000063160 001__ 63160
000063160 005__ 20190709135524.0
000063160 0247_ $$2doi$$a10.1038/s41467-017-00872-2
000063160 0248_ $$2sideral$$a101869
000063160 037__ $$aART-2017-101869
000063160 041__ $$aeng
000063160 100__ $$aPiquero-Zulaica, I.
000063160 245__ $$aPrecise engineering of quantum dot array coupling through their barrier widths
000063160 260__ $$c2017
000063160 5060_ $$aAccess copy available to the general public$$fUnrestricted
000063160 5203_ $$aQuantum dots are known to confine electrons within their structure. Whenever they periodically aggregate into arrays and cooperative interactions arise, novel quantum properties suitable for technological applications show up. Control over the potential barriers existing between neighboring quantum dots is therefore essential to alter their mutual crosstalk. Here we show that precise engineering of the barrier width can be experimentally achieved on surfaces by a single atom substitution in a haloaromatic compound, which in turn tunes the confinement properties through the degree of quantum dot intercoupling. We achieved this by generating self-assembled molecular nanoporous networks that confine the two-dimensional electron gas present at the surface. Indeed, these extended arrays form up on bulk surface and thin silver films alike, maintaining their overall interdot coupling. These findings pave the way to reach full control over two-dimensional electron gases by means of self-assembled molecular networks.
000063160 536__ $$9info:eu-repo/grantAgreement/EUR/COST/MP1303$$9info:eu-repo/grantAgreement/ES/ERC/CSIC-201560I022$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2013-48286-C2-1-P$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2013-46593-C6-4-P$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-78293-C6-6R
000063160 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000063160 590__ $$a12.353$$b2017
000063160 591__ $$aMULTIDISCIPLINARY SCIENCES$$b3 / 64 = 0.047$$c2017$$dQ1$$eT1
000063160 592__ $$a6.582$$b2017
000063160 593__ $$aBiochemistry, Genetics and Molecular Biology (miscellaneous)$$c2017$$dQ1
000063160 593__ $$aPhysics and Astronomy (miscellaneous)$$c2017$$dQ1
000063160 593__ $$aChemistry (miscellaneous)$$c2017$$dQ1
000063160 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000063160 700__ $$0(orcid)0000-0003-2698-2543$$aLobo-Checa, J.$$uUniversidad de Zaragoza
000063160 700__ $$aSadeghi, A.
000063160 700__ $$aEl-Fattah, Z.M.A.
000063160 700__ $$aMitsui, C.
000063160 700__ $$aOkamoto, T.
000063160 700__ $$aPawlak, R.
000063160 700__ $$aMeier, T.
000063160 700__ $$aArnau, A.
000063160 700__ $$aOrtega, J.E.
000063160 700__ $$aTakeya, J.
000063160 700__ $$aGoedecker, S.
000063160 700__ $$aMeyer, E.
000063160 700__ $$aKawai, S.
000063160 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000063160 773__ $$g8, 1 (2017), [6 pp]$$pNATURE COMMUNICATIONS$$tNature Communications$$x2041-1723
000063160 8564_ $$s2416195$$uhttps://zaguan.unizar.es/record/63160/files/texto_completo.pdf$$yVersión publicada
000063160 8564_ $$s72172$$uhttps://zaguan.unizar.es/record/63160/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000063160 909CO $$ooai:zaguan.unizar.es:63160$$particulos$$pdriver
000063160 951__ $$a2019-07-09-11:58:58
000063160 980__ $$aARTICLE