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Prólogo

Se dice grupo de Coxeter a aquel que puede ser generado por involuciones si tales que las relaciones
que cumplen son todas del tipo (sis j)

m = 1. Este trabajo trata de adentrarse un poco en la teoría de
grupos, en concreto en estudiar estudiar un tema clásico en teoría de grupos: la linealidad de los grupos
de Coxeter.

Que un grupo sea lineal significa que puede interpretarse como un subgrupo del grupo general lineal
de un espacio vectorial (GL(V )), y por tanto cumple las propiedades de linealidad de dichas matrices.

Para demostrar esta linealidad construiremos un homomorfismo de grupos entre estos grupos ge-
nerados por involuciones y GL(V ). Este homomorfismo veremos primeramente que es inyectivo si se
restringe a una serie de subgrupos, para posteriormente demostrar que esta inyectividad es cierta sin
restricción, y por tanto un grupo de Coxeter es isomorfo a un subgrupo de GL(V ).
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Resumen

In this work we discuss how certain groups can be represented as groups of matrices, in particular,
how Coxeter groups are represented by a faithful homomorphism G→ GL(V )

Firstly we introduce the idea of group presentation 〈A|R〉, where A is a set of letters that we call
generators and R⊆ F(A) a set of relations with F(A) is the group of words made by letters in A∩A−1.

Proposición 0.1. Suppose φ : A→ G is a map from the set of letters A to the group G. Then φ can be
uniquely extended to a group homorphism Φ : F(A)→G where φ(a) =Φ(a) for all a∈A. If φ preserves
the relations in R, φ induces to an unique homomorphism of groups 〈A|R〉 → G.

Definición 0.2. Let M be a symmetric matrix with entries from N∪{∞} such that mii = 1. It is called
Coxeter matrix, and the Coxeter group of type M is the group with presentation.

G(M) = 〈s1, . . .sn|s2
i = 1 ∀i, (sis j)

mi j = 1 ∀mi j < ∞〉

Some examples of Coxeter groups are symmetrical groups, dihedral groups, groups of movements
that fix a tessellation...

Definición 0.3. A linear represtation of a group G is a faithfull group homomorphism G→ GL(V )
where GL(V ) is the group of invertible lineal tranformations from V to V and V is vector space of finite
dimension over a field.

G is a Coxeter group presented by 〈S|R〉, where we fixed S a set of generators.

Definición 0.4. The length of w respecto to S, lS(w), is the length of the minimal expression for w with
letters in S.

For all w ∈ G and s ∈ S, l(sw) = l(w)±1. For each T ⊆ S, we define

T G = {w ∈ G|l(tw)> l(w)∀t ∈ T}

and similar for GT .

The following technical result will be useful to show that our representation is faithful.

Lema 0.5. Let be G Coxeter group and T ⊆ S subset of generators, then

1. For each w ∈ G there where u ∈ 〈T 〉 and v ∈T G such that w = uv and l(w) = l(u)+ l(v).

2. For each w ∈ 〈T 〉, l(w) = lT (w), wich is the lenth of w restricted to T .

We continue with a brief explanation about about the affine space associated to a vector space. We
consider a special kind of transformations of the affine space that will be very useful: linear and affine
reflections.

To define our representation we will use the following bilineal form.

Definición 0.6. Let be G a Coxeter group type M. We denote BM, the symmetric bilineal form

BM(eiei) =−2cos( π

mi j
) if mi j < ∞ and BM(ei,e j) =−2 if mi j = ∞.
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VI Capítulo 0. Resumen

Proposición 0.7. Let be G a coxeter group type M, B = BM, and ρi : V → V a linear transformation
such that ρi(x) = x−B(x,ei)ei. Then

B(ei,ei) = 2.

B(ei,e j)≤ 0 for all i 6= j, and B(ei,e j) = 0⇔ mi j = 2.

ρi is a reflexion with mirror {x ∈V |B(x,ei) = 0} and root ei.

B(x,y) = B(ρi(x),ρi(y)).

The order of ρiρ j equals mi j.

Teorema 0.8. Let be G a Coxeter group type M and s = {s1, . . . ,sn}, and V a vector space. We define
de map ρ : S→ GL(V ) by ρ(si) = ρi, then

1. ρ : G→ GL(V ) defines a linear representation of G on V preserving B.

2. ρi 6= ρ j for all i 6= j .

3. ρ restricted to 〈si,s j〉 ≤ G is faithfull for all i, j.

In the third and last chapter we will see that the homomorphism ρ is in fact an isomorphism between
the Coxeter group W to a subgroup of GL(V ) generated by reflections.

For this we introduce prefundamental domains as sets D such that D∩gD = /0 for all g ∈G, and use
this for the proof of

Teorema 0.9. (Tits lemma) Let be G a group generated by {ρi|i ∈ I} affine reflections For each I, Ai is
one of the twho half-spaces determined by the mirror of ρi. And A = ∩Ai. Then

A is prefundamental domain for G.

G is isomorphic to a Coxeter group type M with mi j = order of ρiρ j.

In the last section, we use ρ to construct a dual representation ρ∗ and show that one is faithful if and
only if the other is. Finally, we use Tits Lemma to prove that ρ∗ is faithful.
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Capítulo 1

Introducción

Una primera manera de representar un grupo G sería como un conjunto de elementos también lla-
mado G que lleva asociada una aplicación interna G×G→ G llamada multiplicación, que contiene un
elemento identidad 1 ∈ G, y para cada x ∈ G existe un elemento x−1 ∈ G que cumple xx−1 = x−1x = 1,
es decir, es el inverso de x.
Esta representación suele darse mediante el conjunto de elementos y la tabla de multiplicar. Sin em-
bargo no es una buena manera de presentar un grupo ya que sólo es útil en grupos finitos y de pocos
elementos, así que hemos de encontrar una forma mejor de expresar un grupo.

En este trabajo veremos como presentar un grupo de diversas maneras, centrándonos en los grupos
de involuciones llamados grupos de Coxeter. El objetivo último de este trabajo es dar las herramientas
para concluir que los grupos de Coxeter son grupos lineales.

1.1. Grupos finítamente generados

Una forma eficiente de expresar un grupo es mediante generadores y relaciones. Partiremos de un
conjunto S, cuyos elementos a ∈ S denominaremos letras, y a las concatenaciones de los mismos las
llamaremos palabras.
Podemos construir el conjunto S−1 formado por elementos de la forma a−1 por cada a ∈ S, siendo S y
S−1 disjuntos.

A partir de S, definimos F(S) como el conjunto formado por las palabras en S∪S−1 incluyendo la
palabra vacía que denotaremos 1, dotado de la operación de yuxtaposición:

ab = a1 . . .anb1 . . .bm

con a = a1 . . .an y b = b1 . . .bm palabras en S∪S−1

y con la relación de equivalencia generada por por:

vaa−1w∼ vw
va−1aw∼ vw

para cualesquiera v y w palabras.

Se puede comprobar que que F(S) es un grupo, el cual se llama grupo libre en S.

Definición 1.1. Dada una familia de palabras R⊆ F(S). Entonces denotamos, 〈R〉 al menor subgrupo
de F(A) que contiene a R. Asimismo, 〈〈R〉〉 se refiere el menor subgrupo normal de F(A) que contiene
a R.
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2 Capítulo 1. Introducción

Definición 1.2. Sea S un conjunto de letras, F(S) el grupo libre de S y R ⊆ F(S) un conjunto de
palabras. Denotamos por 〈S|R〉 al cociente G = F(S)�〈〈R〉〉.
Se dice que 〈S|R〉 es una presentación de G, o que G es el grupo generado por los elementos de S con
las relaciones {r = 1|r ∈ R}.

Ejemplo 1.3. El grupo cíclico infinito generado por un elemento a y sin restricciones tiene por presen-
tación a 〈a|〉, o simplemente 〈a〉. Si ahora tomamos R = am tenemos que 〈a|am〉 es una presentación del
grupo cíclico de orden m, donde am = 1.

Podemos considerar ahora G, el grupo generado por las letras a y b, donde el producto es conmu-
tativo, es decir ab = ba, en este caso la relación se puede expresar como aba−1b−1 = 1 y tendríamos la
presentación

〈S|R〉= 〈a,b|aba−1b−1〉
Sin embargo, para expresar G de una forma algo más intuitiva, podemos utilizar también la presenta-
ción 〈a, b|ab = ba〉.

A continuación introduciremos un resultado cuya demostración no vamos a dar con detalle, pero
que tiene gran importancia ya que da una base para, posteriormente, hallar un isomorfismo entre un
grupo de Coxeter y un grupo lineal.

Proposición 1.4. Sean S un conjunto de palabras y G un grupo cualesquiera, entonces para toda
aplicación φ : S→G existe un único homomorfismo de grupos Φ : F(S)→G que extiende a φ , es decir,
Φ(a) = φ(a) para todo a ∈ S.
Si ademas φ preserva las relaciones R de 〈S|R〉, es decir, si para cada r ∈ R tal que r = a1 . . .an se tiene
φ(a1) . . .φ(an) = 1 en G, entonces también existe un único homomorfismo de grupos 〈S|R〉 → G que
extiende a φ .

1.2. Ejemplos

1.2.1. Grupos simétricos

Definición 1.5. Dado un conjunto cualquiera X, el grupo simétrico de X es el grupo de permutaciones
del conjunto X. Lo denotaremos Sym(X).

Para el caso de X = [n] = {i, . . . ,n} Sym(X), lo denotaremos Symn. Además, cuando hablemos del
ciclo

(i1, . . . , ik) con i j ∈ [n] para todo j ∈ [k]

no referiremos a la permutación que actúa llevando i j 7−→ i j+1 para cada j ∈ [k−1] y ik 7−→ i1, y dejando
fijos el resto de elementos de X .

Ejemplo 1.6. Sea el conjunto Sn = {s1, . . .sn} y el conjunto de relaciones Tn dado por

s2
i = 1 para todo i = 1 . . .n

sis j = s jsi para todo | i− j |> 1
sis jsi = s jsis j para todo | i− j |= 1.

Entonces se puede probar que la aplicación Sn→ Symn+1 tal que si 7→ (i, i+1) induce un isomor-
fismo entre Sn y Symn+1. Es decir, 〈Sn|Tn〉 es una presentación de Symn+1.

Ejemplo 1.7. Si tomamos X = {1,2,3}, Sym(X) = Sym3 tiene 6 elementos, correspondientes a las
permutaciones 1, (1,2), (1,3), (2,3), (1,2,3), (1,3,2), y una presentación de Sym3 grupo sería α : G→
Sym(X) con G = 〈a,b|a2,b2,(ab)3〉 con a = (2,3) y b = (1,2).
Para verlo, notemos que es claro que a2 = b2 = 1, y además, como aba = bab tenemos ababab =
(ab)3 = 1.
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Definición 1.8. Una representación como grupo de permutaciones de un grupo cualquiera G es un
homomorfismo de grupos α : G→ Sym(X).
Si α es inyectiva se dice que el homomorfismo es fiel.

1.2.2. Grupos diédricos

Llamamos grupo diédrico de orden m al grupo formado por todos los movimientos del plano que
fijan un polígono de m lados. Lo denotaremos Dih2m, o simplemente D2m.

Dicho grupo admite la siguiente presentación

Dih2m = 〈a,b|a2 = 1,bm = 1,(ab)2 = 1〉

donde a es una simetría respecto a una recta y b es un giro de angulo 2π

m como se aprecia en el dibujo
del ejemplo 1.9.

Si llamamos c = ab tenemos que se puede presentar el mismo grupo de la forma

Dih2m = 〈a,c|a2 = 1,c2 = 1,(ac)m = 1〉.

En este caso a y c son simetrías, una respecto a un a recta que pasa por dos vértices y otra respecto a
una recta que corta dos aristas por su punto medio.

Veremos posteriormente que este grupo generado por elementos de orden 2 es un grupo de Coxeter.
Notar que Dih2m, el grupo diédrico de orden m se puede ver como un subgrupo de Symm. Para verlo,
basta numerar los vértces y notar que los elementos de Dih2m permutan dichos vértices.

Ejemplo 1.9. Tomemos el grupo diédrico del hexágono, es decir, el caso donde m= 6, entonces tenemos

D12 6 Sym6
a = (6,2)(5,3)

c = (1,2)(6,3)(5,4)
dando lugar a b = (1,2,3,4,5,6)

a

b

b

c

16

25

4 3

La presentación explicada arriba para grupos diédricos en el caso correspondiente al hexágono es

D12 = 〈a,c|a2 = 1,c2 = 1,(ac)6 = 1〉
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1.2.3. Grupos de Coxeter

Definición 1.10. Sea M una matriz simétrica n×n con entradas enZ+∪{+∞} de la forma M =(mi j)1≤i, j≤n

con mii=1 para todo i = 1, · · · ,n y 1 < mi j ∈N para todo i 6= j.
Entonces M es una matriz de Coxeter y se define como grupo de Coxeter de tipo M al grupo

G(M) = 〈s1, · · · ,sn | (sis j)
mi j = 1 ∀ i, j = 1, · · · ,n y mi j < ∞〉.

La anterior se dice presentación de Coxeter de G(M).

Definición 1.11. Un grupo que admita una presentación de Coxeter para alguna matriz de Coxeter M
se dice grupo de Coxeter.

Ejemplo 1.12. Hemos visto en el ejemplo 19 que el grupo diédrigo del hexágono admite una presenta-
ción

D12 = 〈a,c|a2 = 1,c2 = 1,(ac)6 = 1〉

en la que los generadores son dos simetrías, a y c, es decir, involuciones. Como la otra relación es
(ac)6 = 1, estamos ante un grupo de Coxeter que podemos presentar mediante una matriz de Coxeter
M = (mi j).
Tengo dos generadores así que M sera una matriz 2×2, donde m1,1 = m2,2 = 1 y m1,2 = m2,1 = orden
de ac, es decir 6. Dando lugar a que D12 es un grupo de Coxeter tipo M con

M =

(
1 6
6 1

)
Ejemplo 1.13. Ahora partimos de una matriz

M =

1 3 2
3 1 3
2 3 1


que cumple las condiciones para ser matriz de Coxeter, y por tanto el grupo

G(M) = 〈s1,s2,s3|s2
1 = s2

2 = s2
3 = (s1s2)

3 = (s1s3)
2 = (s2s3)

3 = 1〉

es el grupo de Coxeter tipo M.
Aunque no entraré en detalles, se puede probar que el grupo G(M) es exactamente el grupo T de
isomometrías del espacio que dejan fijo un tetraedro. Para ello numeramos los vértices del tetraedro
como el en el dibujo de 1.13 y podremos entender T como un subgrupo de Sym4.

••
•

•

3
1

2

4

s1 es la simetría que fija el plano que pasa por los vértices 3, 4 y el punto medio del segmento entre
1 y 4, y que intercambia los vértices 1 y 2.

De igual manera manera s2 fija el plano que pasa por 1, 4 y el punto medio del segmento 2 a 3,
intercambiando 2 y 3. Y s3 fija 1, 2, el punto medio del segmento entre 3 4, e intercambia los vértices 3
y 4.



Grupos de Coxeter - Eduardo Quintana García 5

Ejemplo 1.14. Consideremos la teselación del plano formada por cuadrados, es decir, un plano cu-
bierto completamente por cuadrados de igual tamaño los cuales no se superponen entre ellos. Véase en
el dibujo de 1.14 que se trata de lo que comúnmente podría llamarse una cuadricula infinita.

Entonces pensamos en los movimientos del plano que dejan fija mi teselación, por ejemplo, las
simetrías respecto a los ejes d, e y f como se ven en 1.14.

A partir de d, e y f consideramos el grupo G que generan, el cual cumple las siguientes relaciones:

(de)4 = 1 ya que de es un giro de 90 grados y centro en la intersección de los ejes de d y e.

(d f )4 = 1 ya que d f es un giro de 90 grados y centro en la intersección de los ejes de d y d.

(e f )m 6= 1 para todo m ya que e f es una traslación, es decir, tiene orden infinito.

d2 = e2 = f 2 = 1 ya que son simetrías.

Se puede probar que las relaciones R = {(de)4,(d f )4,d2,e2, f 2} son suficientes para presentarlo,
de la manera que tenemos

G = 〈e,d, f |(de)4,(d f )4,d2,e2, f 2〉

d

e

f

de

d f e f

G es claramente un grupo de Coxeter y por tanto puede presentarse como Grupo de Coxeter tipo
M con matriz de Coxeter 1 4 ∞

4 1 4
∞ 4 1


Notemos que no estamos hablando del grupo completo de todos los movimientos del plano que dejan

fija mi teselación, sino simplemente un subgrupo de los mismos. Esto se puede demostrar observando
que, por ejemplo, la traslación hacia la derecha no puede generarse a partir de d, e y f .

Ejemplo 1.15. Sea el grupo simétrico Sym5 que permuta el los elementos del conjunto X = {1,2,3,4,5}.
Sabemos del apartado 1.2.1 que esta generado por S4 = {s1,s2,s3,s4} con si = (i, i+ 1) para todo i,
cumpliendo las relaciones:

s2
i = 1 para todo i = 1,2,3,4.

sis j = s jsi, es decir, (sis j)
2 = 1 si |i− j|> 1. Luego (s1s3)

2 = (s2s4)
2 = (s3s5)

2 = 1.
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sis jsi = s jsis j, es decir (sis j)
3 = 1 si | i− j |= 1. Luego (s1s2)

3 = (s2s3)
3 = (s3s4)

3 = (s4s5)
3 = 1.

Por tanto tenemos
Sym5 = 〈s1,s2,s3,s4|s1 = s2 = s3 = s4 = s5 =

= (s1s3)
2 = (s2s4)

2 = (s3s5)
2 = (s1s2)

3 = (s2s3)
3 = (s3s4)

3 = (s4s5)
3 = 1〉

y podemos concluir que Sym5 es un grupo de Coxeter tipo M con

M =


1 3 4 4 4
3 1 3 4 4
4 3 1 3 4
4 4 3 1 3
4 4 4 3 1



1.3. Grupos lineales y representaciones

Definición 1.16. Sea GL(V ) el grupo de las transformaciones lineales invertibles de V en V con V
espacio vectorial con la operación de composición, es decir, el grupo general lineal sobre V . Una
representación lineal de un grupo G consiste en un homomorfismo inyectivo de grupos G→ GL(V )

Ejemplo 1.17. Consideremos el grupo diédrico del hexagono D12=〈a,c|a2 = c2 = 1,(ac)6 = 1〉, y
ponemos

A =

(
sen 2π

6 cos 2π

6
cos 2π

6 −sen 2π

6

)
y C =

(
sen 2π

12 cos 2π

12
cos 2π

12 −sen 2π

12

)
Se ve facilmente que se trata de dos matrices de orden 2, y que además la matriz AC tiene orden 6.

Consideremos el homomorfismo resultante de extender φ : {a,c} → GL(V ) a φ : D12→ GL(V ) según
la proposición 1.1. Al ser un grupo finito se puede comprobar simpremente escribiendo todos sus ele-
mentos las matrices asociadas que φ es inyectivo.
Por tanto D12 ∼= 〈A,C〉 ≤ GL(V ) y φ es una representación lineal de D12.

Una forma de ver gráficamente esta presentación es entender A y C como transformaciones lineales
del plano R2. Así pues, corresponden a dos simetrías respecto a dos rectas que pasan por el origen y
tienen distinta pendiente. De esta manera AC, que es la imagen de ac = b es un giro de 2π

6 respecto
al origen. De hecho, son exactamente las reflexiones y el giro del ejemplo 1.9 entendiéndolos no como
movimientos del hexágono, sino de todo R2.

Ejemplo 1.18. Consideremos el grupo simétrico Symn+1 formado por todas las permutaciones de
{1, . . . ,n+1}. Sabemos ya que este grupo admite una presentación Symn+1 = 〈Sn|Tn〉 como en ejemplo
1.2, donde si corresponde con la permutación (i, i+1)

Vamos a construir una representaciń Sn→ GL(V ), para eso ponemos

φ(si) = Pi

con si = (i, i+ 1) y Pi = (p jk) jk∈[n+1] la matriz de permutación n+ 1× n+ 1 con pi,i+1 = pi+1,i = 1,
p j j = 1 para todo j ∈ [n+1] distinto de i e i+1 y ceros en las demás entradas.

Ésto implica que estas matrices Pi cumplen las relaciones de la representación anterior de Sn, es
decir

P2
i = 1 para todo i = 1 . . .n

PiPj = PjPi para todo | i− j |> 1
PiPjPi = PjPiPj para todo | i− j |= 1.

Por lo tanto obtenemos un homomorfismo φ : Symn+1→GL(V ) y se comprueba que si σ ∈ Sn lleva
i a σ(i), entonces φ(σ) corresponde a la matriz nxn con unos en las posiciones (i,σ(i)) y el resto ceros.
Se puede ver que φ es inyectivo, luego tenemos una presentación lineal de Symn+1.



Capítulo 2

Presentaciones de Grupos de Coxeter

Durante este capítulo denotaremos por G a un grupo de Coxeter y por 〈S,R〉 a una presentación de
Coxeter de G donde S es un familia generadora que consideraremos fija del grupo G.
Al tratarse de una presentación de Coxeter todos los generadores s ∈ S son de orden 2, es decir, s2 = 1
(o también, s−1 = s).

2.1. Longitud en grupos de Coxeter

Definición 2.1. Dado un grupo de Coxeter G y un conjunto de generadores T ⊆ S, con S familia
generadora fija, definimos como longitud respecto a T de un elemento w ∈ 〈T 〉, a la menos longitud, o
menor numero de letras, posible de una palabra en T que represente al elemento w. Lo denotaremos
como lT (w). En el caso de que T = S, y por tanto w ∈ 〈S〉= G, diremos simplemente l(w).

Notemos que la longitud de la palabra vacía 1 es l(1) = 0.

Definición 2.2. Una palabra que representa a w∈G y tenga la menor longitud posible se llama palabra
geodésica.

Lema 2.3. Para cualquier elemento w ∈ G y s ∈ S generador, se tiene l(sw) = l(w)± 1. Además, hay
alguna palabra geodésica que represente w que empiece por s si y solo si l(sw) = l(w)−1.
Si T ⊆ S, lS(w)≤ lT (w).

Demostración. Sea w ∈ G, s ∈ S familia generadora, es claro que l(sw) 6 l(w)+ 1 y l(w) = l(ssw) 6
l(sw)+1, es decir, l(w)−1 6 l(sw), luego

l(w)−1 6 l(sw)6 l(w)+1

Veamos que l(sw) y l(w) tienen distinta paridad.

Para ello construimos un homomorfismo σ : G→{±1} inducido por a 7−→ −1 para todo a ∈ S.
Comoσ(a)2 = (−1)2 = 1 = a2 y (σ(a)σ(b))m = ((−1)(−1))m = 1 = (ab)m se ve que respeta las rela-
ciones y por tanto esta bien definido.
Se ve que σ(w) = (−1)l(w) y que σ(sw) = (−1)l(sw) =−σ(w) =−(−1)l(w). Luego l(w) y l(sw) tienen
distinta paridad, concluyendo

l(sw) = l(w)+1 ó l(sw) = l(w)−1

Además, sea l(w) = q. Es claro que si existe una palabra geodésica que represente a w ∈ G de la for-
ma w = ss1 . . .sq−1, entonces l(sw) = l(sss1 . . .sq−1) = l(s1 . . .sq−1) ya que s ∈ S es de orden 2 y por
tanto ss = s2 = 1. Como una subpalabra de una palabra geodésica también es geodésica, se deduce que
l(sw) = q−1.

7
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Por otro lado, supongamos que l(sw) = l(w)−1 y sea u ∈ G representante geodésica de sw. Enton-
ces u = sw, es decir, w = su, y por hipótesis l(w) = l(sw)+1 = l(u)+1 luego su es geodésica y empieza
por s. Teniendo así la segunda parte del enunciado.

La ultima afirmación del enunciado es trivial ya que toda palabra en T que represente a w es también
palabra en S, luego si lT (w) = q, existe una palabra en S que represente a w de longitud q, es decir,
geodésica para esta palabra no tiene que ser necesariamente geodésica en S, luego lS(w) ≤ q = lT (w).

Definición 2.4. Sea T ⊆ S un subconjunto del conjunto de letras, entonces diremos que w ∈ G es
T−reducida a izquierda si para todo t ∈ T se tiene l(tw) > l(w). Además, al conjunto de todos los
elementos T−reducidos a izquierda de G lo denotaremos T G.
De manera análoga tenemos GK , el conjunto de los elementos de G que sean K-reducidos a derecha, es
decir, los elementos tales que l(wk)> l(w) para todo k ∈ K con K ⊆ S.

Ejemplo 2.5. Sea G = D12 = 〈a,c|a2 = c2 = (ac)6〉, entonces los 12 elementos de D12 son

{1,ac,acac,acacac = cacaca,caca,ca

a,aca,acaca,cacac,cac,c}

representados todos ellos con una palabra geodésica.
Luego podemos calcular DT

12 y T D12 para T = a simplemente observando como actúa a a izquierda o a
derecha, dando lugar a

T D12 = 1,c,ca,cac,caca,cacac

D12
T = 1,c,ac,cac,acac,cacac

Lema 2.6. Sea G grupo de Coxeter y T un subconjunto de generadores de G, entonces

a) Para todo w ∈G existen u ∈ 〈T 〉 y v ∈T G tales que w = uv cumpliendo l(w) = l(u)+ l(v) y lT (u) =
l(u).

b) Para todo w ∈ 〈T 〉, l(w) = lT (w).

Demostración. a) Dado w ∈G, denotamos por D al conjunto de pares (u,v) con u ∈ 〈T 〉 y v ∈T G tales
que

w = uv con l(w) = l(u)+ l(v) y l(u) = lT (u).

Es claro que no es vacío ya que (1,w) ∈ D. Sea ahora (u,v) ∈ D que maximiza l(u). Supongamos
que v /∈T W , es decir, que existe t ∈ T tal que l(v)> l(tv), entonces por lema 2.1 v = tx para algúna
palabra geodésica x y l(v) = l(x)+1.
Tenemos entonces que w = (ut)x con x ∈ G y ut ∈ 〈T 〉, entonces

l(w)≤ l(ut)+ l(x)≤ (l(u)+1)+(l(v)−1) = l(w)

por lo que se tiene l(ut) = l(u) + 1 y l(w) = l(ut) + l(x). Además l(ut) ≤ lT (ut) ≤ lT (u) + 1 =
l(u) + 1 = l(ut), luego l(ut) = lT (ut) y tenemos (ut,x) ∈ D con l(u) < l(ut), contradiciendo la
maximalidad de l(u). Por tanto v ∈T W .

b) Dado w ∈ 〈T 〉 ⊆ G, por a) sabemos que w = uv con u,v tales que u ∈ 〈T 〉, v ∈T G y lT (u) = l(u).
Además como w ∈ 〈T 〉, v ∈ 〈T 〉, se tiene v = 1, es decir w = u. Luego l(w) = l(u)+ l(1) = l(u) =
lT (u) = lT (w).
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Definición 2.7. Dada una matriz n× n de Coxeter M, le podemos asociamos un grafo de n vértices
{v1, . . . ,vn} de forma que hay un eje entre vi y v j si mi j 6= 2. Si este grafo tiene una única componente
conexa diremos que M irreducible, e igualmente diremos que le grupo de Coxeter G(M) de matriz de
coxeter M es irreducible.

Se puede entender que cada componente conexa del grafo esta formada por generadores ai con i∈ I
que conmutan con todos los generadores b j con j ∈ J que no pertenecen a dicha componente, ya que
(aib j)

2 = 1 para todo i ∈ I, j ∈ J y por tanto aib j = b jai.

Ejemplo 2.8. Tomamos el grupo de Coxeter tipo M con

M =

1 3 2
3 1 3
2 3 1


generado por la familia {a,b,c} entonces el grafo me queda tiene una única componente conexa, luego
M es irreducible.

•

•

•
b

a

c

Consideremos una matriz de Coxeter M no irreducible y denotemos J ⊆ [n], podemos tomar la
matriz M|J×J , o simplemente J. Entonces podemos considerar G(J) como el grupo de Coxeter tipo J.
El razonamiento anterior implica.

Proposición 2.9. Dado un grupo de Coxeter G(M) tomamos una partición del grafo de M en compo-
nentes conexas J1, . . .Jr, entonces G(M)∼= G(J1)×·· ·×G(Jr).

2.2. Espacio afín de un espacio vectorial

Definición 2.10. Dado un espacio vectorial V sobre un cuerpo K, un subespacio de este S 6 V , y un
elemento v ∈V , se dice clase de v ∈V al conjunto v+S. Ademas llamaremos cociente V/S al conjunto
de clases {v+S|v ∈V}, dicho conjunto es también un espacio vectorial.

Definición 2.11. Sea V un espacio vectorial sobre un cuerpo K, entonces el espacio afín de V es el
conjunto de puntos V dotados de una colección de subespacios afines y de la relación de paralelismo,
definidos de la siguiente manera:

Un subespacio afín de A(V ) es una clase de un subespacio lineal de V .

Dos subespacios afines son paralelos si son clases del mismo subespacio lineal de V , es decir, si son de
la forma v1 +S y v2 +S con v1,v2 ∈V y S 6V .
A este espacio afín lo denotaremos con A(V ), y si los subespacios afines X e Y son paralelos, escribire-
mos X ||Y .

El paralelismo es una relación de equivalencia, y todos los los subespacios paralelos a un subesapcio
dado dado dan una partición del total. Esto significa V = ∪{v+S|v ∈V/S}.

Definición 2.12. Si Y es la clase v+S con v∈V y con S 6V subespacio lineal de dimension d, entonces
decimos que dim(Y ) = d, en particular dim(A(V )) = dim(V ).
Al conjunto vacío le diremos de dimension −1, un subespacio afín de dimension 1 es un único punto, y
de dimension 1 es una recta.
La intersección de subespacios afines es un subespacio afín, y por tanto dado un subconjunto X de V , se
define como subespacio generado por X a la intersección de todos los subespacios afines que contienen
a X, y se denota 〈X〉.
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Definición 2.13. Un hiperplano de V =Rn es un subespacio afín de dimensión n−1.

Definición 2.14. Una transformación lineal sobre un espacio vectorial V es una aplicación f : V →V
tal que f (u+v) = f (u)+ f (v) para todo u,v∈V . Un automorfismo de A(V ) es una aplicación biyectiva
de V en V que preserva contenidos y paralelismos.
Denotaremos GL(V ) al grupo de transformaciones de V y Aut((A(V )) al grupo de automorfismos.
Si tenemos un producto escalar en el espacio V , una isometría es una aplicación de V en V que conserva
la distancia asociada a dicho producto escalar.

Definición 2.15. Una traslación τv : V → V es un automorfismo de la forma τv(x) = x+ v para todo
x ∈V .
Asimismo, denotamos T (V ) al grupo de traslaciones de V , el cual es un un subgrupo del grupo Aut(A(V )).

Definición 2.16. El subgrupo de Aut(A(V )) generado por T (V ) y GL(V ) es el grupo afín lineal de V ,
lo denotamos AGL(V ).

Definición 2.17. Dado v ∈V , una reflexión ρ respecto a un hiperplano H de V (es decir, un subepacio
afín de dimensión n− 1 que pasa por el origen) es una transormación lineal de V que deja fijos los
puntos H, y que tiene un vector v no trivial de valor propio −1.
H se llama espejo de ρ y v raíz de ρ .
Una reflexión afín respecto a un hiperplano arbitrario H es un elemento ρ del grupo afín lineal de V
que fija los puntos de H y tal que ρ2 = 1.

Se puede comprobar que una reflexión es una isometría respecto a un producto escalar si y sólo si
su espejo y su raíz son ortogonales entre sí respecto a dicho producto escalar.

2.3. Representación por reflexiones

En esta sección vamos a tomar un grupo de Coxeter G generado por S = {s1, . . . ,sn}, y construir
una representación lineal de G de grado n haciendo corresponder a cada si una reflexión del espacio afín
Rn. Estas reflexiones no son en general isometrías respecto al producto escalar habitual pero en cierto
sentido, vamos a deformar la geometría de Rn de forma que las raíces y los espejos las reflexiones si

sean ortogonales.

Definición 2.18. Sean G, grupo de coxeter de tipo M = (mi j)i, j∈[n], y V , espacio vectorial real V con
base (ei)i∈[n]. Entonces denotaremos BM a la forma bilineal simétrica de V ×V a R dada por

BM(ei,e j) =−2cos(π/mi j) ∀i, j ∈ [n] con BM(ei,e j) =−2 si mi j = ∞

Notemos que es simétrica ya que mi j =m ji para todo i, j ∈ [n], y además B(ei,ei) = 2, ya que mi,i = 1
para todo i.

Si M esta clara, pondremos simplemente B.

Ejemplo 2.19. Tomemos el grupo D12, correspondiente al diédrico del hexágono, como vimos en el
capítulo anterior, D12 = 〈a,c|a2 = c2 = (ac)6 = 1〉.
Por tanto se trata de un grupo de Coxeter tipo M, con

M =

(
1 6
6 1

)
y le podemos asociar un grafo con dos únicos nodos unidos entre sí, ya que m1,2 = 6 6= 2 (observemos
que se trata pues de un grupo irreducible, ya que su grafo asociado tiene solo una componente conexa).
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Tomemos ahora el espacio R2 con base canónica e1, e2.
Calculamos la forma bilineal simétrica asociada a M mediante

B(e1e1) =−2cos(
π

m1,1
) =−2cos(π) = 2

B(e1e2) =−2cos(
π

m1,2
) =−2cos(

π

6
) =−

√
3.

Como m1,1 = m2,2 y m1,2 = m2,1, entonces B(e1e1) = B(e2e2) y B(e1e2) = B(e2e1), quedando así

BM =

(
2 −

√
3

−
√

3 2

)
.

Definición 2.20. Dada B previamente definida, la forma cuadrática asociada a M, denotada como QM,
o simplemente Q es la dada por

Q(x) = 1
2 B(x,x) ∀x ∈V .

Es decir, para x = Σi∈[n]xiei ∈V

Q(x) =
1
2

Σi, j∈[n]xix jB(ei,e j) =−Σi, j∈[n]xix jcos(π/mi j)

Ademas, B(x,y) = Q(x+ y)−Q(x)−Q(y).

En la siguiente proposición veremos como construir un conjunto de reflexiones sobre Rn que pre-
servan BM de manera que generan que más adelante veremos que es isomorfo al grupo de Coxeter tipo
M dado. Estas reflexiones además cumplirán que sus espejos y raíces serán ortogonales respecto a la
forma bilineal BM aunque no lo sean para la métrica habitual.

En el siguiente resultado el simbolo ⊥ denota ortogonalidad respecto a la forma bilineal B.

Proposición 2.21. Sea G un grupo de Coxeter tipo M con B forma bilineal simétrica asociada a M, y
sea la transformación lineal ρi : V →V dada por

ρi(x) = x−B(x,ei)ei

con i ∈ [n]. Para todo i, j ∈ [n] se tiene:

a) B(ei,ei) = 2.

b) B(ei,e j)6 0 si i 6= j, y se tiene B(ei,e j) = 0 si y solo si mi j = 2.

c) ρi es una reflexión sobre V con espejo e⊥i = {x ∈V |B(x,ei) = 0} y raíz ei.

d) B(x,y) = B(ρix,ρiy), es decir, ρi preserva B.

e) ρiρ j tiene orden exactamente mi j.

Demostración. a) y b) son consecuencia directa de la definición de B.

c) Sabemos que ρi es una transformación lineal. Vamos a ver que e⊥i es un hiperplano de V ,e s decir
que tiene dimensión n−1.
Para ello consideramos B(·,ei) : V → R la aplicación que actúa s 7−→ B(s,ei). Por definición de e⊥i
es claro que

Ker(B(·,ei)) = e⊥i .
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Es claro también que B(·,ei) 6= 0 luego Im(B(·,ei)) =R, por tanto

dim(e⊥i ) = dim(Ker(B(·,ei))) = dim(V )−dim(R) = n−1.

Sea x ∈ e⊥i , es decir, B(x,ei)ei = 0. Entonces

ρi(x) = x−B(x,ei)ei = x,

luego ρi fija los elementos del subespacio e⊥i .

Además
ρi(ei) = ei−B(ei,ei)ei = ei−2ei =−ei,

luego ei es vector de valor propio, y por tanto es la raíz de ρi.

d) Dados x,y ∈V , aplicando directamente las propiedades y la definición de B obtenemos

B(ρix,ρiy) = B(x−B(x,ei)ei,y−B(y,ei)ei) =

= B(x,y)−B(x,ei)B(ei,y)−B(x,ei)B(y,ei)+B(x,ei)B(y,ei)B(ei,ei) =

= B(x,y)−B(x,ei)B(ei,y)−B(x,ei)B(y,ei)+2B(x,ei)B(y,ei) =

= B(x,y).

e) Sea el subespacio de V , U = Rei +Re j, invariante respecto ρi y ρ j y denotemos b = B(e j,ei).
Entonces podemos expresar las matrices de las transformaciones lineales ρi y ρ j de U respecto a la
base ei, e j, es decir

(ρi)U =

(
−1 −b
0 1

)
, (ρ j)U =

(
1 0
−b −1

)
.

Luego ρiρ j tiene matriz R =

(
−1+b2 b
−b −1

)
cuyo polinomio característico es λ 2− (b2−2)λ +1, el cual se descompone en factores como

(λ − e
i 2π

mi j )(λ − e
−i 2π

mi j ).

En efecto

(λ − e
i 2π

mi j )(λ − e
−i 2π

mi j ) = λ
2− (e

i 2π

mi j + e
−i 2π

mi j )λ +1 = λ
2− (b2−2)λ +1

ya que

b2−2 = 4cos2(
π

mi j
)−2 = 2

(
2cos2(

π

mi j
)−1

)
= 2cos(

2π

mi j
) = e

i 2π

mi j + e
−i 2π

mi j .

Vamos a ver que ρiρ j tiene orden mi j. Para ello primero hacemos la observación de que ρiρ j no
puede ser la identidad, y ahora separaremos en dos casos, cuando mi j = ∞ y cuando mi j < ∞.

Si mi j = ∞. Tenemos que R =

(
3 2
−2 −1

)
, cuyo polinomio mínimo es (λ −1)2.

Si Rm = I2 entonces el polinomio tendría que dividir a λ m− 1, pero (λ − 1)2 no divide a λ m− 1,
luego R tiene orden infinito, y por tanto lo tiene ρiρ j.

Si mi j < ∞. Consideremos el subespacio de dimensión n−2, U⊥ = e⊥i ∩e⊥i . La restricción de Q a U
es
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Q(xiei + x je j) = x2
i −2xix jcos( π

mi j
)+ x2

j = (xi− x jcos( π

mi j
))2 + x2

jsin2( π

mi j
).

Por tanto Q es definida positiva en U , luego U ∩U⊥ = /0 y U ⊕U⊥ =V . Como ρi fija los puntos de
e⊥i y ρ j fija los de e⊥j , ρiρ j fija todos los puntos de U⊥. Es decir, el orden de de ρiρ j sera el orden de
esta en U , donde ρiρ j tiene matriz R y por tanto polinomio característico

(λ − e
i 2π

mi j )(λ − e
−i 2π

mi j )

Los valores propios de ρiρ j en U son entonces e
i 2π

mi j y e
−i 2π

mi j , los cuales son las raíces mi j−ésimas de

la identidad y R es semejante a la matriz diagonal con e
i 2π

mi j y e
−i 2π

mi j en la diagonal. Concluimos pues
que R, y ρiρ j, tienen orden exactamente mi j.

Ejemplo 2.22. Retomemos el ejemplo 2.19. Ahora queremos encontrar ahora las reflexiones ρ1 y ρ2
del teorema anterior:
ρ1 es la reflexión respecto al hiperplano e⊥i , que en este caso de dimensión dos, es la recta dada por
{(x1,x2) ∈R2|B((x1,x2),e1) = 0}.

B((x1,x2),e1) =
(
x1 x2

)( 2 −
√

3
−
√

3 2

)(
1
0

)
=
(
x1 x2

)( 2
−
√

3

)
= 0

luego 2x1−
√

3x2 = 0. Por lo tanto ρ1 es la relexión en el plano R2 respecto a la recta x2 =
2√
3
x1 con

raíz e1. Además, ρ1 tiene matriz (
−1 −

√
3

0 1

)
De forma análoga se ve que ρ2 es la reflexión respecto a la recta x2 =

√
3

2 x1 con raíz e2.Además, ρ2
tiene matriz (

1 0
−
√

3 −1

)
.

Ahora consideramos el grupo generado por las reflexiones ρ1 y ρ2 como las acabamos de definir,
veremos en el teorema siguiente que es isomorfo al grupo D12.
Ademas los espejos de las reflexiones ρ1 y ρ2, las rectas x2 =

2√
3
x1 y x2 =

√
3

2 x1, y las raíces de ρ1 y ρ2,
e1 y e2, son ortogonales respecto a la métrica dada por BM. Es decir hemos deformado la geometría del
plano euclídeo R2 de manera que los espejos y las raíces de las simetrías que generan los movimientos
que dejan fijo un hexágono sean ortogonales.

Ejemplo 2.23. Tomemos el grupo diédrico infinito D∞ = 〈a,c|a2 = c2〉, es decir, un grupo de Coxeter

tipo M con M =

(
1 ∞

∞ 1

)
.

Tomemos ahora el espacio R2 con la base canónica e1, e2, y contruyamos la forma bilineal simétrica
asociada a M:
B(e1,e1) =−2cos( π

m1,1
) = 2, B(e2,e2) =−2cos( π

m2,2
) = 2 y B(e1,e2) = B(e1,e2) = 2. Es decir

BM =

(
2 −2
−2 2

)
.

Busquemos ahora la reflexiones ρ1. Para ello, veamos quien es e⊥1 .

B((x1,x2),e1) =
(
x1 x2

)( 2 −2
−2 2

)(
1
0

)
=
(
x1 x2

)( 2
−2

)
= 0,
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luego 2x1 +2x2 = 0. Es decir, e⊥1 es la recta x2 = x1.
Por tanto ρ1 es una reflexión respecto a x2 = x1 con raíz e1. Además, ρ1 tiene matriz(

−1 2
0 1

)
.

Análogamente ρ2 es una reflexión respecto a x2 = x1 con raíz e2. Además, ρ2 tiene matriz(
1 0
2 −1

)
.

e2

e1

Teorema 2.24. Dado G un grupo de Coxeter tipo M generado por S = {s1, . . . ,sn}, y V un espacio
vectorial real de dim V = n definimos una aplicación ρ : S→ GL(V ) mediante ρ(si) = ρi. Entonces:

a) Esta aplicación se puede extender a todo G, dando lugar a una representación lineal de G mediante
un homomorfismo de grupos ρ : G→ GL(V ) cuya imagen preserva B.

b) ρi 6= ρ j para todo i 6= j.

c) ρ restringido al subgrupo 〈si,s j〉 de G es fiel para todo i, j ∈ [n].

Demostración. a) Por c) y e) de la proposición 2.21 se puede ver facilmente que los ρi cumplen las
relaciones de coxeter, además ρ preserva claramente B por d) de la proposición 2.21.

b) Sean ρi = ρ j entonces por la proposición 2.21 mi j = orden de ρiρ j = ρiρi, que tiene orden 1 puesto
que es la identidad. Luego mi j = 1, y por ser M matriz de Coxeter, solo puede ser i = j.

c) Sea ρ : 〈si,s j〉 → GL(V ), veamos que es inyectiva.

Veamos que todos los elementos de 〈si,s j〉 son de la forma (sis j)
r ó si(s jsi)

r con algún r ∈N.

Es claro que w∈ 〈si,s j〉 es de la forma w= . . .sis jsis j . . . ya que sisi = s js j = 1, diferenciando cuando
empieza y acaba por la misma letra, y cuando lo hace con letra distinta. Si empieza y acaba por la
misma letra entonces

w = sis j . . .s jsi = si(sis j)
r para algún r

ó
w = s jsi . . .sis j = s j(sis j)

s = s j(s jsi)
mi j−s = si(s jsi)

mi j−s−1

luego w = si(s jsi)
mi j−s−1 para algún s, basta tomar r = mi j− s−1.

Si empiezan y acaban por distinta letra entonces

w = sis j . . .s jsi = (sis j)
r para algún r

ó
w = s jsi . . .s jsi = (s jsi)

s = (s jsi)
mi j−s

luego w = (s jsi)
mi j−s para algún s, basta tomar r = mi j− s.
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Ahora vamos a ver que si ρ(w) = 1 entonces necesariamente w = 1.

Si w = (sis j)
r.

ρ((sis j)
r) = (ρiρ j)

r = 1 implica ρiρ j tiene orden divisor de r. El orden de ρiρ j es mi j= orden de sis j,
luego (sis j)

r = (sis j)
mi js = 1s = 1.

Si w = si(s jsi)
r.

ρ(si(s jsi)
r) = ρi(ρ jρi)

r = 1 implica (ρ jρi)
r = ρ

−1
i = ρi.

Las matrices ρi tienen determinante −1 luego (ρ jρi)
r debería tener determinante −1. Pero (ρ jρi)

r

tiene determinante ((−1)(−1))r = 1r = 1, lo que es una contradicción. Por tanto no w tal que
ρ(w) = 1 no puede ser de la forma w = si(s jsi)

r.

En conclusión, ρ(w) = 1 implica w = 1, y por tanto ρ es inyectiva en 〈si,s j〉.

Definición 2.25. Dado G grupo de Coxeter tipo M generado por S, a la representación lineal ρ : G→
GL(V ) se le llama representación por reflexiones de G.





Capítulo 3

Linealidad de los grupos de Coxeter

3.1. Grupos generados por reflexiones afines

Cualquier grupo G generado por un conjunto de involuciones {ρi|i ∈ [n]} es imagen homomorfica
de un grupo W de Coxeter de tipo M = (mi j)i, j∈[n] con mi j =orden de ρiρ j. En esta sección vamos a ver
que para G subgrupo de AGL(V ) generado por reflexiones afines que satisfacen cierta condición, este
homomorfisto es un isomorfismo.

Definición 3.1. Si un grupo G actúa sobre un conjunto E, un dominio prefundamental de G es un
subconjunto no vacío D⊂ E tal que D∩gD = /0 para todo g ∈ G distinto de 1.

Ejemplo 3.2. Consideremos un cubo en el espacio euclídeo R3 donde los vértices del cubo son los
puntos de la forma (±1,±1,±1). Ahora contruímos la subdivisión baricéntrica de cada cara, dando
lugar a una serie de tríangulos a los cuales llamaremos cámaras.

Cada una de las 48 cámaras se corresponde con una única selección de cara, arista y vértice del
cubo, vamos a fijarnos simplemente en la cámara correspondiente al vértice v1=(1,1,1), la arista a1=
{v1,(1,−1,1)} y a la cara c1 = a1∪{(1,1,−1),(1,−1,−1)}. Este triángulo determina tres reflexiones
ρ1, ρ2 y ρ3 correspondientes a la simetría respecto al plano centrado en el origen que pasa por cada
uno de los lados del mismo.

Así pues, ρ1 es la simetría que deja invariante el cubo tal que mi cámara cambia de vértice asociado,
pero sigue asociado a la misma cara y arista, mientras que ρ2 y ρ3 cambian mi cámara de arista y de
cara asociada respectivamente.

17
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ρ3

ρ1
ρ2

Se puede probar que estas tres simetrías generan el grupo G de las 48 isometrías en R3 que dejan
invariante el cubo. Además puede verse que cada uno de las 48 isometrías mueve mi cámara a cada de
las posiciones de las 48 cámaras del cubo.

Como dos cámaras solo pueden intersecar en su borde (o un vértice o una arista) es fácil ver que
el interior de las cámaras del cubo son dominios prefundamentales.

El interior de las cámaras del ejemplo anterior son un ejemplo de dominio prefundamental, ya que
aplicar una isometría distinta de la identidad que deja fijo el cubo mueve una cámara a otra posición, de
forma que la intersección del interior de una cámara y su imagen es vacía.

Definición 3.3. Sea V un espacio vectorial y W un grupo de Coxeter que actúa en A(V ) y sea S =
{s1|i ∈ I} una familia generadora de W. Para cada si, sea Ai ⊆ V de la forma Ai ∩ siAi = /0 y sea
A = ∩Ai. Consideramos las siguientes afirmaciones:

(Pq): Para todo i ∈ I, w ∈ W con l(w) 6 q se tiene wA ⊆ Ai ó wA ⊆ siAi, en este ultimo caso
l(siw) = l(w)−1.

(P): Se cumple (Pq) para todo q 6= 0.

Definición 3.4. Sea G grupo generado por reflexiones afines {ρi|i ∈ I = [m]} respeto a hiperplanos Hi

del espacio afín A(V ).
Entonces el grupo de Coxeter asociado a G es W generado por {si|i ∈ [m]} con la matriz de coxeter
dada por

mi j = orden(ρiρ j).

Tenemos ρ → G bien definida por la proposición 1.4 que induce una acción de W en A(V ).
Además denotaremos ρ(w)X := wX.

Teorema 3.5 (Lema de Tits). Sea G un grupo generado por reflexiones afines como en la definición
anterior. Sea Ai una de las dos mitades de V determinadas por Hi y supongamos que A = ∩i∈IAi 6= /0.
Sea W el grupo de Coxeter asociado a G como en la definición anterior y para cada par de generadores
si y s j de W denotamos Wi j al subgrupo de W generado por si,s j.

Suponemos que para todo i, j Wi j cumple (P) respecto Ai,A j. Entonces

a) A es dominio prefundamental de G.

b) ρ : W → G es isomorfismo.

Demostración. Primero, vamos a probar que si W cumple la afirmación (P) respecto A1, . . .Am, entonces
se cumplen a) y b).

b) Sea w∈Ker(α), es decir, α(w) = 1, entonces α(w)A = wA = A. Esto implica que para todo i∈ I,

siwA = siA⊆ siAi
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por (Pq) con q = l(siw), se tiene l(s2
i w) = l(siw)− 1, es decir, l(siw) = l(w)+ 1. Esto significa

que w no empieza por si para ningún i ∈ I y por tanto w = 1. Se deduce que Ker(α) = {1}, luego
G es isomorfo a W .

a) Supongamos que para w ∈W se tiene A∩wA 6= /0, entonces para todo i ∈ I se tiene Ai∩wA 6= /0.
Como ai∩siAi = /0, por (Pq) con q= l(w), se deduce wA⊆A y por tanto sA⊆A. Pero la suposición
sobre w ∈W también significa que w−1A∩A 6= /0, así que de manera similar se prueba w−1A⊆ A,
luego A ⊆ wA. En consecuencia A = wA, y por el mismo argumento que en b), w = 1. Tenemos
pues que A es dominio prefundamental para W , y al ser G∼=W , se tiene a).

Ahora, veamos que (P) para Wi j implica (P) para W . Procederemos por inducción sobre q, partiendo
de que (P0) es trivialmente cierto.

Supongamos cierto (Pq) y veamos (Pq+1):
Sea w ∈W con l(w) = q+1, tomamos j ∈ I tal que w = s jw′ para algún w′ ∈W y además l(w′) = q con
l(w) = l(s jw′) 6= l(w′)−1. Aplicando (Pq) a w′ se decuce w′A⊆ s jA j, luego

wA = s jw′A⊆ s jA j, y en este caso l(s jw) = l(w′) = q = q+1−1l(w)−1

luego se cumple (Pq+1) para w y el indice j.
Sea ahora i ∈ I tal que l(siw) = l(w)+1, y sea j como antes, es decir, l(sw) = l(w)−1, en particular

i 6= j. Por el lema 2.1 existen u ∈ 〈si,s j〉=Wi j y v ∈{i, j}W de manera que

w′ = uv cumpliendo l(w′) = l(uv) = li j(u)+ l(v) = l(u)+ l(v)

Como v ∈{i, j}W por definición, sabemos que l(siv)> l(v) y l(s jv)> l(v). Vamos a provar que

vA⊆ Ai j = Ai∩A j (3.1)

Notar que l(v)< q+1, luego como (Pq) se aplicar para v.
Si fuese v⊆ Ai l(siv) = l(v)−1, es decir, l(siv)< l(v), pero sabemos que l(siv)> l(v), luego vA⊆ Ai.
Análogamente deducimos que vA⊆ A j, y por tanto 3.1 se cumple.

Obtenemos entonces wA = s jw′A = s juvA ⊆ s juAi j. Vamos a aplica (P) para el grupo Wi j, la cual
sabemos que es cierta, al elemento s ju ∈Wi j. Es decir, s juAi j ⊆ Ai ó siAi, cumpliendo en este ultimo
caso l(sis j) = l(s ju)−1.

Por 3.1 tenemos wA⊆ s juAi j, luego wA esta contenido en Ai ó siAi, teniendo así la primer afirmación
de (Pq+1).

Además, si wA⊆ siAi, tenemos wA⊆ s juAi j ⊆ siAi, se tiene

l(siw) = l((sis ju)(u−1w′))≤ l(sis ju)+ l(u−1w′)

≤ l(sis ju)+ l(w′)− l(u)≤ l(s ju)−1+q− l(u)≤ q

y como l(w) = q+1, obtenemos l(siw) = q = l(w)−1, quedando demostrado (Pq+1).

3.2. Representacion por reflexiones lineales

En esta sección culmina con la demostración, mediante la aplicación del lema de Tits, de que la re-
presentación por reflexiones ρ contruída en el teorema 2.24 es fiel. Para ello vamos a tener que modificar
la representación.
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Partimos de una representación lineal de un grupo G

ρ : G→ GL(V )

y definimos ρ∗ : G→ GL(V ) como

ρ∗(g) = ρ(g−1)t para todo g ∈ G

donde t indica la matriz traspuesta.
Hay que ver que es homomorfismo de grupos:

ρ∗(g1g2) = ρ((g1g2)
−1)t = ρ(g−1

2 g−1
1 )t = (ρ(g−1

2 )ρ(g−1
1 ))t = (ρ(g−1

1 )t(ρ(g−1
2 )t = ρ∗(g1)ρ

∗(g1)

Por tanto ρ∗ es una representación del grupo G.

El siguiente lema es trivial.

Lema 3.6. ρ∗ es fiel si y solo si ρ es fiel

Observemos la siguiente relación entre los vectores propios de una matriz P y los de su traspuesta Pt :

Sea < ·, · > el producto espalar habitual. Si v es vector propio de P de valor propio α y w vector
propio de Pt de valor propio β , con α 6= β

α〈v,w〉= 〈αv,w〉= 〈Pv,w〉= (Pv)tw =

vtPtw = 〈v,Ptw〉= 〈v,βw〉= β 〈v,w〉.

Como α 6= β , esto implica 〈v,w〉 = 0, es decir, v y w son ortogonales respecto al producto escalar
habitual.

Ahora, supongamos que P = ρ(s) con s ∈ S familia generadora de W grupo de Coxeter. Entonces

ρ
∗(s) = ρ(s−1)t = ρ(s)t = Pt

Los vectores propios de P, como ya hemos estudiado, son:

e (raíz) de valor propio −1
el subespacio de dimensión n−1, e⊥B (espejo) de valor propio 1

donde ⊥B se refiere a ortogonalidad respecto a B como en el tema 2.
La matriz Pt tiene también valores propios 1 y −1 con multiplicidades n−1 y 1 respectivamente.
Así que si v es raíz de Pt , se tiene

〈v,w〉= 0 para todo w ∈ e⊥B .

Además, el espejo de Pt es ortogonal respecto a < ·, ·> de e, es decir

espejo de Pt = {u ∈V |〈u,e〉= 0}.

En resumen:

P = ρ(s) tiene espejo e⊥B y raíz e
Pt = ρ∗(s) tiene espejo e⊥<·,·> y raíz (e⊥B)⊥<·,·> .

Aplicando esto a un si ∈W con raíz ei tenemos:

espejo de ρ∗i = 〈e1, . . . ,ei−1,ei+1, . . . ,en〉.

Lema 3.7. Para D∞, la acción en R2 asociada a ρ∗ cumple la propiedad (P) respecto de ciertos Ai, A j.
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Demostración. Como ya vimos en el ejemplo 2.23, el grupo diédrico infinito es D∞ = 〈a,c|a2 = c2〉 y
ρ : D∞→ GL(V ) es la presentación por reflexiones sobre el plano R2 con

a 7−→ ρ1, la reflexión de matriz
(
−1 −2
0 1

)
c 7−→ ρ2, la reflexión de matriz

(
1 0
−2 −1

)
tal y como hemos visto en el tema 2. Llamaremos a estas matrices también ρ1 y ρ2 respectivamente,
vamos a estudiar como son las reflexiones correspondientes a la representación dada por ρ∗.

Notemos que ρ∗1 = ρ t
1 y ρ∗2 = ρ t

2. Luego las matrices de mis nuevas reflexiones son simplemente

ρ
t
1 =

(
−1 0
−2 1

)

ρ
t
2 =

(
1 −2
0 −1

)
Por lo dicho anteriormente, obtenemos que el espejo de ρ t

1 es la recta x1 = 0, mientras que su raíz

es el vector
(

1
−1

)
.

De igual manera obtenemos que x2 = 0 es el espejo de ρ t
2, y su raíz es

(
1
−1

)
Al contrario que lo que pasa para ρi y rho j, ahora ρ t

i y ρ t
j tienen distintos espejos y la misma raÃz.

Queremos ver que el conjunto Ai∩A j al que denotaremos simplemente A es dominio prefundamental
para el grupo 〈ρ t

1ρ t
2〉. Para ello, basta con fijarse como actúan los elementos de este sobre A.

En el siguiente dibujo denotaremos ρ t
1 y ρ t

2 como r y s respectivamente:

raíz

espejo de r

espejo de s

A

rA

sA

srA

srsA. . .

. . .

Ai

A j

Así pues concluímos que wA siempre va a estar exactamente en una de las mitades de V determinada
por el espejo de r, y lo mismo respecto el de s, es decir, cumple la primera parte de la afirmación (P).
Por último, observemos que las imágenes wA de A con w ∈ D∞ que están contenidas en rAi son de la

forma wA con w = rw′, luego l(rw) = l(w)−1, análogamente para A j.

Lema 3.8. Para Dm con m < ∞, la acción en R2 asociada a ρ∗ cumple la propiedad (P) respecto de
ciertos Ai, A j.
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Demostración. Procediendo de igual forma que la demostración del teorema anterior, obtenemos que
para Dm:

ρ
∗
1 =

(
−1 0

2cos π

m 1

)

con espejo e2 y raíz
(

1
−cos π

m

)
, y

ρ
∗
2 =

(
1 2cos π

m
0 −1

)

con espejo e1 y raíz
(
−cos π

m
1

)
.

Para ver gráficamente con facilidad como acúan los elementos w de Dm sobre A vamos hacer un
cambio de base de R2. Tomamos la nueva base

e1 =

(
1
0

)
, v =

(
−cos π

m
1

)
1

sen π

m

Calculando las coordenadas de los vectores anteriores en la nueva base obtenemos fácilmente que
transformaciones lineales tenemos en cada caso:

ρ∗1

Raíz:
(

1
−cos π

m

)
en la base anterior −→

(
sen π

m
−cos π

m

)
sen π

m en la nueva base.

Espejo:
(

0
1

)
en la base anterior −→

(
cos π

m
sen π

m

)
en la nueva base.

ρ∗2

Raíz:
(
−cos π

m
1

)
en la base anterior −→

(
0
1

)
sen π

m en la nueva base.

Espejo:
(

1
0

)
en la base anterior −→

(
1
0

)
en la nueva base.

Así, las raíces son ortogonales a los espejos en el nuevo sistema de referencia. Los espejos de ρ∗1 y
ρ∗2 forman un ángulo de π

m .

A

A1

A2
espejo de ρ∗1

espejo de ρ∗2

raíz de ρ∗2raíz de ρ∗1

π

m

Ahora hay que razonar que se cumple (P) en este sistema de referencia, para lo cual analizaremos
únicamente el caso m = 6 que nos servirá para deducirlo para todo m < ∞.

En la siguiente figura denotaremos r y s tanto a ρ∗1 ρ∗2 respectivamente como a sus espejos. Se ve
claramente en la siguiente figura que wA está contenido exactamente en una de las dos mitades de V
determinadas por r, e igualmente con s.
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r

s

A

rA

sA

srA

rsrA

rsA

Tenemos así la primera parte de la afirmación (P). La segunda se puede ver simplemente analizando
cada w ∈ Dm, ya que es un grupo finito, y se ve que se cumple también.

Luego (P) se cumple para el nuevo sistema de referencia, y además, volviendo al sistema de refe-
rencia original, se deduce también que (P) se cumple.

Por último, en el caso de un m arbitrario, serviría la misma demostración pero con m sectores en
lugar de 6.

Teorema 3.9. Sea W un grupo de Coxeter con generadores {s1 . . .sn} y ρ la aplicación construida en
el teorema 2.24. Entonces ρ es inyectiva.

Demostración. Basta probar que ρ∗ es inyectiva. Y por el resultado principal de la sección anterior,
basta probar que para A1, . . . ,An asociados a la acción de W en V =Rn dada por ρ∗ y para cada i, j, el
grupo Wi j generado por si,s j cumple (P) respecto de Ai, A j.

Sea U la intersección de los espejos de ρ∗i y ρ∗j y S el subespacio generado por las raíces de ρ∗i y
ρ∗j . Vamos a ver que son invariantes para ρ∗1 y ρ∗2 .

Es claro que ρ∗i y ρ∗j actúan trivialmente en U ya que es intersección de sus espejos. Además

U = 〈e1, . . . ,ei−1,ei+1, . . . ,e j−1,e j+1, . . . ,en〉.

Por otra parte
S = 〈(e⊥B

i )⊥<·,·> ,(e⊥B
j )⊥<·,·>〉= (e⊥B

i ∩ e⊥B
j )⊥<·,·>

es decir, S es el subesapcio ortogonal respecto al producto escalar habitual de la intersección de los
espejos de ρi y ρ j.
Sea v ∈ S. Entonces para todo w en la intersección de los espejos de ρi y ρ j se tiene

< ρ
∗
i v,w >=< v,ρiw >=< v,w >= 0

luego ρ∗i v ∈ S.
Análogamente se prueba que S es invariante para ρ∗j .

Se puede probar, aunque no entraremos en detalles, que además las matrices de la restricción de ρ∗i
y ρ∗j son o como en el lema 3.7 o en el lema 3.8. Esto implica que las restricciones cumplen (P) respecto
a Ai∩S y A j ∩S y, teniendo en cuenta que ambos actúan trivialmente en U y que U ⊕S = V , se puede
deducir fácilmente que ρ∗i y ρ∗j también cumplen (P) respecto Ai y A j.
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Para finalizar con este trabajo, vamos a ver como son los subespacios S y U del el teorema anterior
en el caso del grupo introducido en el ejemplo 1.14.

Ejemplo 3.10. Recordemos que el grupo del ejemplo 1.14 era un grupo G formado por movimientos
(no todos) del plano que dejan una teselación formada por cuadrados. Este grupo tiene presentación

G = 〈e,d, f |(de)4,(d f )4,d2,e2, f 2〉

y es un grupo de Coxeter tipo M =

1 4 ∞

4 1 4
∞ 4 1

. A partir de M, como hacíamos en el capítulo 2,

podemos obtener

B =

 2 −
√

2 −2
−
√

2 2 −
√

2
−2 −

√
2 2

 .

Tomamos la base canónica e1, e2, e3 del espacio vectorial R3. Vamos a fijarnos únicamente en el
par de reflexiones ρ1 y ρ2 (correspondientes a e y f ), las cuales se pueden calcular y son:

ρ1 =

−1
√

2 2
0 1 0
0 0 1

 de espejo e⊥B
1 y raíz e1.

ρ2 =

 1 0 0√
2 −1

√
2

0 0 1

 de espejo e⊥B
2 y raíz e2.

De esta manera:

ρ∗1 =

−1 0 0√
2 1 0

2 0 1

 de espejo 〈e2,e3〉 y raíz (e⊥B
1 )⊥<·,·> .

ρ∗2 =

1
√

2 0
0 −1 0
0
√

2 1

 de espejo 〈e1,e3〉 y raíz (e⊥B
2 )⊥<·,·> .

Ahora utilizamos lo que sabemos de S y U por el teorema anterior y tenemos que

U es la intersección de los espejos de ρ∗1 y ρ∗2 , por tanto

U = 〈e3〉.

S es el subgrupo generado por las raíces de ρ∗1 y ρ∗2 , por tanto S = 〈(e⊥B
1 )⊥<·,·> ,(e⊥B

2 )⊥<·,·>〉.
Haciendo los cálculos necesarios de álgebra lineal se puede ver que es el plano

3
√

2x1 +4x2 +
√

2x3 = 0.
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