000063064 001__ 63064
000063064 005__ 20200221144231.0
000063064 0247_ $$2doi$$a10.1007/s00216-016-9331-4
000063064 0248_ $$2sideral$$a100314
000063064 037__ $$aART-2016-100314
000063064 041__ $$aeng
000063064 100__ $$aGomez-Gonzalez, Miguel Ángel
000063064 245__ $$aCombining single-particle inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy to evaluate the release of colloidal arsenic from environmental samples
000063064 260__ $$c2016
000063064 5060_ $$aAccess copy available to the general public$$fUnrestricted
000063064 5203_ $$aDetection and sizing of natural colloids involved in the release and transport of toxic metals and metalloids is essential to understand and model their environmental effects. Single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) was applied for the detection of arsenic-bearing particles released from mine wastes. Arsenic-bearing particles were detected in leachates from mine wastes, with a mass-per-particle detection limit of 0.64 ng of arsenic. Conversion of the mass-per-particle information provided by SP-ICP-MS into size information requires knowledge of the nature of the particles; therefore, synchrotron-based X-ray absorption spectroscopy (XAS) was used to identify scorodite (FeAsO4·2H2O) as the main species in the colloidal particles isolated by ultrafiltration. The size of the scorodite particles detected in the leachates was below 300–350 nm, in good agreement with the values obtained by TEM. The size of the particles detected by SP-ICP-MS was determined as the average edge of scorodite crystals, which show a rhombic dipyramidal form, achieving a size detection limit of 117 nm. The combined use of SP-ICP-MS and XAS allowed detection, identification, and size determination of scorodite particles released from mine wastes, suggesting their potential to transport arsenic.
000063064 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CGL2010-17434$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2012-38091-C02-01
000063064 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000063064 590__ $$a3.431$$b2016
000063064 591__ $$aCHEMISTRY, ANALYTICAL$$b16 / 76 = 0.211$$c2016$$dQ1$$eT1
000063064 591__ $$aBIOCHEMICAL RESEARCH METHODS$$b26 / 77 = 0.338$$c2016$$dQ2$$eT2
000063064 592__ $$a0.99$$b2016
000063064 593__ $$aAnalytical Chemistry$$c2016$$dQ1
000063064 593__ $$aBiochemistry$$c2016$$dQ2
000063064 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000063064 700__ $$0(orcid)0000-0001-5382-0561$$aBolea, Eduardo$$uUniversidad de Zaragoza
000063064 700__ $$aO’Day, Peggy A.
000063064 700__ $$aGarcia-Guinea, Javier
000063064 700__ $$aGarrido, Fernando
000063064 700__ $$0(orcid)0000-0002-4169-0357$$aLaborda, Francisco$$uUniversidad de Zaragoza
000063064 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000063064 773__ $$g408,  19 (2016), 5125–5135$$pAnal. Bioanal. Chem.$$tAnalytical and Bioanalytical Chemistry$$x1618-2642
000063064 8564_ $$s6505723$$uhttps://zaguan.unizar.es/record/63064/files/texto_completo.pdf$$yPostprint
000063064 8564_ $$s34493$$uhttps://zaguan.unizar.es/record/63064/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000063064 909CO $$ooai:zaguan.unizar.es:63064$$particulos$$pdriver
000063064 951__ $$a2020-02-21-13:19:41
000063064 980__ $$aARTICLE