Localized tissue mineralization regulated by bone remodelling: A computational approach
Financiación FP7 / Fp7 Funds
Resumen: Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent-material density curve. Numerical results are discussed pointing to potential clinical applications.
Idioma: Inglés
DOI: 10.1371/journal.pone.0173228
Año: 2017
Publicado en: PloS one 12, 3 (2017), e017322 [19 pp]
ISSN: 1932-6203

Factor impacto JCR: 2.766 (2017)
Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 15 / 64 = 0.234 (2017) - Q1 - T1
Factor impacto SCIMAGO: 1.164 - Agricultural and Biological Sciences (miscellaneous) (Q1) - Medicine (miscellaneous) (Q1) - Biochemistry, Genetics and Molecular Biology (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/EUR/FP7/ERC2012-StG-306751
Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2015-64221-C2-1-R
Tipo y forma: Article (Published version)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2019-07-09-12:02:28)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2017-09-08, last modified 2019-07-09


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)