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Una aproximacion a la optimizacion de algoritmos
mediante el uso de minimizacion de funciones
booleanas

RESUMEN

Este proyecto explora la posibilidad de optimizar algoritmos utilizando técnicas de minimizacién de
funciones booleanas.

La idea de partida es que expresar un programa a muy bajo nivel permitird localizar y eliminar
redundancia. Para ello se trabaja con operaciones bit a bit de ldgica booleana. Usamos Unicamente
la funcion NAND para expresar cualquier otra funcidén gracias a su propiedad de completitud
funcional.

Expresar un algoritmo de esta forma nos permite, por un lado, tener una medida del coste del
algoritmo en funciones NAND y, por otro, paralelizarlo.

Mediante minimizacion, se puede optimizar un circuito légico equivalente a un fragmento de cddigo
secuencial, que no tenga bucles ni recursividad. Para ello se ha desarrollado una técnica propia de
minimizacién rapida.

Se han desarrollado técnicas para este proyecto que permiten aplicar la minimizacién a algoritmos

recursivos. De este modo se eliminan, por ejemplo, operaciones repetidas en diferentes iteraciones
de un bucle.

Para llevar a cabo este trabajo se ha desarrollado una notacién propia, parecida a un lenguaje
ensamblador, que permite trabajar con funciones légicas y recursividad.

Se ha creado una base de datos dénde se definen las funciones recursivas, que pueden representar
desde una puerta légica hasta un algoritmo como el de la suma.

Se han implementado los métodos de optimizacién de estas funciones recursivas y un método de
evaluacion, mediante el que se ejecutan para comprobar que son correctas. También se han
implementado una serie de utilidades para, por ejemplo, traducir entre diferentes notaciones.

Finalmente se han comparado los resultados con el algoritmo sin optimizar y con la solucidn que nos
ofrecerian otras herramientas.
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“La escultura ya estaba dentro de la piedra.

1 I ntr (0] du CcC i O, n Yo, unicamente, he debido eliminar el

mdrmol que le sobraba”- Anénimo
1.1 Motivacion y contexto

Este proyecto es un proyecto de iniciacion a la investigacion. Nace a propuesta del alumno, a partir
de la intuicién de que frente al problema de optimizacion combinatoria que representa elegir las
instrucciones mas adecuadas para implementar un algoritmo, una posible aproximacién es
expresarlas todas a mas bajo nivel, en un lenguaje de una sola instruccion.

La motivacion fundamental del proyecto es la observacion de que existe un problema de dificil
solucion: los algoritmos rara vez son Optimos. La optimizacion automatica de cddigo se deja
actualmente en manos de los compiladores. Pero ninglin compilador puede garantizar que se
obtiene el cédigo mas rapido o mds pequefio, ya que para hacerlo tendria que resolver el problema
de parada [1], que es indecidible.

En los compiladores tradicionales se optimiza mediante la aplicacidon de una serie de reglas fijas, en
un orden determinado. Estas reglas y el orden en que se aplican suelen ser lo suficientemente buenas
para producir un cddigo de alto rendimiento, pero eso no quiere decir que no se pueda optimizar
mas.

1.2 Antecedentes y estado de la técnica

La optimizacion tiene muchas vertientes. Hay problemas de optimizacion de cédigo que son NP-
completos o incluso indecidibles. Este proyecto se centra Unica y exclusivamente en la optimizacién
del procesamiento aritmético-ldgico.

I”

Algunas técnicas habituales de los compiladores son el “inlining” de funciones, la eliminacién de
codigo muerto, analisis de flujo, seleccion de instrucciones maquina complejas, etc. Otra de estas
reglas es la supresion de subexpresiones comunes, donde se eliminan operaciones duplicadas [2].
Algunas de estas optimizaciones se aplican una vez el compilador ha generado su cédigo intermedio
y otras en fases posteriores, pero siempre se hace sobre un programa expresado en repertorio

complejo de sentencias o instrucciones.
No se han encontrado en la literatura técnicas de minimizacion de circuitos aplicadas para optimizar
codigo.

1.3 Objetivo y alcance

El objetivo del proyecto es explorar la posibilidad de optimizar cédigo con un enfoque diferente. A
fin de validarlo se ha desarrollado un software optimizador.

Para ello se expresan algoritmos al nivel mas bajo posible y se elimina la redundancia a ese nivel.

El método de optimizacién empleado implica transformar el cédigo objeto a un cédigo intermedio y
optimizar este cddigo intermedio. Se utilizard un lenguaje intermedio basado Unicamente en la
funcidn légica booleana NAND vy la recursividad. Definimos optimizar como reducir una operacién al
minimo numero de operaciones légicas NAND equivalentes.

Para optimizar este cddigo intermedio, se sintetizan circuitos de ldgica booleana a partir del
algoritmo inicial y se minimizaran estos circuitos.

Como paso adicional se podria volver a traducir este cédigo intermedio al codigo objeto inicial.
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1.4 Métodos y técnicas

Un fragmento de cddigo secuencial es equivalente a un circuito logico. A ese circuito se le puede
aplicar una técnica de minimizacién de funciones booleanas. Con eso se obtiene un circuito
simplificado, que es equivalente al fragmento de cddigo secuencial original optimizado a muy bajo
nivel. El proceso es similar a la supresién de subexpresiones comunes, eliminando operaciones
Iégicas bit a bit redundantes.

Este proyecto pretende aprovechar la transformacién del cédigo a tan bajo nivel para optimizary
paralelizar algoritmos en la medida de lo posible.

En 2008 se demostré que el problema de la minimizacidn de circuitos de funciones booleanas es
Z’; —completo [3]. La aproximacion para resolver este problema ha de ser por lo tanto heuristica.

La implementacion del método propuesto para optimizar algoritmos consta de una base de datos
donde se almacenan definiciones. Cada definicidn se define recursivamente mediante otras
definiciones. Todas las definiciones se construyen a partir de una definicién base que es la operacién
I6gica NAND. La operacidn NAND representa una puerta ldgica universal, mediante la cual es posible
realizar todas las demas operaciones légicas. Estas definiciones se pueden usar para expresar tanto
algoritmos como instrucciones de cédigo objeto.

Para optimizar un algoritmo, creamos una definicidon que lo representa, con sus entradas y salidas.
Al construir todas las definiciones a partir de la definicidn NAND, pueden expresarse Unicamente
mediante esta funcién y la recursividad. Este es el proceso de traduccién a un lenguaje intermedio.

Para optimizar un algoritmo secuencial, se traduce a un bosque? de instrucciones légicas NAND, en
un proceso similar a la sintesis de un circuito logico. La optimizacidn de este bosque es equivalente
a minimizar este circuito légico, que en el caso de muy pocas variables sabriamos resolver mediante
un mapa de Karnaugh. Tradicionalmente, para la minimizacidon de circuitos légicos se aplican
algoritmos heuristicos como Espresso [4]; en su lugar, aplicaremos una técnica heuristica mas
sencilla, de coste lineal. La técnica consiste en eliminar las operaciones duplicadas y la doble negacion
del circuito. Esta reduccién es el nucleo del proceso de optimizacion.

Para optimizar un algoritmo recursivo se optimiza, tanto la parte secuencial de este, como las
operaciones redundantes entre iteraciones recursivas.

En cuanto al apartado técnico, el optimizador estd escrito en Java, que es un lenguaje portable, muy
usado y con excelentes herramientas para la depuracién. Se han desarrollado algoritmos para
traducir cddigo objeto a cddigo intermedio, asi como para optimizarlo.

Se ha profundizado en el conocimiento adquirido en las asignaturas de Compiladores respecto a los
lenguajes intermedios y en los conocimientos adquiridos en las asignaturas del drea de Arquitectura
de Computadores en cuanto a circuitos y su minimizacién. Ademas, hemos usado estructuras de
datos arborescentes y muiltiples tablas dispersas, aplicando los conocimientos adquiridos en
Estructuras de Datos y Algoritmos.

1.5 Estructura del resto de la memoria

En primer lugar, plantearemos de la forma mas sencilla posible el problema al que nos enfrentamos
y los requisitos necesarios para abordarlo. En segundo lugar, explicaremos la solucién adoptada,
empezando por la notacion empleada, con las estructuras de datos elegidas y los métodos utilizados.

1 Un bosque es un conjunto de arboles. [17]
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Finalmente, compararemos los resultados obtenidos con los proporcionados por una herramienta
de minimizacion de circuitos y extraeremos conclusiones.
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2 Plante amiento del PI'Oblema “La belleza es la purgacién de lo superfluo.”

- Miguel Angel

Para abordar el problema de optimizar algoritmos, lo primero que necesitaremos es un modelo para
representarlos.

Representaremos los algoritmos mediante funciones recursivas, por lo que a partir de ahora se
usaran ambos términos indistintamente.

El modelo de representacion elegido esta formado por la funcidn ldgica universal NAND vy la
definicién de nuevas funciones. Las nuevas funciones se podran definir a partir de las funciones que
ya estén definidas y podran ser recursivas.

Ademas, serd necesario representar de alguna forma los datos de entrada y salida. Para ello
utilizaremos nodos.

Como estamos trabajando con funciones recursivas, necesitaremos que esos nodos puedan dividirse
en subnodos.

Dado que usamos definiciones de funciones a partir de otras funciones, serd necesaria una base de
datos donde almacenarlas.

Para resolver este problema necesitaremos representar el algoritmo original, identificar los
segmentos secuenciales del algoritmo, sintetizar el circuito que los represente, minimizarlo y aplicar
las optimizaciones obtenidas al algoritmo.

Ademas, buscaremos otras formas de aplicar esta optimizacion de cddigo secuencial a funciones
recursivas.
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3 Soluci(’)n del PI'Oblema “Everything should be made as simple as possible, but

not simpler.” - attributed to Albert Einstein

3.1 Notacioén utilizada

La notacidn tradicional usada en légica puede resultar bastante redundante, por ejemplo al intentar
representar la funcion XOR mediante funciones NAND:

A®B=(A+B) (A +B")=(AB") (AB) = ((4B") (AB)"))
=((((AA)' (BB)) (AB)))
= ((((A4) (BB)) (AB)) (((A4)' (BB)) (AB)))

Para representar una expresidn arbitraria, con un nimero ilimitado de entradas y salidas locales,
usaremos la siguiente notacion:

FUNCION [NodoEn1, NodoEn2, ... ; NodoS1, NodoS2,...] =
FUNCION1 [NodoEnL1, NodoEnL2, ... ; NodoSL1, NodoSL2,...],
FUNCION2 [NodoEnL1, NodoEnL2, ... ; NodoSL1, NodoSL2,...]...
Donde:

e Los nodos representan literales. Un literal es una variable o su complemento.

e NodoEnl, NodoEn2, ... representan nodos de entrada de la funcién principal

e NodoS1, NodoS2 representan nodos de salida de la funcion principal

e FUNCION1, FUNCION?2, .... representan instancias de funciones usadas para definir la
funcién principal

e NodoEnlL1, NodoEnL2, ... representan nodos de entrada locales

e NodoSL1, NodoSL2, ... representan nodos de salida locales

Dado un sumador completo de 1 bit:

A B Cin

A B A B Cin S Cout
I 0 0 1 1 0
Sumad 0 1 0 1 0

umador
Cout «—{ complete —Cin 0 1 1 0 1
de 1 bit 1 0 0 1 0
1 0 1 0 1
i 1 1 1 1 1

S
COLI‘ S

Figura 1: Sumador completo de 1 bit
Cour = (A B)Ciy, + AB
S=A®BODCy,
Podemos representarlo como:
Suml[A,B,Cin; S,Cout] =

XORIA,B; t1], AND[t1,Cin; t3], ANDIA,B; t2], OR[t2,t3; Cout], XOR[A,B; t4], XOR[t4, Cin; S]

10
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Ademas, es posible separar en lineas las funciones segun las dependencias que se producen entre
sus nodos. Toda funcién local, que usa un nodo de entrada, deberad ir siempre después de cualquier
otra que tenga ese mismo nodo como salida.

Sum[A,B,Cin; S,Cout] =
XORI[A,B; t1], ANDI[A,B; t2], XORI[A,B; t4]
ANDI[t1, Cin; t3], XOR[t4,C; S]
OR[t2,t3; Cout]

De esta forma, estamos exponiendo el paralelismo de la definicion de la funcién, ya que las
operaciones que estan en una misma linea podrian ejecutarse en paralelo.

Dado que las instancias pueden ser recursivas, encontramos la necesidad de dividir los nodos en
subnodos.

La forma de indexar los subnodos de un nodo esta inspirada en el lenguaje Lisp. Podemos hacer
referencia al subnodo “final” o al “resto” de subnodos.

En Lisp la estructura de datos primaria es la lista. Se utilizan dos operaciones, “car” y “cdr” para
seleccionar el primer elemento de la lista o el resto de la lista.

Nosotros hacemos algo parecido con los nodos: mediante “ultimo” seleccionamos el Ultimo subnodo
que pueda componer un nodo y mediante “resto” seleccionamos todos los demas.

En el caso de que el nodo no tenga subnodos definidos, estaremos seleccionando los bits (“final” o
“resto”) que componen ese dato.

Por lo tanto:

e Paraindicar el subnodo final de un nodo, usaremos X{n}
e Paraindicar el resto de subnodos, usaremos X{1..n-1}

Por ejemplo, si queremos aplicar la funcion légica AND entre un bit y un vector de bits, podemos
imaginar el siguiente circuito:

0 11| o [Tha| Tn

AND | = = *| AND

31| . 301 3n

Figura 2: Circuito de funciones AND entre un bit y un vector de bits
Para representarlo, definiremos la funcién recursiva:
andRecursivo[0,1; 3(5&4)] =
and [0,1{n}; 4]
andRecursivo[0,1{1..n-1}; 5]

Se utiliza la notacidn de indice matematico (empezando en el 1) en lugar del convenio usado en los
indices en informatica (empezando en el 0) para facilitar su lectura.

11
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Una desventaja de esta forma de representar los datos es que acceder al primer nodo de una lista
tendria coste lineal, ya que no tenemos acceso directo y habria que iterar todos los nodos uno a uno.
Sin embargo, esto es sélo un modelo para representar un algoritmo, de modo que el coste real no
tiene por qué ser ese.

3.2 Estructuras de datos empleadas

3.2.1 Representacion de valores binarios

Utilizamos un tipo de datos para almacenar cadenas de bits, que representan datos procesados por
las funciones. Java SE dispone de la clase BitSet; el problema es que la longitud de las cadenas
depende siempre del numero de bits significativos que contenga. Por la naturaleza de las
operaciones que realizamos, necesitamos controlar el nimero de bits que tiene una cadena y que
no tiene porqué ser el mismo que el de bits significativos. Por ejemplo, una representacién del valor
“0” en una arquitectura de 8 bits ha de ser “00000000”. Para ello se ha ampliado la clase BitSet de
Java SE, afladiendo un campo de longitud.

A esta clase ampliada la llamamos fixedBitSet.
También se ha implementado la funcién NAND que, dados dos objetos fixedBitSet, nos devuelve un

tercer objeto, resultado de aplicar esta operacion.

3.2.2 Base de datos de funciones

A fin de trabajar con funciones con la notacién descrita, se ha implementado una base de datos de
funciones.

La funcién NAND estd predefinida y se utiliza para definir cualquier otra funcién. Cada nueva funcién
que se afiade a la base de datos se define mediante otras que ya estén en la base de datos.

No se permite usar funciones que no estén definidas antes en la base de datos, salvo la funcién que
se estd definiendo. De esta forma se permite la recursividad, pero se elimina la posibilidad de que
se dé recursion indirecta.

Si, por ejemplo, afiadimos la definicidn de la funcién NOT a la base de datos, nos quedara:
BASE DE DATOS:
not[0; 1] =
nand [0,0; 1]
nand[0,1; 2] =

nand [0,1; 2]

3.2.2.1 Funciones

Las funciones estdn compuestas por nodos e instancias de otras funciones y su nombre tiene que ser
Unico. Los nodos representan los datos. Cada funcidn tiene una serie de nodos de entrada y una serie
de nodos de salida.

Las instancias se almacenan en una estructura bidimensional, para poder ordenarlas segun las
dependencias entre sus nodos. Si un nodo es salida de una instancia, todas las instancias a funciones
que lo utilicen como entrada irdn después.
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Cada funcion almacena cuales son las instancias recursivas (de si misma) y qué instancias contienen
recursividad. Esto es asi para facilitar el tratamiento posterior de funciones recursivas.

Un ejemplo de funcién es:
or[0,1; 2] =
not [0; 3] not [1; 4]
nand [3,4; 2]
3.2.2.1.1 Instancias
Las instancias son referencias a funciones que se usan en la definicion de la funcidn principal.

En el ejemplo anterior NOT y NAND son instancias a funciones usadas para definir la funcién principal
OR.

Una instancia tiene que tener, por lo tanto, una serie de nodos de entrada, una serie de nodos de
salida y una funcion, que es la funcién instanciada. Ademas, almacenamos la profundidad a la que se
sitla esa instancia dentro de la estructura de datos bidimensional de instancias de una funcién, para
facilitar la insercidn de nuevas instancias.

3.2.2.1.2 Nodos
Los nodos representan los datos empleados en las funciones.
Un nodo deberia tener un subnodo “final” y un subnodo “resto”.

Cada nodo almacena también su nodo padre, si lo hay, si es salida de una instancia y a qué definicion
principal pertenece.

3.2.2.1.2.1 Problemadtica de los nodos
En ocasiones necesitaremos que un nodo, hijo de algin nodo ya definido, componga un nuevo nodo.
Este caso se da por ejemplo en la definicién usada para la suma, que veremos en la Seccidn 4.3:

tenemos el nodo 10(8{n}&7&11) que necesita para su definicion del nodo 8{n}.

3.2.2.1.2.2 Solucién propuesta a la problemdtica de los nodos

Hasta ahora usdabamos los subnodos “final” y “resto” para designar elementos de un nodo.

nodo

resto final

Figura 3: Nodo con subnodos "resto"y "final".

La solucion adoptada ha sido utilizar los subnodos “hijoFinal” y “restoDeHijos” para elegir elementos
y por otro lado unos subnodos “padreFinal” y “restoDePadres” para almacenar la lista de elementos.

restoDePadres padreFinal
nodo
restoDeHijos hijoFinal

Figura 4: Nodo con hijos "restoDeHijos" e "hijoFinal" y padres "restoDePadres" y "padreFinal".
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De esta forma los nodos padres cumplen una funcién parecida a la yuxtaposicién usada en la
notacién (“&”) y los nodos hijos a los subindices ({1..n-1} y {n}). Cémo en Lisp, encadenando nodos
podremos representar listas y seleccionar cualquier elemento de ellas.

3.2.3 Bosque de funciones NAND

Ademas de las estructuras usadas para representar funciones, usamos una estructura de datos
adicional durante el proceso de minimizacién.

La estructura es un bosque, es decir, un conjunto de arboles de funciones NAND. En este caso los
arboles pueden tener nodos en comun.

Un bosque de funciones NAND tiene, por lo tanto, una serie de nodos de entrada y una serie de
nodos de salida. Se utiliza, ademas, un contador de nodos para facilitar las tareas de representacion.

3.2.3.1 Nodos NAND

Todos los nodos de esta estructura son indivisibles y, por ello, de igual tamafio.

Cada nodo de esta estructura es, o bien una entrada del bosque de funciones NAND, o bien la salida
de una funcién NAND.

Por lo tanto, cada nodo tiene referencias a dos nodos padres, formando asi una funcién NAND de
dos entradas y una salida. Estas referencias estan vacias para los nodos de entrada.

El bosque que representa la funcidn NOT es, por ejemplo:

0

inO/\im

1

Figura 5: Representacion de la funcion NOT mediante un bosque de funciones NAND

Donde el nodo 0 es el Unico nodo de entrada, el nodo 1 es el Unico nodo de salida y las dos entradas
del nodo 1 corresponden al nodo 0.

3.3 Técnica propia de minimizacioén de circuitos

La aproximacion moderna a la minimizacion de circuitos la separa en dos problemas: optimizacién
independiente de la tecnologia y optimizacién dependiente de la tecnologia. [5] EI método aqui
propuesto se centra Unicamente en la optimizacién independiente de la tecnologia.

Dentro de la optimizaciéon independiente de la tecnologia existen dos aproximaciones: la
minimizacién en dos niveles y la minimizacién multinivel.

La minimizacién en dos niveles busca una expresion minima en suma de productos (OR de ANDs) o
producto de sumas (AND de ORs). El objetivo es reducir el numero de literales y productos (o sumas)
utilizados.

La minimizacion multinivel minimiza una expresion con funciones ldgicas arbitrarias. El objetivo es
reducir Unicamente el numero de literales utilizados.

14



Ingenieria Informatica Proyecto Fin de Carrera

La minimizacién en dos niveles tiene un problema de compromiso: minimiza el retraso del circuito a
costa de maximizar el area (puertas vy literales).

La minimizacién multinivel aparece para solucionar ese compromiso y permitir un mayor retraso
minimizando el drea del circuito.

El ejemplo clasico de minimizacién en dos niveles es el uso de un mapa de Karnaugh para expresar
la funcién algebraica booleana representada como el sumatorio de sus minitérminos o producto de
sus maxitérminos. Este método aprovecha las capacidades humanas de deteccidn de patrones.

El método de Quine—McCluskey es un método determinista en dos niveles para encontrar la
minimizacién de funciones booleanas como sumas de productos. [6] Este método es mas adecuado
para implementarlo en computadores, pero es NP-complejo. El tiempo de resolucion del algoritmo
crece de forma exponencial con el aumento del niUmero de variables.

El algoritmo Espresso es el estandar de la industria para la minimizacién de dos niveles. [5] Se trata
de un algoritmo heuristico, que no tiene por qué encontrar la solucién éptima, pero se comporta
suficientemente bien. Fue desarrollado por Robert K. Brayton en la Universidad de California,
Berkeley. [7]

El algoritmo Espresso-exacto (o “mincov”) es una implementacién moderna del algoritmo de Quine—
McCluskey, que mantiene el problema de crecimiento exponencial con el nimero de variables. [8]
Mediante este algoritmo se puede hallar la solucidén exacta, pero solo es practico con un nimero
muy reducido de variables.

Misll es la segunda versidn del algoritmo de minimizacién multinivel MIS, desarrollado también por
Robert K. Brayton y utilizado por compafiias como Intel o Dec [9]. Misll minimiza de forma
dependiente de la tecnologia y utiliza Espresso como una de sus subrutinas. Tanto Espresso como
Misll pertenecen a la coleccién de programas y librerias OctTools de la Universidad de California,
Berkeley, para el disefio de circuitos integrados. [10]

El método de Transduccion es un método multinivel que minimiza los términos que no importan en
redes compuestas Unicamente de funciones NOR. [11] Tiene similitudes al método que aqui se
presenta, como el hecho de aprovechar la universalidad de la puerta Iégica NOR, y aplicar unas reglas
de simplificacién para eliminar redundancia; pero estas son mucho mdas complejas y el método es
iterativo, mientras que nuestro método es de una sola pasada [4].

Todos los algoritmos de minimizacién mencionados utilizan una Red Booleana como medio para
representar circuitos.

Nuestro método utiliza una representacién alternativa de una Red Booleana, que describiremos
mediante una notacidn propia. Se usan Unicamente dos reglas para minimizar. El algoritmo tiene un
coste medio de ejecucion lineal en el nUmero de literales. Para los ejemplos estudiados, este método
minimiza igual o mejor que Misll, en el caso concreto de la representacidén de un circuito mediante
puertas NAND de dos entradas.

3.3.1 Representacion de la Red Booleana

Una Red Booleana es el modelo estdandar independiente de la tecnologia para representar circuitos
mediante una red légica. Los nodos de la red pueden ser entradas primarias, salidas primarias o
funciones booleanas. Las funciones representan una expresién arbitraria, con un numero ilimitado
de entradas locales y una Unica salida [5] [12].
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Un conjunto de operaciones légicas se dice funcionalmente completo si cualquier funcién booleana
puede ser expresada en términos de este conjunto de operaciones. Es habitual usar un conjunto de
operaciones ldgicas funcionalmente completo que incluya las operaciones AND, NOT, OR y XOR. Sin
embargo, el conjunto unitario formado Unicamente por la funcion NAND es funcionalmente
completo, es decir, podemos representar cualquier funcién booleana arbitraria mediante funciones
NAND. [13]

Se propone, por lo tanto, una Red Booleana, pero usando Unicamente funciones NAND de dos
entradas, que pueden representar expresiones arbitrarias. Este modelo presenta la ventaja de
facilitar ciertas simplificaciones. Al utilizar una Unica funcion, se pretende evitar el problema de
optimizacién combinatoria derivado del uso de varias funciones.

salidas primarias

salidas primarias (((AA)B) (A(BB)))
| /\
(A'B) + (A B') (AA)B) (A(BB))
™ o
(AA) (B B)
A B A B
entradas primarias entradas primarias

(a) (b)
(A'B)+ (AB)=((A"B) (AB)Y)
=((AA)B) (A(BB)))

Figura 6 : Representacion de la funcion XOR mediante Redes Booleanas

En la Figura 6 : Representacion de la funcidon XOR mediante Redes Booleanas(a) tenemos la
representacion de la funcién XOR mediante una Red Booleana de expresiones arbitrarias.

En la Figura 6(b) tenemos la representacion de la funcidn XOR mediante una Red Booleana
compuesta Unicamente de funciones NAND de dos entradas. Representaremos esta estructura
mediante un bosque de funciones NAND, donde los nodos son los literales.

Este modelo podria considerarse dependiente de la tecnologia, al limitar la representacién de la red
booleana a un tipo de puertas légicas; sin embargo el planteamiento es el inverso: utilizamos las
funciones NAND de dos entradas como el bloque que construye cualquier otra expresion.

Esto nos permite introducir una nueva métrica: el nimero de funciones NAND utilizadas en esta red
(que es igual al nUmero de literales que aparecen en las salidas de funciones) representa el coste de
cualquier expresion arbitraria. Como ejemplo, podriamos decir que el coste en funciones NAND de
dos entradas de la funciéon XOR representada mediante el circuito de la Figura 3 es de 5y su
profundidad (que representa el retraso del circuito) 3.

El objetivo sigue siendo reducir el nimero de literales, aunque hay que tener presente que no todos
los literales de una Red Booleana formada exclusivamente por funciones NAND seran literales de
una Red Booleana de expresiones arbitrarias equivalente.

Una ventaja del modelo es que al haber una Unica operacién, no hace falta representar diferentes
operaciones; trabajamos Unicamente con variables (los literales). Otra ventaja de este modelo es
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que multiples representaciones mediante expresiones arbitrarias de una Red Booleana dardn lugar
a la misma representacién de una Red Booleana de funciones NAND.

3.3.2 Funcionamiento del algoritmo

Podemos encontrar cierto paralelismo entre el funcionamiento de nuestro algoritmo y Espresso.

Espresso es un algoritmo iterativo que repite una serie de fases: expansion, eliminacién de la
redundancia y reduccién [5].

El algoritmo aqui presentado se centra en la eliminacion de la redundancia. Comparandolo con
Espresso, la expansion corresponderia con la expresidn de otras funciones como funciones NAND, y
la reduccién seria el proceso de volver a expresar las funciones NAND como funciones mds
complejas. Sin embargo, estas trasformaciones quedan fuera del modelo independiente de la
tecnologia.

El desarrollo de esta técnica se debe a la observacion de que aplicar las dos leyes de De Morgan a
una estructura formada Unicamente por funciones booleanas NAND es muy sencillo.

El método de minimizacidon es constructivo, es decir, partiendo de un circuito no minimizado, se va
construyendo el circuito minimizado, agregando las funciones NAND necesarias una a una. Para
obtener las funciones ordenadas desde las entradas hasta las salidas, se invocan sucesivamente los
arboles que constituyen el bosque de funciones NAND que representan la Red Booleana, desde las
hojas hacia las raices.

3.3.2.1 Primera regla: simplificacion  mediante la
eliminacion de la doble negacién

La primera regla de minimizacién consiste en eliminar la doble negacion de funciones booleanas
NAND.

3.3.2.1.1 Primera ley De Morgan
La primera ley De Morgan dice que A- B = A + B.

AB = A+B A+B=AB
(a) (b) (c) (d)

Figura 7: Aplicacion de la primera ley de De Morgan mediante una red de funciones NAND

Los circuitos de las figuras Figura 7 (a) y Figura 7 (b) representan la equivalencia de la primera ley de
De Morgan.
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La Figura 7 (c) es el circuito resultante de la expresion en funciones NAND de la Figura 7 (b). Aplicamos
la segunda ley De Morgan para expresar la funcién OR en funciones NAND.

A+B=A-B
A+B=A-B
Por ultimo, mediante la eliminacién de la doble negacion obtenemos la funcién original, Figura 7 (d).

Con esto queda demostrado que este método aplica la primera Ley de Morgan, haciendo uso
Unicamente de la eliminacién de la doble negacion.

3.3.2.1.2 Segunda ley De Morgan
La segunda ley de De Morganes A+ B =A-B

A B
aT, Ty
A B
— —
NOR — J—

Y NAND

A B
[ ] [
NAND NAND

I
pd
Wl
p
-+
w
1
|
w1

A+B
(a) (b) (c)

Figura 8: Aplicacion de la segunda ley de De Morgan mediante una red de funciones NAND

Los circuitos de las figuras Figura 8 (a) y Figura 8 (b) representan la equivalencia de la segunda ley de
De Morgan.

Aplicando la segunda ley De Morgan para expresar la funcién OR en funciones NAND, obtenemos el
circuito de la figura Figura 8 (c) a partir del circuito de la figura Figura 8 (a).

Si expresamos en funciones booleanas NAND el circuito de la segunda ley de De Morgan, figura
Figura 8 (b), obtenemos el mismo circuito de la figura Figura 8 (c).

Con esto queda demostrada la aplicacién de la segunda ley de De Morgan mediante este método de
minimizacién.
Nuestro método aplica, por lo tanto, al menos las dos leyes de De Morgan y la eliminacién de dobles
negaciones.
3.3.2.2 Sequnda  regla: eliminaciéon de funciones
redundantes

La segunda regla consiste simplemente en impedir que se defina una funcién NAND equivalente a
alguna ya existente, es decir, con las mismas entradas.

18



Ingenieria Informatica Proyecto Fin de Carrera

Esto se puede implementar, de forma sencilla, mediante una tabla dispersa bidimensional cuyos
indices sean los dos nodos de entrada. Ademas, estos dos nodos de entrada estaran ordenados para
que no haya repeticiones de la misma funcién con las dos mismas entradas en orden inverso.

Por ejemplo, para la funcion AND, sabemos que:
ab = (ab)" = ((ab)'(ab)")’
Luego en nuestra notacion:
AND[a,b; c]=
NANDIa,b; x1], NAND[a,b; x2]
NAND[x1,x2; c]

Al minimizar esta definicidn, usamos una tabla dispersa bidimensional para asegurarnos de que no
haya funciones repetidas. En el caso de que ya haya una funcién definida con esos dos nodos de
entrada, la tabla devolvera como nodo de salida el que ya ha sido establecido. Ademas, se
almacenara en otra tabla que el nodo eliminado ha de ser reemplazado por el nodo ya establecido;
de esta forma se podran corregir las siguientes referencias a este nodo.

Mediante esta tabla bidimensional se obtiene una definicién libre de funciones NAND equivalentes
redundantes.

NodoEnL1 | NodoEnL2 | NodoSL
a b x1
x1 x1 C

Nodo | Nodo equivalente
x2 x1

Figura 9: Tabla dispersa bidimensional para la definicion de AND y tabla de nodos equivalentes

En el ejemplo se afiade primero la funcién local NAND[a,b; x1]. Al intentar afiadir NAND[a,b; x2],
como ya existe una entrada en la tabla con los indices ay b, la tabla nos devuelve x1 como salida, en
lugar de agregar esta funcion redundante a la estructura; ademas se crea una entrada en la tabla de
nodos equivalentes donde se indica que el nodo “x2” ha de ser reemplazado por el nodo “x1”.

Al ir a agregar la funcion NAND[x1,x2; c], utilizando la tabla de nodos equivalentes y reemplazando
“x2” por “x1”, agregamos NAND[x1,x1; c].

Nuestra definicidn de la funcién queda por lo tanto:
ANDJa,b; c]=
NANDIa,b; x1]

NANDI[x1,x1; c]

3.3.2.3 Ejemplo de funcionamiento del método de
minimizacion aplicando las dos reglas

Antes hemos definido el sumador de un bit como:
Suml[A,B,Cin; S,Cout] =
XORI[A,B; t1], ANDI[A,B; t2], XOR[A,B; t4]
ANDIt1, Cin; t3], XOR[t4, Cin; S]

OR[tZ;t3; Cout]
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Donde es evidente que tenemos al menos una funcién redundante: dadas XOR[A,B; t1] y XOR[A,B;
t4], t1y t2 siempre tendran el mismo valor.

3.3.2.3.1 Expresion como Red Booleana de funciones NAND
En primer lugar traducimos la funcién a funciones NAND.
Para ello sabemos que la expansién de AND en funciones NAND es:
AND[a,b; c]=
NANDI[a,b; x1], NAND[a,b; x2]
NAND[x1,x2; c]
a+b=(@ +b") =((aa) (b))
Luego la expansidn de OR en funciones NAND es:
OR[a,b; c]=
NANDI[a,a; x1], NAND[b,b; x2]
NAND[x1,x2; c]
a® b= (((ab)a) ((ab)'b))
Luego la expansidn de XOR en funciones NAND es:
XOR[a,b; c]=
NANDIa,b; x1] NANDI[a,b; x2]
NANDIx1,a; x3],NAND[x2,b; x4]
NAND[x3,x4; c]
Aplicando la expansion de AND en funciones NAND obtenemos:
Sum[A,B,Cin; S,Cout]=
XOR[A,B; t1], NAND[A,B; x1], NAND[A,B; x2], XOR[A,B; t4]
NAND[t1, Cin; x3], NAND(t1, Cin; x4], XOR[t4, Cin; S] , NAND[x1,x2; t2]
NAND(x3, x4; t3], ]
OR[t2,13; Cout]
Aplicando la expansidn de OR en funciones NAND obtenemos:
SumlA,B,Cin; S,Cout]=
XOR[A,B; t1], NANDIA,B; x1], NANDI[A,B; x2], XORI[A,B; t4]
NANDI[t1, Cin; x3], NAND[t1, Cin; x4], XOR[t4, Cin; S] , NAND[x1,x2; 2]
NAND[t2,t2; x5], NAND[x3, x4; 3]
NAND({[t3,t3; x6]

NANDIx5,x6; Cout]
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Aplicando la expansién de XOR en funciones NAND obtenemos:

Sum[A,B,Cin; S,Cout]=

NANDIA,B; x1], NAND[A,B; x2], NANDI[A,B; x7], NANDIA,B; x8], NANDIA,B; x11],
NANDIA,B; x12]

NANDI[x7,A; x9], NAND[x8,B; x10] NAND[x11,A; x13],NAND[x12,B; x14];
NAND[x9,x10; t1], NAND[x13,x14; t4]

NAND[t1, Cin; x3], NAND[t1, Cin; x4], NAND[x1,x2; t2], NAND[t4, Cin; x15], NAND[t4,
Cin; x16]

NANDI[t2,t2; x5], NAND[x3, x4; t3], NAND[x15, t4; x17], NAND[x16, Cin; x18]
NAND({[t3,t3; x6], NAND[x17,x18; S]

NANDI[x5,x6; Cout]

3.3.2.3.2 Segunda regla: funciones redundantes

Al usar una tabla dispersa bidimensional para aplicar la segunda regla y eliminar las funciones
redundantes, obtendremos:

NodoEnL1 | NodoEnL2 | NodoSL
A B x1 Nodo | Nodo equivalente
A x1 x9 X2 x1
B x1 x10 X7 x1
x1 x1 12 X8 x1
x9 x10 tl x11 x1
Cin tl X3 x12 x1
12 12 x5 x13 X9
x3 x3 13 x14 x10
x3 tl x17 t4 t1
Cin x3 x18 x4 x3
i3 13 X6 x15 X3
x17 x18 S x16 x3
x5 x6 Cout

Figura 10: Tabla dispersa bidimensional para la definicion de Sum y tabla de nodos equivalentes

Sum [A, B,Cin; S,Cout]=

NANDIA,B; x1]

NAND[x1,A; x9],NAND[x1,B; x10], ], NAND[x1,x1; t2]

NANDI[x9,x10; t1]

NANDIt1, Cin; x3]

NANDJt2,t2; x5], NAND[x3, x3; t3], NAND[x3, t1; x17], NAND[x3, Cin; x18]
NAND{[t3,t3; x6], NAND[17,18; S]

NANDI[x5,%6; Cout]
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3.3.2.3.3 Primera regla: eliminacion de la doble negacion
Para cada nodo que vayamos afiadiendo a la representacion de la funcién, iremos comprobando que
sus padres (los nodos de entrada de la funcion NAND de la que es salida) no son un mismo nodo,
salida de otra negacidn. Si fuera el caso, estariamos ante una doble negacién y habria que eliminarla
como en la Figura 7: Aplicacién de la primera ley de De Morgan mediante una red de funciones
NAND(c).

De esta forma ampliamos la tabla de nodos equivalentes con:

Nodo | Nodo equivalente
x5 x1
x6 x3

Figura 11: Nodos equivalentes por la doble negacion

La definicion de la funcidn nos queda por lo tanto:
Sum[A,B,Cin; S,Cout]=

NANDIA,B; x1]
NAND[x1,A; x9],NAND[x1,B; x10]
NAND[x9,x10; t1]
NAND(t1, Cin; X3]
NAND(x3, t1; x17], NAND[x3, Cin; x18], NAND[x1,x3; Cout]
NAND[17,18; S]

La funcidn inicial tenia 24 funciones NAND y una profundidad de 7 funciones NAND. Tras minimizarla,
obtenemos una definicién de la misma funcién compuesta por 9 funciones NAND y con una
profundidad de 6.

3.3.3 Complejidad computacional del método de
minimizacion
El algoritmo consiste en ir afadiendo las funciones NAND, una a una, a una nueva estructura
minimizada. Por lo tanto, el coste del algoritmo sera proporcional al nUmero de funciones booleanas

que haya en la estructura a minimizar. Este coste lineal serd el coste temporal de recorrer la
estructura arborescente desde las hojas hasta las raices.

3.3.3.1 Complejidad de la eliminacion de la doble negacion
Comprobar si se produce una doble negacidn tiene un coste constante, ya que solo hay que verificar
si para el nodo salida de una funcién NAND las dos entradas son el mismo nodo (equivalente a una
funcion NOT) y que este nodo no sea a su vez el resultado de una negacién (véase la Figura 7:
Aplicacion de la primera ley de De Morgan mediante una red de funciones NAND).

3.3.3.1.1 Complejidad de eliminacion de funciones redundantes

Para su implementacion, necesitamos ordenar los nodos de forma que haya un Unico orden posible
de las entradas de cada funcién NAND. Esto es, simplemente, una comparacién entre dos nodos,
operacion de coste constante.
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Mediante una tabla dispersa bidimensional (o equivalentemente una tabla dispersa de tablas
dispersas), podemos comprobar si ya ha sido definida una funcion NAND con dos nodos concretos
por entradas. El tiempo medio de acceso a una tabla dispersa bidimensional es constante.

3.3.3.1.2 Complejidad total
Teniendo en cuenta que el coste medio de las operaciones a realizar por nodo afiadido es constante,
y que el coste del algoritmo sera proporcional al nimero de nodos de salida de funciones afiadidos,
el coste total medio serd por lo tanto lineal en el nimero de nodos de salida de funciones aiiadidos.
Esto es equivalente al nimero de funciones NAND. En notacidn asintética tenemos un coste medio
O(n).

3.3.4 Limitaciones del método de minimizacién

3.3.4.1 Funciones de dos entradas
Usar unicamente funciones NAND de dos entradas es una decision de disefio, ya que permite

simplificar las expresiones con gran facilidad.

Mediante funciones con mas entradas se pueden expresar de forma mds compacta expresiones
arbitrarias. Un ejemplo de esta posibilidad, llevado al limite, es la minimizacién en dos niveles: se
realiza una Unica suma de una cantidad arbitraria de productos. Sin embargo, la seleccion del nimero
de entradas de las funciones entra dentro de la optimizacién dependiente de la tecnologia, por lo
que no parece relevante el nimero de entradas de las funciones en una expresién intermedia.

3.3.4.2 Funciones equivalentes irreducibles

Hay funciones que pueden representarse de diferentes maneras mediante funciones NAND y todas
son irreducibles por este método.

A®B=(A+B)(A+B)=(AB") (AB) = (((AB")' (AB))"
= ((((A4) (BB)) (AB)))
= ((((A4) (BB)) (AB))' (((44)" (BB)) (AB))Y)

A®B=(AB)+AB)=((4B) (4 B)) =((ABB)) ((A4) B))
A® B=(((A4B)A) (AB)B)")

Estas representaciones dependen exclusivamente de cdmo se defina la funcién y tienen costes
distintos.

Asi la primera expresidn consta de 6 funciones NAND diferentes y una profundidad de 4.
La segunda expresion tiene 5 funciones diferentes y una profundidad de 3.
La ultima expresién tiene 4 funciones diferentes y una profundidad de 3.

Esto sugiere, en primer lugar, que la optimizacion consiste en algo mas que eliminar la redundancia,
al menos al expresar algoritmos secuenciales a nivel |6gico como funciones NAND. En segundo lugar,
sugiere que nos encontramos ante un método de minimizacién heuristico, ya que el resultado de
minimizar una funcién depende de cédmo se defina ésta, y no va a hallar necesariamente la
minimizacién con menor cantidad de funciones, ni menor profundidad.
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3.4 Optimizacién de algoritmos secuenciales

En el caso de un algoritmo secuencial donde todos los nodos son de igual tamafio, habra que traducir
el algoritmo a funciones NAND y usar el método de minimizacién. El método de minimizacién nos
devolvera una tabla de nodos equivalentes que aplicaremos a la funcién original para optimizarla.
Por ultimo, se ejecutard un método de reconstruccion de la funcidn para asegurar que solo contiene
los nodos utilizados.

Primero introduciremos el algoritmo en nuestra base de datos y luego usaremos esta definicidn para
traducirlo a funciones NAND.

3.4.1 Traduccion a funciones NAND mediante la base de
datos

Para traducir una funcién definida mediante la base de datos a funciones NAND, tan sélo hay que
expandir recursivamente las definiciones instanciadas. El coste de acceso a la base de datos es
constante al usar una tabla dispersa, por lo tanto el coste total de la expansidn serd lineal en el
numero de instancias.

Por ejemplo, si tenemos la siguiente base de datos:
BASE DE DATOS:
not[0; 1] =
nand [0,0; 1]
nand[0,1; 2] =
nand [0,1; 2]
or[0,1; 2] =
not [0; 3] not [1; 4]
nand [3,4; 2]

Para expandir la funcién OR en funciones NAND, expandiremos sus instancias, consultando la base
de datos en busca de la definicion instanciada, quedando la funcidn:

or[0,1; 2] =
nand[0,0; 3] nand [1,1; 4]
nand [3,4; 2]

Dado que traducir una funcién a funciones NAND tiene coste lineal y el método de minimizacidn
tiene un coste medio lineal, el coste medio de optimizar algoritmos secuenciales mediante este
método serd también lineal.

3.4.2 Método de reconstruccién de funciones

Este método, primero, borra las referencias a todos los nodos e instancias de la funcién.

Después, recorre la funcidon desde los nodos de salida hasta las entradas, pasando por todas las
instancias y afiade los nodos e instancias recorridos.

La utilidad del método es que no queden nodos “muertos” a causa de simplificaciones, y que puedan
seguir apareciendo como pertenecientes a la funcién.
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3.5 Optimizacion de la parte de secuencial de
algoritmos recursivos

El primer paso serd eliminar temporalmente la recursividad, para extraer Unicamente la parte
secuencial.

Para ello, afiadimos los nodos de entrada de funciones recursivas como nodos de salida y los nodos
de salida de funciones recursivas como nodos de entrada, y eliminamos la llamada recursiva.

Sea, por ejemplo, la funcién recursiva:
nandR[0,1; 2]=
nand[0,1{n}; 2{n}]
nandR[0,1{1..n-1}; 2{1..n-1}]
La transformaremos temporalmente en:
nandR[0,1, 2{1..n-1}]; 2,0,1{1..n-1}]=
nand[0,1{n}; 2{n}]

Optimizaremos como en la seccion 3.4, tratando la funcién como si se tratara de un algoritmo
secuencial.

Por ultimo, desharemos la transformacién para volver a tener un algoritmo recursivo.

Ademas, un algoritmo puede tener nodos de diferentes tamafios, por lo que habrd que dividirlos
para que tengan el mismo tamafio. En consecuencia, haremos una fision de los nodos antes de
transformar el algoritmo recursivo, y los fusionaremos tras deshacer la transformacion.

3.5.1 Algoritmo de fision de nodos

El algoritmito de fision de nodos es un algoritmo recursivo. Parte de los nodos de salida y acaba en
los nodos de entrada.

Si un nodo es salida de una instancia de funcién NAND y tiene hijos, los hijos se convierten en salida
de una nueva funcién NAND cuyas entradas son los hijos de las entradas de la instancia original.

3.5.2 Algoritmo de fusion de nodos

El algoritmo de fusién hace la operacidn inversa. Si hay tres nodos (dos de entrada y uno de
salida) cuyos subnodos forman funciones NAND, los fusiona en una sola.

Como en el caso del algoritmo de fisidn, es recursivo desde las salidas hasta las entradas.

3.6 Optimizacién de la redundancia en algoritmos
recursivos

El método anterior no contempla la redundancia que puede darse entre llamadas recursivas de un
algoritmo. Para optimizar la redundancia entre llamadas recursivas sucesivas de una funcién,
necesitaremos desplegarlas.

Dado que el método de minimizacion utilizado sélo elimina la doble negacion y las funciones
repetidas, sera suficiente con desplegar la lamada recursiva una sola vez.

25



Ingenieria Informatica Proyecto Fin de Carrera

Figura 12: Representacion del desplegado de una llamada recursiva

Si imaginamos una funcidén recursiva como una caja (Figura 12), vemos que al desplegarla una sola
vez se produciran todas las dobles negaciones que una funcién recursiva pueda producir consigo
misma. Las funciones repetidas también apareceran de la misma manera.

Para hallar la funcién recursiva simplificada, se almacena qué nodos estdn definidos antes de
expandiry a qué nodos de la funcion original corresponden los nodos expandidos.

Después de desplegar la recursividad, aplicaremos el método de minimizacién como en la seccidn
3.5.

Si hay nodos equivalentes, crearemos una nueva funcidn recursiva.

Las entradas de la nueva funcion recursiva seran nodos originales de la funcién antes de expandir
que sean entrada de una instancia de funcién con un nodo de salida nuevo.

Las salidas de la nueva funcidn recursiva serdn nodos originales de la funcidn que sean salida de una
instancia con un nodo nuevo como entrada.

Localizando los nodos correspondientes en la funcidn original a las entradas de la funcién expandida,
tendremos los nodos de entrada de la instancia a la nueva funcién recursiva.

Localizando los nodos correspondientes en la funcidn original a las salidas de la funcién expandida,
tendremos los nodos de salida de la instancia a la nueva funcién recursiva.

Figura 13: Optimizacion de una funcion recursiva

En la Figura 13 vemos este procedimiento. En primer lugar tenemos el desplegado de la funcién
recursiva. En segundo lugar se halla la nueva funcién recursiva (en azul en el dibujo), eliminando la
redundancia.

Hay que tener en cuenta, que si hallamos todos los nodos hijos de un mismo nodo padre, sera
necesario reemplazarlos por este nodo padre. A este procedimiento lo llamaremos fusion de nodos.

Sea, por ejemplo, la funcidn recursiva:
fooR[0,1; 2,3]=
nand[0,1{1..n-1}{n}; 2{1..n-1}{n},3], nand[0,1{n}; 2{n}]
fooR[0,1{1..n-1}; 2{1..n-1},4]
Si expandimos una vez la llamada recursiva, obtenemos:
fooR[0,1; 2,3]=

nand[0,1{1..n-1¥n}; 2{1..n-1Kn},3], nand[0,1{n}; 2{n}]
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nand[0,1{1..n-1}{1..n-1}{n}; 2{1..n-1H{1..n-1}{n},4], nand[0,1{1..n-1}{n}; 2{1..n-1}{n}]
fooR[0,1{1..n-1H{1..n-1}; 2{1..n-1}{1..n-1},5]

Donde, mediante el método de minimizacién, hallamos que los nodos 3 y 2{1..n-1}{n} son
equivalentes.

Los nodos originales antes de la expansién son:

0,1,2,3, 1{1..n-1¥n},2{1..n-1}4n},1{1..n-1}; 2{1..n-1},1{n},2{n},4

0 0
1{1..n-1{{1..n-1Kn} | 1{1..n-1Kn}
2{1..n-1{{1..n-1Kn} | 2{1..n-1}n}

4 3
1{1..n-1Hn} 1{n}
2{1..n-1}{n} 2{n}

1{1..n-1{1..n-1} | 1{1..n-1}
2{1.n-141.n-1} | 2{1..n-1}
1{1..n-1} 1
2{1..n-1} 2

Figura 14: Tabla de relacion de nodos expandidos con nodos de la funcidn original.

A partir de los nodos de salida, encontramos los que seran nodos de salida de una nueva funcién
recursiva. Estos serdn los nodos que sean originales de la funcidén antes de la expansion y que sean
salida de una funcidon con entradas nuevas a causa de la expansién.

En el ejemplo tendriamos los nodos de salida de la nueva funcidn recursiva:
2{1..n-1}{1..n-1}, 2{1..n-1¥n}

Si los fusionamos, serian:
2{1..n-1}

Y los nodos de entrada de la nueva funcién recursiva:
0, 1{1..n-1H{1..n-1},2{1..n-1¥n}

Si los fusionamos, serian:
0, 1{1..n-1}

Mediante la tabla encontramos los nodos de salida:
2{1..n-1}, 2{n}

Si los fusionamos, serian:
2

Y los nodos de entrada:
0, 1{1..n-1},2{n}

Si los fusionamos, serian:
0,1

Con estos nodos la funcién original nos queda:
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fooR[0,1; 2,3]=
nand[0,1{1..n-1}{n}; 2{1..n-1}{n},3]
newFooR[0,1; 2]

Y la nueva funcion recursiva:

newFooR[0,1; 2]=
nand[0,1{n}; 2{n}]
newFooR[0,1{1..n-1}; 2{1..n-1}]

3.7 Algoritmos que contienen una llamada recursiva

= [

Figura 15: Optimizacion de una funcion que contiene una llamada recursiva

En este caso se optimizard primero la parte secuencial como se describié en la seccion 3.5.

Después, se expandira la funcion recursiva como en la seccion 3.6. Si el método de minimizacién no
encuentra nodos equivalentes, se dejara la funcidén como estd. En caso contrario se calculara la nueva
funcién recursiva.

Finalmente, se volverd a optimizar la parte secuencial, ya que esta ha podido crecer a causa del
método de eliminacién de redundancia en algoritmos recursivos.

3.8 Evaluacién de funciones/Ejecucion de algoritmos

Como ya se ha mencionado previamente, utilizamos funciones recursivas para representar
algoritmos, como por ejemplo el de la suma.

A fin de comprobar los resultados obtenidos durante el proyecto, se ha desarrollado un método de
evaluacion de estas funciones. Esto es equivalente a la ejecucién de algoritmos.

La evaluacidn se realiza en profundidad, mediante llamadas recursivas.

Se conserva en todo momento una tabla que relaciona las variables/los nodos con valores concretos
y se evallan recursivamente a partir de las salidas hasta las entradas. Siempre se evallan primero

|ll

los nodos “final” y después el “resto”.
Por ejemplo, si queremos evaluar la funcién:
not[0; 1]=
nand[0,0; 1]

Empezaremos por asignarle valores a las entradas:

Nodo | Valor
0 1’

Figura 16: Tabla de valores de nodos antes de ejecucion
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Después, se empezard a evaluar de forma recursiva desde las salidas.

Al evaluar la instancia “nand[0,0; 1]”, como las entradas ya estan definidas, podremos calcular la
salida. Si no fuera el caso se evaluarian recursivamente las entradas.

Por lo tanto, obtenemos la tabla:

Nodo | Valor
0 1
1 ‘0

Figura 17: Tabla de valores de nodos después de ejecucion

Con esto ya hemos ejecutado la funcién y obtenemos el valor “0”.
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4 Pruebas y resultados obtenidos

Para evaluar los resultados obtenidos, los compararemos con los que proporciona una herramienta
de minimizacién de circuitos.

Se ha elegido el software Logic Friday [14] por su simplicidad y porque permite usar los algoritmos
de Quine—McCluskey, Espresso y Espresso-exacto en cuanto a minimizacién de dos niveles y Misll en
cuanto a minimizacién multinivel. Estos algoritmos se han mencionado en mayor detalle en la seccién
3.3.

Nos interesa especialmente el algoritmo Misll, ya que permite minimizar circuitos secuenciales
compuestos Unicamente de puertas ldgicas NAND de dos entradas.

Dado que este proyecto optimiza funciones recursivas, tendremos que evaluar casos particulares
para poder comparar los resultados.

Logic Friday tiene su propia notacion para expresar circuitos, que detallamos a continuacion:

&, * o juxtaposicién AND
| o+ OR

I (prefijo) o '(sufijo) complemento
I=0 A XOR
== NOR

Figura 18: Sintaxis de Logic Friday

4.1 Minimizacion de XOR

Definimos:
A ® B=(((A4B)A) ((AB)B)")
4.1.1 Funcion minimizada mediante nuestro método
Notacion propia:
xor[0,1; 2] =
nand [0,1; 3]
nand [3,0; 4], nand [3,1; 5]
nand [4,5; 2]

Este método no es capaz de minimizar mds esta expresion.

4.1.1.1 Coste de la funcion minimizada mediante nuestro
método

Este circuito utiliza 4 funciones NAND y tiene una profundidad de 3 funciones.

4.1.2 Funciéon minimizada mediante el algoritmo de Quine-
McCluskey

Si elegimos la opcién de minimizacién exacta de Logic Friday, estamos utilizando el algoritmo de
Quine—McCluskey, que nos da la minimizacién en dos niveles.

A @ B=(AB)+(4B)
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4.1.3 Funcién minimizada mediante el algoritmo MislI

Mediante la opcidon de minimizacion de circuitos de Logic Friday y seleccionando como Unicos
componentes puertas légicas NAND de 2 entradas, obtenemos el siguiente circuito:

S e D D,
L
B} D—j

! (4]

[3]

Figura 19: Funcién XOR minimizada mediante Misl|

4.1.3.1 Coste de la funcion minimizada mediante MislI

Este circuito utiliza 5 funciones NAND y tiene una profundidad de 3 funciones NAND, ademas tiene
un coste secundario por el uso de dos constantes en las entradas.

4.2 Multiplexor de dos entradas (if-then-else l6gico)
Definimos:
Z=(AS")+(BS)
4.2.1 Funcién minimizada mediante nuestro método
Notacidn propia:
if[0,1,2; 6] =
nand [0,0; 3] nand [0,2; 5]
nand [3,1; 4]
nand [4,5; 6]
4.2.1.1 Coste de la funcion minimizada mediante nuestro
método

Utiliza 4 funciones NAND y tiene una profundidad de 3 funciones.

4.2.2 Funcion minimizada mediante el algoritmo de Quine-
McCluskey

Z=(AS)+(BS)
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4.2.3 Funcién minimizada mediante el algoritmo MislI

ey [ )
SO
! (21 B

[1] [4]

All

s

[3]

Figura 20: Multiplexor minimizado mediante Misl|

4.2.3.1 Coste de la funcion minimizada mediante MislI

Utiliza 4 funciones NAND y tiene una profundidad de 3 funciones; ademas tiene un coste secundario

por el uso de una constante en la entrada.

4.3 Expresion general de la suma.

Podemos obtener el algoritmo general de la suma utilizando, de forma recursiva, el sumador

completo que se ha definido en la seccién 3.1.
add[0,1; 10(8{n}&7&11)] =
and [0{n},1{n}; 6] xor [0{n},1{n}; 11]
sumR [0{1..n-1},1{1..n-1},6; 7,8]
sumR[0,1,2; 3(5&6),4(7&8)] =
sum [0{n},1{n},2; 6,7]
sumR [0{1..n-1},1{1..n-1},7; 5,8]
sum[0,1,2; 10,11] =
xor[0,1; t1], and[0,1; t2]
and[t1,2; t3], xor[t1,C; 10]
or[t2,t3; 11]
Que expresado en funciones NAND y minimizado queda:
add[0,1; 10(8{n}&7&11)] =
nand [0{n},1{n}; 12]
nand [12,12; 6] nand [12,0{n}; 14] nand [12,1{n}; 15]
sumR [0{1..n-1},1{1..n-1},6; 7,8] nand [14,15; 11]
sumR[0,1,2; 3(5&6),4(7&8)] =
sum [0{n},1{n},2; 6,7]
sumR [0{1..n-1},1{1..n-1},7; 5,8]
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sum[0,1,2; 10,11] =
nand [0,1; 3]
nand [3,0; 4] nand [3,1; 5]
nand [4,5; 6]
nand [6,2; 7]
nand [7,6; 8] nand [7,2; 9] nand [3,7; 11]
nand [8,9; 10]

Observamos que en la parte secuencial de la definicién tenemos 5 funciones NAND de dos bits de
entrada.

Para la parte recursiva, el nUmero de recursiones es igual al de bits de los operandos menos uno, ya
gue en cada recursion obtenemos un bit de salida y el acarreo, ademas del bit de salida y el acarreo
obtenido en la parte secuencial. En cada recursién tenemos 9 funciones NAND de dos bits de entrada.

Por lo tanto, sea n el nimero de bits de los operandos, el nimero de funciones sera:
54+49(n—-1)

Para calcular una cota de la profundidad de la suma en funcién del nimero de bits n de los
operandos, basta con observar que hay una profundidad constante que corresponde a la parte
recursiva y una profundidad variable que corresponde a la parte recursiva de la definicidon, y depende
directamente de la cantidad de bits.

Por lo tanto, la profundidad es, como maximo:

2+ 6n

4.3.1 Caso particular de la suma: ADD de 3 bits
4.3.1.1 Funcion minimizada mediante nuestro método
A partir de la expresidn general de la suma, desenrollando la funciéon recursiva dos veces, obtenemos:
add3bits[0,1; 28&38(37&41)&45)] =

nand [0{1..n-1{n},1{1..n-1K{n}; 10] nand [0{n},1{n}; 14] nand [0{1..n-1K1..n-
1H{n},1{1..n-1H{1..n-1}n}; 23]

nand [10,0{1..n-1{n}; 11] nand [10,1{1..n-1Kn}; 12] nand [14,14; 15] nand
[23,0{1..n-1{1..n-1Kn}; 24] nand [23,1{1..n-1K1..n-1Kn}; 25] nand [14,0{n}; 43] nand
[14,1{n}; 44]

nand [11,12; 13] nand [24,25; 26] nand [43,44; 45]
nand [13,15; 16]

nand [10,16; 17] nand [16,13; 39] nand [16,15; 40]
nand [26,17; 27] nand [39,40; 41]

nand [23,27; 28] nand [27,26; 35] nand [27,17; 36]

nand [35,36; 37]

33



Ingenieria Informatica Proyecto Fin de Carrera

Hemos implementado un método para transformar automdticamente la notacién propia a notacidn
de Logic Friday:

S3=! (1 (A2 B2) (' ('(az B2) A2) !(!'(A2 B2) B2)) !'('(Al BI1)
Pl (P (Al BL) Al) !'(! (Al B1) B1)) ! (! (A0 BO) ! (A0 BO)))))):

n

=0t az B2) A2) (! (A2 B2) B2)) !'(! (A1l B1) !P(!'(!(!(Al
B1) Al) !'(!(al B1) B1l)) ! (! (A0 BO) !(AO BO))))) ! (! (! (A2 B2) AZ2)
V(1 (A2 B2) B2))) (PP (P (Y (AZ2 B2) A2) !'(!'(A2 B2) B2)) !(!(Al B1)
YUY (P (AL B1) ALl) (! (A1 B1) B1)) !(!(AO0 BO) !(AO0 BO))))) !'(! (Al
B1) (! (¢! (' (Al B1) AL) !(!(Al B1) B1)) ! (! (A0 BO) !(AO BO)))))):

)) L (!'(A0 BO) ! (A0 BO)))
(! (Al B1) Al) ! (!(Al BI)
A0 BO))))

SI=r(rerer et (¢t (alr B1) A1) !(!'(Al B1l) Bl
P(Y (Y (AL B1) ALl) ! (!'(A1 B1) BLl))) (! (!(
B1)) ! (! (A0 BO) ! (A0 BO))) ! (! (A0 BO) !(

SO0=!(!(!' (A0 BO) AO0) !'(!(AO BO) BQ)):;
S0-S3 representan los bits de salida desde el de menor peso hasta el de mayor peso.

A0-A2 representan los 3 bits de entrada del primer operando, desde el de menor peso hasta el de
mayor peso.

B0O-B2 representan los 3 bits de entrada del segundo operando, desde el de menor peso hasta el de
mayor peso. Comprobamos que la tabla de verdad es efectivamente la de la suma de 3 bits:

Hl—\Hl—\l—\l—‘l—\l—‘l—\l—‘l—‘l—\HHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOE

OOOOOOOOOOOOOOHI—‘I—'HI—‘HI—‘HHI—‘HI—'HI—'I—‘HOOOOOOOOOOOOOOOO%

HI—\HI—\I—\I—‘OOOOOOOOHI—\I—\Hl—\HI—\HOOOOOOOOI—‘HI—‘HHI—‘HI—‘OOOOOOOOE

I—'HOOOOD—\I—'b—\I—'OOOOI—'D—‘D—‘l—'OOOOD—'D—‘D—'D—‘OOOOD—‘HD—‘D—'OOOOD—‘D—‘D—‘D—‘OOOOE

OOD—‘D—‘OOD—‘l—‘OOl—‘b—‘OOl—'D—‘OOD—‘l—'OOl—'D—‘OOD—'D—‘OOD—‘D—'OOD—'D—‘OOD—‘D—‘OOD—‘D—‘OO:S
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4.3.1.1.1 Coste de la funcion

método

La suma de 3 bits, minimizada mediante nuestro
profundidad de 8 funciones.

4.3.1.2 Funcion minimizada
Quine-McCluskey

minimizada mediante nuestro

método, usa 23 funciones NAND y tiene una

mediante el algoritmo de

Minimizando mediante Logic Friday con la opcidn “exacta” para usar el método de Quine-McCluskey,

y con la opcion de minimizar las ecuaciones de forma conjunta para obtener el minimo posible de

productos, obtenemos:

Minimized:

S3 = B2 B1 A0 BO + A2 B1 A0 BO + B2 A1l A0 BO + A2 A1l A0 BO + B2

Al Bl + A2 Al B1 + A2 B2 ;

S2 = A2' B2' Bl A0 BO + A2' B2' A1l A0 BO + A2 B2 B1 A0 BO + A2 B2

Al A0 BO + A2 B2' B1' BO' + A2' B2 B1' BO' + A2 B2' Al' BO' + A2’

B2 A1l' BO' + A2 B2' B1' AQ' + A2' B2 B1' AQ' + A2 B2' Al1l' AQ' +

A2' B2 A1'" A0'" + A2 B2' Al' B1' + A2' B2 Al' B1l' + A2' B2' Al

Bl + A2 B2 Al Bl ;

S1 = Al' B1'" AO BO + Al B1 A0 BO + A1 B1'" BO' + Al' B1 BO' + Al

B1' AQ' + Al' B1 AOQ' ;

SO = A0 BO' + AO0' BO;

4.3.1.3 Funcién minimizada mediante el algoritmo MislI
L T B
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Figura 21: Funcién suma de 3 bits minimizada mediante Misl|
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4.3.1.3.1 Coste de la funcion minimizada mediante MislI
Utiliza 40 funciones NAND y tiene una profundidad de 13 funciones.

Nuestro método Misl|
Funciones totales 23 40
Profundidad 8 13

Tabla 1 Evaluacion de la minimizacion de la suma de 3 bits

4.3.2 Caso particular de la suma: ADD de 4 bits

4.3.2.1 Funcion minimizada mediante nuestro método

A partir de la expresion general de la suma, desenrollando la funcién recursiva tres veces,
obtenemos:

add4bits[0,1; 39&53(49(48&52)&56)&60)] =

nand [0{1l..n-1}{n},1{1..n-1}{n}; 10] nand [0{n},1{n}; 14] nand
[0{1..n-1}{1..n-1}{n},1{1l..n-1}{1..n-1}{n}; 23] nand [0{l..n-1}{1..n-
13{1..n=-1}{n},1{1l..n-1}{1..n=-1}{1..n=-1}{n}; 34]

nand [10,0{1..n-1}{n}; 11] nand [10,1{1..n-1}{n}; 12] nand [14,14;
15] nand [23,0{1..n-1}{1..n-1}{n}; 24] nand [23,1{1..n-1}{1..n-1}{n};
25] nand [34,0{1..n-1}{1..n-1}{1..n-1}{n}; 35] nand [34,1{1..n-1}{1..n-
1}{1..n-1}{n}; 36] nand [14,0{n}; 58] nand [14,1{n}; 59]

nand [11,12; 13] nand [24,25; 26] nand [35,36; 37] nand [58,59;

60]

nand [13,15; 16]

nand [10,16; 17] nand [16,13; 54] nand [16,15; 55]
nand [26,17; 27] nand [54,55; 56]

nand [23,27; 28] nand [27,26; 50] nand [27,17; 51]
nand [37,28; 38] nand [50,51; 52]

nand [34,38; 39] nand [38,37; 46] nand [38,28; 47]
nand [46,47; 48]

Transformando la expresion a la notacion de Logic Friday:

S4=1(1 (A3 B3) ! (!(!(!(A3 B3) A3) ! (! (A3 B3) B3)) ! (! (A2 B2)
(U (! (1 (A2 B2) A2) ! (! (A2 B2) B2)) ! (!(Al B1) !(!(!(!(Al Bl) Al)
I (1 (A1 B1) B1)) ! (! (A0 BO) ! (A0 B0))))))));

S3=!(!(!(!(!(!(A3 B3) A3) 1 (1 (A3 B3) B3)) ! (! (A2 B2) ! (! (! (! (A2
B2) A2) ! (! (A2 B2) B2)) ! (! (Al Bl) !(!(!(!(Al Bl) Al) ! (! (Al BI1)
B1)) ! (! (AO BO) ! (A0 BO))))))) !('(!(A3 B3) A3) ! (! (A3 B3) B3)))
PU(Y (N () (A3 B3) A3) ! (! (A3 B3) B3)) ! (! (A2 B2) ! (! (!(!(A2 B2) A2)
1(1 (A2 B2) B2)) !(!(Al BI1) !(!( (1(Al B1) Al) !(!(Al B1) B1))
1(1 (A0 BO) ! (A0 BO))))))) ! (! (A2 B2) ! (! (!(!(A2 B2) A2) ! (! (A2 B2)
B2)) ! (! (ALl BL1) !(!(!(!(Al B1) Al) ! (! (Al B1) B1l)) !(! (A0 BO) ! (A0
B0)))))))):

S2=1 (1 (1 (1 (! (1 (A2 B2) A2) ! (! (A2 B2) B2)) ! (! (Al B1) ! (!(!(! (Al
B1) Al) ! (!(al Bl) B1)) ! (! (A0 BO) !(A0 BO))))) !(!(!(A2 B2) A2)
L(1 (A2 B2) B2))) (! (!(!(! (A2 B2) A2) !(!(A2 B2) B2)) !(!(Al Bl)
(U (! (' (AL B1) Al) ! (!(Al B1l) B1)) ! (! (A0 BO) ! (A0 BO))))) !(! (Al
B1) ! (!(!(!(Al B1) Al) ! (! (Al Bl) B1)) ! (! (A0 BO) ! (A0 B0))))));

SI=! (! (I (' (! (' (Al B1) Al) !(!(Al B1l) B1)) !(!(AO BO) ! (A0 BO)))
(U (! (AL B1) Al) ! (!(ALl B1) B1))) ! (!(!(!(!' (Al B1) Al) ! (! (Al B1)
B1)) ! (! (A0 BO) ! (A0 BO))) ! (! (A0 BO) ! (A0 B0))))

SO0=! (! (! (A0 BO) AO0) ! (! (A0 BO) BO));

Comprobamos que la tabla de verdad de la seccién 7.4 es efectivamente la de la suma de 4 bits.
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4.3.2.11 Coste de la funcion minimizada mediante nuestro
método

La suma de 4 bits, minimizada mediante nuestro método, usa 32 funciones NAND y tiene una
profundidad de 10 funciones.

4.3.2.2 Funcion minimizada mediante el algoritmo de
Quine-McCluskey

Minimizando mediante Logic Friday con la opcion “exacta” para usar el método de Quine-McCluskey,
y con la opcion de minimizar las ecuaciones de forma conjunta para obtener el minimo posible de
productos, obtenemos:

Minimized:

S4 = B3 B2 Bl A0 BO + A3 B2 B1 A0 BO + B3 A2 B1 A0 BO + A3 A2 Bl
A0 BO + B3 B2 A1l A0 BO + A3 B2 Al A0 BO + B3 A2 Al A0 BO + A3 A2
Al A0 BO + B3 B2 A1l B1 + A3 B2 Al B1 + B3 A2 Al B1 + A3 A2 Al
Bl + B3 A2 B2 + A3 A2 B2 + A3 B3 ;

S3 = A3' B3' B2 Bl A0 BO + A3' B3' A2 B1 A0 BO + A3' B3' B2 Al AQ
BO + A3' B3' A2 Al A0 BO + A3 B3 B2 B1 A0 BO + A3 B3 A2 B1 A0 BRO
+ A3 B3 B2 A1l A0 BO + A3 B3 A2 A1l A0 BO + A3 B3' B2' B1' BO' + A3'
B3 B2' B1' BO' + A3 B3' A2' B1' BO' + A3' B3 A2' B1' BO' + A3 B3'
B2' A1'" BO' + A3' B3 B2' A1l' BO'" + A3 B3' A2' A1l'" BO'" + A3' B3 A2'
Al' BO' + A3 B3' B2' B1' AQ' + A3' B3 B2' B1' AQ' + A3 B3' A2'
Bl1' A0' + A3' B3 A2' B1' A0' + A3 B3' B2' Al' A0O' + A3' B3 B2'
Al' A0' + A3 B3' A2' Al'" A0' + A3' B3 A2' Al' A0' + A3 B3' B2'
Al' B1' + A3' B3 B2' Al' B1' + A3 B3' A2' Al' B1' + A3' B3 A2'
Al' B1' + A3' B3' B2 Al Bl + A3' B3' A2 Al Bl + A3 B3 B2 Al Bl
+ A3 B3 A2 Al Bl + A3 B3' A2' B2' + A3' B3 A2' B2' + A3' B3’
A2 B2 + A3 B3 A2 B2 ;

S2 = A2' B2' B1 A0 BO + A2' B2' A1l A0 BO + A2 B2 B1 A0 BO + A2 B2
Al A0 BO + A2 B2' B1' BO' + A2' B2 B1' BO' + A2 B2' Al' BO' + A2'
B2 A1l'" BO' + A2 B2' B1' AQ' + A2' B2 B1' AOQ' + A2 B2' Al' AQ! +
A2' B2 Al' AQ' + A2 B2' Al' B1' + A2' B2 Al' B1' + A2' B2' Al
Bl + A2 B2 Al Bl ;

S1 = Al1l' B1' A0 BO + A1 B1 A0 BO + Al B1' BO' + Al' Bl BO' + Al
B1' AO' + Al' B1 AOQ' ;

S0 = A0 BO' + AO0' BO;

4.3.2.3 Funcién minimizada mediante el algoritmo MislIl
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Figura 22: Funcion suma de 4 bits minimizada mediante Misl|
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4.3.2.3.1 Coste de la funcion minimizada mediante MislI

Utiliza 57 funciones NAND y tiene una profundidad de 18 funciones.

Nuestro método MislI
Funciones totales 32 57
Profundidad 10 18

Tabla 2: evaluacion de la minimizacion de la suma de 4 bits
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5 Consideraciones finales

5.1 Conclusiones

En todos los ejemplos estudiados, nuestro método minimiza mucho mejor que Misll para el caso
concreto de circuitos compuestos de funciones NAND de dos entradas. Cuanto mas complejas son
las funciones minimizadas, mds se aprecia esta mejora.

Misll es un algoritmo mas flexible, ya que permite elegir qué puertas logicas y de qué tamano
podemos usar para construir el circuito minimizado.

Sin embargo, es importante destacar que lo que lo que ha optimizado nuestro método es el algoritmo
general de la suma, mientras que Misll ha optimizado circuitos concretos. Esto deberia de resultar
una ventaja para Misll, pero en la préctica no lo ha sido.

Estos resultados apoyan la tesis de que el método de minimizacidn aqui presentado tiene un buen
comportamiento y escala particularmente bien, ademas de ser muy rapido.

Dado que en 2008 se demostrd que el problema de minimizacién de circuitos para funciones
booleanas es Y5 —completo [3], el método aqui propuesto parece ser una buena heuristica.

Cabe mencionar la relevancia de la profundidad de los circuitos obtenidos, porque en una
arquitectura paralela es el factor determinante de su velocidad. En el caso de la suma de 4 bits la
profundidad hallada por Misll es un 80% superior a la que encuentra nuestro método.

Seria interesante realizar un anadlisis en mayor profundidad de la eficacia de la minimizacién, pero
eso queda fuera del alcance de este proyecto.

El enfoque utilizado para optimizar en este proyecto parece tener un gran potencial.

La Unicas problematicas posibles podrian ser la dificultad de implementacién del propio método, la
dificultad de mejorar la optimizacion de cdédigo redundante entre funciones recursivas y el
tratamiento de grandes cantidades de informacidn, al expresar los algoritmos a tan bajo nivel.

Por un lado, la complejidad computacional de los algoritmos utilizados es muy baja, con cotas
superiores asintoticas lineales. Por otro, la optimizacién parece muy buena, superando a una
herramienta destinada a optimizar circuitos. Ademas, este método deberia de escalar muy bien, ya
que el fundamento es eliminar redundancia a bajo nivel, con lo cual cuanto mds grandes sean los
algoritmos utilizados, mas posibilidades de optimizar redundancia.

Otra virtud destacable de este método es la paralelizacién. Dado que se representa cualquier
algoritmo mediante funciones NAND, sabemos exactamente el coste de ejecucion de cualquiera de
sus partes. Imaginemos que tuviéramos acceso a un procesador que solo fuera capaz de ejecutar una
Unica operacién légica NAND. Seria un procesador increiblemente sencillo y podriamos poner a
trabajar en paralelo un nimero arbitrario de procesadores de ese tipo, aprovechando al maximo la
paralelizacion obtenida a este nivel.

5.2 Propuestas de desarrollo futuro

Para que este proyecto pudiera convertirse en una herramienta comercial, haria falta, en primer
lugar, aplicarlo a algoritmos arbitrariamente complejos y, en segundo lugar, implementar la
traduccion de la expresion optimizada en funciones NAND al lenguaje deseado.

39



Ingenieria Informatica Proyecto Fin de Carrera

5.2.1 Aplicacién a algoritmos mas complejos

Durante este proyecto se pretendia demostrar un concepto, por lo que el algoritmo mas complejo
qgue se ha definido ha sido el de la multiplicacion (ver anexo 7.5). Se han sentado las bases, sin
embargo, para poder implementar algoritmos de complejidad arbitraria. Una muestra seria, por
ejemplo, el algoritmo de ordenacion por burbuja.

Seria especialmente interesante aplicar este proyecto para optimizarse a si mismo.

5.2.2 Traduccion de vuelta del lenguaje intermedio
optimizado al lenguaje original

Traducir el cédigo de vuelta al lenguaje original no tiene el mismo interés tedrico que optimizar los
algoritmos, pero tiene un interés practico.

El algoritmo de traduccion aprovecharia la estructura recursiva de la base de datos de definiciones.
Cuando se hallan todas las instancias de cada definicion, se reemplazan por esta, de la mas pequefia
a la mas grande.

5.2.3 Demostracién de que el modelo de representacion de
algoritmos es Turing completo.

A lo largo de este proyecto, se ha asumido que el modelo utilizado para representar algoritmos a
través de funciones recursivas es Turing completo. Parece bastante evidente, pero no se ha
demostrado formalmente. Algunas posibilidades para hacerlo serian implementar una maquina de
Turing, implementar el juego de la vida de Conway o definir todas las funciones p-recursivas.

5.2.4 Implementacion de un método de evaluacion en
anchura

Se ha realizado un prototipo de otro método de evaluacién. A la hora de evaluar funciones recursivas
con expresiones condicionales, es necesario un método de evaluacién mds inteligente, para evitar
bucles infinitos.

Algunos de los requisitos son que la evaluacidn sea perezosa, en anchura y bit a bit.

5.2.5 Generalizacion de la optimizacion de algoritmos
recursivos

Hasta ahora, hemos implementado un método de optimizacién para cuando una funcién es
recursiva. Sin embargo no se ha implementado un método especifico para cuando por ejemplo una
funcidén recursiva contiene otras funciones recursivas. Una posibilidad seria juntar todas las
instancias a funciones recursivas en una unica funcidn recursiva.

5.2.6 Mejoras en la optimizacion

Una propuesta interesante seria mejorar aun mas la optimizacién de cddigo. Para ello podria, por
ejemplo, generalizarse la técnica del sumador con generacién anticipada de acarreo, calculando mas
rapidamente operaciones para multiples entradas posibles.

También podriamos desenrollar lamadas recursivas, para minimizar la profundidad de las funciones.

Otra posibilidad seria analizar en mayor profundidad la recursién para que en cada llamada se realice
el minimo de operaciones necesarias para calcular un bit de salida.
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Ademas, se podria mejorar la optimizaciéon con definiciones de funciones conocidas que son
especialmente buenas, como ocurre con la funcidon XOR.
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7 Anexos

7.1 Desarrollo del proyecto

Al ser un proyecto de investigacion, ha resultado imposible prever el coste real de desarrollo.

7.1.1 Implementacion

El proceso de implementacidn se ha demorado durante algo mas de un afio por su complejidad.

Se ha seguido un proceso de refinamiento iterativo, tanto de los algoritmos, como sobre todo, del
modelo de representacién y las estructuras de datos usadas.

Un ejemplo de esta simplificacidn iterativa es que, en un principio, se utilizaban identificadores
Unicos para los nodos del bosque de funciones NAND. Afortunadamente, se vio que se podia realizar
la misma funcién de forma mas sencilla mediante una tabla dispersa bidimensional. Con ello se evité
usar una estructura de datos de crecimiento exponencial.

7.1.2 Imprevistos

Lo qué mas tiempo ha llevado del proyecto ha sido simplificar el modelo usado para representar las
funciones recursivas, lo que resulta curioso cuando el objetivo del proyecto es precisamente
simplificar codigo. Esto ayuda a justificar el proyecto, siendo un ejemplo de lo tedioso que es el
proceso de simplificacidn.

Muchos de los errores que se han producido posiblemente se hubieran podido evitar teniendo
acceso a un experto en optimizacion de cédigo y minimizacién de circuitos. Lamentablemente son
dos campos que no hemos encontrado ligados en ninguna publicacién.

Como ya se ha mencionado, el proceso de refinamiento del proyecto ha sido iterativo.

En una primera iteracidn se intentd desarrollar una estructura con nodos padres e hijos, sin embargo
algunas de las operaciones resultaban imposibles con ese modelo.

En una segunda iteracidn se intentaron usar subnodos y supernodos, pero esto tampoco resultaba
suficiente.

En una tercera iteracion se usaban subnodos padre, supernodos padre, subnodos hijos y supernodos
hijos. Esta estructura finalmente era adecuada para realizar todas las operaciones, pero muy
compleja. En esta iteracién se usaba un modelo de tres indices posibles para los subnodos:
“primero”, “ultimo” y “resto”. Con esta iteracion se llegd a optimizar completamente un algoritmo
de suma, pero la implementacion era demasiado complicada como para depurar operaciones mas

dificiles. Esta versidn se encuentra congelada en una rama del repositorio publico.?

Con cada una de estas revisiones ha sido necesario reescribir la mayor parte del cédigo. La situacién
es intrinseca a una investigacién primaria. Por la misma razén ha sido necesario emplear el modelo
de desarrollo incremental. Se han necesitado varias iteraciones de soluciones aproximadas al
problema, hasta dar con una satisfactoria. Durante dichas iteraciones, aparecen errores imprevistos
que hacen cambiar el disefio, en ocasiones partes fundamentales de este.

2 https://github.com/raescartin/Recompiler/tree/fission
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El peso de la depuracidn de cédigo ha sido mucho mayor del estimado, suponiendo una gran parte
del tiempo de desarrollo.

La naturaleza del proyecto ha hecho que hubiera que modificar otros aspectos del disefio original.
Por ejemplo, en algunas estructuras, se ha eliminado la copia de datos, sobrescribiendo los originales
en su lugar, para hacer mds fécil la depuraciéon del cédigo.

7.2 Métricas

Para el proyecto se han escrito mas de 23,854 lineas de cddigo y eliminado 18,053, tal y como se
puede ver en el repositorio principal publico en GitHub.?

Esta medida da una idea de lo complejo e iterativo del proceso de implementacion del proyecto.

0 500 1000 1500 2000
Analisis del problema
Desarrollo del método de minimizacién
Disefio de una primera aproximacién
Desarrollo de un primer prototipo
Segunda iteracion de la solucion
Tercera iteracion de la solucién
Iteracion final de la solucidn
Pruebas y evaluacién

Memoria

Figura 23: Diagrama de Gantt de horas dedicadas a las fases del proyecto

Este diagrama de Gantt nos muestra el nimero de horas dedicadas a las diferentes fases del
proyecto. Hay que destacar la cantidad de horas empleadas con la tercera iteracion. Esto se debe a
que la complejidad del modelo hacia muy dificil depurar el cédigo.

Jun 28, 2015 — Feb 4, 2017

Contributions to master, excluding merge co

Figura 24: Contribuciones al repositorio principal

Tal y como se puede comprobar en el repositorio, la primera contribucién de cédigo se produce el
28 de junio de 2015. Desde entonces las contribuciones siguen un ritmo constante, con una

3 https://github.com/raescartin/Recompiler/graphs/contributors
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aceleracién al final, debida mds a una actualizacion frecuente del cédigo que a un aumento de la
produccion.

El valle que se observa antes de esta aceleracidn corresponde al momento en que el proyecto ya era
completamente funcional.

En total, se han dedicado unas 1964 horas a lo largo de casi dos afos.

7.3 Sugerencias para la generalizacion de la
optimizacion de funciones recursivas

]
]

Figura 25: Optimizacion de funciones con multiples instancias de funciones recursivas

A la hora de optimizar algoritmos que contengan multiples funciones recursivas, podria utilizarse un
proceso similar al usado en la seccién 3.7, pero juntando todos los nodos de entrada a funciones
recursivas y todos los nodos de salida. De esta forma fusionariamos todas las funciones recursivas
en una sola.

Figura 26: Optimizacion de un algoritmo con varias instancias recursivas

Del mismo modo podriamos optimizar un algoritmo que tenga multiples llamadas recursivas a si
mismo.

L et | [ |
I TE SRR
------

Figura 27: Algoritmo recursivo con funciones recursivas

Finalmente, podemos mezclar los dos casos anteriores a fin de optimizar algoritmos recursivos que
contengan otras funciones recursivas.
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7.4 Tabla de verdad de la suma de 4 bits

S4 S3 S2 S1 SO

A3 B3 A2 B2 Al Bl A0 BO
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/7

lcacion

7.5 Algoritmo de multipl

Se ha implementado un algoritmo de multiplicacidn.

Este algoritmo usa la definicién del algoritmo andRecursivo que aparece en la seccién 3.1 y el

algoritmo de la suma de la seccién 4.3.

Su funcionamiento estd inspirado en el algoritmo de la suma. Se calcula un bit de salida en cada

iteracion del algoritmo recursivo mulR.
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mul[0,1,2(4{n}&5&3{n})] =
andRecursivo[1{n},0;3]
mulR[0,1{1..n-1},3{1..n-1};4,5]
mulR[0,1,2;3(7&6{1..n-1}),4(8&6{n})]=
andR[1{n},0;5]
add[2,5;6]
mulR[0,1{1..n-1},6{1..n-1};7,8]

7.6 Traza completa de la optimizaciéon de la suma
modular

Durante la tercera iteracién del proyecto se consiguio, por fin, optimizar un algoritmo recursivo,
teniendo en cuenta la redundancia entre iteraciones.

A continuacién se presenta una traza de la optimizacion completa de la suma modular. Es un
algoritmo de suma ddénde las entradas tienen la misma longitud n en bits y se calcula la salida para
esa misma longitud n en bits.

Hay que tener que cuando se optimizé este algoritmo la notacidén era algo diferente. Se usaban tres
indices para dividir un nodo en el primer elemento, ultimo elemento y el resto. Los indices de estos
elementos son {1}, {3}y {2}, respectivamente.

El algoritmo inicial para la suma modular es el siguiente:

add[0,1; 2(17&11{2})] =
xor[0,1; 11] and[9(0{1}&0{2}),10(1{1}&1{2}); 16]

add[15(11{0}&11{1}),16; 17]

7.6.1 Optimizacion de la parte secuencial

En primer lugar se optimiza la parte secuencial. Para ello se expresa esta como funciones NAND.

add[0,1,17; 2(17&11{2}),15(11{0}&11{1}),16] =
nand [0,0; 18] nand [1,1; 19] nand [0,1; 21] nand [9(0{1}&0{2}),10(1{1}&1{2}); 23]
nand [18,19; 20] nand [23,23; 16]
nand [20,21; 22]

nand [22,22; 11]
A continuacidn se realiza la fision de nodos.
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add[0,1,17; 2(17&11{2}),15(11{0}&11{1}),16(29{1}&29{2})] =

nand [0,0; 18] nand [1,1; 19] nand [0,1; 21] nand [9(0{1}&0{2}),10(1{1}&1{2});
23(25{1}&25{2})] nand [0{0},0{0}; 18{0}] nand [0{1},0{1}; 18{1}] nand [0{2},0{2}; 18{2}]
nand [1{0},1{0}; 19{0}] nand [1{1},1{1}; 19{1}] nand [1{2},1{2}; 19{2}] nand [0{0},1{0}; 21{0}]
nand [0{1},1{1}; 21{1}] nand [0{2},1{2}; 21{2}] nand [0{1},1{1}; 25{1}] nand [0{2},1{2}; 25{2}]

nand [18,19; 20] nand [23(25{1}&25{2}),23(25{1}&25{2}); 16(29{1}&29{2})] nand
[18{0},19{0}; 20{0}] nand [18{1},19{1}; 20{1}] nand [18{2},19{2}; 20{2}] nand [25{1},25{1};
29{1}] nand [25{2},25{2}; 29{2}]

nand [20,21; 22] nand [20{0},21{0}; 22{0}] nand [20{1},21{1}; 22{1}] nand [20{2},21{2};
22{2}]

nand [22,22; 11] nand [22{0},22{0}; 11{0}] nand [22{1},22{1}; 11{1}] nand [22{2},22{2};
11{2}]

Se obtiene el bosque de funciones NAND y a partir de él los nodos equivalentes.

equivalentNodes:{25{1}=21{1}, 25{2}=21{2}}

Se reemplazan los nodos equivalentes en la definicién original del algoritmo.

add[0,1,17; 2(17&11{2}),15(11{0}&11{1}),16(29{1}&29{2})] =

nand [0,0; 18] nand [1,1; 19] nand [0,1; 21] nand [9(0{1}&0{2}),10(1{1}&1{2});
23(21{1}&21{2})] nand [0{0},0{0}; 18{0}] nand [0{1},0{1}; 18{1}] nand [0{2},0{2}; 18{2}]
nand [1{0},1{0}; 19{0}] nand [1{1},1{1}; 19{1}] nand [1{2},1{2}; 19{2}] nand [0{0},1{0}; 21{0}]
nand [0{1},1{1}; 21{1}] nand [0{2},1{2}; 21{2}]

nand [18,19; 20] nand [23(21{1}&21{2}),23(21{1}&21{2}); 16(29{1}&29{2})] nand
[18{0},19{0}; 20{0}] nand [18{1},19{1}; 20{1}] nand [18{2},19{2}; 20{2}] nand [21{1},21{1};
29{1}] nand [21{2},21{2}; 29{2}]

nand [20,21; 22] nand [20{0},21{0}; 22{0}] nand [20{1},21{1}; 22{1}] nand [20{2},21{2};
22{2}]

nand [22,22; 11] nand [22{0},22{0}; 11{0}] nand [22{1},22{1}; 11{1}] nand [22{2},22{2};
11{2}]

Se realiza la fusion de nodos.

add[0,1,17; 2(17&11{2}),15(11{0}&11{1}),16] =
nand [0,0; 18] nand [1,1; 19] nand [0,1; 21]
nand [18,19; 20] nand [23(21{1}&21{2}),23(21{1}&21{2}); 16]

nand [20,21; 22]
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nand [22,22; 11]
Y se reconstruye la funcién.

add[0,1,2; 29(2&24{2}),26(24{0}&24{1}),30] =
nand [0,0; 3] nand [1,1; 7] nand [0,1; 15]
nand [3,7; 11] nand [18(15{1}&15{2}),18(15{1}&15{2}); 30]
nand [11,15; 20]
nand [20,20; 24]

Después se recupera la recursividad.

add[0,1; 29(2&24{2})] =
nand [0,0; 3] nand [1,1; 7] nand [0,1; 15]
nand [3,7; 11] nand [18(15{1}&15{2}),18(15{1}&15{2}); 30]
nand [11,15; 20]
nand [20,20; 24]
add [26(24{0}&24{1}),30; 2]

7.6.2 Optimizacion de la redundancia entre iteraciones

Partimos de la funcion:
addCopy[0,1; 18(17&7{2})] =
nand [0,0; 2] nand [1,1; 3] nand [0,1; 5]
nand [2,3; 4] nand [15(5{1}&5{2}),15(5{1}&5{2}); 16]
nand [4,5; 6]
nand [6,6; 7]
add [11(7{0}&7{1}),16; 17]

En primer lugar se expande la recursidn, asociando los nodos expandidos a los nodos desde los que
se expanden en una tabla.

addCopy[0,1,28; 18(17(28&30{2})&7{2}),55(30{0}&30{1}),50] =
nand [0,0; 2] nand [1,1; 3] nand [0,1; 5]
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nand [2,3; 4] nand [15(5{1}&5{2}),15(5{1}&5{2}); 16]

nand [4,5; 6] nand [16,16; 37]

nand [6,6; 7]

nand [11(7{0}&7{1}),11(7{0}&7{1}); 33] nand [11(7{0}&7{1}),16; 41]
nand [33,37; 45] nand [49(41{1}&41{2}),49(41{1}&41{2}); 50]

nand [45,41; 51]

nand [51,51; 30]

A continuacion se realiza la fision de los nodos.

addCopyl[0,1,28;
18(17(28&30(81{0}&81{1}){2}(81{1}2}))&7{2}),55(30(81{0}&81{1}){0}(81{0})&30(81{0}&81{1}){1}(8
1{140}&81{1}{1})),50(91{1}(95{0}&95{1})&91{2})] =

nand [0,0; 2] nand [1,1; 3] nand [0,1; 5] nand [0{0},0{0}; 2{0}] nand [0{1},0{1}; 2{1}] nand
[0{2},0{2}; 2{2}] nand [1{0},1{0}; 3{0}] nand [1{1},2{1}; 3{1}] nand [1{2},1{2}; 3{2}] nand
[0{0},1{0}; 5{0}] nand [0{1},1{1}; 5{1}] nand [0{2},1{2}; 5{2}] nand [0{1K0},0{1K0}; 2{1{0}]
nand [0{1}{1},0{1K1}; 2{1K1}] nand [0{1}2},0{1K2}; 2{1H2}] nand [1{1}{0},1{1K0}; 3{1HO}]
nand [1{1{1},1{11}; 3{1K1}] nand [1{1K2},1{1K2}; 3{1K2}] nand [0{1HO},1{1K0}; 5{1HO}]
nand [0{1K1},1{1K1}; 5{1H1}] nand [0{1K2},1{1K2}; 5{1K2}]

nand [2,3; 4] nand [15(5{1}&5{2}),15(5{1}&5{2}); 16(61{1}&61{2})] nand [2{0},3{0}; 4{0}]
nand [2{1},3{1}; 4{1}] nand [2{2},3{2}; 4{2}] nand [2{1H0},3{1}{0}; 4{1X0}] nand

[(2{1H1},3{1{1}  4{1}{1}] nand  [2{1}2},3{1}2};  4{1H2}] nand
[15(5{1}&5{2}){0}(5{1H0}),15(5{1}&5{2}){0}5{1{O}); 61{1H0}] nand
[15(5{1}&5{2}){1}(5{1H1}&5{1}2}),15(5{1}&S5{2}{1H5{1{1}&5{1}{2});

16(61{1}&61{2}){1}(61{1H{1}&61{1}{2})] nand

[15(5{1}&5{2}1){2}(5{2}),15(5{1}&5{2}){2}(5{2}); 61{2}] nand [5{1}{1},5{1}{1}; 61{1}{1}] nand
(5{142},5{112}; 61{142}]

nand [4,5; 6] nand [16(61{1}&61{2}),16(61{1}&61{2}); 37(65{1}&65{2})] nand [4{0},5{0};
6{0}] nand [4{1},5{1}; 6{1}] nand [4{2},5{2}; 6{2}] nand [4{1}0},5{1}{0}; 6{1HO}] nand

[4{1{1},5{1X1}; 6{1}{1}] nand [4{142},5{1K2}; 6{1}{2}] nand
[16(61{1}&61{2}){0}61{1H0}),16(61{1}&61{2}){0}(61{1HO0}); 65{1}{0}] nand
[16(61{1}&61{2){1H61{1H1}&61{1H2}),16(61{1}&61{2}){1}(61{1H1}&61{1K2});

37(65{1}&65{2}){1}65{1{1}&65{1H2})] nand

[16(61{1}&61{2}){2}(61{2}),16(61{1}&61{2}){2}(61{2}); 65{2}]  nand [61{1}{1},61{1}1};
65{1}{1}] nand [61{1}{2},61{1}2}; 65{1}2}]

nand [6,6; 7] nand [6{0},6{0}; 7{0}] nand [6{1},6{1}; 7{1}] nand [6{2},6{2}; 7{2}] nand
[6{1H0},6{1H0}; 7{1{0}] nand [6{1K1},6{1H1}; 7{1H{1}] nand [6{1}2},6{1K2}; 7{1K2}]

nand [11(7{0}&7{1}),11(7{0}&7{1}); 33(57{0}&57{1})] nand [11(7{0}&7{1}),16(61{1}&61{2});
41(73{0}&73{1})]  nand [11(7{0}&7{1}){0}7{0}),11(7{0}&7{1}{0}(7{0}); 57{0}]  nmand
[11(7{0}&7{1}){1}7{1H0}&7{1K1}),11(7{0}&7{1}){1}7{1{O}&7{1}{1});

33(57{0}&57{1}{1}57{1{0}&57{1H{1})] nand
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[11(7{0}&7{1}){2}(7{1H2}),11(7{0}&7{1){2H7{1K2}); 57{1K2}] nand
[11(7{0}&7{1}){0}(7{0}),16(61{1}&61{2}){0}(61{1H0O}); 73{0}] nand
[11(7{0}&7{1})}{1}(7{1H0}&7{1}{1}),16(61{1}&61{2}}{1}(61{1{1}&61{1}2});

41(73{0}&73{1}){1}(73{1{0}&73{1}{1})] nand

[11(7{0}&7{1}}{2}(7{1}{2}),16(61{1}&61{2}){2}(61{2}); 73{1H2}] = nand [7{1KO},7{1HO};
57{10}] nand [7{1}{1},7{1}{1}; 57{1H1}] nand [7{1}0},61{1K1}; 73{1{0}] nand
(7{1H1},61{1K2}; 73{1{1}]

nand [33(57{0}&57{1}),37(65{1}&65{2}); 45(69{0}&69{1})] nand
[49(41(73{0}&73{1}){1}(73{1}{0}&73{1}{1})&41(73{0}&73{1}){2}(73{1}{2})),49(41(73{0}&73{
IH{1K73{1H0}&73{1{1})&41(73{0}&73{1}){2}(73{1}2}));  50(91{1}(95{0}&95{1})&91{2})]

nand [33(57{0}&57{1}){0}(57{0}),37(65{1}&65{2}){0}(65{1{0}); 69{0}] nand
[33(57{0}&57{1){1H57{1}{0}&57{1H1}),37(65{1}&65{2}){1}65{1{1}&65{1H2});

45(69{0}&69{1}){1}(69{1H0}&69{1}{1})] nand
[33(57{0}&57{1}){2}57{1}2}),37(65{1}&65{2}){2}(65{2}); 69{1H{2}] nand [57{1}0},65{1H1};
69{1}H{0}] nand [57{1}1},65{1}42}; 69{1}{1}] nand

[41(73{0}&73{1}){1}73{1}{0}&73{1}1}),41(73{0}&73{1 {1} 73{1H{0}&73{1H{1});
91{1}(95{0}&95{1})] nand [41(73{0}&73{1}){2}(73{1}2}),41(73{0}&73{1){2H73{1}{2});
91{2}] nand [73{1}{0},73{1}0}; 95{0}] nand [73{1}{1},73{1}{1}; 95{1}]

nand [45(69{0}&69{1}),41(73{0}&73{1}); 51(77{0}&77{1})] nand
[45(69{0}&69{1}){0}(69{0}),41(73{0}&73{1}){0}(73{0}); 77{0}] nand
[45(69{0}&69{1}){1}(69{1H{0}&69{1K1}),41(73{0}&73{1}){1}73{1}{0}&73{1H{1});
51(77{0}&77{LI{L77{1HOI&77{LH1}] nand
[45(69{0}&69{1}){2}(69{1}{2}),41(73{0}&73{1}){2}(73{1H2}); 77{14{2}] nand
[69{1K0},73{1H0}; 77{1K0}] nand [69{1}K1},73{1}K1}; 77{1K1}]

nand [51(77{0}&77{1}),51(77{0}&77{1}); 30(81{0}&81{1})] nand
[51(77{0}&77{1}){0}(77{0}),51(77{0}&77{1}){0}(77{0}); 81{0}] nand
[51(77{0}&77{1}){1}77{1H{0}&77{1}{1}),51(77{0}&77{1}){1}{77{1{0}&77{1H1});
30(81{0}&81{1}){1}(81{1{0}&81{1}{1})] nand
[51(77{0}&77{1}){2}77{1}2}),51(77{0}&77{1}){2}(77{1}{2}); 81{1H2}] nand

[77{1K0},77{1H0}; 81{1{O}] nand [77{1}{1},77{1}1}; 81{1K1}]

Después se transforma a un bosque de funciones NAND y obtenemos los nodos equivalentes.

equivalentNodes:{65{1}1}=5{1}1}, 57{1H{1}=6{1}{1}, 65{1}{2}=5{1}{2}, 65{2}=5{2}, 65{1}{0}=5{1}{0},
57{112}=6{12}, 57{0}=6{0}, 57{1H{0}=6{1}{0}}

equivalentNodes:{57{1}{1}=6{1}{1}, 65{1}{2}=5{1}{2},
37(65{1}&65{2}){2}(65{2})=15(5{1}&5{2}){2}(5{2}), 65{2}=5{2}, 65{1}=5{1}, 57{1}=6{1}, 57{0}=6{0},
65{1{1}=5{1K1}, 37(65{1}&65{2}){1}65{1 {1}&65{1H2})=15(5{1}&5{2}){1H5{1H1}&5{1K2}),
65{140}=5{1}03}, 57{142}=6{1}2}, 37(65{1}&65{2})=15(5{1}&5{2}), 57{1}0}=6{1}{0},
37(65{1}&65{2}){0}(65{1H0})=15(5{1}&5{2}){0}5{1{O})}

Se reemplazan los nodos equivalentes de la definicién original.
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addCopyl[0,1,28;
18(17(28&30(81{0}&81{1}){2}(81{1}2}))&7{2}),55(30(81{0}&81{1}){0}(81{0})&30(81{0}&81{1}){1}(8
1{140}&81{1}1})),50(91{1}(95{0}&95{1})&91{2})] =

nand [0,0; 2] nand [1,1; 3] nand [0,1; 5] nand [0{0},0{0}; 2{0}] nand [0{1},0{1}; 2{1}] nand
[0{2},0{2}; 2{2}] nand [1{0},1{0}; 3{0}] nand [1{1},2{1}; 3{1}] nand [1{2},1{2}; 3{2}] nand
[0{0},1{0}; 5{0}] nand [0{1},1{1}; 5{1}] nand [0{2},1{2}; 5{2}] nand [0{1H0},0{1K0}; 2{1{0O}]
nand [0{1{1},0{1K1}; 2{1K1}] nand [0{1K2},0{1K2}; 2{1K2}] nand [1{1H0O},1{1K0}; 3{1HO}]
nand [1{1}{1},1{1K1}; 3{1K1}] nand [1{1}2},1{1K2}; 3{1H2}] nand [0{1}{0},1{1K0}; 5{1HO}]
nand [0{1K1},1{1K1}; 5{1H1}] nand [0{1H2},1{1K2}; 5{1K2}]

nand [2,3; 4] nand [15(5{1}&5{2}),15(5{1}&5{2}); 16(61{1}&61{2})] nand [2{0},3{0}; 4{0}]
nand [2{1},3{1}; 4{1}] nand [2{2},3{2}; 4{2}] nand [2{1H0},3{1}{0}; 4{1}0}] nand

[(2{1{1},3{1{1}  4{1}{1}] nand  [2{1}2},3{1}{2};  4{1H2}] nand
[15(5{1}&5{2}){0}(5{110}),15(5{1}&5{2}){0}5{1{0}); 61{110}] nand
[15(5{1}&5{2}){1}(5{1H1}&5{1}H2}),15(5{1}&5{2}{1H5{1{1}&5{1H2});

16(61{1}&61{2}){1}(61{1H{1}&61{1}H{2})] nand

[15(5{1}&5{2}){2}(5{2}),15(5{1}&5{2}){2}(5{2}); 61{2}] nand [5{1K1},5{1K1}; 61{1K1}] nand
[5{1K2},5{1H2}; 61{1K2}]

nand [4,5; 6] nand [4{0},5{0}; 6{0}] nand [4{1},5{1}; 6{1}] nand [4{2},5{2}; 6{2}] nand
[4{1K0},5{1H0}; 6{1H0} nand [4{1H1},5{1K1}; 6{1H1}] nand [4{1K2},5{1K2}; 6{1K2}]

nand [6,6; 7] nand [6{0},6{0}; 7{0}] nand [6{1},6{1}; 7{1}] nand [6{2},6{2}; 7{2}] nand
[6{1K0},6{1H0}; 7{1HO} nand [6{1H1},6{1K1}; 7{1K1}] nand [6{1K2},6{1K2}; 7{1K2}] nand
[6{1K0},5{1H1}; 69{1K0}] nand [6{1}H1},5{1K2}; 69{1H1}]

nand [11(7{0}&7{1}),11(7{0}&7{1}); 33(6{0}&6{1})] nand [11(7{0}&7{1}),16(61{1}&61{2});

41(73{0}&73{1})] nand
[11(7{0}&7{1}{1}7{1H0}&7{1K1}),11(7{0}&7{1}){17{1 HO}&7{1{1});
33(6{0}&6{1}){1}6{1H0}&6{1K1})] nand
[11(7{0}&7{1}){0}(7{0}),16(61{1}&61{2}){0}(61{1HO0}); 73{0}] nand
[11(7{0}&7{1}){1}(7{1H0}&7{1K1}),16(61{1}&61{2}){1}61{1}{1}&61{1K2});
41(73{0}&73{1}){1}(73{1K0}&73{1H1})] nand

[11(7{0}&7{1}){2}(7{1}{2}),16(61{1}&61{2}){2}(61{2}); 73{1{2}]  nand [7{1}{0},61{1K1};
73{1}{0}] nand [7{11},61{1}{2}; 73{1K1}]

nand
[49(41(73{0}&73{1}){1}(73{1H{0}&73{1H1})&41(73{0}&73{1}){2}(73{1}{2})),49(41(73{0}&73{
1I{1H73{1H0}&73{1H{1})&41(73{0}&73{1}){2}(73{1K2}));  50(91{1}95{0}&95{1})&91{2})]
nand [41(73{0}&73{1}){1}{73{1H{0}&73{1}H{1}),41(73{0}&73{1}){1}(73{1H{0}&73{1}1});
91{1}(95{0}&95{1})] nand [41(73{0}&73{1}){2}73{1}2}),41(73{0}&73{1}){2}(73{1H2});
91{2}] nand [73{1}0},73{1H0}; 95{0}] nand [73{1X1},73{1K1}; 95{1}] nand
[33(6{0}&6{1}){0}(6{0}),15(5{1}&5{2}){0}(5{1}{0}); 69{0}] nand [33(6{0}&6{1}),15(5{1}&5{2});
45(69{0}&69{1})] nand [33(6{0}&6{1}){2}(6{1}2}),15(5{1}&5{2}){2}(5{2}); 69{1K2}] nand
[33(6{0}&6{1}){1}(6{1H0}&6{1K1}),15(5{1}&5{2}){1}(5{1H1}&5{1K2});
45(69{0}&69{1}){1}(69{110}&69{1}1})]

nand [45(69{0}&69{1}),41(73{0}&73{1}); 51(77{0}&77{1})] nand
[45(69{0}&69{1}){0}(69{0}),41(73{0}&73{1}){0}73{0}); 77{0}] hand
[45(69{0}&69{1}){1}(69{1}{0}&69{1}1}),41(73{0}&73{1}){1}73{1K0}&73{1K1});
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51(77{0}&77{1){1H77{1{O}&77{1K1})] nand
[45(69{0}&69{1}){2}(69{1}{2}),41(73{0}&73{1}){2H73{1}2}); 77{1}{2}] nand
[69{1H0},73{1K0}; 77{1{0}] nand [69{1}{1},73{1K1}; 77{1}{1}]

nand [51(77{0}&77{1}),51(77{0}&77{1}); 30(81{0}&81{1})] nand
[51(77{0}&77{1}){0}(77{0}),51(77{0}&77{1}){0}77{0}); 81{0}] nand
[51(77{0}&77{1){1}(77{1HO}&77{1H1}),51(77{0}&77{1 {1} 77{1HO}&T7{1{1});
30(81{0}&81{1}){1}(81{1H{0}&81{1{1})] nand
[51(77{0}&77{1){2H77{1K2}),51(77{0I&T7{I {2 HT 7{1 H2}); 81{1H2}] nand

[77{110},77{1H0}; 81{1{0}] nand [77{1}1},77{1K1}; 81{1{1}]

Y se fusionan los nodos.

addCopy|0,1,28; 18(17(28&30{2})&7{2}),55(30{0}&30{1}),50] =
nand [0,0; 2] nand [1,1; 3] nand [0,1; 5]
nand [2,3; 4] nand [15(5{1}&5{2}),15(5{1}&5{2}); 16]
nand [4,5; 6]
nand [6,6; 7]
nand [11(7{0}&7{1}),16; 41]
nand [49(41{1}&41{2}),49(41{1}&41{2}); 50] nand [33(6{0}&6{1}),15(5{1}&5{2}); 45]
nand [45,41; 51]

nand [51,51; 30]

De esta expresidn, se extraen los nodos de entrada y salida de la nueva funcién recursiva, utilizando
la tabla de equivalencia entre nodos expandidos y nodos originales de la definicidn de la funcién.

recursiveln1:[16, 33(6{0}&6{1}), 15(5{1}&5{2}), 11(7{0}&7{1})]

recursiveOut1:[17(28&30{2})]

recursiveln0:[1, 2, 3, 0]

recursiveOut0:[18(17&7{2})]

recursivelnlnstance:[1, 3, 7, 0]

recursiveOutinstance:[29(2&24{2})]

Modificamos la definicidn original de la suma con la instancia a esta nueva funcion recursiva.

56



Ingenieria Informatica Proyecto Fin de Carrera

add[0,1; 10] =
nand [0,0; 2] nand [1,1; 6]

addRecur [1,2,6,0; 10]
Y calculamos la nueva funcidn recursiva.

addRecur[0,1,2,3; 21(22&16{2})] =
nand [3,0; 4] nand [1,2; 10]
nand [7(4{1}&4{2}),7(4{1}&4{2}); 9] nand [10,4; 11]
nand [11,11; 16]
addRecur [9,13(11{0}&11{1}),7(4{1}&4{2}),18(16{0}&16{1}); 22]

Con lo que ya tenemos el algoritmo de la suma modular optimizado.

7.7 Traza de ejecucion del software de optimizacion
desarrollado

El desarrollo del software de optimizacion ha sido incremental, tal y como refleja el crecimiento de
la base de datos durante su ejecucién.

Se comenzd por expresar, almacenar y optimizar funciones secuenciales extremadamente sencillas.
A partir de ellas, se fueron definiendo instrucciones mas complejas, incluyendo funciones recursivas.

Finalmente se implementd el algoritmo de la suma y se optimizo.

[00001111, 00110011]lnand([11111100]
Definition as nands:
nandCopy[0,1; 2] =
root in:
Definition cost in parallel nands: 0

New definition:
not[0; 1] =

nand [0,0;1]

root in:
Definition as nands:
notCopy[0; 1] =

nand [0,0;1]

root in:
Definition cost in parallel nands: 1
[00001111]not([11110000]
Optimized definition:
not[0; 1] =

nand [0,0;1]
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root in:
Definition as nands:
notCopy[0; 1] =
nand [0,0;1]
root in:

Definition cost in parallel nands:

[00001111]not[11110000]

DATABASE:

not[0; 1] =
nand [0,0;1]
root in:

nand([0,1; 2] =
root in: not,

New definition:
and[0,1; 2] =
nand [0,1;3]
not [3;2]
root in:
Definition as nands:
andCopy[0,1; 2] =
nand [0,1;3]
nand [3,3;2]
root in:

Definition cost in parallel nands:

[00001111, 00110011]1and[00000011]
Optimized definition:
and[0,1; 3] =
nand [0,1;2]
nand [2,2;3]
root in:
Definition as nands:
andCopy[0,1; 2] =
nand [0,1;3]
nand [3,3;2]
root in:

Definition cost in parallel nands:

[00001111, 001100111and[00000011]
DATABASE:
not[0; 1] =

nand [0,0;1]

root in:
and[0,1; 3] =

nand [0,1;2]

nand [2,2; 3]

root in:
nand([0,1; 2] =

root in: not, and,

New definition:
or[0,1; 2] =
not [0;3] not [1;4]
nand [3,4;2]
root in:
Definition as nands:
orCopy[0,1; 2] =
nand [0,0;3] nand [1,1;4]
nand [3,4;2]
root in:

Definition cost in parallel nands:

(00001111, 00110011]or([00111111]

2
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Optimized definition:

or[0,1; 4] =
nand [0,0;2] nand [1,1;3]
nand [2,3;4]
root in:

Definition as nands:

orCopy[0,1; 2] =
nand [0,0;3] nand [1,1;4]
nand [3,4;2]

root 1n:

Definition cost in parallel nands:

(00001111, 00110011]Jor([00111111]
DATABASE:

not[0; 1] =
nand [0,0;1]
root in:
or[0,1; 4] =

nand [0,0;2] nand [1,1;3]
nand [2,3;4]
root in:
and[0,1; 3] =
nand [0,1;2]
nand [2,2;3]
root in:
nand([0,1; 2] =
root in: not,and, or,

New definition:
xor[0,1; 2] =

[0,1;3]
nand [3,0;4] nand [3,1;5]
[(4,5;2]
root in:
Definition as nands:
xorCopy[0,1; 2] =
nand [0,1;4]
nand [4,0;3] nand [4,1;5]
[

nand [3,5;2]
root 1n:

Definition cost in parallel nands:

[00001111, 00110011]1xo0r[00111100]
Optimized definition:
xor[0,1; 5] =
nand [0,1;2]
nand [2,0;3] nand [2,1;4]
nand [3,4;5]
root in:
Definition as nands:
xorCopy[0,1; 2] =
nand [0,1;4]
nand [4,0;3] nand [4,1;5]
nand [3,5;2]
root in:

Definition cost in parallel nands:

[00001111, 00110011]1x0or[00111100]
DATABASE:
not[0; 1] =
nand [0,0;1]
root in:
or[0,1; 4] =
nand [0,0;2] nand [1,1;3]

2

3

3
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nand [2,3;4]

root in:
and[0,1; 3] =

nand [0,1;2]

nand [2,2;3]

root in:

nand([0,1; 2] =
root in: not,and,or, xor,
xor[0,1; 5] =
nand [0,1;2]
nand [2,0;3] nand [2,1;4]
nand [3,4;5]
root in:

New definition:
if[0,1,2; 3] =
not [0;4] and [0,2;6]
and [4,1;5]
or [5,6;3]
root in:
Definition as nands:
ifCopyI[0,1,2; 3] =

nand [O, O 5] nand [0,2;8]
nand [5, 7] nand [8,8;6]
nand [7, 7 4] nand [6,6;10]
nand [4,4;9]

nand [9,10;3]

root in:

Definition cost in parallel nands: 5
[00001111, 00110011, 01010101]1if[00110101]
Optimized definition:
£[0,1,2; 6] =
nand [0,0; 3]
nand [3,1;4]
nand [4,5;6]
root in:
Definition as nands:
ifCopyI[0,1,2; 3] =
nand [0,0;5] nand [0,2;6]
nand [5,1;4]
nand [4,6; 3]
root in:
Definition cost in parallel nands: 3
[00001111, 00110011, 01010101]1if[00110101]
DATABASE:
not[0; 1] =
nand [0,0;1]
root in:
or[0,1; 4] =
nand [0,0;2] nand [1,1;3]
nand [2,3;4]
root in:
and[0,1; 3] =
nand [0,1;2]
nand [2,2; 3]
root in:
nand([0,1; 2] =
root in: not,and,or,xor,if,
xor[0,1; 5] =
nand [0,1;2]
nand [2,0;3] nand [2,1;4]

nand [0,2;5]

’ ’
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nand [3,4;5]

root in:
if[0,1,2; 6] =
nand [0,0;3] nand [0,2;5]
nand [3,1;4]
nand [4,5;6]
root in:

New definition:
rif[0,1,2; 3(8&9)] =
rif [0,1{1..n-1},2{1..n-1};8] if [0,1{n},2{n};9]
root in:
Definition as nands:
rifCopy[0,1,2; 3(9&4)] =
rifCopy [0,1{1..n-1},2{1..n-1};9] nand [0,0;10] nand
[0,2{n};12]
nand [10,1{n};11]
nand [11,12;4]
root in:
Definition cost in parallel nands: 3
[1, 00110011, 01010101]rif[01010101]
Optimized definition:
rif[0,1,2; 3(8&9)] =
rif [0,1{1..n-1},2{1..n-1};8] nand [0,0;10] nand [0,2{n};12]
nand [10,1{n};11]
nand [11,12;9]
root in:
Definition as nands:
rifCopyI[0,1,2; 3(12&4)] =
rifCopy [0,1{1..n-1},2{1..n-1};12] nand [0,0;6] nand [0,2{n};9]
nand [6,1{n};5]
nand [5,9;4]
root in:
Definition cost in parallel nands: 3
[1, 00110011, 01010101]rif[01010101]
DATABASE:
not[0; 1] =
nand [0,0;1]
root in:
or[0,1; 4] =
nand [0,0;2] nand [1,1;3]
nand [2,3;4]
root in:
and[0,1; 3] =
nand [0,1;2]
nand [2,2; 3]
root in:
nand([0,1; 2] =
root in: not,and,or,xor,if,
xor[0,1; 5] =
nand [0,1;2
nand [2,0;3] nand [2,1;4]
nand [3,4;5
root in:
if[0,1,2; 6]
nand

root in:
riff0,1,2; 3(8&9)] =
rif [0,1{1..n-1},2{1..n-1};8] nand [0,0;10] nand [0,2{n};12]
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nand [10,1{n};11]
nand [11,12;9]
root in:

New definition:
sum[0,1,2; 3,4] =
xor [0,1;5] and [0,1;6] xor [0,1;7]
and [5,2;8] xor [7,2;3]
or [6,8;4]
root in:
Definition as nands:
sumCopy[0,1,2; 3,5] =
nand [0,1;9] nand [0,1;15] nand [0,1;16]
nand [9,0;10] nand [9,1;11] nand [15,15;6] nand [16,0;17] nand

[16,1;18]
nand [10,11;4] nand [17,18;8] nand [6,6;20]
nand [4,2;12] nand [8,2;19]

nand [13,14;3] nand [7,7;21]
nand [20,21;5]
root 1in:
Definition cost in parallel nands: 7
[00001111, 00110011, 01010101]sum[01101001, 00010111]
Optimized definition:
sum([0,1,2; 10,11] =
nand [0,1;3]

[
[
nand [12,4;13] nand [12,2;14] nand [19,19;7]
[
[

nand [3,0;4] nand [3,1;5]

nand [4,5;6]

nand [6,2;7]

nand [7,6;8] nand [7,2;9] nand [3,7;11]
nand [8,9;10]

root in:
Definition as nands:
sumCopy[0,1,2; 3,11] =

nand [0,1;8]

nand [8,0;7] nand [8,1;9]

nand [7,9;6]

nand [6,2;5]

nand [5,6;4] nand [5,2;10] nand [8,5;11]
nand [4,10;3]

root in:

Definition cost in parallel nands: 6
[00001111, 00110011, 01010101]sum([01101001, 000101111
DATABASE:
not[0; 1] =

nand [0,0;1]

root in:
or[0,1; 4] =

nand [0,0;2] nand [1,1;3]

nand [2,3;4]

root in:
and[0,1; 3] =

nand [0,1;2]

nand [2,2; 3]

root in:
nand([0,1; 2] =

root in: not,and,or,xor,if, sum,
xor[0,1; 5]

nand [0,1;2]
nand [2,0;3] nand [2,1;4]
nand [3,4;5]
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root in:
sum[0,1,2; 10,11] =
nand [0,1;3]

nand [3,0;4] nand [3,1;5]
nand [4,5;06]
nand [6,2;7]
nand [7,6;8] nand [7,2;9] nand [3,7;11]
nand [8,9;10]
root in:
if[0,1,2; 6] =
nand [0,0;3] nand [0,2;5]
nand [3,1;4]
nand [4,5;6]
root 1n:

rif[0,1,2; 3(8&9)] =
rif [0,1{1..n-1},2{1..n-1};8] nand [0,0;10] nand [0,2{n};12]
nand [10,1{n};11]
nand [11,12;9]
root in:

New definition:

sumR[0,1,2; 3(5&6),4(7&8)] =
sum [0{n},1{n},2;6,7]
sumR [0{1..n-1},1{1..n-1},7;5,8]
root in:

Definition as nands:

sumRCopy[0,1,2; 3(10&4),12] =

nand [0{n},1{n};13]

nand [13,0{n};14] nand [13,1{n};15]

nand [14,15;16]

nand [16,2;17]

nand [17,16;18] nand [17,2;19] nand [13,17;9(12&]

nand [18,19;4] sumRCopy [0{1l..n-1},1{1..n-1},9(12&;10,1112)]
root in:

Definition cost in parallel nands: 0+6x"1

[00001111, 00110011, 1]sumR[01000011, 11111100]

Optimized definition:

sumR[0,1,2; 3(5&6),4(7&8)] =
nand [0{n},1{n};13]

nand [13,0{n};14] nand [13,1{n};15]

nand [14,15;16]

nand [16,2;17]

nand [17,16;18] nand [17,2;19] nand [13,17;7]

nand [18,19;6] sumR [0{1l..n-1},1{1..n-1},7;5,8]
root in:

Definition as nands:

sumRCopy[0,1,2; 3(1l6&4),19] =

nand [0{n},1{n};9]

nand [9,0{n};8] nand [9,1{n};14]
nand [8,14;7]

nand [7,2;6]

nand [9,6;17(19&] nand [6,7;5] nand [6,2;15]
sumRCopy [0{1..n-1},1{1..n-1},17(19&;16,1819)] nand [5,15;4]
root in:

Definition cost in parallel nands: 0+5x"1

[00001111, 00110011, 1]sumR[01000011, 11111100]

DATABASE:

sumR[0,1,2; 3(5&6),4(7&8)]
nand [0{n},1{n};13]
nand [13,0{n};14] nand [13,1{n};15]
nand [14,15;16]
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nand [16,2;17]
nand [17,16;18] nand [17,2;19] nand [13,17;7]
nand [18,19;6] sumR [0{l..n-1},1{1..n-1},7;5,8]
root in:

not[0; 1] =
nand [0,0;1]
root in:

or[0,1; 4] =
nand [0,0;2] nand [1,1;3]
nand [2,3;4]
root in:

and[0,1; 3] =
nand [0,1;2]
nand [2,2;3]
root in:

nand([0,1; 2] =
root in: not,and,or,xor,if, sum,

xor[0,1; 5] =
nand [
nand [
nand [
root in:

sum[0,1,2; 10,11] =
nand [0,1;3]

3,0;4] nand [3,1;5]

]

0,1;2
2,0;3] nand [2,1;4]
3,4;5

nand [

nand [4,5;6

nand [6,2;7]

nand [7,6;8] nand [7,2;9] nand [3,7;11]
nand [8,9;10]

root in:
if[0,1,2; 6] =
nand [0,0;3] nand [0,2;5]
nand [3,1;4]
nand [4,5;6]
root in:
rif[0,1,2; 3(8&9)] =
rif [0,1{1..n-1},2{1..n-1};8] nand [0,0;10] nand [0,2{n};12]
nand [10,1{n};11]
nand [11,12;9]
root in:

New definition:
add[0,1; 2(7(9{n}&l0)&ll)] =
and [0{n},1{n};12] xor [0{n},1{n};11]
sumR [0{1l..n-1},1{1..n-1},12;10,9]
root in:
Definition as nands:
addCopy[0,1; 2(8(11{n}&9)&3)] =
nand [0{n},1{n};13] nand [0{n},1{n};14]
nand [13,13;10] nand [14,0{n};15] nand [14,1{n};16]
sumR [0{1..n-1},1{1..n-1},10;9,11] nand [15,16;3]
root in:
Definition cost in parallel nands: 0+5x"1
[00001111, 00110011]1add[001000010]
[1, 01]add[010]
Optimized definition:
add[0,1; 2(7(9{n}&l0)&ll)] =
nand [0{n},1{n};13]
nand [13,13;12] nand [13,0{n};15] nand [13,1{n};16]
sumR [0{1..n-1},1{1..n-1},12;10,9] nand [15,16;11]

root 1n:
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Definition as nands:

addCopy[0,1;

2(11(15{n}&l2)&3)]

Proyecto Fin de Carrera

nand [0{n},1{n};14]

nand [14,14;13] nand [14,0{n};4] nand [14,1{n};10]
sumR [0{1..n-1},1{1..n-1},13;12,15] nand [4,10;3]
root in:

Definition cost in parallel nands:
00110011]add[001000010]

(00001111,
[1, 01]addlO
DATABASE:
add[0,1; 2(7
nand
nand
sumR
root
1,2;
nand
nand
nand
nand

sumR [0,

10]
(9{n}&l0)&ll)] =
[0{n},1{n};13]
[13,13;12] nand

in:
3(5&6),4(7&8)] =
[0{n},1{n};13]
13,0{n};14] nand
14,15;16]

0+5x"1

[13,0{n};15] nand
[0{1..n-1},1{1..n-1},12;10,9]

[13,1{n};15]

nand

not[0;

or([0,1;

and[0,1;

[
[
[16,2;17]
nand [17,16;18]
nand [18,19;6]
root in:

1] =

nand [0,0;1]
root in:

4] =
nand
nand [2,3;4]
root in:

3] =

[0,0;2] nand

nand

sumR

[17,2;19]

(1,1;3]

nand

nand
nand

[0,1;2]
(2,2;3]

[13,1{n};1l6]
[15,16;11]

[13,17;7]
[0{1..n-1},1{1..n-1},7;5,8]

root in:
nand([0,1; 2] =
root in:
xor[0,1; 5] =
nand [

nand [
[

not,and, or, xor, if, sum,

o~

nand [2,1;4]
nand
root 1n:

sum([0,1,2; 10,11]
nand
nand
nand

[ [3,1;5]
[
nand [6,2;7
[
[

nand

nand nand [7,2;9] nand [3,7;11]
nand
root

if[0,1,2; 6]
nand
nand
nand
root

rif[0,1,2;

rif

] nand [0,2;5]

3(8&9)] =
[0,1{1..n-1},2{1..n-1};8]
nand [10,1{n};11]

nand [11,12;9]

root in:

nand [0,0;10] nand [0,2{n};12]
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9 Glosario

Literal: en l6gica matematica, un literal es una férmula atdmica o su negacion.

Sintesis de un circuito: proceso por el cual se implementa mediante puertas légicas el disefio de un
circuito. Se utiliza como sinénimo de minimizacion del circuito. [5]

Red booleana: modelo estandar independiente de la tecnologia para representar circuitos mediante
una red ldgica. Los nodos de la red pueden ser entradas primarias, salidas primarias o funciones
booleanas. Las funciones representan una expresion arbitraria, con un nimero ilimitado de entradas
locales y una Unica salida. [12]

Bosque: estructura de datos arborescente compuesta de varios arboles de nodos.

Profundidad: cantidad de funciones booleanas de una Red Booleana que han de ejecutarse
necesariamente en un orden secuencial. Es equivalente al coste secuencial de ejecucién si asumimos
la ejecucion con la maxima paralelizacion posible.

Algoritmo de Quine-McCluskey: método cldsico de minimizacién de funciones booleanas. El
resultado es una suma de productos (OR de ANDs).

Minimizacion en dos niveles: minimizacién a una expresién como suma de productos (OR de ANDs)
o producto de sumas (AND de ORs). El objetivo es reducir el nimero de literales y productos (o
sumas) utilizados.

Minimizacion multinivel: minimizacidn a una expresion con funciones logicas arbitrarias. El objetivo
es reducir el nUmero de literales utilizados.

Algoritmo Espresso: algoritmo heuristico de minimizacién de circuitos en dos niveles que es el
estandar de facto para la industria.

Algoritmo Espresso-exacto o “mincov” (minimum-covering): algoritmo exacto de minimizacién de
circuitos. Pese al nombre, no tiene relacién con el algoritmo Espresso y es una implementacién
moderna del método de Quine-McCluskey. [15]

Misll: herramienta desarrollada en la Universidad de California, Berkeley para realizar sintesis
multinivel de circuitos. Utiliza Espresso como una de sus subrutinas. [5] [16]

Logic Friday: software para usar los métodos Espresso, Espresso-exacto y Misll de minimizacién de
circuitos.

Algoritmo NP: algoritmos de complejidad de tiempo polindmico no determinista.
Algoritmo NP-completo: algoritmos mas dificiles de NP.
Algoritmo NP-complejo: algoritmos que son como minimo tan dificiles como un problema de NP.

Algoritmo Zf : algoritmos mas complejos que NP. Serian NP si tuviéramos acceso a una maquina
oraculo que resolviera un problema NP cuantas veces queramos.

Algoritmo Zf —completo: dentro de la jerarquia de clases de complejidad, los algoritmos mas
dificiles de Y7

Busqueda en anchura: algoritmo para explorar un grafo, explorando primero los vecinos de los
nodos.

Busqueda en profundidad: algoritmo para explorar un grafo siguiendo un camino concreto,
expandiendo cada nodo que se va localizando.
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Padre: en un arbol, nodo con hijos. En este documento se utiliza para mantener un orden: un padre
siempre estd mas cerca de la raiz (o de las entradas) que los hijos.

Hijo: en un arbol, nodo descendiente de otro nodo. En este documento se utiliza para mantener un
orden: los hijos siempre estan mas cerca de las hojas (o salidas) que su padre.

Supernodo: nodo formado por miultiples nodos en una estructura que no tiene porqué ser un arbol.
Se utiliza en este documento para diferenciar cuando no se sigue una direccién concreta como con
un nodo Padre.

Subnodo: nodo que es parte de un supernodo en una estructura que no tiene porqué ser un arbol.
Se utiliza en este documento para diferenciar cuando no se sigue una direccién concreta como con
un nodo hijo.

Tabla dispersa: estructura de datos que asocia claves con valores y cuyo tiempo de acceso es
constante en media.

Funciones p-recursivas: En matemadticas y ciencias de la computacién las funciones p-recursivas son
una clase de funciones parciales de los numeros naturales a los nimeros naturales que son
“computables” en un sentido intuitivo.
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