Yano’s conjecture for two-Puiseux-pair irreducible plane curve singularities
Resumen: In 1982, Tamaki Yano proposed a conjecture predicting the b-exponents of an irreducible plane curve singularity germ that is generic in its equisingularity class. In this article, we prove the conjecture for the case in which the irreducible germ has two Puiseux pairs and its algebraic monodromy has distinct eigenvalues. This hypothesis on the monodromy implies that the b-exponents coincide with the opposite of the roots of the Bernstein polynomial, and we compute the roots of the Bernstein polynomial.
Idioma: Inglés
DOI: 10.4171/PRIMS/53-1-7
Año: 2017
Publicado en: PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES 53, 1 (2017), 211-239
ISSN: 0034-5318

Factor impacto JCR: 0.732 (2017)
Categ. JCR: MATHEMATICS rank: 144 / 309 = 0.466 (2017) - Q2 - T2
Factor impacto SCIMAGO: 1.412 - Mathematics (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E15
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2013-45710-C02-02-P
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2013-45710-C2-1-P
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2019-07-09-11:35:34)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2017-06-12, last modified 2019-07-09


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)