Host Mobility Drives Pathogen Competition in Spatially Structured Populations
Resumen: Interactions among multiple infectious agents are increasingly recognized as a fundamental issue in the understanding of key questions in public health regarding pathogen emergence, maintenance, and evolution. The full description of host-multipathogen systems is, however, challenged by the multiplicity of factors affecting the interaction dynamics and the resulting competition that may occur at different scales, from the within-host scale to the spatial structure and mobility of the host population. Here we study the dynamics of two competing pathogens in a structured host population and assess the impact of the mobility pattern of hosts on the pathogen competition. We model the spatial structure of the host population in terms of a metapopulation network and focus on two strains imported locally in the system and having the same transmission potential but different infectious periods. We find different scenarios leading to competitive success of either one of the strain or to the codominance of both strains in the system. The dominance of the strain characterized by the shorter or longer infectious period depends exclusively on the structure of the population and on the the mobility of hosts across patches. The proposed modeling framework allows the integration of other relevant epidemiological, environmental and demographic factors, opening the path to further mathematical and computational studies of the dynamics of multipathogen systems.

Author Summary:
When multiple infectious agents circulate in a given population of hosts, they interact for the exploitation of susceptible hosts aimed at pathogen survival and maintenance. Such interaction is ruled by the combination of different mechanisms related to the biology of host-pathogen interaction, environmental conditions and host demography and behavior. We focus on pathogen competition and we investigate whether the mobility of hosts in a spatially structured environment can act as a selective driver for pathogen circulation. We use mathematical and computational models for disease transmission between hosts and for the mobility of hosts to study the competition between two pathogens providing each other full cross-immunity after infection. Depending on the rate of migration of hosts, competition results in the dominance of either one of the pathogens at the spatial level – though the two infectious agents are characterized by the same invasion potential at the single population scale – or cocirculation of both. These results highlight the importance of explicitly accounting for the spatial scale and for the different time scales involved (i.e. host mobility and spreading dynamics of the two pathogens) in the study of host-multipathogen systems.

Idioma: Inglés
DOI: 10.1371/journal.pcbi.1003169
Año: 2013
Publicado en: PLoS Computational Biology 9, 8 (2013), 1003169 [12 pp]
ISSN: 1553-734X

Factor impacto: 4.829 (2013)
Categ. JCR: MATHEMATICAL & COMPUTATIONAL BIOLOGY rank: 3 / 51 = 0.059 (2013) - Q1 - T1
Categ. JCR: BIOCHEMICAL RESEARCH METHODS rank: 10 / 77 = 0.13 (2013) - Q1 - T1

Financiación: info:eu-repo/grantAgreement/ES/DGA/FENOL-GROUP
Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2011-25167
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Física Teórica (Departamento de Física Teórica)
Área (Departamento): Sin Adscripción (SIN ADSCRIPCION)


Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2017-11-28-12:46:34)

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Sin Adscripción
Artículos > Artículos por área > Física Teórica



 Registro creado el 2017-11-28, última modificación el 2017-11-29


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)