Switchable slow relaxation of magnetization in the native low temperature phase of a cooperative spin-crossover compound
Resumen: The implementation of single-molecule magnet properties in spin crossover materials is sought as a unique source of magnetic multistability at the molecular level. Examples however remain extremely scarce, in part due to the diamagnetic state of most Fe(ii) spin crossover materials at low temperatures. We have studied the complex [Fe(mtz)6](CF3SO3)2 (mtz = 1-methyltetrazole) as a tantalizing candidate of such coexistence, due to its known partial spin crossover and therefore paramagnetic native low temperature phase. The single-crystal structures of [Fe(mtz)6](CF3SO3)2 reported here allow rationalizing its peculiar cooperative spin-crossover behavior. Importantly, the high-spin Fe crystallographic sites at low temperature exhibit a high symmetry with a local trigonal distortion, usually source of magnetic anisotropy. The analysis of equilibrium magnetic properties confirm the presence of a significant magnetic anisotropy at the Fe(ii) high spin sites in the high symmetry low temperature phase. This results in field-induced slow relaxation of their magnetization which is dominated at low temperature by tunneling and direct processes and is strongly enhanced above 3 K by Raman and Orbach processes. Unprecedentedly, these single-molecule magnet properties are observed in the native ground state of a spin crossover material and efficiently and reversibly switched OFF through visible light irradiation.
Idioma: Inglés
DOI: 10.1039/c6sc04737h
Año: 2017
Publicado en: CHEMICAL SCIENCE 8, 3 (2017), 2290-2295
ISSN: 2041-6520

Factor impacto JCR: 9.063 (2017)
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 18 / 171 = 0.105 (2017) - Q1 - T1
Factor impacto SCIMAGO: 4.508 - Chemistry (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E98-MOLCHIP
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2014-53961-R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MAT2015-70868-ERC
Tipo y forma: Article (Published version)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.


Exportado de SIDERAL (2019-07-09-11:37:18)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2017-07-06, last modified 2019-07-09


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)