000061699 001__ 61699
000061699 005__ 20190709135443.0
000061699 0247_ $$2doi$$a10.1039/c6sc04737h
000061699 0248_ $$2sideral$$a99161
000061699 037__ $$aART-2017-99161
000061699 041__ $$aeng
000061699 100__ $$0(orcid)0000-0002-8424-9780$$aUrtizberea, A.
000061699 245__ $$aSwitchable slow relaxation of magnetization in the native low temperature phase of a cooperative spin-crossover compound
000061699 260__ $$c2017
000061699 5060_ $$aAccess copy available to the general public$$fUnrestricted
000061699 5203_ $$aThe implementation of single-molecule magnet properties in spin crossover materials is sought as a unique source of magnetic multistability at the molecular level. Examples however remain extremely scarce, in part due to the diamagnetic state of most Fe(ii) spin crossover materials at low temperatures. We have studied the complex [Fe(mtz)6](CF3SO3)2 (mtz = 1-methyltetrazole) as a tantalizing candidate of such coexistence, due to its known partial spin crossover and therefore paramagnetic native low temperature phase. The single-crystal structures of [Fe(mtz)6](CF3SO3)2 reported here allow rationalizing its peculiar cooperative spin-crossover behavior. Importantly, the high-spin Fe crystallographic sites at low temperature exhibit a high symmetry with a local trigonal distortion, usually source of magnetic anisotropy. The analysis of equilibrium magnetic properties confirm the presence of a significant magnetic anisotropy at the Fe(ii) high spin sites in the high symmetry low temperature phase. This results in field-induced slow relaxation of their magnetization which is dominated at low temperature by tunneling and direct processes and is strongly enhanced above 3 K by Raman and Orbach processes. Unprecedentedly, these single-molecule magnet properties are observed in the native ground state of a spin crossover material and efficiently and reversibly switched OFF through visible light irradiation.
000061699 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E98-MOLCHIP$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-53961-R$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-70868-ERC
000061699 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000061699 590__ $$a9.063$$b2017
000061699 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b18 / 171 = 0.105$$c2017$$dQ1$$eT1
000061699 592__ $$a4.508$$b2017
000061699 593__ $$aChemistry (miscellaneous)$$c2017$$dQ1
000061699 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000061699 700__ $$0(orcid)0000-0003-2095-5843$$aRoubeau, O.$$uUniversidad de Zaragoza
000061699 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000061699 773__ $$g8, 3 (2017), 2290-2295$$pChem. sci.$$tCHEMICAL SCIENCE$$x2041-6520
000061699 8564_ $$s988604$$uhttps://zaguan.unizar.es/record/61699/files/texto_completo.pdf$$yVersión publicada
000061699 8564_ $$s120466$$uhttps://zaguan.unizar.es/record/61699/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000061699 909CO $$ooai:zaguan.unizar.es:61699$$particulos$$pdriver
000061699 951__ $$a2019-07-09-11:37:18
000061699 980__ $$aARTICLE