The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior
Resumen: The Calcium Looping (CaL) technology, based on the multicyclic carbonation/calcination of CaO in gas-solid fluidized bed reactors at high temperature, has emerged in the last years as a potentially low cost technology for CO2 capture. In this manuscript a critical review is made on the important roles of energy integration and sorbent behavior in the process efficiency. Firstly, the strategies proposed to reduce the energy demand by internal integration are discussed as well as process modifications aimed at optimizing the overall efficiency by means of external integration. The most important benefit of the high temperature CaL cycles is the possibility of using high temperature streams that could reduce significantly the energy penalty associated to CO2 capture. The application of the CaL technology in precombustion capture systems and energy integration, and the coupling of the CaL technology with other industrial processes are also described. In particular, the CaL technology has a significant potential to be a feasible CO2 capture system for cement plants. A precise knowledge of the multicyclic CO2 capture behavior of the sorbent at the CaL conditions to be expected in practice is of great relevance in order to predict a realistic capture efficiency and energy penalty from process simulations. The second part of this manuscript will be devoted to this issue. Particular emphasis is put on the behavior of natural limestone and dolomite, which would be the only practical choices for the technology to meet its main goal of reducing CO2 capture costs. Under CaL calcination conditions for CO2 capture (necessarily implying high CO2 concentration in the calciner), dolomite seems to be a better alternative to limestone as CaO precursor. The proposed techniques of recarbonation and thermal/mechanical pretreatments to reactivate the sorbent and accelerate calcination will be the final subjects of this review.
Idioma: Inglés
DOI: 10.1016/j.apenergy.2015.10.121
Año: 2016
Publicado en: Applied Energy 162 (2016), 787-807
ISSN: 0306-2619

Factor impacto JCR: 7.182 (2016)
Categ. JCR: ENGINEERING, CHEMICAL rank: 4 / 135 = 0.03 (2016) - Q1 - T1
Categ. JCR: ENERGY & FUELS rank: 6 / 92 = 0.065 (2016) - Q1 - T1

Factor impacto SCIMAGO: 3.011 - Building and Construction (Q1) - Civil and Structural Engineering (Q1) - Energy (miscellaneous) (Q1) - Nuclear Energy and Engineering (Q1) - Fuel Technology (Q1) - Management, Monitoring, Policy and Law (Q1) - Mechanical Engineering (Q1) - Energy Engineering and Power Technology (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/CTQ2014-52763-C2-2-R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Máquinas y Motores Térmi. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2020-11-30-07:56:35)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2017-10-19, última modificación el 2020-11-30


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)