo de Quine–

McCluskey, que mantiene el problema de crecimiento exponencial con el número de variables. [8]

Mediante este algoritmo se puede hallar la solución exacta, pero solo es práctico con un número

muy reducido de variables.

MisII es la segunda versión del algoritmo de minimización multinivel MIS, desarrollado también por

Robert K. Brayton y utilizado por compañías como Intel o Dec [9]. MisII minimiza de forma

dependiente de la tecnología y utiliza Espresso como una de sus subrutinas. Tanto Espresso como

MisII pertenecen a la colección de programas y librerías OctTools de la Universidad de California,

Berkeley, para el diseño de circuitos integrados. [10]

El método de Transducción es un método multinivel que minimiza los términos que no importan en

redes compuestas únicamente de funciones NOR. [11] Tiene similitudes al método que aquí se

presenta, como el hecho de aprovechar la universalidad de la puerta lógica NOR, y aplicar unas reglas

de simplificación para eliminar redundancia; pero estas son mucho más complejas y el método es

iterativo, mientras que nuestro método es de una sola pasada [4].

Todos los algoritmos de minimización mencionados utilizan una Red Booleana como medio para

representar circuitos.

Nuestro método utiliza una representación alternativa de una Red Booleana, que describiremos

mediante una notación propia. Se usan únicamente dos reglas para minimizar. El algoritmo tiene un

coste medio de ejecución lineal en el número de literales. Para los ejemplos estudiados, este método

minimiza igual o mejor que MisII, en el caso concreto de la representación de un circuito mediante

puertas NAND de dos entradas.

3.3.1 Representación de la Red Booleana
Una Red Booleana es el modelo estándar independiente de la tecnología para representar circuitos

mediante una red lógica. Los nodos de la red pueden ser entradas primarias, salidas primarias o

funciones booleanas. Las funciones representan una expresión arbitraria, con un número ilimitado

de entradas locales y una única salida [5] [12].

Ingeniería Informática Proyecto Fin de Carrera

16

Un conjunto de operaciones lógicas se dice funcionalmente completo si cualquier función booleana

puede ser expresada en términos de este conjunto de operaciones. Es habitual usar un conjunto de

operaciones lógicas funcionalmente completo que incluya las operaciones AND, NOT, OR y XOR. Sin

embargo, el conjunto unitario formado únicamente por la función NAND es funcionalmente

completo, es decir, podemos representar cualquier función booleana arbitraria mediante funciones

NAND. [13]

Se propone, por lo tanto, una Red Booleana, pero usando únicamente funciones NAND de dos

entradas, que pueden representar expresiones arbitrarias. Este modelo presenta la ventaja de

facilitar ciertas simplificaciones. Al utilizar una única función, se pretende evitar el problema de

optimización combinatoria derivado del uso de varias funciones.

Figura 6 : Representación de la función XOR mediante Redes Booleanas

En la Figura 6 : Representación de la función XOR mediante Redes Booleanas(a) tenemos la

representación de la función XOR mediante una Red Booleana de expresiones arbitrarias.

 En la Figura 6(b) tenemos la representación de la función XOR mediante una Red Booleana

compuesta únicamente de funciones NAND de dos entradas. Representaremos esta estructura

mediante un bosque de funciones NAND, donde los nodos son los literales.

Este modelo podría considerarse dependiente de la tecnología, al limitar la representación de la red

booleana a un tipo de puertas lógicas; sin embargo el planteamiento es el inverso: utilizamos las

funciones NAND de dos entradas como el bloque que construye cualquier otra expresión.

Esto nos permite introducir una nueva métrica: el número de funciones NAND utilizadas en esta red

(que es igual al número de literales que aparecen en las salidas de funciones) representa el coste de

cualquier expresión arbitraria. Como ejemplo, podríamos decir que el coste en funciones NAND de

dos entradas de la función XOR representada mediante el circuito de la Figura 3 es de 5 y su

profundidad (que representa el retraso del circuito) 3.

El objetivo sigue siendo reducir el número de literales, aunque hay que tener presente que no todos

los literales de una Red Booleana formada exclusivamente por funciones NAND serán literales de

una Red Booleana de expresiones arbitrarias equivalente.

Una ventaja del modelo es que al haber una única operación, no hace falta representar diferentes

operaciones; trabajamos únicamente con variables (los literales). Otra ventaja de este modelo es

(a)

(a)

(b)

(a)

Ingeniería Informática Proyecto Fin de Carrera

17

que múltiples representaciones mediante expresiones arbitrarias de una Red Booleana darán lugar

a la misma representación de una Red Booleana de funciones NAND.

3.3.2 Funcionamiento del algoritmo
Podemos encontrar cierto paralelismo entre el funcionamiento de nuestro algoritmo y Espresso.

Espresso es un algoritmo iterativo que repite una serie de fases: expansión, eliminación de la

redundancia y reducción [5].

El algoritmo aquí presentado se centra en la eliminación de la redundancia. Comparándolo con

Espresso, la expansión correspondería con la expresión de otras funciones como funciones NAND, y

la reducción sería el proceso de volver a expresar las funciones NAND como funciones más

complejas. Sin embargo, estas trasformaciones quedan fuera del modelo independiente de la

tecnología.

El desarrollo de esta técnica se debe a la observación de que aplicar las dos leyes de De Morgan a

una estructura formada únicamente por funciones booleanas NAND es muy sencillo.

El método de minimización es constructivo, es decir, partiendo de un circuito no minimizado, se va

construyendo el circuito minimizado, agregando las funciones NAND necesarias una a una. Para

obtener las funciones ordenadas desde las entradas hasta las salidas, se invocan sucesivamente los

árboles que constituyen el bosque de funciones NAND que representan la Red Booleana, desde las

hojas hacia las raíces.

 Primera regla: simplificación mediante la
eliminación de la doble negación

La primera regla de minimización consiste en eliminar la doble negación de funciones booleanas

NAND.

3.3.2.1.1 Primera ley De Morgan
La primera ley De Morgan dice que 𝐴 · 𝐵̅̅ ̅̅ ̅̅ = 𝐴̅ + 𝐵̅.

Figura 7: Aplicación de la primera ley de De Morgan mediante una red de funciones NAND

Los circuitos de las figuras Figura 7 (a) y Figura 7 (b) representan la equivalencia de la primera ley de

De Morgan.

(a)

(a)

(b)

(a)

(c)

(a)

(d)

(a)

Ingeniería Informática Proyecto Fin de Carrera

18

La Figura 7 (c) es el circuito resultante de la expresión en funciones NAND de la Figura 7 (b). Aplicamos

la segunda ley De Morgan para expresar la función OR en funciones NAND.

 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ = 𝐴̅ · 𝐵̅

𝐴 + 𝐵 = 𝐴̅ · 𝐵̅̅̅ ̅̅ ̅̅

Por último, mediante la eliminación de la doble negación obtenemos la función original, Figura 7 (d).

Con esto queda demostrado que este método aplica la primera Ley de Morgan, haciendo uso

únicamente de la eliminación de la doble negación.

3.3.2.1.2 Segunda ley De Morgan
La segunda ley de De Morgan es 𝐴 + 𝐵̅̅ ̅̅ ̅̅ ̅̅ = 𝐴̅ · 𝐵̅

Figura 8: Aplicación de la segunda ley de De Morgan mediante una red de funciones NAND

Los circuitos de las figuras Figura 8 (a) y Figura 8 (b) representan la equivalencia de la segunda ley de

De Morgan.

Aplicando la segunda ley De Morgan para expresar la función OR en funciones NAND, obtenemos el

circuito de la figura Figura 8 (c) a partir del circuito de la figura Figura 8 (a).

Si expresamos en funciones booleanas NAND el circuito de la segunda ley de De Morgan, figura

Figura 8 (b), obtenemos el mismo circuito de la figura Figura 8 (c).

 Con esto queda demostrada la aplicación de la segunda ley de De Morgan mediante este método de

minimización.

Nuestro método aplica, por lo tanto, al menos las dos leyes de De Morgan y la eliminación de dobles

negaciones.

 Segunda regla: eliminación de funciones
redundantes

La segunda regla consiste simplemente en impedir que se defina una función NAND equivalente a

alguna ya existente, es decir, con las mismas entradas.

(a)

(a)
(b)

(a)

(c)

(a)

Ingeniería Informática Proyecto Fin de Carrera

19

Esto se puede implementar, de forma sencilla, mediante una tabla dispersa bidimensional cuyos

índices sean los dos nodos de entrada. Además, estos dos nodos de entrada estarán ordenados para

que no haya repeticiones de la misma función con las dos mismas entradas en orden inverso.

Por ejemplo, para la función AND, sabemos que:

𝑎𝑏 = (𝑎𝑏)′′ = ((𝑎𝑏)′(𝑎𝑏)′)′

Luego en nuestra notación:

AND[a,b; c]=

NAND[a,b; x1], NAND[a,b; x2]

NAND[x1,x2; c]

Al minimizar esta definición, usamos una tabla dispersa bidimensional para asegurarnos de que no

haya funciones repetidas. En el caso de que ya haya una función definida con esos dos nodos de

entrada, la tabla devolverá como nodo de salida el que ya ha sido establecido. Además, se

almacenará en otra tabla que el nodo eliminado ha de ser reemplazado por el nodo ya establecido;

de esta forma se podrán corregir las siguientes referencias a este nodo.

Mediante esta tabla bidimensional se obtiene una definición libre de funciones NAND equivalentes

redundantes.

En el ejemplo se añade primero la función local NAND[a,b; x1]. Al intentar añadir NAND[a,b; x2],

como ya existe una entrada en la tabla con los índices a y b, la tabla nos devuelve x1 como salida, en

lugar de agregar esta función redundante a la estructura; además se crea una entrada en la tabla de

nodos equivalentes donde se indica que el nodo “x2” ha de ser reemplazado por el nodo “x1”.

Al ir a agregar la función NAND[x1,x2; c], utilizando la tabla de nodos equivalentes y reemplazando

“x2” por “x1”, agregamos NAND[x1,x1; c].

Nuestra definición de la función queda por lo tanto:

AND[a,b; c]=

NAND[a,b; x1]

NAND[x1,x1; c]

 Ejemplo de funcionamiento del método de
minimización aplicando las dos reglas

Antes hemos definido el sumador de un bit como:

Sum[A,B,Cin; S,Cout] =

XOR[A,B; t1], AND[A,B; t2], XOR[A,B; t4]

AND[t1, Cin; t3], XOR[t4, Cin; S]

OR[t2,t3; Cout]

Nodo Nodo equivalente

x2 x1

NodoEnL1 NodoEnL2 NodoSL

a b x1

x1 x1 c

Figura 9: Tabla dispersa bidimensional para la definición de AND y tabla de nodos equivalentes

Ingeniería Informática Proyecto Fin de Carrera

20

Donde es evidente que tenemos al menos una función redundante: dadas XOR[A,B; t1] y XOR[A,B;

t4], t1 y t2 siempre tendrán el mismo valor.

3.3.2.3.1 Expresión como Red Booleana de funciones NAND
En primer lugar traducimos la función a funciones NAND.

Para ello sabemos que la expansión de AND en funciones NAND es:

AND[a,b; c]=

NAND[a,b; x1], NAND[a,b; x2]

NAND[x1,x2; c]

𝑎 + 𝑏 = (𝑎′ + 𝑏′)′ = ((𝑎 𝑎)′(𝑏 𝑏)′)′

Luego la expansión de OR en funciones NAND es:

OR[a,b; c]=

NAND[a,a; x1], NAND[b,b; x2]

NAND[x1,x2; c]

𝑎 ⊕ 𝑏 = (((𝑎 𝑏)′𝑎)′ ((𝑎 𝑏)′𝑏)′)′

Luego la expansión de XOR en funciones NAND es:

XOR[a,b; c]=

NAND[a,b; x1] NAND[a,b; x2]

NAND[x1,a; x3],NAND[x2,b; x4]

NAND[x3,x4; c]

Aplicando la expansion de AND en funciones NAND obtenemos:

Sum[A,B,Cin; S,Cout]=

XOR[A,B; t1], NAND[A,B; x1], NAND[A,B; x2], XOR[A,B; t4]

NAND[t1, Cin; x3], NAND[t1, Cin; x4], XOR[t4, Cin; S] , NAND[x1,x2; t2]

NAND[x3, x4; t3],]

OR[t2,t3; Cout]

Aplicando la expansión de OR en funciones NAND obtenemos:

Sum[A,B,Cin; S,Cout]=

XOR[A,B; t1], NAND[A,B; x1], NAND[A,B; x2], XOR[A,B; t4]

NAND[t1, Cin; x3], NAND[t1, Cin; x4], XOR[t4, Cin; S] , NAND[x1,x2; t2]

NAND[t2,t2; x5], NAND[x3, x4; t3]

NAND{[t3,t3; x6]

NAND[x5,x6; Cout]

Ingeniería Informática Proyecto Fin de Carrera

21

Aplicando la expansión de XOR en funciones NAND obtenemos:

Sum[A,B,Cin; S,Cout]=

NAND[A,B; x1], NAND[A,B; x2], NAND[A,B; x7], NAND[A,B; x8], NAND[A,B; x11],

NAND[A,B; x12]

NAND[x7,A; x9],NAND[x8,B; x10] NAND[x11,A; x13],NAND[x12,B; x14];

NAND[x9,x10; t1], NAND[x13,x14; t4]

NAND[t1, Cin; x3], NAND[t1, Cin; x4], NAND[x1,x2; t2], NAND[t4, Cin; x15], NAND[t4,

Cin; x16]

NAND[t2,t2; x5], NAND[x3, x4; t3], NAND[x15, t4; x17], NAND[x16, Cin; x18]

NAND{[t3,t3; x6], NAND[x17,x18; S]

NAND[x5,x6; Cout]

3.3.2.3.2 Segunda regla: funciones redundantes
Al usar una tabla dispersa bidimensional para aplicar la segunda regla y eliminar las funciones

redundantes, obtendremos:

Figura 10: Tabla dispersa bidimensional para la definición de Sum y tabla de nodos equivalentes

Sum[A,B,Cin; S,Cout]=

NAND[A,B; x1]

NAND[x1,A; x9],NAND[x1,B; x10],], NAND[x1,x1; t2]

NAND[x9,x10; t1]

NAND[t1, Cin; x3]

NAND[t2,t2; x5], NAND[x3, x3; t3], NAND[x3, t1; x17], NAND[x3, Cin; x18]

NAND{[t3,t3; x6], NAND[17,18; S]

NAND[x5,x6; Cout]

NodoEnL1 NodoEnL2 NodoSL

A B x1

A x1 x9

B x1 x10

x1 x1 t2

x9 x10 t1

Cin t1 x3

t2 t2 x5

x3 x3 t3

x3 t1 x17

Cin x3 x18

t3 t3 x6

x17 x18 S

x5 x6 Cout

Nodo Nodo equivalente

x2 x1

x7 x1

x8 x1

x11 x1

x12 x1

x13 x9

x14 x10

t4 t1

x4 x3

x15 x3

x16 x3

Ingeniería Informática Proyecto Fin de Carrera

22

3.3.2.3.3 Primera regla: eliminación de la doble negación
Para cada nodo que vayamos añadiendo a la representación de la función, iremos comprobando que

sus padres (los nodos de entrada de la función NAND de la que es salida) no son un mismo nodo,

salida de otra negación. Si fuera el caso, estaríamos ante una doble negación y habría que eliminarla

como en la Figura 7: Aplicación de la primera ley de De Morgan mediante una red de funciones

NAND(c).

De esta forma ampliamos la tabla de nodos equivalentes con:

Nodo Nodo equivalente

x5 x1

x6 x3

Figura 11: Nodos equivalentes por la doble negación

La definición de la función nos queda por lo tanto:

Sum[A,B,Cin; S,Cout]=

NAND[A,B; x1]

NAND[x1,A; x9],NAND[x1,B; x10]

NAND[x9,x10; t1]

NAND[t1, Cin; x3]

NAND[x3, t1; x17], NAND[x3, Cin; x18], NAND[x1,x3; Cout]

NAND[17,18; S]

La función inicial tenía 24 funciones NAND y una profundidad de 7 funciones NAND. Tras minimizarla,

obtenemos una definición de la misma función compuesta por 9 funciones NAND y con una

profundidad de 6.

3.3.3 Complejidad computacional del método de
minimización

El algoritmo consiste en ir añadiendo las funciones NAND, una a una, a una nueva estructura

minimizada. Por lo tanto, el coste del algoritmo será proporcional al número de funciones booleanas

que haya en la estructura a minimizar. Este coste lineal será el coste temporal de recorrer la

estructura arborescente desde las hojas hasta las raíces.

 Complejidad de la eliminación de la doble negación
Comprobar si se produce una doble negación tiene un coste constante, ya que solo hay que verificar

si para el nodo salida de una función NAND las dos entradas son el mismo nodo (equivalente a una

función NOT) y que este nodo no sea a su vez el resultado de una negación (véase la Figura 7:

Aplicación de la primera ley de De Morgan mediante una red de funciones NAND).

3.3.3.1.1 Complejidad de eliminación de funciones redundantes
Para su implementación, necesitamos ordenar los nodos de forma que haya un único orden posible

de las entradas de cada función NAND. Esto es, simplemente, una comparación entre dos nodos,

operación de coste constante.

Ingeniería Informática Proyecto Fin de Carrera

23

Mediante una tabla dispersa bidimensional (o equivalentemente una tabla dispersa de tablas

dispersas), podemos comprobar si ya ha sido definida una función NAND con dos nodos concretos

por entradas. El tiempo medio de acceso a una tabla dispersa bidimensional es constante.

3.3.3.1.2 Complejidad total
Teniendo en cuenta que el coste medio de las operaciones a realizar por nodo añadido es constante,

y que el coste del algoritmo será proporcional al número de nodos de salida de funciones añadidos,

el coste total medio será por lo tanto lineal en el número de nodos de salida de funciones añadidos.

Esto es equivalente al número de funciones NAND. En notación asintótica tenemos un coste medio

O(n).

3.3.4 Limitaciones del método de minimización

 Funciones de dos entradas
Usar únicamente funciones NAND de dos entradas es una decisión de diseño, ya que permite

simplificar las expresiones con gran facilidad.

Mediante funciones con más entradas se pueden expresar de forma más compacta expresiones

arbitrarias. Un ejemplo de esta posibilidad, llevado al límite, es la minimización en dos niveles: se

realiza una única suma de una cantidad arbitraria de productos. Sin embargo, la selección del número

de entradas de las funciones entra dentro de la optimización dependiente de la tecnología, por lo

que no parece relevante el número de entradas de las funciones en una expresión intermedia.

 Funciones equivalentes irreducibles
Hay funciones que pueden representarse de diferentes maneras mediante funciones NAND y todas

son irreducibles por este método.

𝐴 ⊕ 𝐵 = (𝐴 + 𝐵) (𝐴′ + 𝐵′) = (𝐴′𝐵′)′ (𝐴 𝐵)′ = (((𝐴′𝐵′)′ (𝐴 𝐵)′)′)′

= ((((𝐴 𝐴)′ (𝐵 𝐵)′)′ (𝐴 𝐵)′)′)′

= ((((𝐴 𝐴)′ (𝐵 𝐵)′)′ (𝐴 𝐵)′)′ (((𝐴 𝐴)′ (𝐵 𝐵)′)′ (𝐴 𝐵)′)′)′

𝐴 ⊕ 𝐵 = (𝐴 𝐵′) + (𝐴′𝐵) = ((𝐴 𝐵′)′ (𝐴′ 𝐵)′)′ = ((𝐴 (𝐵 𝐵)′)′ ((𝐴 𝐴)′ 𝐵)′)′

𝐴 ⊕ 𝐵 = (((𝐴 𝐵)′𝐴)′ ((𝐴 𝐵)′𝐵)′)′

Estas representaciones dependen exclusivamente de cómo se defina la función y tienen costes

distintos.

Así la primera expresión consta de 6 funciones NAND diferentes y una profundidad de 4.

La segunda expresión tiene 5 funciones diferentes y una profundidad de 3.

La última expresión tiene 4 funciones diferentes y una profundidad de 3.

Esto sugiere, en primer lugar, que la optimización consiste en algo más que eliminar la redundancia,

al menos al expresar algoritmos secuenciales a nivel lógico como funciones NAND. En segundo lugar,

sugiere que nos encontramos ante un método de minimización heurístico, ya que el resultado de

minimizar una función depende de cómo se defina ésta, y no va a hallar necesariamente la

minimización con menor cantidad de funciones, ni menor profundidad.

Ingeniería Informática Proyecto Fin de Carrera

24

3.4 Optimización de algoritmos secuenciales
En el caso de un algoritmo secuencial donde todos los nodos son de igual tamaño, habrá que traducir

el algoritmo a funciones NAND y usar el método de minimización. El método de minimización nos

devolverá una tabla de nodos equivalentes que aplicaremos a la función original para optimizarla.

Por último, se ejecutará un método de reconstrucción de la función para asegurar que solo contiene

los nodos utilizados.

Primero introduciremos el algoritmo en nuestra base de datos y luego usaremos esta definición para

traducirlo a funciones NAND.

3.4.1 Traducción a funciones NAND mediante la base de
datos

Para traducir una función definida mediante la base de datos a funciones NAND, tan sólo hay que

expandir recursivamente las definiciones instanciadas. El coste de acceso a la base de datos es

constante al usar una tabla dispersa, por lo tanto el coste total de la expansión será lineal en el

número de instancias.

Por ejemplo, si tenemos la siguiente base de datos:

BASE DE DATOS:

not[0; 1] =

nand [0,0; 1]

nand[0,1; 2] =

 nand [0,1; 2]

or[0,1; 2] =

not [0; 3] not [1; 4]

nand [3,4; 2]

Para expandir la función OR en funciones NAND, expandiremos sus instancias, consultando la base

de datos en busca de la definición instanciada, quedando la función:

or[0,1; 2] =

nand[0,0; 3] nand [1,1; 4]

nand [3,4; 2]

Dado que traducir una función a funciones NAND tiene coste lineal y el método de minimización

tiene un coste medio lineal, el coste medio de optimizar algoritmos secuenciales mediante este

método será también lineal.

3.4.2 Método de reconstrucción de funciones
Este método, primero, borra las referencias a todos los nodos e instancias de la función.

Después, recorre la función desde los nodos de salida hasta las entradas, pasando por todas las

instancias y añade los nodos e instancias recorridos.

La utilidad del método es que no queden nodos “muertos” a causa de simplificaciones, y que puedan

seguir apareciendo como pertenecientes a la función.

Ingeniería Informática Proyecto Fin de Carrera

25

3.5 Optimización de la parte de secuencial de
algoritmos recursivos

El primer paso será eliminar temporalmente la recursividad, para extraer únicamente la parte

secuencial.

Para ello, añadimos los nodos de entrada de funciones recursivas como nodos de salida y los nodos

de salida de funciones recursivas como nodos de entrada, y eliminamos la llamada recursiva.

Sea, por ejemplo, la función recursiva:

 nandR[0,1; 2]=

 nand[0,1{n}; 2{n}]

 nandR[0,1{1..n-1}; 2{1..n-1}]

La transformaremos temporalmente en:

nandR[0,1, 2{1..n-1}]; 2,0,1{1..n-1}]=

 nand[0,1{n}; 2{n}]

Optimizaremos como en la sección 3.4, tratando la función como si se tratara de un algoritmo

secuencial.

Por último, desharemos la transformación para volver a tener un algoritmo recursivo.

Además, un algoritmo puede tener nodos de diferentes tamaños, por lo que habrá que dividirlos

para que tengan el mismo tamaño. En consecuencia, haremos una fisión de los nodos antes de

transformar el algoritmo recursivo, y los fusionaremos tras deshacer la transformación.

3.5.1 Algoritmo de fisión de nodos
El algoritmito de fisión de nodos es un algoritmo recursivo. Parte de los nodos de salida y acaba en

los nodos de entrada.

Si un nodo es salida de una instancia de función NAND y tiene hijos, los hijos se convierten en salida

de una nueva función NAND cuyas entradas son los hijos de las entradas de la instancia original.

3.5.2 Algoritmo de fusión de nodos
El algoritmo de fusión hace la operación inversa. Si hay tres nodos (dos de entrada y uno de

salida) cuyos subnodos forman funciones NAND, los fusiona en una sola.

Como en el caso del algoritmo de fisión, es recursivo desde las salidas hasta las entradas.

3.6 Optimización de la redundancia en algoritmos
recursivos

El método anterior no contempla la redundancia que puede darse entre llamadas recursivas de un

algoritmo. Para optimizar la redundancia entre llamadas recursivas sucesivas de una función,

necesitaremos desplegarlas.

Dado que el método de minimización utilizado sólo elimina la doble negación y las funciones

repetidas, será suficiente con desplegar la llamada recursiva una sola vez.

Ingeniería Informática Proyecto Fin de Carrera

26

Figura 12: Representación del desplegado de una llamada recursiva

Si imaginamos una función recursiva como una caja (Figura 12), vemos que al desplegarla una sola

vez se producirán todas las dobles negaciones que una función recursiva pueda producir consigo

misma. Las funciones repetidas también aparecerán de la misma manera.

Para hallar la función recursiva simplificada, se almacena qué nodos están definidos antes de

expandir y a qué nodos de la función original corresponden los nodos expandidos.

Después de desplegar la recursividad, aplicaremos el método de minimización como en la sección

3.5.

Si hay nodos equivalentes, crearemos una nueva función recursiva.

Las entradas de la nueva función recursiva serán nodos originales de la función antes de expandir

que sean entrada de una instancia de función con un nodo de salida nuevo.

Las salidas de la nueva función recursiva serán nodos originales de la función que sean salida de una

instancia con un nodo nuevo como entrada.

Localizando los nodos correspondientes en la función original a las entradas de la función expandida,

tendremos los nodos de entrada de la instancia a la nueva función recursiva.

Localizando los nodos correspondientes en la función original a las salidas de la función expandida,

tendremos los nodos de salida de la instancia a la nueva función recursiva.

Figura 13: Optimización de una función recursiva

En la Figura 13 vemos este procedimiento. En primer lugar tenemos el desplegado de la función

recursiva. En segundo lugar se halla la nueva función recursiva (en azul en el dibujo), eliminando la

redundancia.

Hay que tener en cuenta, que si hallamos todos los nodos hijos de un mismo nodo padre, será

necesario reemplazarlos por este nodo padre. A este procedimiento lo llamaremos fusión de nodos.

Sea, por ejemplo, la función recursiva:

 fooR[0,1; 2,3]=

 nand[0,1{1..n-1}{n}; 2{1..n-1}{n},3], nand[0,1{n}; 2{n}]

 fooR[0,1{1..n-1}; 2{1..n-1},4]

Si expandimos una vez la llamada recursiva, obtenemos:

 fooR[0,1; 2,3]=

 nand[0,1{1..n-1}{n}; 2{1..n-1}{n},3], nand[0,1{n}; 2{n}]

Ingeniería Informática Proyecto Fin de Carrera

27

nand[0,1{1..n-1}{1..n-1}{n}; 2{1..n-1}{1..n-1}{n},4], nand[0,1{1..n-1}{n}; 2{1..n-1}{n}]

 fooR[0,1{1..n-1}{1..n-1}; 2{1..n-1}{1..n-1},5]

Donde, mediante el método de minimización, hallamos que los nodos 3 y 2{1..n-1}{n} son

equivalentes.

Los nodos originales antes de la expansión son:

0,1,2,3, 1{1..n-1}{n},2{1..n-1}{n},1{1..n-1}; 2{1..n-1},1{n},2{n},4

0 0

1{1..n-1}{1..n-1}{n} 1{1..n-1}{n}

2{1..n-1}{1..n-1}{n} 2{1..n-1}{n}

4 3

1{1..n-1}{n} 1{n}

2{1..n-1}{n} 2{n}

1{1..n-1}{1..n-1} 1{1..n-1}

2{1..n-1}{1..n-1} 2{1..n-1}

1{1..n-1} 1

2{1..n-1} 2

Figura 14: Tabla de relación de nodos expandidos con nodos de la función original.

A partir de los nodos de salida, encontramos los que serán nodos de salida de una nueva función

recursiva. Estos serán los nodos que sean originales de la función antes de la expansión y que sean

salida de una función con entradas nuevas a causa de la expansión.

En el ejemplo tendríamos los nodos de salida de la nueva función recursiva:

2{1..n-1}{1..n-1}, 2{1..n-1}{n}

Si los fusionamos, serían:

2{1..n-1}

Y los nodos de entrada de la nueva función recursiva:

0, 1{1..n-1}{1..n-1},1{1..n-1}{n}

Si los fusionamos, serían:

0, 1{1..n-1}

Mediante la tabla encontramos los nodos de salida:

2{1..n-1}, 2{n}

Si los fusionamos, serían:

2

Y los nodos de entrada:

0, 1{1..n-1},1{n}

Si los fusionamos, serían:

0,1

Con estos nodos la función original nos queda:

Ingeniería Informática Proyecto Fin de Carrera

28

fooR[0,1; 2,3]=

 nand[0,1{1..n-1}{n}; 2{1..n-1}{n},3]

 newFooR[0,1; 2]

Y la nueva función recursiva:

newFooR[0,1; 2]=

 nand[0,1{n}; 2{n}]

 newFooR[0,1{1..n-1}; 2{1..n-1}]

3.7 Algoritmos que contienen una llamada recursiva

Figura 15: Optimización de una función que contiene una llamada recursiva

En este caso se optimizará primero la parte secuencial como se describió en la sección 3.5.

Después, se expandirá la función recursiva como en la sección 3.6. Si el método de minimización no

encuentra nodos equivalentes, se dejará la función como está. En caso contrario se calculará la nueva

función recursiva.

Finalmente, se volverá a optimizar la parte secuencial, ya que esta ha podido crecer a causa del

método de eliminación de redundancia en algoritmos recursivos.

3.8 Evaluación de funciones/Ejecución de algoritmos
Como ya se ha mencionado previamente, utilizamos funciones recursivas para representar

algoritmos, como por ejemplo el de la suma.

A fin de comprobar los resultados obtenidos durante el proyecto, se ha desarrollado un método de

evaluación de estas funciones. Esto es equivalente a la ejecución de algoritmos.

La evaluación se realiza en profundidad, mediante llamadas recursivas.

Se conserva en todo momento una tabla que relaciona las variables/los nodos con valores concretos

y se evalúan recursivamente a partir de las salidas hasta las entradas. Siempre se evalúan primero

los nodos “final” y después el “resto”.

Por ejemplo, si queremos evaluar la función:

 not[0; 1]=

 nand[0,0; 1]

Empezaremos por asignarle valores a las entradas:

Nodo Valor

0 ‘1’

Figura 16: Tabla de valores de nodos antes de ejecución

Ingeniería Informática Proyecto Fin de Carrera

29

Después, se empezará a evaluar de forma recursiva desde las salidas.

Al evaluar la instancia “nand[0,0; 1]”, como las entradas ya están definidas, podremos calcular la

salida. Si no fuera el caso se evaluarían recursivamente las entradas.

Por lo tanto, obtenemos la tabla:

Nodo Valor

0 ‘1’

1 ‘0’

Figura 17: Tabla de valores de nodos después de ejecución

Con esto ya hemos ejecutado la función y obtenemos el valor “0”.

Ingeniería Informática Proyecto Fin de Carrera

30

4 Pruebas y resultados obtenidos
Para evaluar los resultados obtenidos, los compararemos con los que proporciona una herramienta

de minimización de circuitos.

Se ha elegido el software Logic Friday [14] por su simplicidad y porque permite usar los algoritmos

de Quine–McCluskey, Espresso y Espresso-exacto en cuanto a minimización de dos niveles y MisII en

cuanto a minimización multinivel. Estos algoritmos se han mencionado en mayor detalle en la sección

3.3.

Nos interesa especialmente el algoritmo MisII, ya que permite minimizar circuitos secuenciales

compuestos únicamente de puertas lógicas NAND de dos entradas.

Dado que este proyecto optimiza funciones recursivas, tendremos que evaluar casos particulares

para poder comparar los resultados.

Logic Friday tiene su propia notación para expresar circuitos, que detallamos a continuación:

&, * o juxtaposición AND

| o + OR

! (prefijo) o '(sufijo) complemento

!= o ^ XOR

== NOR
Figura 18: Sintaxis de Logic Friday

4.1 Minimización de XOR
Definimos:

 𝐴 ⊕ 𝐵 = (((𝐴 𝐵)′𝐴)′ ((𝐴 𝐵)′𝐵)′)′

4.1.1 Función minimizada mediante nuestro método
Notación propia:

xor[0,1; 2] =

nand [0,1; 3]

nand [3,0; 4], nand [3,1; 5]

nand [4,5; 2]

Este método no es capaz de minimizar más esta expresión.

 Coste de la función minimizada mediante nuestro
método

Este circuito utiliza 4 funciones NAND y tiene una profundidad de 3 funciones.

4.1.2 Función minimizada mediante el algoritmo de Quine–
McCluskey

Si elegimos la opción de minimización exacta de Logic Friday, estamos utilizando el algoritmo de

Quine–McCluskey, que nos da la minimización en dos niveles.

𝐴 ⊕ 𝐵 = (𝐴 𝐵′) + (𝐴′𝐵)

Ingeniería Informática Proyecto Fin de Carrera

31

4.1.3 Función minimizada mediante el algoritmo MisII
Mediante la opción de minimización de circuitos de Logic Friday y seleccionando como únicos

componentes puertas lógicas NAND de 2 entradas, obtenemos el siguiente circuito:

Figura 19: Función XOR minimizada mediante MisII

 Coste de la función minimizada mediante MisII
Este circuito utiliza 5 funciones NAND y tiene una profundidad de 3 funciones NAND, además tiene

un coste secundario por el uso de dos constantes en las entradas.

4.2 Multiplexor de dos entradas (if-then-else lógico)
Definimos:

𝑍 = (𝐴 𝑆′) + (𝐵 𝑆)

4.2.1 Función minimizada mediante nuestro método
Notación propia:

if[0,1,2; 6] =

nand [0,0; 3] nand [0,2; 5]

nand [3,1; 4]

nand [4,5; 6]

 Coste de la función minimizada mediante nuestro
método

Utiliza 4 funciones NAND y tiene una profundidad de 3 funciones.

4.2.2 Función minimizada mediante el algoritmo de Quine–
McCluskey

𝑍 = (𝐴 𝑆′) + (𝐵 𝑆)

A

B

[1]
[2]

[3]
[4]

[5]

1

1

C

Ingeniería Informática Proyecto Fin de Carrera

32

4.2.3 Función minimizada mediante el algoritmo MisII

Figura 20: Multiplexor minimizado mediante MisII

 Coste de la función minimizada mediante MisII
Utiliza 4 funciones NAND y tiene una profundidad de 3 funciones; además tiene un coste secundario

por el uso de una constante en la entrada.

4.3 Expresión general de la suma.
Podemos obtener el algoritmo general de la suma utilizando, de forma recursiva, el sumador

completo que se ha definido en la sección 3.1.

add[0,1; 10(8{n}&7&11)] =

and [0{n},1{n}; 6] xor [0{n},1{n}; 11]

sumR [0{1..n-1},1{1..n-1},6; 7,8]

sumR[0,1,2; 3(5&6),4(7&8)] =

sum [0{n},1{n},2; 6,7]

sumR [0{1..n-1},1{1..n-1},7; 5,8]

sum[0,1,2; 10,11] =

xor[0,1; t1], and[0,1; t2]

and[t1,2; t3], xor[t1,C; 10]

or[t2,t3; 11]

Que expresado en funciones NAND y minimizado queda:

add[0,1; 10(8{n}&7&11)] =

nand [0{n},1{n}; 12]

nand [12,12; 6] nand [12,0{n}; 14] nand [12,1{n}; 15]

sumR [0{1..n-1},1{1..n-1},6; 7,8] nand [14,15; 11]

sumR[0,1,2; 3(5&6),4(7&8)] =

sum [0{n},1{n},2; 6,7]

sumR [0{1..n-1},1{1..n-1},7; 5,8]

A0

A1

A2

[1]
[2]

[3]

[4]

1

S0

Ingeniería Informática Proyecto Fin de Carrera

33

sum[0,1,2; 10,11] =

 nand [0,1; 3]

 nand [3,0; 4] nand [3,1; 5]

 nand [4,5; 6]

 nand [6,2; 7]

 nand [7,6; 8] nand [7,2; 9] nand [3,7; 11]

 nand [8,9; 10]

Observamos que en la parte secuencial de la definición tenemos 5 funciones NAND de dos bits de

entrada.

Para la parte recursiva, el número de recursiones es igual al de bits de los operandos menos uno, ya

que en cada recursión obtenemos un bit de salida y el acarreo, además del bit de salida y el acarreo

obtenido en la parte secuencial. En cada recursión tenemos 9 funciones NAND de dos bits de entrada.

Por lo tanto, sea n el número de bits de los operandos, el número de funciones será:

5 + 9(𝑛 − 1)

Para calcular una cota de la profundidad de la suma en función del número de bits 𝑛 de los

operandos, basta con observar que hay una profundidad constante que corresponde a la parte

recursiva y una profundidad variable que corresponde a la parte recursiva de la definición, y depende

directamente de la cantidad de bits.

Por lo tanto, la profundidad es, como máximo:

2 + 6𝑛

4.3.1 Caso particular de la suma: ADD de 3 bits

 Función minimizada mediante nuestro método
A partir de la expresión general de la suma, desenrollando la función recursiva dos veces, obtenemos:

add3bits[0,1; 28&38(37&41)&45)] =

 nand [0{1..n-1}{n},1{1..n-1}{n}; 10] nand [0{n},1{n}; 14] nand [0{1..n-1}{1..n-

1}{n},1{1..n-1}{1..n-1}{n}; 23]

nand [10,0{1..n-1}{n}; 11] nand [10,1{1..n-1}{n}; 12] nand [14,14; 15] nand

[23,0{1..n-1}{1..n-1}{n}; 24] nand [23,1{1..n-1}{1..n-1}{n}; 25] nand [14,0{n}; 43] nand

[14,1{n}; 44]

nand [11,12; 13] nand [24,25; 26] nand [43,44; 45]

nand [13,15; 16]

nand [10,16; 17] nand [16,13; 39] nand [16,15; 40]

nand [26,17; 27] nand [39,40; 41]

nand [23,27; 28] nand [27,26; 35] nand [27,17; 36]

nand [35,36; 37]

Ingeniería Informática Proyecto Fin de Carrera

34

Hemos implementado un método para transformar automáticamente la notación propia a notación

de Logic Friday:

S3=!(!(A2 B2) !(!(!(!(A2 B2) A2) !(!(A2 B2) B2)) !(!(A1 B1)

!(!(!(!(A1 B1) A1) !(!(A1 B1) B1)) !(!(A0 B0) !(A0 B0))))));

S2=!(!(!(!(!(!(A2 B2) A2) !(!(A2 B2) B2)) !(!(A1 B1) !(!(!(!(A1

B1) A1) !(!(A1 B1) B1)) !(!(A0 B0) !(A0 B0))))) !(!(!(A2 B2) A2)

!(!(A2 B2) B2))) !(!(!(!(!(A2 B2) A2) !(!(A2 B2) B2)) !(!(A1 B1)

!(!(!(!(A1 B1) A1) !(!(A1 B1) B1)) !(!(A0 B0) !(A0 B0))))) !(!(A1

B1) !(!(!(!(A1 B1) A1) !(!(A1 B1) B1)) !(!(A0 B0) !(A0 B0))))));

S1=!(!(!(!(!(!(A1 B1) A1) !(!(A1 B1) B1)) !(!(A0 B0) !(A0 B0)))

!(!(!(A1 B1) A1) !(!(A1 B1) B1))) !(!(!(!(!(A1 B1) A1) !(!(A1 B1)

B1)) !(!(A0 B0) !(A0 B0))) !(!(A0 B0) !(A0 B0))));

S0=!(!(!(A0 B0) A0) !(!(A0 B0) B0));

S0-S3 representan los bits de salida desde el de menor peso hasta el de mayor peso.

A0-A2 representan los 3 bits de entrada del primer operando, desde el de menor peso hasta el de

mayor peso.

B0-B2 representan los 3 bits de entrada del segundo operando, desde el de menor peso hasta el de

mayor peso. Comprobamos que la tabla de verdad es efectivamente la de la suma de 3 bits:

A2 B2 A1 B1 A0 B0 S3 S2 S1 S0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 1 0 0 1 0
0 0 0 1 0 0 0 0 1 0
0 0 0 1 0 1 0 0 1 1
0 0 0 1 1 0 0 0 1 1
0 0 0 1 1 1 0 1 0 0
0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 1 1
0 0 1 0 1 0 0 0 1 1
0 0 1 0 1 1 0 1 0 0
0 0 1 1 0 0 0 1 0 0
0 0 1 1 0 1 0 1 0 1
0 0 1 1 1 0 0 1 0 1
0 0 1 1 1 1 0 1 1 0
0 1 0 0 0 0 0 1 0 0
0 1 0 0 0 1 0 1 0 1
0 1 0 0 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1 0
0 1 0 1 0 0 0 1 1 0
0 1 0 1 0 1 0 1 1 1
0 1 0 1 1 0 0 1 1 1
0 1 0 1 1 1 1 0 0 0
0 1 1 0 0 0 0 1 1 0
0 1 1 0 0 1 0 1 1 1
0 1 1 0 1 0 0 1 1 1
0 1 1 0 1 1 1 0 0 0
0 1 1 1 0 0 1 0 0 0
0 1 1 1 0 1 1 0 0 1
0 1 1 1 1 0 1 0 0 1
0 1 1 1 1 1 1 0 1 0
1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 1 0 1 1 0
1 0 0 1 0 0 0 1 1 0
1 0 0 1 0 1 0 1 1 1
1 0 0 1 1 0 0 1 1 1
1 0 0 1 1 1 1 0 0 0
1 0 1 0 0 0 0 1 1 0
1 0 1 0 0 1 0 1 1 1
1 0 1 0 1 0 0 1 1 1
1 0 1 0 1 1 1 0 0 0
1 0 1 1 0 0 1 0 0 0
1 0 1 1 0 1 1 0 0 1

Ingeniería Informática Proyecto Fin de Carrera

35

1 0 1 1 1 0 1 0 0 1
1 0 1 1 1 1 1 0 1 0
1 1 0 0 0 0 1 0 0 0
1 1 0 0 0 1 1 0 0 1
1 1 0 0 1 0 1 0 0 1
1 1 0 0 1 1 1 0 1 0
1 1 0 1 0 0 1 0 1 0
1 1 0 1 0 1 1 0 1 1
1 1 0 1 1 0 1 0 1 1
1 1 0 1 1 1 1 1 0 0
1 1 1 0 0 0 1 0 1 0
1 1 1 0 0 1 1 0 1 1
1 1 1 0 1 0 1 0 1 1
1 1 1 0 1 1 1 1 0 0
1 1 1 1 0 0 1 1 0 0
1 1 1 1 0 1 1 1 0 1
1 1 1 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1 0

4.3.1.1.1 Coste de la función minimizada mediante nuestro
método

La suma de 3 bits, minimizada mediante nuestro método, usa 23 funciones NAND y tiene una

profundidad de 8 funciones.

 Función minimizada mediante el algoritmo de
Quine–McCluskey

Minimizando mediante Logic Friday con la opción “exacta” para usar el método de Quine-McCluskey,

y con la opción de minimizar las ecuaciones de forma conjunta para obtener el mínimo posible de

productos, obtenemos:

Minimized:

S3 = B2 B1 A0 B0 + A2 B1 A0 B0 + B2 A1 A0 B0 + A2 A1 A0 B0 + B2

A1 B1 + A2 A1 B1 + A2 B2 ;

S2 = A2' B2' B1 A0 B0 + A2' B2' A1 A0 B0 + A2 B2 B1 A0 B0 + A2 B2

A1 A0 B0 + A2 B2' B1' B0' + A2' B2 B1' B0' + A2 B2' A1' B0' + A2'

B2 A1' B0' + A2 B2' B1' A0' + A2' B2 B1' A0' + A2 B2' A1' A0' +

A2' B2 A1' A0' + A2 B2' A1' B1' + A2' B2 A1' B1' + A2' B2' A1

B1 + A2 B2 A1 B1 ;

S1 = A1' B1' A0 B0 + A1 B1 A0 B0 + A1 B1' B0' + A1' B1 B0' + A1

B1' A0' + A1' B1 A0' ;

S0 = A0 B0' + A0' B0;

 Función minimizada mediante el algoritmo MisII

Figura 21: Función suma de 3 bits minimizada mediante MisII

A2

B2

A1

B1

A0

B0

[1]
[2]

[3]
[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]
[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

[22]
[23]

[24]
[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]
[37]

[38]

[39]

[40]

1

1

1

1

1

1

1

1

1

1

1

1

1

S3

S2

S1

S0

Ingeniería Informática Proyecto Fin de Carrera

36

4.3.1.3.1 Coste de la función minimizada mediante MisII
Utiliza 40 funciones NAND y tiene una profundidad de 13 funciones.

4.3.2 Caso particular de la suma: ADD de 4 bits

 Función minimizada mediante nuestro método
A partir de la expresión general de la suma, desenrollando la función recursiva tres veces,

obtenemos:

add4bits[0,1; 39&53(49(48&52)&56)&60)] =

nand [0{1..n-1}{n},1{1..n-1}{n}; 10] nand [0{n},1{n}; 14] nand

[0{1..n-1}{1..n-1}{n},1{1..n-1}{1..n-1}{n}; 23] nand [0{1..n-1}{1..n-

1}{1..n-1}{n},1{1..n-1}{1..n-1}{1..n-1}{n}; 34]

nand [10,0{1..n-1}{n}; 11] nand [10,1{1..n-1}{n}; 12] nand [14,14;

15] nand [23,0{1..n-1}{1..n-1}{n}; 24] nand [23,1{1..n-1}{1..n-1}{n};

25] nand [34,0{1..n-1}{1..n-1}{1..n-1}{n}; 35] nand [34,1{1..n-1}{1..n-

1}{1..n-1}{n}; 36] nand [14,0{n}; 58] nand [14,1{n}; 59]

nand [11,12; 13] nand [24,25; 26] nand [35,36; 37] nand [58,59;

60]

nand [13,15; 16]

nand [10,16; 17] nand [16,13; 54] nand [16,15; 55]

nand [26,17; 27] nand [54,55; 56]

nand [23,27; 28] nand [27,26; 50] nand [27,17; 51]

nand [37,28; 38] nand [50,51; 52]

nand [34,38; 39] nand [38,37; 46] nand [38,28; 47]

nand [46,47; 48]

Transformando la expresión a la notación de Logic Friday:

S4=!(!(A3 B3) !(!(!(!(A3 B3) A3) !(!(A3 B3) B3)) !(!(A2 B2)

!(!(!(!(A2 B2) A2) !(!(A2 B2) B2)) !(!(A1 B1) !(!(!(!(A1 B1) A1)

!(!(A1 B1) B1)) !(!(A0 B0) !(A0 B0))))))));

S3=!(!(!(!(!(!(A3 B3) A3) !(!(A3 B3) B3)) !(!(A2 B2) !(!(!(!(A2

B2) A2) !(!(A2 B2) B2)) !(!(A1 B1) !(!(!(!(A1 B1) A1) !(!(A1 B1)

B1)) !(!(A0 B0) !(A0 B0))))))) !(!(!(A3 B3) A3) !(!(A3 B3) B3)))

!(!(!(!(!(A3 B3) A3) !(!(A3 B3) B3)) !(!(A2 B2) !(!(!(!(A2 B2) A2)

!(!(A2 B2) B2)) !(!(A1 B1) !(!(!(!(A1 B1) A1) !(!(A1 B1) B1))

!(!(A0 B0) !(A0 B0))))))) !(!(A2 B2) !(!(!(!(A2 B2) A2) !(!(A2 B2)

B2)) !(!(A1 B1) !(!(!(!(A1 B1) A1) !(!(A1 B1) B1)) !(!(A0 B0) !(A0

B0))))))));

S2=!(!(!(!(!(!(A2 B2) A2) !(!(A2 B2) B2)) !(!(A1 B1) !(!(!(!(A1

B1) A1) !(!(A1 B1) B1)) !(!(A0 B0) !(A0 B0))))) !(!(!(A2 B2) A2)

!(!(A2 B2) B2))) !(!(!(!(!(A2 B2) A2) !(!(A2 B2) B2)) !(!(A1 B1)

!(!(!(!(A1 B1) A1) !(!(A1 B1) B1)) !(!(A0 B0) !(A0 B0))))) !(!(A1

B1) !(!(!(!(A1 B1) A1) !(!(A1 B1) B1)) !(!(A0 B0) !(A0 B0))))));

S1=!(!(!(!(!(!(A1 B1) A1) !(!(A1 B1) B1)) !(!(A0 B0) !(A0 B0)))

!(!(!(A1 B1) A1) !(!(A1 B1) B1))) !(!(!(!(!(A1 B1) A1) !(!(A1 B1)

B1)) !(!(A0 B0) !(A0 B0))) !(!(A0 B0) !(A0 B0))))

S0=!(!(!(A0 B0) A0) !(!(A0 B0) B0));

Comprobamos que la tabla de verdad de la sección 7.4 es efectivamente la de la suma de 4 bits.

 Nuestro método MisII

Funciones totales 23 40

Profundidad 8 13
Tabla 1 Evaluación de la minimización de la suma de 3 bits

Ingeniería Informática Proyecto Fin de Carrera

37

4.3.2.1.1 Coste de la función minimizada mediante nuestro
método

La suma de 4 bits, minimizada mediante nuestro método, usa 32 funciones NAND y tiene una

profundidad de 10 funciones.

 Función minimizada mediante el algoritmo de
Quine-McCluskey

Minimizando mediante Logic Friday con la opción “exacta” para usar el método de Quine-McCluskey,

y con la opción de minimizar las ecuaciones de forma conjunta para obtener el mínimo posible de

productos, obtenemos:

Minimized:

S4 = B3 B2 B1 A0 B0 + A3 B2 B1 A0 B0 + B3 A2 B1 A0 B0 + A3 A2 B1

A0 B0 + B3 B2 A1 A0 B0 + A3 B2 A1 A0 B0 + B3 A2 A1 A0 B0 + A3 A2

A1 A0 B0 + B3 B2 A1 B1 + A3 B2 A1 B1 + B3 A2 A1 B1 + A3 A2 A1

B1 + B3 A2 B2 + A3 A2 B2 + A3 B3 ;

S3 = A3' B3' B2 B1 A0 B0 + A3' B3' A2 B1 A0 B0 + A3' B3' B2 A1 A0

B0 + A3' B3' A2 A1 A0 B0 + A3 B3 B2 B1 A0 B0 + A3 B3 A2 B1 A0 B0

+ A3 B3 B2 A1 A0 B0 + A3 B3 A2 A1 A0 B0 + A3 B3' B2' B1' B0' + A3'

B3 B2' B1' B0' + A3 B3' A2' B1' B0' + A3' B3 A2' B1' B0' + A3 B3'

B2' A1' B0' + A3' B3 B2' A1' B0' + A3 B3' A2' A1' B0' + A3' B3 A2'

A1' B0' + A3 B3' B2' B1' A0' + A3' B3 B2' B1' A0' + A3 B3' A2'

B1' A0' + A3' B3 A2' B1' A0' + A3 B3' B2' A1' A0' + A3' B3 B2'

A1' A0' + A3 B3' A2' A1' A0' + A3' B3 A2' A1' A0' + A3 B3' B2'

A1' B1' + A3' B3 B2' A1' B1' + A3 B3' A2' A1' B1' + A3' B3 A2'

A1' B1' + A3' B3' B2 A1 B1 + A3' B3' A2 A1 B1 + A3 B3 B2 A1 B1

+ A3 B3 A2 A1 B1 + A3 B3' A2' B2' + A3' B3 A2' B2' + A3' B3'

A2 B2 + A3 B3 A2 B2 ;

S2 = A2' B2' B1 A0 B0 + A2' B2' A1 A0 B0 + A2 B2 B1 A0 B0 + A2 B2

A1 A0 B0 + A2 B2' B1' B0' + A2' B2 B1' B0' + A2 B2' A1' B0' + A2'

B2 A1' B0' + A2 B2' B1' A0' + A2' B2 B1' A0' + A2 B2' A1' A0' +

A2' B2 A1' A0' + A2 B2' A1' B1' + A2' B2 A1' B1' + A2' B2' A1

B1 + A2 B2 A1 B1 ;

S1 = A1' B1' A0 B0 + A1 B1 A0 B0 + A1 B1' B0' + A1' B1 B0' + A1

B1' A0' + A1' B1 A0' ;

S0 = A0 B0' + A0' B0;

 Función minimizada mediante el algoritmo MisII

Figura 22: Función suma de 4 bits minimizada mediante MisII

A3

B3

A2

B2

A1

B1

A0

B0

[1]
[2]

[3]
[4]

[5]
[6]

[7]
[8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]

[18]
[19]

[20]
[21]

[22]
[23]

[24]
[25]

[26]

[27]
[28]

[29]

[30]

[31]
[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]
[52]

[53]
[54]

[55]

[56]

[57]

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

S4

S3

S2

S1

S0

Ingeniería Informática Proyecto Fin de Carrera

38

4.3.2.3.1 Coste de la función minimizada mediante MisII
Utiliza 57 funciones NAND y tiene una profundidad de 18 funciones.

 Nuestro método MisII

Funciones totales 32 57

Profundidad 10 18

Tabla 2: evaluación de la minimización de la suma de 4 bits

Ingeniería Informática Proyecto Fin de Carrera

39

5 Consideraciones finales

5.1 Conclusiones
En todos los ejemplos estudiados, nuestro método minimiza mucho mejor que MisII para el caso

concreto de circuitos compuestos de funciones NAND de dos entradas. Cuanto más complejas son

las funciones minimizadas, más se aprecia esta mejora.

MisII es un algoritmo más flexible, ya que permite elegir qué puertas lógicas y de qué tamaño

podemos usar para construir el circuito minimizado.

Sin embargo, es importante destacar que lo que lo que ha optimizado nuestro método es el algoritmo

general de la suma, mientras que MisII ha optimizado circuitos concretos. Esto debería de resultar

una ventaja para MisII, pero en la práctica no lo ha sido.

Estos resultados apoyan la tesis de que el método de minimización aquí presentado tiene un buen

comportamiento y escala particularmente bien, además de ser muy rápido.

Dado que en 2008 se demostró que el problema de minimización de circuitos para funciones

booleanas es ∑ −𝑃
2 completo [3], el método aquí propuesto parece ser una buena heurística.

Cabe mencionar la relevancia de la profundidad de los circuitos obtenidos, porque en una

arquitectura paralela es el factor determinante de su velocidad. En el caso de la suma de 4 bits la

profundidad hallada por MisII es un 80% superior a la que encuentra nuestro método.

Sería interesante realizar un análisis en mayor profundidad de la eficacia de la minimización, pero

eso queda fuera del alcance de este proyecto.

El enfoque utilizado para optimizar en este proyecto parece tener un gran potencial.

La únicas problemáticas posibles podrían ser la dificultad de implementación del propio método, la

dificultad de mejorar la optimización de código redundante entre funciones recursivas y el

tratamiento de grandes cantidades de información, al expresar los algoritmos a tan bajo nivel.

Por un lado, la complejidad computacional de los algoritmos utilizados es muy baja, con cotas

superiores asintóticas lineales. Por otro, la optimización parece muy buena, superando a una

herramienta destinada a optimizar circuitos. Además, este método debería de escalar muy bien, ya

que el fundamento es eliminar redundancia a bajo nivel, con lo cual cuanto más grandes sean los

algoritmos utilizados, más posibilidades de optimizar redundancia.

Otra virtud destacable de este método es la paralelización. Dado que se representa cualquier

algoritmo mediante funciones NAND, sabemos exactamente el coste de ejecución de cualquiera de

sus partes. Imaginemos que tuviéramos acceso a un procesador que solo fuera capaz de ejecutar una

única operación lógica NAND. Sería un procesador increíblemente sencillo y podríamos poner a

trabajar en paralelo un número arbitrario de procesadores de ese tipo, aprovechando al máximo la

paralelización obtenida a este nivel.

5.2 Propuestas de desarrollo futuro
Para que este proyecto pudiera convertirse en una herramienta comercial, haría falta, en primer

lugar, aplicarlo a algoritmos arbitrariamente complejos y, en segundo lugar, implementar la

traducción de la expresión optimizada en funciones NAND al lenguaje deseado.

Ingeniería Informática Proyecto Fin de Carrera

40

5.2.1 Aplicación a algoritmos más complejos
Durante este proyecto se pretendía demostrar un concepto, por lo que el algoritmo más complejo

que se ha definido ha sido el de la multiplicación (ver anexo 7.5). Se han sentado las bases, sin

embargo, para poder implementar algoritmos de complejidad arbitraria. Una muestra sería, por

ejemplo, el algoritmo de ordenación por burbuja.

Sería especialmente interesante aplicar este proyecto para optimizarse a sí mismo.

5.2.2 Traducción de vuelta del lenguaje intermedio
optimizado al lenguaje original

Traducir el código de vuelta al lenguaje original no tiene el mismo interés teórico que optimizar los

algoritmos, pero tiene un interés práctico.

El algoritmo de traducción aprovecharía la estructura recursiva de la base de datos de definiciones.

Cuando se hallan todas las instancias de cada definición, se reemplazan por esta, de la más pequeña

a la más grande.

5.2.3 Demostración de que el modelo de representación de
algoritmos es Turing completo.

A lo largo de este proyecto, se ha asumido que el modelo utilizado para representar algoritmos a

través de funciones recursivas es Turing completo. Parece bastante evidente, pero no se ha

demostrado formalmente. Algunas posibilidades para hacerlo serían implementar una máquina de

Turing, implementar el juego de la vida de Conway o definir todas las funciones μ-recursivas.

5.2.4 Implementación de un método de evaluación en
anchura

Se ha realizado un prototipo de otro método de evaluación. A la hora de evaluar funciones recursivas

con expresiones condicionales, es necesario un método de evaluación más inteligente, para evitar

bucles infinitos.

Algunos de los requisitos son que la evaluación sea perezosa, en anchura y bit a bit.

5.2.5 Generalización de la optimización de algoritmos
recursivos

Hasta ahora, hemos implementado un método de optimización para cuando una función es

recursiva. Sin embargo no se ha implementado un método específico para cuando por ejemplo una

función recursiva contiene otras funciones recursivas. Una posibilidad sería juntar todas las

instancias a funciones recursivas en una única función recursiva.

5.2.6 Mejoras en la optimización
Una propuesta interesante sería mejorar aún más la optimización de código. Para ello podría, por

ejemplo, generalizarse la técnica del sumador con generación anticipada de acarreo, calculando más

rápidamente operaciones para múltiples entradas posibles.

También podríamos desenrollar llamadas recursivas, para minimizar la profundidad de las funciones.

Otra posibilidad sería analizar en mayor profundidad la recursión para que en cada llamada se realice

el mínimo de operaciones necesarias para calcular un bit de salida.

Ingeniería Informática Proyecto Fin de Carrera

41

Además, se podría mejorar la optimización con definiciones de funciones conocidas que son

especialmente buenas, como ocurre con la función XOR.

Ingeniería Informática Proyecto Fin de Carrera

42

6 Bibliografía

[1] A. W. Appel, de Modern Compiler Implementation in ML, Cambridge University Press, 1998, p.

401.

[2] R. S. J. U. A. Aho, Compiladores: principios, técnicas y herramientas., Addison-Wesley

Iberoamericana, 1993.

[3] D. Buchfuhrer y C. Umans, «The complexity of Boolean formula minimization,» Journal of

Computer and System Sciences, pp. 142-153, Enero 2011.

[4] W.-K. Chen, «The VLSI Handbook,» CRC Press, 2000.

[5] W. Wolf, Modern VLSI design systems on silicon, Prentice Hall, 1998.

[6] J. E.J. McCluskey, «Minimization of Boolean Functions,» Bell System Technical Journal, vol. 35,

nº 6, p. 1417–1444, November 1956.

[7] G. H. C. M. A. S.-V. R.K. Brayton, Logic Minimization Algorithms for VLSI Synthesis, Norwell, MA:

Kluwer Academic Publisher, 1984.

[8] R. R. a. A. Sangiovanni-Vincentelli., «Multiple-valued minmization for PLA optimization,» IEEE

Transactions on Computer-Aided Design, vol. 6, nº 5, pp. 727-750, September 1987.

[9] 14 12 2016. [En línea]. Available: http://ethw.org/Robert_K._Brayton.

[10] «berkeley.edu Berkeley, University of California,» The Donald O. Pederson Center for Electronic

Systems Design https://embedded.eecs.berkeley.edu/, [En línea]. Available:

https://embedded.eecs.berkeley.edu/pubs/downloads/octtools/index.htm. [Último acceso:

16 2 2017].

[11] L. L. G. M. Louis Scheffer, «EDA for IC Implementation, Circuit Design, and Process Technology,»

de Taylor & Francis, 2006, p. 42.

[12] C. M. G. D. H. y. A. S. R. K. Brayton, «Multilevel Logic Synthesis,» Proceedings of the IEEE, pp.

264-300, Febrero 1990.

[13] M. M. y. C. R. K. Mano, «Logic and Computer Design Fundamentals, Third Edition,» Prentice

Hall, 2004, p. 73.

[14] Logic Friday, 11 11 2016. [En línea]. Available: http://www.sontrak.com/.

[15] Columbia University, «Columbia University,» 11 11 2016. [En línea]. Available:

http://www.cs.columbia.edu/~cs6861/handouts/hw1-espresso-problem.txt.

[16] R. R. A. S.-V. A. W. RK Brayton, «MIS: A multiple-level logic optimization system,» IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp. 1062-1081,

Noviembre 1987.

[17] C. E. L. R. L. R. a. C. S. Thomas H. Cormen, Introduction to Algorithms, Second Edition, MIT Press

and McGraw–Hill, 2001.

Ingeniería Informática Proyecto Fin de Carrera

43

7 Anexos

7.1 Desarrollo del proyecto
Al ser un proyecto de investigación, ha resultado imposible prever el coste real de desarrollo.

7.1.1 Implementación
El proceso de implementación se ha demorado durante algo más de un año por su complejidad.

Se ha seguido un proceso de refinamiento iterativo, tanto de los algoritmos, como sobre todo, del

modelo de representación y las estructuras de datos usadas.

Un ejemplo de esta simplificación iterativa es que, en un principio, se utilizaban identificadores

únicos para los nodos del bosque de funciones NAND. Afortunadamente, se vio que se podía realizar

la misma función de forma más sencilla mediante una tabla dispersa bidimensional. Con ello se evitó

usar una estructura de datos de crecimiento exponencial.

7.1.2 Imprevistos
Lo qué más tiempo ha llevado del proyecto ha sido simplificar el modelo usado para representar las

funciones recursivas, lo que resulta curioso cuando el objetivo del proyecto es precisamente

simplificar código. Esto ayuda a justificar el proyecto, siendo un ejemplo de lo tedioso que es el

proceso de simplificación.

Muchos de los errores que se han producido posiblemente se hubieran podido evitar teniendo

acceso a un experto en optimización de código y minimización de circuitos. Lamentablemente son

dos campos que no hemos encontrado ligados en ninguna publicación.

Como ya se ha mencionado, el proceso de refinamiento del proyecto ha sido iterativo.

En una primera iteración se intentó desarrollar una estructura con nodos padres e hijos, sin embargo

algunas de las operaciones resultaban imposibles con ese modelo.

En una segunda iteración se intentaron usar subnodos y supernodos, pero esto tampoco resultaba

suficiente.

En una tercera iteración se usaban subnodos padre, supernodos padre, subnodos hijos y supernodos

hijos. Esta estructura finalmente era adecuada para realizar todas las operaciones, pero muy

compleja. En esta iteración se usaba un modelo de tres índices posibles para los subnodos:

“primero”, “ultimo” y “resto”. Con esta iteración se llegó a optimizar completamente un algoritmo

de suma, pero la implementación era demasiado complicada como para depurar operaciones más

difíciles. Esta versión se encuentra congelada en una rama del repositorio público.2

Con cada una de estas revisiones ha sido necesario reescribir la mayor parte del código. La situación

es intrínseca a una investigación primaria. Por la misma razón ha sido necesario emplear el modelo

de desarrollo incremental. Se han necesitado varias iteraciones de soluciones aproximadas al

problema, hasta dar con una satisfactoria. Durante dichas iteraciones, aparecen errores imprevistos

que hacen cambiar el diseño, en ocasiones partes fundamentales de este.

2 https://github.com/raescartin/Recompiler/tree/fission

Ingeniería Informática Proyecto Fin de Carrera

44

El peso de la depuración de código ha sido mucho mayor del estimado, suponiendo una gran parte

del tiempo de desarrollo.

La naturaleza del proyecto ha hecho que hubiera que modificar otros aspectos del diseño original.

Por ejemplo, en algunas estructuras, se ha eliminado la copia de datos, sobrescribiendo los originales

en su lugar, para hacer más fácil la depuración del código.

7.2 Métricas
Para el proyecto se han escrito más de 23,854 líneas de código y eliminado 18,053, tal y como se

puede ver en el repositorio principal público en GitHub.3

Esta medida da una idea de lo complejo e iterativo del proceso de implementación del proyecto.

Figura 23: Diagrama de Gantt de horas dedicadas a las fases del proyecto

Este diagrama de Gantt nos muestra el número de horas dedicadas a las diferentes fases del

proyecto. Hay que destacar la cantidad de horas empleadas con la tercera iteración. Esto se debe a

que la complejidad del modelo hacía muy difícil depurar el código.

Figura 24: Contribuciones al repositorio principal

Tal y como se puede comprobar en el repositorio, la primera contribución de código se produce el

28 de junio de 2015. Desde entonces las contribuciones siguen un ritmo constante, con una

3 https://github.com/raescartin/Recompiler/graphs/contributors

0 500 1000 1500 2000

Análisis del problema

Desarrollo del método de minimización

Diseño de una primera aproximación

Desarrollo de un primer prototipo

Segunda iteración de la solución

Tercera iteración de la solución

Iteración final de la solución

Pruebas y evaluación

Memoria

Ingeniería Informática Proyecto Fin de Carrera

45

aceleración al final, debida más a una actualización frecuente del código que a un aumento de la

producción.

El valle que se observa antes de esta aceleración corresponde al momento en que el proyecto ya era

completamente funcional.

En total, se han dedicado unas 1964 horas a lo largo de casi dos años.

7.3 Sugerencias para la generalización de la
optimización de funciones recursivas

Figura 25: Optimización de funciones con múltiples instancias de funciones recursivas

A la hora de optimizar algoritmos que contengan múltiples funciones recursivas, podría utilizarse un

proceso similar al usado en la sección 3.7, pero juntando todos los nodos de entrada a funciones

recursivas y todos los nodos de salida. De esta forma fusionaríamos todas las funciones recursivas

en una sola.

Figura 26: Optimización de un algoritmo con varias instancias recursivas

Del mismo modo podríamos optimizar un algoritmo que tenga múltiples llamadas recursivas a sí

mismo.

Figura 27: Algoritmo recursivo con funciones recursivas

Finalmente, podemos mezclar los dos casos anteriores a fin de optimizar algoritmos recursivos que

contengan otras funciones recursivas.

Ingeniería Informática Proyecto Fin de Carrera

46

7.4 Tabla de verdad de la suma de 4 bits
A3 B3 A2 B2 A1 B1 A0 B0 S4 S3 S2 S1 S0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 1 1 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0 0 0 1 1
0 0 0 0 1 0 1 0 0 0 0 1 1
0 0 0 0 1 0 1 1 0 0 1 0 0
0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 0 1 1 0 1 0 0 1 0 1
0 0 0 0 1 1 1 0 0 0 1 0 1
0 0 0 0 1 1 1 1 0 0 1 1 0
0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 1 0 1
0 0 0 1 0 0 1 0 0 0 1 0 1
0 0 0 1 0 0 1 1 0 0 1 1 0
0 0 0 1 0 1 0 0 0 0 1 1 0
0 0 0 1 0 1 0 1 0 0 1 1 1
0 0 0 1 0 1 1 0 0 0 1 1 1
0 0 0 1 0 1 1 1 0 1 0 0 0
0 0 0 1 1 0 0 0 0 0 1 1 0
0 0 0 1 1 0 0 1 0 0 1 1 1
0 0 0 1 1 0 1 0 0 0 1 1 1
0 0 0 1 1 0 1 1 0 1 0 0 0
0 0 0 1 1 1 0 0 0 1 0 0 0
0 0 0 1 1 1 0 1 0 1 0 0 1
0 0 0 1 1 1 1 0 0 1 0 0 1
0 0 0 1 1 1 1 1 0 1 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0 1 0 1
0 0 1 0 0 0 1 0 0 0 1 0 1
0 0 1 0 0 0 1 1 0 0 1 1 0
0 0 1 0 0 1 0 0 0 0 1 1 0
0 0 1 0 0 1 0 1 0 0 1 1 1
0 0 1 0 0 1 1 0 0 0 1 1 1
0 0 1 0 0 1 1 1 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 1 1 0
0 0 1 0 1 0 0 1 0 0 1 1 1
0 0 1 0 1 0 1 0 0 0 1 1 1
0 0 1 0 1 0 1 1 0 1 0 0 0
0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 1 0 1 1 0 1 0 1 0 0 1
0 0 1 0 1 1 1 0 0 1 0 0 1
0 0 1 0 1 1 1 1 0 1 0 1 0
0 0 1 1 0 0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 1 0 1 0 0 1
0 0 1 1 0 0 1 0 0 1 0 0 1
0 0 1 1 0 0 1 1 0 1 0 1 0
0 0 1 1 0 1 0 0 0 1 0 1 0
0 0 1 1 0 1 0 1 0 1 0 1 1
0 0 1 1 0 1 1 0 0 1 0 1 1
0 0 1 1 0 1 1 1 0 1 1 0 0
0 0 1 1 1 0 0 0 0 1 0 1 0
0 0 1 1 1 0 0 1 0 1 0 1 1
0 0 1 1 1 0 1 0 0 1 0 1 1
0 0 1 1 1 0 1 1 0 1 1 0 0
0 0 1 1 1 1 0 0 0 1 1 0 0
0 0 1 1 1 1 0 1 0 1 1 0 1
0 0 1 1 1 1 1 0 0 1 1 0 1
0 0 1 1 1 1 1 1 0 1 1 1 0
0 1 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 1 0 0 1

Ingeniería Informática Proyecto Fin de Carrera

47

0 1 0 0 0 0 1 0 0 1 0 0 1
0 1 0 0 0 0 1 1 0 1 0 1 0
0 1 0 0 0 1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1 0 1 0 1 1
0 1 0 0 0 1 1 0 0 1 0 1 1
0 1 0 0 0 1 1 1 0 1 1 0 0
0 1 0 0 1 0 0 0 0 1 0 1 0
0 1 0 0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 1 0 0 1 0 1 1
0 1 0 0 1 0 1 1 0 1 1 0 0
0 1 0 0 1 1 0 0 0 1 1 0 0
0 1 0 0 1 1 0 1 0 1 1 0 1
0 1 0 0 1 1 1 0 0 1 1 0 1
0 1 0 0 1 1 1 1 0 1 1 1 0
0 1 0 1 0 0 0 0 0 1 1 0 0
0 1 0 1 0 0 0 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0 1 1 0 1
0 1 0 1 0 0 1 1 0 1 1 1 0
0 1 0 1 0 1 0 0 0 1 1 1 0
0 1 0 1 0 1 0 1 0 1 1 1 1
0 1 0 1 0 1 1 0 0 1 1 1 1
0 1 0 1 0 1 1 1 1 0 0 0 0
0 1 0 1 1 0 0 0 0 1 1 1 0
0 1 0 1 1 0 0 1 0 1 1 1 1
0 1 0 1 1 0 1 0 0 1 1 1 1
0 1 0 1 1 0 1 1 1 0 0 0 0
0 1 0 1 1 1 0 0 1 0 0 0 0
0 1 0 1 1 1 0 1 1 0 0 0 1
0 1 0 1 1 1 1 0 1 0 0 0 1
0 1 0 1 1 1 1 1 1 0 0 1 0
0 1 1 0 0 0 0 0 0 1 1 0 0
0 1 1 0 0 0 0 1 0 1 1 0 1
0 1 1 0 0 0 1 0 0 1 1 0 1
0 1 1 0 0 0 1 1 0 1 1 1 0
0 1 1 0 0 1 0 0 0 1 1 1 0
0 1 1 0 0 1 0 1 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 1 1
0 1 1 0 0 1 1 1 1 0 0 0 0
0 1 1 0 1 0 0 0 0 1 1 1 0
0 1 1 0 1 0 0 1 0 1 1 1 1
0 1 1 0 1 0 1 0 0 1 1 1 1
0 1 1 0 1 0 1 1 1 0 0 0 0
0 1 1 0 1 1 0 0 1 0 0 0 0
0 1 1 0 1 1 0 1 1 0 0 0 1
0 1 1 0 1 1 1 0 1 0 0 0 1
0 1 1 0 1 1 1 1 1 0 0 1 0
0 1 1 1 0 0 0 0 1 0 0 0 0
0 1 1 1 0 0 0 1 1 0 0 0 1
0 1 1 1 0 0 1 0 1 0 0 0 1
0 1 1 1 0 0 1 1 1 0 0 1 0
0 1 1 1 0 1 0 0 1 0 0 1 0
0 1 1 1 0 1 0 1 1 0 0 1 1
0 1 1 1 0 1 1 0 1 0 0 1 1
0 1 1 1 0 1 1 1 1 0 1 0 0
0 1 1 1 1 0 0 0 1 0 0 1 0
0 1 1 1 1 0 0 1 1 0 0 1 1
0 1 1 1 1 0 1 0 1 0 0 1 1
0 1 1 1 1 0 1 1 1 0 1 0 0
0 1 1 1 1 1 0 0 1 0 1 0 0
0 1 1 1 1 1 0 1 1 0 1 0 1
0 1 1 1 1 1 1 0 1 0 1 0 1
0 1 1 1 1 1 1 1 1 0 1 1 0
1 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 1 0 0 1
1 0 0 0 0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 1 1 0 1 0 1 0
1 0 0 0 0 1 0 0 0 1 0 1 0
1 0 0 0 0 1 0 1 0 1 0 1 1
1 0 0 0 0 1 1 0 0 1 0 1 1
1 0 0 0 0 1 1 1 0 1 1 0 0

Ingeniería Informática Proyecto Fin de Carrera

48

1 0 0 0 1 0 0 0 0 1 0 1 0
1 0 0 0 1 0 0 1 0 1 0 1 1
1 0 0 0 1 0 1 0 0 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 0 0
1 0 0 0 1 1 0 0 0 1 1 0 0
1 0 0 0 1 1 0 1 0 1 1 0 1
1 0 0 0 1 1 1 0 0 1 1 0 1
1 0 0 0 1 1 1 1 0 1 1 1 0
1 0 0 1 0 0 0 0 0 1 1 0 0
1 0 0 1 0 0 0 1 0 1 1 0 1
1 0 0 1 0 0 1 0 0 1 1 0 1
1 0 0 1 0 0 1 1 0 1 1 1 0
1 0 0 1 0 1 0 0 0 1 1 1 0
1 0 0 1 0 1 0 1 0 1 1 1 1
1 0 0 1 0 1 1 0 0 1 1 1 1
1 0 0 1 0 1 1 1 1 0 0 0 0
1 0 0 1 1 0 0 0 0 1 1 1 0
1 0 0 1 1 0 0 1 0 1 1 1 1
1 0 0 1 1 0 1 0 0 1 1 1 1
1 0 0 1 1 0 1 1 1 0 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 0
1 0 0 1 1 1 0 1 1 0 0 0 1
1 0 0 1 1 1 1 0 1 0 0 0 1
1 0 0 1 1 1 1 1 1 0 0 1 0
1 0 1 0 0 0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 1 0 1 1 0 1
1 0 1 0 0 0 1 0 0 1 1 0 1
1 0 1 0 0 0 1 1 0 1 1 1 0
1 0 1 0 0 1 0 0 0 1 1 1 0
1 0 1 0 0 1 0 1 0 1 1 1 1
1 0 1 0 0 1 1 0 0 1 1 1 1
1 0 1 0 0 1 1 1 1 0 0 0 0
1 0 1 0 1 0 0 0 0 1 1 1 0
1 0 1 0 1 0 0 1 0 1 1 1 1
1 0 1 0 1 0 1 0 0 1 1 1 1
1 0 1 0 1 0 1 1 1 0 0 0 0
1 0 1 0 1 1 0 0 1 0 0 0 0
1 0 1 0 1 1 0 1 1 0 0 0 1
1 0 1 0 1 1 1 0 1 0 0 0 1
1 0 1 0 1 1 1 1 1 0 0 1 0
1 0 1 1 0 0 0 0 1 0 0 0 0
1 0 1 1 0 0 0 1 1 0 0 0 1
1 0 1 1 0 0 1 0 1 0 0 0 1
1 0 1 1 0 0 1 1 1 0 0 1 0
1 0 1 1 0 1 0 0 1 0 0 1 0
1 0 1 1 0 1 0 1 1 0 0 1 1
1 0 1 1 0 1 1 0 1 0 0 1 1
1 0 1 1 0 1 1 1 1 0 1 0 0
1 0 1 1 1 0 0 0 1 0 0 1 0
1 0 1 1 1 0 0 1 1 0 0 1 1
1 0 1 1 1 0 1 0 1 0 0 1 1
1 0 1 1 1 0 1 1 1 0 1 0 0
1 0 1 1 1 1 0 0 1 0 1 0 0
1 0 1 1 1 1 0 1 1 0 1 0 1
1 0 1 1 1 1 1 0 1 0 1 0 1
1 0 1 1 1 1 1 1 1 0 1 1 0
1 1 0 0 0 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 1 1 0 0 0 1
1 1 0 0 0 0 1 0 1 0 0 0 1
1 1 0 0 0 0 1 1 1 0 0 1 0
1 1 0 0 0 1 0 0 1 0 0 1 0
1 1 0 0 0 1 0 1 1 0 0 1 1
1 1 0 0 0 1 1 0 1 0 0 1 1
1 1 0 0 0 1 1 1 1 0 1 0 0
1 1 0 0 1 0 0 0 1 0 0 1 0
1 1 0 0 1 0 0 1 1 0 0 1 1
1 1 0 0 1 0 1 0 1 0 0 1 1
1 1 0 0 1 0 1 1 1 0 1 0 0
1 1 0 0 1 1 0 0 1 0 1 0 0
1 1 0 0 1 1 0 1 1 0 1 0 1

Ingeniería Informática Proyecto Fin de Carrera

49

1 1 0 0 1 1 1 0 1 0 1 0 1
1 1 0 0 1 1 1 1 1 0 1 1 0
1 1 0 1 0 0 0 0 1 0 1 0 0
1 1 0 1 0 0 0 1 1 0 1 0 1
1 1 0 1 0 0 1 0 1 0 1 0 1
1 1 0 1 0 0 1 1 1 0 1 1 0
1 1 0 1 0 1 0 0 1 0 1 1 0
1 1 0 1 0 1 0 1 1 0 1 1 1
1 1 0 1 0 1 1 0 1 0 1 1 1
1 1 0 1 0 1 1 1 1 1 0 0 0
1 1 0 1 1 0 0 0 1 0 1 1 0
1 1 0 1 1 0 0 1 1 0 1 1 1
1 1 0 1 1 0 1 0 1 0 1 1 1
1 1 0 1 1 0 1 1 1 1 0 0 0
1 1 0 1 1 1 0 0 1 1 0 0 0
1 1 0 1 1 1 0 1 1 1 0 0 1
1 1 0 1 1 1 1 0 1 1 0 0 1
1 1 0 1 1 1 1 1 1 1 0 1 0
1 1 1 0 0 0 0 0 1 0 1 0 0
1 1 1 0 0 0 0 1 1 0 1 0 1
1 1 1 0 0 0 1 0 1 0 1 0 1
1 1 1 0 0 0 1 1 1 0 1 1 0
1 1 1 0 0 1 0 0 1 0 1 1 0
1 1 1 0 0 1 0 1 1 0 1 1 1
1 1 1 0 0 1 1 0 1 0 1 1 1
1 1 1 0 0 1 1 1 1 1 0 0 0
1 1 1 0 1 0 0 0 1 0 1 1 0
1 1 1 0 1 0 0 1 1 0 1 1 1
1 1 1 0 1 0 1 0 1 0 1 1 1
1 1 1 0 1 0 1 1 1 1 0 0 0
1 1 1 0 1 1 0 0 1 1 0 0 0
1 1 1 0 1 1 0 1 1 1 0 0 1
1 1 1 0 1 1 1 0 1 1 0 0 1
1 1 1 0 1 1 1 1 1 1 0 1 0
1 1 1 1 0 0 0 0 1 1 0 0 0
1 1 1 1 0 0 0 1 1 1 0 0 1
1 1 1 1 0 0 1 0 1 1 0 0 1
1 1 1 1 0 0 1 1 1 1 0 1 0
1 1 1 1 0 1 0 0 1 1 0 1 0
1 1 1 1 0 1 0 1 1 1 0 1 1
1 1 1 1 0 1 1 0 1 1 0 1 1
1 1 1 1 0 1 1 1 1 1 1 0 0
1 1 1 1 1 0 0 0 1 1 0 1 0
1 1 1 1 1 0 0 1 1 1 0 1 1
1 1 1 1 1 0 1 0 1 1 0 1 1
1 1 1 1 1 0 1 1 1 1 1 0 0
1 1 1 1 1 1 0 0 1 1 1 0 0
1 1 1 1 1 1 0 1 1 1 1 0 1
1 1 1 1 1 1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 0

7.5 Algoritmo de multiplicación
Se ha implementado un algoritmo de multiplicación.

Este algoritmo usa la definición del algoritmo andRecursivo que aparece en la sección 3.1 y el

algoritmo de la suma de la sección 4.3.

Su funcionamiento está inspirado en el algoritmo de la suma. Se calcula un bit de salida en cada

iteración del algoritmo recursivo mulR.

Ingeniería Informática Proyecto Fin de Carrera

50

mul[0,1,2(4{n}&5&3{n})] =

 andRecursivo[1{n},0;3]

 mulR[0,1{1..n-1},3{1..n-1};4,5]

mulR[0,1,2;3(7&6{1..n-1}),4(8&6{n})]=

 andR[1{n},0;5]

 add[2,5;6]

 mulR[0,1{1..n-1},6{1..n-1};7,8]

7.6 Traza completa de la optimización de la suma
modular

Durante la tercera iteración del proyecto se consiguió, por fin, optimizar un algoritmo recursivo,

teniendo en cuenta la redundancia entre iteraciones.

A continuación se presenta una traza de la optimización completa de la suma modular. Es un

algoritmo de suma dónde las entradas tienen la misma longitud n en bits y se calcula la salida para

esa misma longitud n en bits.

Hay que tener que cuando se optimizó este algoritmo la notación era algo diferente. Se usaban tres

índices para dividir un nodo en el primer elemento, último elemento y el resto. Los índices de estos

elementos son {1}, {3} y {2}, respectivamente.

El algoritmo inicial para la suma modular es el siguiente:

add[0,1; 2(17&11{2})] =

 xor[0,1; 11] and[9(0{1}&0{2}),10(1{1}&1{2}); 16]

 add[15(11{0}&11{1}),16; 17]

7.6.1 Optimización de la parte secuencial
En primer lugar se optimiza la parte secuencial. Para ello se expresa esta como funciones NAND.

add[0,1,17; 2(17&11{2}),15(11{0}&11{1}),16] =

 nand [0,0; 18] nand [1,1; 19] nand [0,1; 21] nand [9(0{1}&0{2}),10(1{1}&1{2}); 23]

 nand [18,19; 20] nand [23,23; 16]

 nand [20,21; 22]

 nand [22,22; 11]

A continuación se realiza la fisión de nodos.

Ingeniería Informática Proyecto Fin de Carrera

51

add[0,1,17; 2(17&11{2}),15(11{0}&11{1}),16(29{1}&29{2})] =

 nand [0,0; 18] nand [1,1; 19] nand [0,1; 21] nand [9(0{1}&0{2}),10(1{1}&1{2});

23(25{1}&25{2})] nand [0{0},0{0}; 18{0}] nand [0{1},0{1}; 18{1}] nand [0{2},0{2}; 18{2}]

nand [1{0},1{0}; 19{0}] nand [1{1},1{1}; 19{1}] nand [1{2},1{2}; 19{2}] nand [0{0},1{0}; 21{0}]

nand [0{1},1{1}; 21{1}] nand [0{2},1{2}; 21{2}] nand [0{1},1{1}; 25{1}] nand [0{2},1{2}; 25{2}]

 nand [18,19; 20] nand [23(25{1}&25{2}),23(25{1}&25{2}); 16(29{1}&29{2})] nand

[18{0},19{0}; 20{0}] nand [18{1},19{1}; 20{1}] nand [18{2},19{2}; 20{2}] nand [25{1},25{1};

29{1}] nand [25{2},25{2}; 29{2}]

 nand [20,21; 22] nand [20{0},21{0}; 22{0}] nand [20{1},21{1}; 22{1}] nand [20{2},21{2};

22{2}]

 nand [22,22; 11] nand [22{0},22{0}; 11{0}] nand [22{1},22{1}; 11{1}] nand [22{2},22{2};

11{2}]

Se obtiene el bosque de funciones NAND y a partir de él los nodos equivalentes.

equivalentNodes:{25{1}=21{1}, 25{2}=21{2}}

Se reemplazan los nodos equivalentes en la definición original del algoritmo.

add[0,1,17; 2(17&11{2}),15(11{0}&11{1}),16(29{1}&29{2})] =

 nand [0,0; 18] nand [1,1; 19] nand [0,1; 21] nand [9(0{1}&0{2}),10(1{1}&1{2});

23(21{1}&21{2})] nand [0{0},0{0}; 18{0}] nand [0{1},0{1}; 18{1}] nand [0{2},0{2}; 18{2}]

nand [1{0},1{0}; 19{0}] nand [1{1},1{1}; 19{1}] nand [1{2},1{2}; 19{2}] nand [0{0},1{0}; 21{0}]

nand [0{1},1{1}; 21{1}] nand [0{2},1{2}; 21{2}]

 nand [18,19; 20] nand [23(21{1}&21{2}),23(21{1}&21{2}); 16(29{1}&29{2})] nand

[18{0},19{0}; 20{0}] nand [18{1},19{1}; 20{1}] nand [18{2},19{2}; 20{2}] nand [21{1},21{1};

29{1}] nand [21{2},21{2}; 29{2}]

 nand [20,21; 22] nand [20{0},21{0}; 22{0}] nand [20{1},21{1}; 22{1}] nand [20{2},21{2};

22{2}]

 nand [22,22; 11] nand [22{0},22{0}; 11{0}] nand [22{1},22{1}; 11{1}] nand [22{2},22{2};

11{2}]

Se realiza la fusion de nodos.

add[0,1,17; 2(17&11{2}),15(11{0}&11{1}),16] =

 nand [0,0; 18] nand [1,1; 19] nand [0,1; 21]

 nand [18,19; 20] nand [23(21{1}&21{2}),23(21{1}&21{2}); 16]

 nand [20,21; 22]

Ingeniería Informática Proyecto Fin de Carrera

52

 nand [22,22; 11]

Y se reconstruye la función.

add[0,1,2; 29(2&24{2}),26(24{0}&24{1}),30] =

 nand [0,0; 3] nand [1,1; 7] nand [0,1; 15]

 nand [3,7; 11] nand [18(15{1}&15{2}),18(15{1}&15{2}); 30]

 nand [11,15; 20]

 nand [20,20; 24]

Después se recupera la recursividad.

add[0,1; 29(2&24{2})] =

 nand [0,0; 3] nand [1,1; 7] nand [0,1; 15]

 nand [3,7; 11] nand [18(15{1}&15{2}),18(15{1}&15{2}); 30]

 nand [11,15; 20]

 nand [20,20; 24]

 add [26(24{0}&24{1}),30; 2]

7.6.2 Optimización de la redundancia entre iteraciones
Partimos de la función:

addCopy[0,1; 18(17&7{2})] =

 nand [0,0; 2] nand [1,1; 3] nand [0,1; 5]

 nand [2,3; 4] nand [15(5{1}&5{2}),15(5{1}&5{2}); 16]

 nand [4,5; 6]

 nand [6,6; 7]

 add [11(7{0}&7{1}),16; 17]

En primer lugar se expande la recursión, asociando los nodos expandidos a los nodos desde los que

se expanden en una tabla.

addCopy[0,1,28; 18(17(28&30{2})&7{2}),55(30{0}&30{1}),50] =

 nand [0,0; 2] nand [1,1; 3] nand [0,1; 5]

Ingeniería Informática Proyecto Fin de Carrera

53

 nand [2,3; 4] nand [15(5{1}&5{2}),15(5{1}&5{2}); 16]

 nand [4,5; 6] nand [16,16; 37]

 nand [6,6; 7]

 nand [11(7{0}&7{1}),11(7{0}&7{1}); 33] nand [11(7{0}&7{1}),16; 41]

 nand [33,37; 45] nand [49(41{1}&41{2}),49(41{1}&41{2}); 50]

 nand [45,41; 51]

 nand [51,51; 30]

A continuación se realiza la fisión de los nodos.

addCopy[0,1,28;

18(17(28&30(81{0}&81{1}){2}(81{1}{2}))&7{2}),55(30(81{0}&81{1}){0}(81{0})&30(81{0}&81{1}){1}(8

1{1}{0}&81{1}{1})),50(91{1}(95{0}&95{1})&91{2})] =

 nand [0,0; 2] nand [1,1; 3] nand [0,1; 5] nand [0{0},0{0}; 2{0}] nand [0{1},0{1}; 2{1}] nand

[0{2},0{2}; 2{2}] nand [1{0},1{0}; 3{0}] nand [1{1},1{1}; 3{1}] nand [1{2},1{2}; 3{2}] nand

[0{0},1{0}; 5{0}] nand [0{1},1{1}; 5{1}] nand [0{2},1{2}; 5{2}] nand [0{1}{0},0{1}{0}; 2{1}{0}]

nand [0{1}{1},0{1}{1}; 2{1}{1}] nand [0{1}{2},0{1}{2}; 2{1}{2}] nand [1{1}{0},1{1}{0}; 3{1}{0}]

nand [1{1}{1},1{1}{1}; 3{1}{1}] nand [1{1}{2},1{1}{2}; 3{1}{2}] nand [0{1}{0},1{1}{0}; 5{1}{0}]

nand [0{1}{1},1{1}{1}; 5{1}{1}] nand [0{1}{2},1{1}{2}; 5{1}{2}]

 nand [2,3; 4] nand [15(5{1}&5{2}),15(5{1}&5{2}); 16(61{1}&61{2})] nand [2{0},3{0}; 4{0}]

nand [2{1},3{1}; 4{1}] nand [2{2},3{2}; 4{2}] nand [2{1}{0},3{1}{0}; 4{1}{0}] nand

[2{1}{1},3{1}{1}; 4{1}{1}] nand [2{1}{2},3{1}{2}; 4{1}{2}] nand

[15(5{1}&5{2}){0}(5{1}{0}),15(5{1}&5{2}){0}(5{1}{0}); 61{1}{0}] nand

[15(5{1}&5{2}){1}(5{1}{1}&5{1}{2}),15(5{1}&5{2}){1}(5{1}{1}&5{1}{2});

16(61{1}&61{2}){1}(61{1}{1}&61{1}{2})] nand

[15(5{1}&5{2}){2}(5{2}),15(5{1}&5{2}){2}(5{2}); 61{2}] nand [5{1}{1},5{1}{1}; 61{1}{1}] nand

[5{1}{2},5{1}{2}; 61{1}{2}]

 nand [4,5; 6] nand [16(61{1}&61{2}),16(61{1}&61{2}); 37(65{1}&65{2})] nand [4{0},5{0};

6{0}] nand [4{1},5{1}; 6{1}] nand [4{2},5{2}; 6{2}] nand [4{1}{0},5{1}{0}; 6{1}{0}] nand

[4{1}{1},5{1}{1}; 6{1}{1}] nand [4{1}{2},5{1}{2}; 6{1}{2}] nand

[16(61{1}&61{2}){0}(61{1}{0}),16(61{1}&61{2}){0}(61{1}{0}); 65{1}{0}] nand

[16(61{1}&61{2}){1}(61{1}{1}&61{1}{2}),16(61{1}&61{2}){1}(61{1}{1}&61{1}{2});

37(65{1}&65{2}){1}(65{1}{1}&65{1}{2})] nand

[16(61{1}&61{2}){2}(61{2}),16(61{1}&61{2}){2}(61{2}); 65{2}] nand [61{1}{1},61{1}{1};

65{1}{1}] nand [61{1}{2},61{1}{2}; 65{1}{2}]

 nand [6,6; 7] nand [6{0},6{0}; 7{0}] nand [6{1},6{1}; 7{1}] nand [6{2},6{2}; 7{2}] nand

[6{1}{0},6{1}{0}; 7{1}{0}] nand [6{1}{1},6{1}{1}; 7{1}{1}] nand [6{1}{2},6{1}{2}; 7{1}{2}]

 nand [11(7{0}&7{1}),11(7{0}&7{1}); 33(57{0}&57{1})] nand [11(7{0}&7{1}),16(61{1}&61{2});

41(73{0}&73{1})] nand [11(7{0}&7{1}){0}(7{0}),11(7{0}&7{1}){0}(7{0}); 57{0}] nand

[11(7{0}&7{1}){1}(7{1}{0}&7{1}{1}),11(7{0}&7{1}){1}(7{1}{0}&7{1}{1});

33(57{0}&57{1}){1}(57{1}{0}&57{1}{1})] nand

Ingeniería Informática Proyecto Fin de Carrera

54

[11(7{0}&7{1}){2}(7{1}{2}),11(7{0}&7{1}){2}(7{1}{2}); 57{1}{2}] nand

[11(7{0}&7{1}){0}(7{0}),16(61{1}&61{2}){0}(61{1}{0}); 73{0}] nand

[11(7{0}&7{1}){1}(7{1}{0}&7{1}{1}),16(61{1}&61{2}){1}(61{1}{1}&61{1}{2});

41(73{0}&73{1}){1}(73{1}{0}&73{1}{1})] nand

[11(7{0}&7{1}){2}(7{1}{2}),16(61{1}&61{2}){2}(61{2}); 73{1}{2}] nand [7{1}{0},7{1}{0};

57{1}{0}] nand [7{1}{1},7{1}{1}; 57{1}{1}] nand [7{1}{0},61{1}{1}; 73{1}{0}] nand

[7{1}{1},61{1}{2}; 73{1}{1}]

 nand [33(57{0}&57{1}),37(65{1}&65{2}); 45(69{0}&69{1})] nand

[49(41(73{0}&73{1}){1}(73{1}{0}&73{1}{1})&41(73{0}&73{1}){2}(73{1}{2})),49(41(73{0}&73{

1}){1}(73{1}{0}&73{1}{1})&41(73{0}&73{1}){2}(73{1}{2})); 50(91{1}(95{0}&95{1})&91{2})]

nand [33(57{0}&57{1}){0}(57{0}),37(65{1}&65{2}){0}(65{1}{0}); 69{0}] nand

[33(57{0}&57{1}){1}(57{1}{0}&57{1}{1}),37(65{1}&65{2}){1}(65{1}{1}&65{1}{2});

45(69{0}&69{1}){1}(69{1}{0}&69{1}{1})] nand

[33(57{0}&57{1}){2}(57{1}{2}),37(65{1}&65{2}){2}(65{2}); 69{1}{2}] nand [57{1}{0},65{1}{1};

69{1}{0}] nand [57{1}{1},65{1}{2}; 69{1}{1}] nand

[41(73{0}&73{1}){1}(73{1}{0}&73{1}{1}),41(73{0}&73{1}){1}(73{1}{0}&73{1}{1});

91{1}(95{0}&95{1})] nand [41(73{0}&73{1}){2}(73{1}{2}),41(73{0}&73{1}){2}(73{1}{2});

91{2}] nand [73{1}{0},73{1}{0}; 95{0}] nand [73{1}{1},73{1}{1}; 95{1}]

 nand [45(69{0}&69{1}),41(73{0}&73{1}); 51(77{0}&77{1})] nand

[45(69{0}&69{1}){0}(69{0}),41(73{0}&73{1}){0}(73{0}); 77{0}] nand

[45(69{0}&69{1}){1}(69{1}{0}&69{1}{1}),41(73{0}&73{1}){1}(73{1}{0}&73{1}{1});

51(77{0}&77{1}){1}(77{1}{0}&77{1}{1})] nand

[45(69{0}&69{1}){2}(69{1}{2}),41(73{0}&73{1}){2}(73{1}{2}); 77{1}{2}] nand

[69{1}{0},73{1}{0}; 77{1}{0}] nand [69{1}{1},73{1}{1}; 77{1}{1}]

 nand [51(77{0}&77{1}),51(77{0}&77{1}); 30(81{0}&81{1})] nand

[51(77{0}&77{1}){0}(77{0}),51(77{0}&77{1}){0}(77{0}); 81{0}] nand

[51(77{0}&77{1}){1}(77{1}{0}&77{1}{1}),51(77{0}&77{1}){1}(77{1}{0}&77{1}{1});

30(81{0}&81{1}){1}(81{1}{0}&81{1}{1})] nand

[51(77{0}&77{1}){2}(77{1}{2}),51(77{0}&77{1}){2}(77{1}{2}); 81{1}{2}] nand

[77{1}{0},77{1}{0}; 81{1}{0}] nand [77{1}{1},77{1}{1}; 81{1}{1}]

Después se transforma a un bosque de funciones NAND y obtenemos los nodos equivalentes.

equivalentNodes:{65{1}{1}=5{1}{1}, 57{1}{1}=6{1}{1}, 65{1}{2}=5{1}{2}, 65{2}=5{2}, 65{1}{0}=5{1}{0},

57{1}{2}=6{1}{2}, 57{0}=6{0}, 57{1}{0}=6{1}{0}}

equivalentNodes:{57{1}{1}=6{1}{1}, 65{1}{2}=5{1}{2},

37(65{1}&65{2}){2}(65{2})=15(5{1}&5{2}){2}(5{2}), 65{2}=5{2}, 65{1}=5{1}, 57{1}=6{1}, 57{0}=6{0},

65{1}{1}=5{1}{1}, 37(65{1}&65{2}){1}(65{1}{1}&65{1}{2})=15(5{1}&5{2}){1}(5{1}{1}&5{1}{2}),

65{1}{0}=5{1}{0}, 57{1}{2}=6{1}{2}, 37(65{1}&65{2})=15(5{1}&5{2}), 57{1}{0}=6{1}{0},

37(65{1}&65{2}){0}(65{1}{0})=15(5{1}&5{2}){0}(5{1}{0})}

Se reemplazan los nodos equivalentes de la definición original.

Ingeniería Informática Proyecto Fin de Carrera

55

addCopy[0,1,28;

18(17(28&30(81{0}&81{1}){2}(81{1}{2}))&7{2}),55(30(81{0}&81{1}){0}(81{0})&30(81{0}&81{1}){1}(8

1{1}{0}&81{1}{1})),50(91{1}(95{0}&95{1})&91{2})] =

 nand [0,0; 2] nand [1,1; 3] nand [0,1; 5] nand [0{0},0{0}; 2{0}] nand [0{1},0{1}; 2{1}] nand

[0{2},0{2}; 2{2}] nand [1{0},1{0}; 3{0}] nand [1{1},1{1}; 3{1}] nand [1{2},1{2}; 3{2}] nand

[0{0},1{0}; 5{0}] nand [0{1},1{1}; 5{1}] nand [0{2},1{2}; 5{2}] nand [0{1}{0},0{1}{0}; 2{1}{0}]

nand [0{1}{1},0{1}{1}; 2{1}{1}] nand [0{1}{2},0{1}{2}; 2{1}{2}] nand [1{1}{0},1{1}{0}; 3{1}{0}]

nand [1{1}{1},1{1}{1}; 3{1}{1}] nand [1{1}{2},1{1}{2}; 3{1}{2}] nand [0{1}{0},1{1}{0}; 5{1}{0}]

nand [0{1}{1},1{1}{1}; 5{1}{1}] nand [0{1}{2},1{1}{2}; 5{1}{2}]

 nand [2,3; 4] nand [15(5{1}&5{2}),15(5{1}&5{2}); 16(61{1}&61{2})] nand [2{0},3{0}; 4{0}]

nand [2{1},3{1}; 4{1}] nand [2{2},3{2}; 4{2}] nand [2{1}{0},3{1}{0}; 4{1}{0}] nand

[2{1}{1},3{1}{1}; 4{1}{1}] nand [2{1}{2},3{1}{2}; 4{1}{2}] nand

[15(5{1}&5{2}){0}(5{1}{0}),15(5{1}&5{2}){0}(5{1}{0}); 61{1}{0}] nand

[15(5{1}&5{2}){1}(5{1}{1}&5{1}{2}),15(5{1}&5{2}){1}(5{1}{1}&5{1}{2});

16(61{1}&61{2}){1}(61{1}{1}&61{1}{2})] nand

[15(5{1}&5{2}){2}(5{2}),15(5{1}&5{2}){2}(5{2}); 61{2}] nand [5{1}{1},5{1}{1}; 61{1}{1}] nand

[5{1}{2},5{1}{2}; 61{1}{2}]

 nand [4,5; 6] nand [4{0},5{0}; 6{0}] nand [4{1},5{1}; 6{1}] nand [4{2},5{2}; 6{2}] nand

[4{1}{0},5{1}{0}; 6{1}{0}] nand [4{1}{1},5{1}{1}; 6{1}{1}] nand [4{1}{2},5{1}{2}; 6{1}{2}]

 nand [6,6; 7] nand [6{0},6{0}; 7{0}] nand [6{1},6{1}; 7{1}] nand [6{2},6{2}; 7{2}] nand

[6{1}{0},6{1}{0}; 7{1}{0}] nand [6{1}{1},6{1}{1}; 7{1}{1}] nand [6{1}{2},6{1}{2}; 7{1}{2}] nand

[6{1}{0},5{1}{1}; 69{1}{0}] nand [6{1}{1},5{1}{2}; 69{1}{1}]

 nand [11(7{0}&7{1}),11(7{0}&7{1}); 33(6{0}&6{1})] nand [11(7{0}&7{1}),16(61{1}&61{2});

41(73{0}&73{1})] nand

[11(7{0}&7{1}){1}(7{1}{0}&7{1}{1}),11(7{0}&7{1}){1}(7{1}{0}&7{1}{1});

33(6{0}&6{1}){1}(6{1}{0}&6{1}{1})] nand

[11(7{0}&7{1}){0}(7{0}),16(61{1}&61{2}){0}(61{1}{0}); 73{0}] nand

[11(7{0}&7{1}){1}(7{1}{0}&7{1}{1}),16(61{1}&61{2}){1}(61{1}{1}&61{1}{2});

41(73{0}&73{1}){1}(73{1}{0}&73{1}{1})] nand

[11(7{0}&7{1}){2}(7{1}{2}),16(61{1}&61{2}){2}(61{2}); 73{1}{2}] nand [7{1}{0},61{1}{1};

73{1}{0}] nand [7{1}{1},61{1}{2}; 73{1}{1}]

 nand

[49(41(73{0}&73{1}){1}(73{1}{0}&73{1}{1})&41(73{0}&73{1}){2}(73{1}{2})),49(41(73{0}&73{

1}){1}(73{1}{0}&73{1}{1})&41(73{0}&73{1}){2}(73{1}{2})); 50(91{1}(95{0}&95{1})&91{2})]

nand [41(73{0}&73{1}){1}(73{1}{0}&73{1}{1}),41(73{0}&73{1}){1}(73{1}{0}&73{1}{1});

91{1}(95{0}&95{1})] nand [41(73{0}&73{1}){2}(73{1}{2}),41(73{0}&73{1}){2}(73{1}{2});

91{2}] nand [73{1}{0},73{1}{0}; 95{0}] nand [73{1}{1},73{1}{1}; 95{1}] nand

[33(6{0}&6{1}){0}(6{0}),15(5{1}&5{2}){0}(5{1}{0}); 69{0}] nand [33(6{0}&6{1}),15(5{1}&5{2});

45(69{0}&69{1})] nand [33(6{0}&6{1}){2}(6{1}{2}),15(5{1}&5{2}){2}(5{2}); 69{1}{2}] nand

[33(6{0}&6{1}){1}(6{1}{0}&6{1}{1}),15(5{1}&5{2}){1}(5{1}{1}&5{1}{2});

45(69{0}&69{1}){1}(69{1}{0}&69{1}{1})]

 nand [45(69{0}&69{1}),41(73{0}&73{1}); 51(77{0}&77{1})] nand

[45(69{0}&69{1}){0}(69{0}),41(73{0}&73{1}){0}(73{0}); 77{0}] nand

[45(69{0}&69{1}){1}(69{1}{0}&69{1}{1}),41(73{0}&73{1}){1}(73{1}{0}&73{1}{1});

Ingeniería Informática Proyecto Fin de Carrera

56

51(77{0}&77{1}){1}(77{1}{0}&77{1}{1})] nand

[45(69{0}&69{1}){2}(69{1}{2}),41(73{0}&73{1}){2}(73{1}{2}); 77{1}{2}] nand

[69{1}{0},73{1}{0}; 77{1}{0}] nand [69{1}{1},73{1}{1}; 77{1}{1}]

 nand [51(77{0}&77{1}),51(77{0}&77{1}); 30(81{0}&81{1})] nand

[51(77{0}&77{1}){0}(77{0}),51(77{0}&77{1}){0}(77{0}); 81{0}] nand

[51(77{0}&77{1}){1}(77{1}{0}&77{1}{1}),51(77{0}&77{1}){1}(77{1}{0}&77{1}{1});

30(81{0}&81{1}){1}(81{1}{0}&81{1}{1})] nand

[51(77{0}&77{1}){2}(77{1}{2}),51(77{0}&77{1}){2}(77{1}{2}); 81{1}{2}] nand

[77{1}{0},77{1}{0}; 81{1}{0}] nand [77{1}{1},77{1}{1}; 81{1}{1}]

Y se fusionan los nodos.

addCopy[0,1,28; 18(17(28&30{2})&7{2}),55(30{0}&30{1}),50] =

 nand [0,0; 2] nand [1,1; 3] nand [0,1; 5]

 nand [2,3; 4] nand [15(5{1}&5{2}),15(5{1}&5{2}); 16]

 nand [4,5; 6]

 nand [6,6; 7]

 nand [11(7{0}&7{1}),16; 41]

 nand [49(41{1}&41{2}),49(41{1}&41{2}); 50] nand [33(6{0}&6{1}),15(5{1}&5{2}); 45]

 nand [45,41; 51]

 nand [51,51; 30]

De esta expresión, se extraen los nodos de entrada y salida de la nueva función recursiva, utilizando

la tabla de equivalencia entre nodos expandidos y nodos originales de la definición de la función.

recursiveIn1:[16, 33(6{0}&6{1}), 15(5{1}&5{2}), 11(7{0}&7{1})]

recursiveOut1:[17(28&30{2})]

recursiveIn0:[1, 2, 3, 0]

recursiveOut0:[18(17&7{2})]

recursiveInInstance:[1, 3, 7, 0]

recursiveOutInstance:[29(2&24{2})]

Modificamos la definición original de la suma con la instancia a esta nueva función recursiva.

Ingeniería Informática Proyecto Fin de Carrera

57

add[0,1; 10] =

 nand [0,0; 2] nand [1,1; 6]

 addRecur [1,2,6,0; 10]

Y calculamos la nueva función recursiva.

addRecur[0,1,2,3; 21(22&16{2})] =

 nand [3,0; 4] nand [1,2; 10]

 nand [7(4{1}&4{2}),7(4{1}&4{2}); 9] nand [10,4; 11]

 nand [11,11; 16]

 addRecur [9,13(11{0}&11{1}),7(4{1}&4{2}),18(16{0}&16{1}); 22]

Con lo que ya tenemos el algoritmo de la suma modular optimizado.

7.7 Traza de ejecución del software de optimización
desarrollado

El desarrollo del software de optimización ha sido incremental, tal y como refleja el crecimiento de

la base de datos durante su ejecución.

Se comenzó por expresar, almacenar y optimizar funciones secuenciales extremadamente sencillas.

A partir de ellas, se fueron definiendo instrucciones más complejas, incluyendo funciones recursivas.

Finalmente se implementó el algoritmo de la suma y se optimizó.

[00001111, 00110011]nand[11111100]

Definition as nands:

nandCopy[0,1; 2] =

 root in:

Definition cost in parallel nands: 0

New definition:

not[0; 1] =

 nand [0,0;1]

 root in:

Definition as nands:

notCopy[0; 1] =

 nand [0,0;1]

 root in:

Definition cost in parallel nands: 1

[00001111]not[11110000]

Optimized definition:

not[0; 1] =

 nand [0,0;1]

Ingeniería Informática Proyecto Fin de Carrera

58

 root in:

Definition as nands:

notCopy[0; 1] =

 nand [0,0;1]

 root in:

Definition cost in parallel nands: 1

[00001111]not[11110000]

DATABASE:

not[0; 1] =

 nand [0,0;1]

 root in:

nand[0,1; 2] =

 root in: not,

New definition:

and[0,1; 2] =

 nand [0,1;3]

 not [3;2]

 root in:

Definition as nands:

andCopy[0,1; 2] =

 nand [0,1;3]

 nand [3,3;2]

 root in:

Definition cost in parallel nands: 2

[00001111, 00110011]and[00000011]

Optimized definition:

and[0,1; 3] =

 nand [0,1;2]

 nand [2,2;3]

 root in:

Definition as nands:

andCopy[0,1; 2] =

 nand [0,1;3]

 nand [3,3;2]

 root in:

Definition cost in parallel nands: 2

[00001111, 00110011]and[00000011]

DATABASE:

not[0; 1] =

 nand [0,0;1]

 root in:

and[0,1; 3] =

 nand [0,1;2]

 nand [2,2;3]

 root in:

nand[0,1; 2] =

 root in: not,and,

New definition:

or[0,1; 2] =

 not [0;3] not [1;4]

 nand [3,4;2]

 root in:

Definition as nands:

orCopy[0,1; 2] =

 nand [0,0;3] nand [1,1;4]

 nand [3,4;2]

 root in:

Definition cost in parallel nands: 2

[00001111, 00110011]or[00111111]

Ingeniería Informática Proyecto Fin de Carrera

59

Optimized definition:

or[0,1; 4] =

 nand [0,0;2] nand [1,1;3]

 nand [2,3;4]

 root in:

Definition as nands:

orCopy[0,1; 2] =

 nand [0,0;3] nand [1,1;4]

 nand [3,4;2]

 root in:

Definition cost in parallel nands: 2

[00001111, 00110011]or[00111111]

DATABASE:

not[0; 1] =

 nand [0,0;1]

 root in:

or[0,1; 4] =

 nand [0,0;2] nand [1,1;3]

 nand [2,3;4]

 root in:

and[0,1; 3] =

 nand [0,1;2]

 nand [2,2;3]

 root in:

nand[0,1; 2] =

 root in: not,and,or,

New definition:

xor[0,1; 2] =

 nand [0,1;3]

 nand [3,0;4] nand [3,1;5]

 nand [4,5;2]

 root in:

Definition as nands:

xorCopy[0,1; 2] =

 nand [0,1;4]

 nand [4,0;3] nand [4,1;5]

 nand [3,5;2]

 root in:

Definition cost in parallel nands: 3

[00001111, 00110011]xor[00111100]

Optimized definition:

xor[0,1; 5] =

 nand [0,1;2]

 nand [2,0;3] nand [2,1;4]

 nand [3,4;5]

 root in:

Definition as nands:

xorCopy[0,1; 2] =

 nand [0,1;4]

 nand [4,0;3] nand [4,1;5]

 nand [3,5;2]

 root in:

Definition cost in parallel nands: 3

[00001111, 00110011]xor[00111100]

DATABASE:

not[0; 1] =

 nand [0,0;1]

 root in:

or[0,1; 4] =

 nand [0,0;2] nand [1,1;3]

Ingeniería Informática Proyecto Fin de Carrera

60

 nand [2,3;4]

 root in:

and[0,1; 3] =

 nand [0,1;2]

 nand [2,2;3]

 root in:

nand[0,1; 2] =

 root in: not,and,or,xor,

xor[0,1; 5] =

 nand [0,1;2]

 nand [2,0;3] nand [2,1;4]

 nand [3,4;5]

 root in:

New definition:

if[0,1,2; 3] =

 not [0;4] and [0,2;6]

 and [4,1;5]

 or [5,6;3]

 root in:

Definition as nands:

ifCopy[0,1,2; 3] =

 nand [0,0;5] nand [0,2;8]

 nand [5,1;7] nand [8,8;6]

 nand [7,7;4] nand [6,6;10]

 nand [4,4;9]

 nand [9,10;3]

 root in:

Definition cost in parallel nands: 5

[00001111, 00110011, 01010101]if[00110101]

Optimized definition:

if[0,1,2; 6] =

 nand [0,0;3] nand [0,2;5]

 nand [3,1;4]

 nand [4,5;6]

 root in:

Definition as nands:

ifCopy[0,1,2; 3] =

 nand [0,0;5] nand [0,2;6]

 nand [5,1;4]

 nand [4,6;3]

 root in:

Definition cost in parallel nands: 3

[00001111, 00110011, 01010101]if[00110101]

DATABASE:

not[0; 1] =

 nand [0,0;1]

 root in:

or[0,1; 4] =

 nand [0,0;2] nand [1,1;3]

 nand [2,3;4]

 root in:

and[0,1; 3] =

 nand [0,1;2]

 nand [2,2;3]

 root in:

nand[0,1; 2] =

 root in: not,and,or,xor,if,

xor[0,1; 5] =

 nand [0,1;2]

 nand [2,0;3] nand [2,1;4]

Ingeniería Informática Proyecto Fin de Carrera

61

 nand [3,4;5]

 root in:

if[0,1,2; 6] =

 nand [0,0;3] nand [0,2;5]

 nand [3,1;4]

 nand [4,5;6]

 root in:

New definition:

rif[0,1,2; 3(8&9)] =

 rif [0,1{1..n-1},2{1..n-1};8] if [0,1{n},2{n};9]

 root in:

Definition as nands:

rifCopy[0,1,2; 3(9&4)] =

 rifCopy [0,1{1..n-1},2{1..n-1};9] nand [0,0;10] nand

[0,2{n};12]

 nand [10,1{n};11]

 nand [11,12;4]

 root in:

Definition cost in parallel nands: 3

[1, 00110011, 01010101]rif[01010101]

Optimized definition:

rif[0,1,2; 3(8&9)] =

 rif [0,1{1..n-1},2{1..n-1};8] nand [0,0;10] nand [0,2{n};12]

 nand [10,1{n};11]

 nand [11,12;9]

 root in:

Definition as nands:

rifCopy[0,1,2; 3(12&4)] =

 rifCopy [0,1{1..n-1},2{1..n-1};12] nand [0,0;6] nand [0,2{n};9]

 nand [6,1{n};5]

 nand [5,9;4]

 root in:

Definition cost in parallel nands: 3

[1, 00110011, 01010101]rif[01010101]

DATABASE:

not[0; 1] =

 nand [0,0;1]

 root in:

or[0,1; 4] =

 nand [0,0;2] nand [1,1;3]

 nand [2,3;4]

 root in:

and[0,1; 3] =

 nand [0,1;2]

 nand [2,2;3]

 root in:

nand[0,1; 2] =

 root in: not,and,or,xor,if,

xor[0,1; 5] =

 nand [0,1;2]

 nand [2,0;3] nand [2,1;4]

 nand [3,4;5]

 root in:

if[0,1,2; 6] =

 nand [0,0;3] nand [0,2;5]

 nand [3,1;4]

 nand [4,5;6]

 root in:

rif[0,1,2; 3(8&9)] =

 rif [0,1{1..n-1},2{1..n-1};8] nand [0,0;10] nand [0,2{n};12]

Ingeniería Informática Proyecto Fin de Carrera

62

 nand [10,1{n};11]

 nand [11,12;9]

 root in:

New definition:

sum[0,1,2; 3,4] =

 xor [0,1;5] and [0,1;6] xor [0,1;7]

 and [5,2;8] xor [7,2;3]

 or [6,8;4]

 root in:

Definition as nands:

sumCopy[0,1,2; 3,5] =

 nand [0,1;9] nand [0,1;15] nand [0,1;16]

 nand [9,0;10] nand [9,1;11] nand [15,15;6] nand [16,0;17] nand

[16,1;18]

 nand [10,11;4] nand [17,18;8] nand [6,6;20]

 nand [4,2;12] nand [8,2;19]

 nand [12,4;13] nand [12,2;14] nand [19,19;7]

 nand [13,14;3] nand [7,7;21]

 nand [20,21;5]

 root in:

Definition cost in parallel nands: 7

[00001111, 00110011, 01010101]sum[01101001, 00010111]

Optimized definition:

sum[0,1,2; 10,11] =

 nand [0,1;3]

 nand [3,0;4] nand [3,1;5]

 nand [4,5;6]

 nand [6,2;7]

 nand [7,6;8] nand [7,2;9] nand [3,7;11]

 nand [8,9;10]

 root in:

Definition as nands:

sumCopy[0,1,2; 3,11] =

 nand [0,1;8]

 nand [8,0;7] nand [8,1;9]

 nand [7,9;6]

 nand [6,2;5]

 nand [5,6;4] nand [5,2;10] nand [8,5;11]

 nand [4,10;3]

 root in:

Definition cost in parallel nands: 6

[00001111, 00110011, 01010101]sum[01101001, 00010111]

DATABASE:

not[0; 1] =

 nand [0,0;1]

 root in:

or[0,1; 4] =

 nand [0,0;2] nand [1,1;3]

 nand [2,3;4]

 root in:

and[0,1; 3] =

 nand [0,1;2]

 nand [2,2;3]

 root in:

nand[0,1; 2] =

 root in: not,and,or,xor,if,sum,

xor[0,1; 5] =

 nand [0,1;2]

 nand [2,0;3] nand [2,1;4]

 nand [3,4;5]

Ingeniería Informática Proyecto Fin de Carrera

63

 root in:

sum[0,1,2; 10,11] =

 nand [0,1;3]

 nand [3,0;4] nand [3,1;5]

 nand [4,5;6]

 nand [6,2;7]

 nand [7,6;8] nand [7,2;9] nand [3,7;11]

 nand [8,9;10]

 root in:

if[0,1,2; 6] =

 nand [0,0;3] nand [0,2;5]

 nand [3,1;4]

 nand [4,5;6]

 root in:

rif[0,1,2; 3(8&9)] =

 rif [0,1{1..n-1},2{1..n-1};8] nand [0,0;10] nand [0,2{n};12]

 nand [10,1{n};11]

 nand [11,12;9]

 root in:

New definition:

sumR[0,1,2; 3(5&6),4(7&8)] =

 sum [0{n},1{n},2;6,7]

 sumR [0{1..n-1},1{1..n-1},7;5,8]

 root in:

Definition as nands:

sumRCopy[0,1,2; 3(10&4),12] =

 nand [0{n},1{n};13]

 nand [13,0{n};14] nand [13,1{n};15]

 nand [14,15;16]

 nand [16,2;17]

 nand [17,16;18] nand [17,2;19] nand [13,17;9(12&]

 nand [18,19;4] sumRCopy [0{1..n-1},1{1..n-1},9(12&;10,1112)]

 root in:

Definition cost in parallel nands: 0+6x^1

[00001111, 00110011, 1]sumR[01000011, 11111100]

Optimized definition:

sumR[0,1,2; 3(5&6),4(7&8)] =

 nand [0{n},1{n};13]

 nand [13,0{n};14] nand [13,1{n};15]

 nand [14,15;16]

 nand [16,2;17]

 nand [17,16;18] nand [17,2;19] nand [13,17;7]

 nand [18,19;6] sumR [0{1..n-1},1{1..n-1},7;5,8]

 root in:

Definition as nands:

sumRCopy[0,1,2; 3(16&4),19] =

 nand [0{n},1{n};9]

 nand [9,0{n};8] nand [9,1{n};14]

 nand [8,14;7]

 nand [7,2;6]

 nand [9,6;17(19&] nand [6,7;5] nand [6,2;15]

 sumRCopy [0{1..n-1},1{1..n-1},17(19&;16,1819)] nand [5,15;4]

 root in:

Definition cost in parallel nands: 0+5x^1

[00001111, 00110011, 1]sumR[01000011, 11111100]

DATABASE:

sumR[0,1,2; 3(5&6),4(7&8)] =

 nand [0{n},1{n};13]

 nand [13,0{n};14] nand [13,1{n};15]

 nand [14,15;16]

Ingeniería Informática Proyecto Fin de Carrera

64

 nand [16,2;17]

 nand [17,16;18] nand [17,2;19] nand [13,17;7]

 nand [18,19;6] sumR [0{1..n-1},1{1..n-1},7;5,8]

 root in:

not[0; 1] =

 nand [0,0;1]

 root in:

or[0,1; 4] =

 nand [0,0;2] nand [1,1;3]

 nand [2,3;4]

 root in:

and[0,1; 3] =

 nand [0,1;2]

 nand [2,2;3]

 root in:

nand[0,1; 2] =

 root in: not,and,or,xor,if,sum,

xor[0,1; 5] =

 nand [0,1;2]

 nand [2,0;3] nand [2,1;4]

 nand [3,4;5]

 root in:

sum[0,1,2; 10,11] =

 nand [0,1;3]

 nand [3,0;4] nand [3,1;5]

 nand [4,5;6]

 nand [6,2;7]

 nand [7,6;8] nand [7,2;9] nand [3,7;11]

 nand [8,9;10]

 root in:

if[0,1,2; 6] =

 nand [0,0;3] nand [0,2;5]

 nand [3,1;4]

 nand [4,5;6]

 root in:

rif[0,1,2; 3(8&9)] =

 rif [0,1{1..n-1},2{1..n-1};8] nand [0,0;10] nand [0,2{n};12]

 nand [10,1{n};11]

 nand [11,12;9]

 root in:

New definition:

add[0,1; 2(7(9{n}&10)&11)] =

 and [0{n},1{n};12] xor [0{n},1{n};11]

 sumR [0{1..n-1},1{1..n-1},12;10,9]

 root in:

Definition as nands:

addCopy[0,1; 2(8(11{n}&9)&3)] =

 nand [0{n},1{n};13] nand [0{n},1{n};14]

 nand [13,13;10] nand [14,0{n};15] nand [14,1{n};16]

 sumR [0{1..n-1},1{1..n-1},10;9,11] nand [15,16;3]

 root in:

Definition cost in parallel nands: 0+5x^1

[00001111, 00110011]add[001000010]

[1, 01]add[010]

Optimized definition:

add[0,1; 2(7(9{n}&10)&11)] =

 nand [0{n},1{n};13]

 nand [13,13;12] nand [13,0{n};15] nand [13,1{n};16]

 sumR [0{1..n-1},1{1..n-1},12;10,9] nand [15,16;11]

 root in:

Ingeniería Informática Proyecto Fin de Carrera

65

Definition as nands:

addCopy[0,1; 2(11(15{n}&12)&3)] =

 nand [0{n},1{n};14]

 nand [14,14;13] nand [14,0{n};4] nand [14,1{n};10]

 sumR [0{1..n-1},1{1..n-1},13;12,15] nand [4,10;3]

 root in:

Definition cost in parallel nands: 0+5x^1

[00001111, 00110011]add[001000010]

[1, 01]add[010]

DATABASE:

add[0,1; 2(7(9{n}&10)&11)] =

 nand [0{n},1{n};13]

 nand [13,13;12] nand [13,0{n};15] nand [13,1{n};16]

 sumR [0{1..n-1},1{1..n-1},12;10,9] nand [15,16;11]

 root in:

sumR[0,1,2; 3(5&6),4(7&8)] =

 nand [0{n},1{n};13]

 nand [13,0{n};14] nand [13,1{n};15]

 nand [14,15;16]

 nand [16,2;17]

 nand [17,16;18] nand [17,2;19] nand [13,17;7]

 nand [18,19;6] sumR [0{1..n-1},1{1..n-1},7;5,8]

 root in:

not[0; 1] =

 nand [0,0;1]

 root in:

or[0,1; 4] =

 nand [0,0;2] nand [1,1;3]

 nand [2,3;4]

 root in:

and[0,1; 3] =

 nand [0,1;2]

 nand [2,2;3]

 root in:

nand[0,1; 2] =

 root in: not,and,or,xor,if,sum,

xor[0,1; 5] =

 nand [0,1;2]

 nand [2,0;3] nand [2,1;4]

 nand [3,4;5]

 root in:

sum[0,1,2; 10,11] =

 nand [0,1;3]

 nand [3,0;4] nand [3,1;5]

 nand [4,5;6]

 nand [6,2;7]

 nand [7,6;8] nand [7,2;9] nand [3,7;11]

 nand [8,9;10]

 root in:

if[0,1,2; 6] =

 nand [0,0;3] nand [0,2;5]

 nand [3,1;4]

 nand [4,5;6]

 root in:

rif[0,1,2; 3(8&9)] =

 rif [0,1{1..n-1},2{1..n-1};8] nand [0,0;10] nand [0,2{n};12]

 nand [10,1{n};11]

 nand [11,12;9]

 root in:

Ingeniería Informática Proyecto Fin de Carrera

66

8 Figuras

Figura 1: Sumador completo de 1 bit ... 10

Figura 2: Circuito de funciones AND entre un bit y un vector de bits .. 11

Figura 3: Nodo con subnodos "resto" y "final". .. 13

Figura 4: Nodo con hijos "restoDeHijos" e "hijoFinal" y padres "restoDePadres" y "padreFinal". 13

Figura 5: Representación de la función NOT mediante un bosque de funciones NAND 14

Figura 6 : Representación de la función XOR mediante Redes Booleanas ... 16

Figura 7: Aplicación de la primera ley de De Morgan mediante una red de funciones NAND 17

Figura 8: Aplicación de la segunda ley de De Morgan mediante una red de funciones NAND 18

Figura 9: Tabla dispersa bidimensional para la definición de AND y tabla de nodos equivalentes 19

Figura 10: Tabla dispersa bidimensional para la definición de Sum y tabla de nodos equivalentes .. 21

Figura 11: Nodos equivalentes por la doble negación .. 22

Figura 12: Representación del desplegado de una llamada recursiva.. 26

Figura 13: Optimización de una función recursiva ... 26

Figura 14: Tabla de relación de nodos expandidos con nodos de la función original. 27

Figura 15: Optimización de una función que contiene una llamada recursiva 28

Figura 16: Tabla de valores de nodos antes de ejecución .. 28

Figura 17: Tabla de valores de nodos después de ejecución .. 29

Figura 18: Sintaxis de Logic Friday .. 30

Figura 19: Función XOR minimizada mediante MisII .. 31

Figura 20: Multiplexor minimizado mediante MisII .. 32

Figura 21: Función suma de 3 bits minimizada mediante MisII .. 35

Figura 22: Función suma de 4 bits minimizada mediante MisII .. 37

Figura 23: Diagrama de Gantt de horas dedicadas a las fases del proyecto 44

Figura 24: Contribuciones al repositorio principal .. 44

Figura 25: Optimización de funciones con múltiples instancias de funciones recursivas 45

Figura 26: Optimización de un algoritmo con varias instancias recursivas .. 45

Figura 27: Algoritmo recursivo con funciones recursivas ... 45

Ingeniería Informática Proyecto Fin de Carrera

67

9 Glosario
Literal: en lógica matemática, un literal es una fórmula atómica o su negación.

Síntesis de un circuito: proceso por el cual se implementa mediante puertas lógicas el diseño de un

circuito. Se utiliza como sinónimo de minimización del circuito. [5]

Red booleana: modelo estándar independiente de la tecnología para representar circuitos mediante

una red lógica. Los nodos de la red pueden ser entradas primarias, salidas primarias o funciones

booleanas. Las funciones representan una expresión arbitraria, con un número ilimitado de entradas

locales y una única salida. [12]

Bosque: estructura de datos arborescente compuesta de varios árboles de nodos.

Profundidad: cantidad de funciones booleanas de una Red Booleana que han de ejecutarse

necesariamente en un orden secuencial. Es equivalente al coste secuencial de ejecución si asumimos

la ejecución con la máxima paralelización posible.

Algoritmo de Quine-McCluskey: método clásico de minimización de funciones booleanas. El

resultado es una suma de productos (OR de ANDs).

Minimización en dos niveles: minimización a una expresión como suma de productos (OR de ANDs)

o producto de sumas (AND de ORs). El objetivo es reducir el número de literales y productos (o

sumas) utilizados.

Minimización multinivel: minimización a una expresión con funciones lógicas arbitrarias. El objetivo

es reducir el número de literales utilizados.

Algoritmo Espresso: algoritmo heurístico de minimización de circuitos en dos niveles que es el

estándar de facto para la industria.

Algoritmo Espresso-exacto o “mincov” (mínimum-covering): algoritmo exacto de minimización de

circuitos. Pese al nombre, no tiene relación con el algoritmo Espresso y es una implementación

moderna del método de Quine-McCluskey. [15]

MisII: herramienta desarrollada en la Universidad de California, Berkeley para realizar síntesis

multinivel de circuitos. Utiliza Espresso como una de sus subrutinas. [5] [16]

Logic Friday: software para usar los métodos Espresso, Espresso-exacto y MisII de minimización de

circuitos.

Algoritmo NP: algoritmos de complejidad de tiempo polinómico no determinista.

Algoritmo NP-completo: algoritmos más difíciles de NP.

Algoritmo NP-complejo: algoritmos que son como mínimo tan difíciles como un problema de NP.

Algoritmo ∑𝑷
𝟐 : algoritmos más complejos que NP. Serían NP si tuviéramos acceso a una máquina

oráculo que resolviera un problema NP cuantas veces queramos.

Algoritmo ∑ −𝑷
𝟐 completo: dentro de la jerarquía de clases de complejidad, los algoritmos más

difíciles de ∑𝑷
𝟐 .

Búsqueda en anchura: algoritmo para explorar un grafo, explorando primero los vecinos de los

nodos.

Búsqueda en profundidad: algoritmo para explorar un grafo siguiendo un camino concreto,

expandiendo cada nodo que se va localizando.

Ingeniería Informática Proyecto Fin de Carrera

68

Padre: en un árbol, nodo con hijos. En este documento se utiliza para mantener un orden: un padre

siempre está más cerca de la raíz (o de las entradas) que los hijos.

Hijo: en un árbol, nodo descendiente de otro nodo. En este documento se utiliza para mantener un

orden: los hijos siempre están más cerca de las hojas (o salidas) que su padre.

Supernodo: nodo formado por múltiples nodos en una estructura que no tiene porqué ser un árbol.

Se utiliza en este documento para diferenciar cuando no se sigue una dirección concreta como con

un nodo Padre.

Subnodo: nodo que es parte de un supernodo en una estructura que no tiene porqué ser un árbol.

Se utiliza en este documento para diferenciar cuando no se sigue una dirección concreta como con

un nodo hijo.

Tabla dispersa: estructura de datos que asocia claves con valores y cuyo tiempo de acceso es

constante en media.

Funciones μ-recursivas: En matemáticas y ciencias de la computación las funciones μ-recursivas son

una clase de funciones parciales de los números naturales a los números naturales que son

“computables” en un sentido intuitivo.

