Accelerating sparse arithmetic in the context of newton’s method for small molecules with bond constraints
Resumen: Molecular dynamics is used to study the time evolution of systems of atoms. It is common to constrain bond lengths in order to increase the time step of the simulation. Here we accelerate Newton’s method for solving the constraint equations for a system consisting of many identical small molecules. Starting with a modular and generic base code using a sequential data layout, we apply three different optimization techniques. The compiled code approach is used to generate subroutines equivalent to a single step of Newton’s method for a user specified molecule. Differing from the generic subroutines, these specific routines contain no loops and no indirect addressing. Interleaving the data describing different molecules generates vectorizable loops. Finally, we apply task fusion. The simultaneous application of all three techniques increases the speed of the base code by a factor of 15 for single precision calculations.
Idioma: Inglés
DOI: 10.1007/978-3-319-32149-3_16
Año: 2016
Publicado en: Lecture Notes in Computer Science 9573 (2016), 160-171
ISSN: 0302-9743

Factor impacto SCIMAGO: 0.339 - Computer Science (miscellaneous) (Q2) - Theoretical Computer Science (Q3)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Arquit.Tecnología Comput. (Dpto. Informát.Ingenie.Sistms.)
Exportado de SIDERAL (2020-02-21-13:26:48)

Este artículo se encuentra en las siguientes colecciones:

 Notice créée le 2017-06-12, modifiée le 2020-02-21

Évaluer ce document:

Rate this document:
(Pas encore évalué)