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Prologo

Se dice grupo de Coxeter a aquel que puede ser generado por involuciones s; tales que las relaciones
que cumplen son todas del tipo (s;s;)" = 1. Este trabajo trata de adentrarse un poco en la teorfa de
grupos, en concreto en estudiar estudiar un tema clasico en teoria de grupos: la linealidad de los grupos
de Coxeter.

Que un grupo sea lineal significa que puede interpretarse como un subgrupo del grupo general lineal
de un espacio vectorial (GL(V)), y por tanto cumple las propiedades de linealidad de dichas matrices.

Para demostrar esta linealidad construiremos un homomorfismo de grupos entre estos grupos ge-
nerados por involuciones y GL(V). Este homomorfismo veremos primeramente que es inyectivo si se
restringe a una serie de subgrupos, para posteriormente demostrar que esta inyectividad es cierta sin
restriccion, y por tanto un grupo de Coxeter es isomorfo a un subgrupo de GL(V).
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Resumen

In this work we discuss how certain groups can be represented as groups of matrices, in particular,
how Coxeter groups are represented by a faithful homomorphism G — GL(V)

Firstly we introduce the idea of group presentation (A|R), where A is a set of letters that we call
generators and R C F(A) a set of relations with F(A) is the group of words made by letters in ANA~".

Proposicion 0.1. Suppose ¢ : A — G is a map from the set of letters A to the group G. Then ¢ can be
uniquely extended to a group homorphism ® : F(A) — G where ¢ (a) = ®(a) for all a € A. If ¢ preserves
the relations in R, ¢ induces to an unique homomorphism of groups (A|R) — G.

Definicion 0.2. Let M be a symmetric matrix with entries from INU{eo} such that m;; = 1. It is called
Coxeter matrix, and the Coxeter group of type M is the group with presentation.

G(M) = <S1,...S,1|Sl2 =1Vi, (S,'Sj)mif =1 Vm,-j < °°>

Some examples of Coxeter groups are symmetrical groups, dihedral groups, groups of movements
that fix a tessellation...

Definicion 0.3. A linear represtation of a group G is a faithfull group homomorphism G — GL(V)
where GL(V) is the group of invertible lineal tranformations from V to V and V is vector space of finite
dimension over a field.

G is a Coxeter group presented by (S|R), where we fixed S a set of generators.

Definicion 0.4. The length of w respecto to S, ls(w), is the length of the minimal expression for w with
letters in S.

Forallw € Gand s € S, [(sw) =[(w) £ 1. For each T C S, we define
TG ={weGli(tw) > I(w)Vt € T}

and similar for G7.

The following technical result will be useful to show that our representation is faithful.
Lema 0.5. Let be G Coxeter group and T C S subset of generators, then

1. For eachw € G there where u € (T) and v €T G such that w = uv and I(w) = I(u) +1(v).

2. Foreachw € (T), l(w) = Ip(w), wich is the lenth of w restricted to T.

We continue with a brief explanation about about the affine space associated to a vector space. We
consider a special kind of transformations of the affine space that will be very useful: linear and affine
reflections.

To define our representation we will use the following bilineal form.

Definicion 0.6. Let be G a Coxeter group type M. We denote By, the symmetric bilineal form
BM(e,-e,-) = —2COS(f[) ifmij < oo and BM(ei,ej) =-2 ifm,-j = oo,

b1
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VI Capitulo 0. Resumen
Proposicion 0.7. Let be G a coxeter group type M, B = By, and p; : V — V a linear transformation
such that p;(x) = x — B(x,e;)e;. Then

u B(ei,ei) =2

= B(ej,ej) <0 foralli# j, and B(ej,ej) =0 < m;j =2.

» p; is a reflexion with mirror {x € V|B(x,e;) = 0} and root e;.

- B()C,y) = B(pl(x)apl(y))

s The order of p;p; equals m;.

Teorema 0.8. Let be G a Coxeter group type M and s = {si,...,s,}, and V a vector space. We define
de map p : S — GL(V) by p(s;) = pi, then

1. p: G — GL(V) defines a linear representation of G on'V preserving B.
2. pi#pjforalli#j.
3. p restricted to (si,s;) < G is faithfull for all i, j.

In the third and last chapter we will see that the homomorphism p is in fact an isomorphism between
the Coxeter group W to a subgroup of GL(V) generated by reflections.

For this we introduce prefundamental domains as sets D such that DN gD = 0 for all g € G, and use
this for the proof of

Teorema 0.9. (7its lemma) Let be G a group generated by {p;|i € I} affine reflections For each I, A, is
one of the twho half-spaces determined by the mirror of p;. And A = NA,. Then

= A is prefundamental domain for G.
» G is isomorphic to a Coxeter group type M with m;; = order of p;p;.

In the last section, we use p to construct a dual representation p* and show that one is faithful if and
only if the other is. Finally, we use Tits Lemma to prove that p* is faithful.
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Capitulo 1

Introduccion

Una primera manera de representar un grupo G seria como un conjunto de elementos también lla-
mado G que lleva asociada una aplicacién interna G X G — G llamada multiplicacién, que contiene un
elemento identidad 1 € G, y para cada x € G existe un elemento x~! € G que cumple xx ! =x"Ix =1,
es decir, es el inverso de x.

Esta representacion suele darse mediante el conjunto de elementos y la tabla de multiplicar. Sin em-
bargo no es una buena manera de presentar un grupo ya que sélo es util en grupos finitos y de pocos
elementos, asi que hemos de encontrar una forma mejor de expresar un grupo.

En este trabajo veremos como presentar un grupo de diversas maneras, centrdindonos en los grupos
de involuciones llamados grupos de Coxeter. El objetivo tltimo de este trabajo es dar las herramientas
para concluir que los grupos de Coxeter son grupos lineales.

1.1. Grupos finitamente generados

Una forma eficiente de expresar un grupo es mediante generadores y relaciones. Partiremos de un
conjunto S, cuyos elementos a € S denominaremos letras, y a las concatenaciones de los mismos las
llamaremos palabras.

Podemos construir el conjunto S~ formado por elementos de la forma a~! por cada a € S, siendo S y
S~! disjuntos.

A partir de S, definimos F(S) como el conjunto formado por las palabras en SUS~! incluyendo la
palabra vacia que denotaremos 1, dotado de la operacidn de yuxtaposicion:

ab=a;...a;b;...by,
cona=ai...a,yb=by...b, palabrasen SUS™!

y con la relacién de equivalencia generada por por:

vaa‘lw ~ VYW

vailaw ~ VW

para cualesquiera v y w palabras.

Se puede comprobar que que F(S) es un grupo, el cual se llama grupo libre en S.

Definicién 1.1. Dada una familia de palabras R C F(S). Entonces denotamos, (R) al menor subgrupo
de F(A) que contiene a R. Asimismo, ((R)) se refiere el menor subgrupo normal de F(A) que contiene
aR.
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Definicion 1.2. Sea S un conjunto de letras, F(S) el grupo libre de S y R C F(S) un conjunto de
palabras. Denotamos por (S|R) al cociente G =F(S),/((R)).

Se dice que (S|R) es una presentacion de G, o que G es el grupo generado por los elementos de S con
las relaciones {r = 1|r € R}.

Ejemplo 1.3. El grupo ciclico infinito generado por un elemento a y sin restricciones tiene por presen-
tacion a (a|), o simplemente (a). Si ahora tomamos R = a™ tenemos que (ala™) es una presentacion del
grupo ciclico de orden m, donde a™ = 1.

Podemos considerar ahora G, el grupo generado por las letras a 'y b, donde el producto es conmu-
tativo, es decir ab = ba, en este caso la relacion se puede expresar como aba™'b~' =1y tendriamos la
presentacion

(S|R) = (a,b|laba™ b~ 1)

Sin embargo, para expresar G de una forma algo mds intuitiva, podemos utilizar también la presenta-
cion (a, blab = ba).

A continuacién introduciremos un resultado cuya demostraciéon no vamos a dar con detalle, pero
que tiene gran importancia ya que da una base para, posteriormente, hallar un isomorfismo entre un
grupo de Coxeter y un grupo lineal.

Proposicion 1.4. Sean S un conjunto de palabras y G un grupo cualesquiera, entonces para toda
aplicacion ¢ : S — G existe un vinico homomorfismo de grupos ® : F(S) — G que extiende a @, es decir,
®(a) = ¢(a) para todo a € S.

Si ademas ¢ preserva las relaciones R de (S|R), es decir, si para cada r € R tal que r = a ... ay, se tiene
¢(ar)...¢(ay) =1 en G, entonces también existe un vinico homomorfismo de grupos (S|R) — G que
extiende a ¢.

1.2. Ejemplos

1.2.1. Grupos simétricos

Definicion 1.5. Dado un conjunto cualquiera X, el grupo simétrico de X es el grupo de permutaciones
del conjunto X. Lo denotaremos Sym(X).

Para el caso de X = [n] = {i,...,n} Sym(X), lo denotaremos Sym,. Ademas, cuando hablemos del
ciclo

(i1,...,ix) con i € [n] para todo j € [k]

no referiremos a la permutacién que actda llevando i; — i1 paracada j € [k— 1]y ix — i1, y dejando
fijos el resto de elementos de X.

Ejemplo 1.6. Sea el conjunto S,, = {s1,...s,} y el conjunto de relaciones T, dado por

sl-2: 1 paratodoi=1...n
sisj = sjs; para todo | i— j|>1
8i8jSi = 8j8isj para todo | i— j |= 1.

Entonces se puede probar que la aplicacion S, — Symy tal que s; — (i,i+ 1) induce un isomor-
fismo entre Sn'y Symy,11. Es decir, (Sy|T,,) es una presentacion de Symy,. .

Ejemplo 1.7. Si tomamos X = {1,2,3}, Sym(X) = Syms tiene 6 elementos, correspondientes a las
permutaciones 1, (1,2), (1,3), (2,3), (1,2,3), (1,3,2), y una presentacion de Syms grupo seria & : G —
Sym(X) con G = {(a,b|a*,b?,(ab)?) cona= (2,3) y b= (1,2).

Para verlo, notemos que es claro que a=b=1, v ademds, como aba = bab tenemos ababab =
(ab)® = 1.
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Definicion 1.8. Una representacion como grupo de permutaciones de un grupo cualquiera G es un
homomorfismo de grupos a : G — Sym(X).
Si a es inyectiva se dice que el homomorfismo es fiel.

1.2.2. Grupos diédricos

Llamamos grupo diédrico de orden m al grupo formado por todos los movimientos del plano que
fijan un poligono de m lados. Lo denotaremos Dih,,,, 0 simplemente D»,,.

Dicho grupo admite la siguiente presentacién
Dihyy = (a,bla® = 1,b™ = 1,(ab)* = 1)

donde a es una simetria respecto a una recta y b es un giro de angulo %” como se aprecia en el dibujo
del ejemplo 1.9.

Si llamamos ¢ = ab tenemos que se puede presentar el mismo grupo de la forma
Dihoy, = (a,cla* =1,¢* = 1, (ac)™ = 1).

En este caso a y ¢ son simetrias, una respecto a un a recta que pasa por dos vértices y otra respecto a
una recta que corta dos aristas por su punto medio.

Veremos posteriormente que este grupo generado por elementos de orden 2 es un grupo de Coxeter.
Notar que Dihy,y,, el grupo diédrico de orden m se puede ver como un subgrupo de Sym,,. Para verlo,
basta numerar los vértces y notar que los elementos de Dih,,, permutan dichos vértices.

Ejemplo 1.9. Tomemos el grupo diédrico del hexdgono, es decir, el caso donde m = 6, entonces tenemos

D1y < Symg
a=(6,2)(5,3)
c=(1,2)(6,3)(5,4)
dando lugara b= (1,2,3,4,5,6)

La presentacion explicada arriba para grupos diédricos en el caso correspondiente al hexdgono es

D= (a,cla* =1, =1,(ac)® = 1)
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1.2.3. Grupos de Coxeter

Definicién 1.10. Sea M una matriz simétrica n x n con entradas en 27 U{+oeo} de la forma M =(m;;)1<i j<n
con my=1paratodoi=1,---,ny1 <m;j € N para todo i # j.
Entonces M es una matriz de Coxeter y se define como grupo de Coxeter de tipo M al grupo

GM) = (s1,--,8n | (sis))" =1Vi,j=1,--,nymj<oo).

La anterior se dice presentacion de Coxeter de G(M).

Definicion 1.11. Un grupo que admita una presentacion de Coxeter para alguna matriz de Coxeter M
se dice grupo de Coxeter.

Ejemplo 1.12. Hemos visto en el ejemplo 19 que el grupo diédrigo del hexdgono admite una presenta-
cion

Dy = (a,cla® =1, =1,(ac)® =1)
en la que los generadores son dos simetrias, a y c, es decir, involuciones. Como la otra relacion es
(ac)® = 1, estamos ante un grupo de Coxeter que podemos presentar mediante una matriz de Coxeter
M = (m,‘ j).
Tengo dos generadores asi que M sera una matriz 2 X 2, donde my | =mp> =1y m|p =my | = orden
de ac, es decir 6. Dando lugar a que D1, es un grupo de Coxeter tipo M con

(%)

Ejemplo 1.13. Ahora partimos de una matriz

1 3
M=1|3 1
2 3

—_— W N

que cumple las condiciones para ser matriz de Coxeter, y por tanto el grupo
G(M) = (s1,52,53]57 = 53 = 53 = (5152)° = (5153)° = (s283)° = 1)

es el grupo de Coxeter tipo M.

Aunque no entraré en detalles, se puede probar que el grupo G(M) es exactamente el grupo T de
isomometrias del espacio que dejan fijo un tetraedro. Para ello numeramos los vértices del tetraedro
como el en el dibujo de 1.13 y podremos entender T como un subgrupo de Symy.

4

s1 es la simetria que fija el plano que pasa por los vértices 3, 4 y el punto medio del segmento entre
1 y 4, y que intercambia los vértices 1 y 2.

De igual manera manera s; fija el plano que pasa por 1, 4 y el punto medio del segmento 2 a 3,
intercambiando 2 y 3. Y s3 fija 1, 2, el punto medio del segmento entre 3 4, e intercambia los vértices 3
yv4.
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Ejemplo 1.14. Consideremos la teselacion del plano formada por cuadrados, es decir, un plano cu-
bierto completamente por cuadrados de igual tamaiio los cuales no se superponen entre ellos. Véase en
el dibujo de 1.14 que se trata de lo que comiinmente podria llamarse una cuadricula infinita.

Entonces pensamos en los movimientos del plano que dejan fija mi teselacion, por ejemplo, las
simetrias respecto a los ejes d, e y f como se ven en 1.14.

A partirde d, ey f consideramos el grupo G que generan, el cual cumple las siguientes relaciones:

» (de)* =1 ya que de es un giro de 90 grados y centro en la interseccion de los ejes de d y e.
» (df)* =1ya que df es un giro de 90 grados y centro en la interseccion de los ejes de d y d.
» (ef)" # 1 para todo m ya que ef es una traslacion, es decir, tiene orden infinito.

» d> =e? = 2 =1 ya que son simetrias.

Se puede probar que las relaciones R = {(de)*,(df)*,d?,e?, f>} son suficientes para presentarlo,
de la manera que tenemos

G = (e,d, f|(de)*,(df)*,d? &, f?)

,
.
.
,
.
2
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.
,
d 3
e .
el ,
- < p
- S/
,
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p
,
€ ——————— - —— = [
7
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4 |
y
o / o
7 |
e ! |
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, df/ vef
7 /
a 7 |
// /// e
s (-
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.
.
.
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G es claramente un grupo de Coxeter y por tanto puede presentarse como Grupo de Coxeter tipo
M con matriz de Coxeter

3§ & —

4
1
4

Notemos que no estamos hablando del grupo completo de todos los movimientos del plano que dejan
fija mi teselacion, sino simplemente un subgrupo de los mismos. Esto se puede demostrar observando
que, por ejemplo, la traslacion hacia la derecha no puede generarse a partirde d, e y f.

Ejemplo 1.15. Sea el grupo simétrico Syms que permuta el los elementos del conjunto X = {1,2,3,4,5}.
Sabemos del apartado 1.2.1 que esta generado por Ss = {s1,52,53,54} con s; = (i,i+ 1) para todo i,
cumpliendo las relaciones:

= s? =1 paratodoi=1,2,3,4.

 sis; = s;s;, es decir, (sisj)? = 1si |i— j| > 1. Luego (s153)> = (s254)* = (s385)> = L.
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555 = 8j8i8), es decir (sis;)> = 1si | i— j|= 1. Luego (s152)° = (s253) = (s354)° = (s4s55)> = 1.
Por tanto tenemos
Syms = (s1,52,53,54][s1 =52 = 53 = 54 = 55 =
= (5153)% = (s284)> = (5355)° = (5152)" = (5293) = (s354)° = (5u85)> = 1)

y podemos concluir que Syms es un grupo de Coxeter tipo M con

1 3 4 4 4
31 3 4 4
M=1]4 3 1 3 4
4 4313
4 4 4 3 1

1.3. Grupos lineales y representaciones

Definicion 1.16. Sea GL(V) el grupo de las transformaciones lineales invertibles de V en 'V con V
espacio vectorial con la operacion de composicion, es decir, el grupo general lineal sobre V. Una
representacion lineal de un grupo G consiste en un homomorfismo inyectivo de grupos G — GL(V)

Ejemplo 1.17. Consideremos el grupo diédrico del hexagono Dyy={a,cla* = ¢* = 1,(ac)® = 1), y

ponemos

sen?®  cosE sen?  cos3Z

a= (g o )ve= (B o)
cos%  —sen< cosyy —seniy
Se ve facilmente que se trata de dos matrices de orden 2, y que ademds la matriz AC tiene orden 6.

Consideremos el homomorfismo resultante de extender ¢ : {a,c} — GL(V) a ¢ : D12 — GL(V) segiin
la proposicion 1.1. Al ser un grupo finito se puede comprobar simpremente escribiendo todos sus ele-
mentos las matrices asociadas que ¢ es inyectivo.
Por tanto D13 = (A,C) < GL(V) y ¢ es una representacion lineal de D5.

Una forma de ver grdficamente esta presentacion es entender A y C como transformaciones lineales
del plano R?. Asi pues, corresponden a dos simetrias respecto a dos rectas que pasan por el origen y
tienen distinta pendiente. De esta manera AC, que es la imagen de ac = b es un giro de %” respecto
al origen. De hecho, son exactamente las reflexiones y el giro del ejemplo 1.9 entendiéndolos no como

movimientos del hexdgono, sino de todo R2.

Ejemplo 1.18. Consideremos el grupo simétrico Symy formado por todas las permutaciones de
{1,...,n+1}. Sabemos ya que este grupo admite una presentacion Symy1 = (S,|T,) como en ejemplo
1.2, donde s; corresponde con la permutacion (i,i+ 1)

Vamos a construir una representacin S, — GL(V), para eso ponemos

O(si) =P,
con s; = (i,i+1) y P = (pji) jxepr+1] la matriz de permutacion n+1xn+1 con p;j1 = pit1,; =1,
pjj=1paratodo j € [n+ 1] distinto de i e i+ 1y ceros en las demds entradas.

Esto implica que estas matrices P; cumplen las relaciones de la representacion anterior de S,, es
decir

Pl-zz 1 paratodoi=1...n
P,P; = P;P; para todo | i — j |> 1
P,P;P; = P;P,P; para todo | i— j |= 1.
Por lo tanto obtenemos un homomorfismo ¢ : Sym, 1 — GL(V) y se comprueba que si ¢ € S, lleva

ia o (i), entonces §(0) corresponde a la matriz nxn con unos en las posiciones (i, 0 (i)) y el resto ceros.
Se puede ver que ¢ es inyectivo, luego tenemos una presentacion lineal de Sym,, 1.



Capitulo 2

Presentaciones de Grupos de Coxeter

Durante este capitulo denotaremos por G a un grupo de Coxeter y por (S,R) a una presentacién de
Coxeter de G donde S es un familia generadora que consideraremos fija del grupo G.
Al tratarse de una presentacién de Coxeter todos los generadores s € S son de orden 2, es decir, s> = 1
(o también, s—! = ).

2.1. Longitud en grupos de Coxeter

Definicion 2.1. Dado un grupo de Coxeter G y un conjunto de generadores T C S, con S familia
generadora fija, definimos como longitud respecto a T de un elemento w € (T), a la menos longitud, o
menor numero de letras, posible de una palabra en T que represente al elemento w. Lo denotaremos
como Ir(w). En el caso de que T =S, y por tanto w € (S) = G, diremos simplemente [(w).

Notemos que la longitud de la palabra vacia 1 es /(1) = 0.

Definicion 2.2. Una palabra que representa aw € G y tenga la menor longitud posible se llama palabra
geodésica.

Lema 2.3. Para cualquier elementow € G y s € S generador; se tiene l(sw) = [(w) £ 1. Ademds, hay
alguna palabra geodésica que represente w que empiece por s si'y solo si l(sw) =1(w) — 1.
Si T g S, ls(w) S ZT(W).

Demostracion. Seaw € G, s € S familia generadora, es claro que I(sw) < I(w)+ 1y l(w) = I(ssw) <
I(sw)+ 1, es decir, [(w) — 1 < I(sw), luego

Iw)—1<1(sw) <I(w)+1
Veamos que /(sw) y [(w) tienen distinta paridad.

Para ello construimos un homomorfismo ¢ : G — {%1} inducido por a — —1 para todo a € S.
Comoo(a)? = (—1)?=1=a’y (6(a)o(h))" = ((—1)(=1))" = 1 = (ab)™ se ve que respeta las rela-
ciones y por tanto esta bien definido.

Se ve que o(w) = (—1)'™) y que o (sw) = (—1)!") = —5(w) = —(—1)!"). Luego [(w) y I(sw) tienen
distinta paridad, concluyendo

I(sw)=1w)+161(sw)=1(w)—1

Ademds, sea [(w) = g. Es claro que si existe una palabra geodésica que represente a w € G de la for-
ma w = ss1...5,—1, entonces [(sw) = [(sss1...5—1) = [(s1...54-1) ya que s € S es de orden 2 y por
tanto ss = s> = 1. Como una subpalabra de una palabra geodésica también es geodésica, se deduce que
I(sw)=¢qg—1.
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Por otro lado, supongamos que /(sw) = [(w) — 1 y sea u € G representante geodésica de sw. Enton-
ces u = sw, es decir, w = su, y por hip6tesis [(w) = [(sw)+1=1(u) + 1 luego su es geodésica y empieza
por s. Teniendo asf la segunda parte del enunciado.

La ultima afirmacién del enunciado es trivial ya que toda palabra en T’ que represente a w es también
palabra en S, luego si I7(w) = ¢, existe una palabra en S que represente a w de longitud ¢, es decir,
geodésica para esta palabra no tiene que ser necesariamente geodésica en S, luego Is(w) < g = I (w).

O

Definicion 2.4. Sea T C S un subconjunto del conjunto de letras, entonces diremos que w € G es
T —reducida a izquierda si para todo t € T se tiene 1(tw) > [(w). Ademds, al conjunto de todos los
elementos T —reducidos a izquierda de G lo denotaremos T G.

De manera andloga tenemos GX, el conjunto de los elementos de G que sean K-reducidos a derecha, es
decir, los elementos tales que [(wk) > l(w) para todo k € K con K C S.

Ejemplo 2.5. Sea G = D, = (a,c|a* = ¢* = (ac)®), entonces los 12 elementos de D13 son
{1,ac,acac,acacac = cacaca,caca,ca

a,aca,acaca,cacac,cac,c}

representados todos ellos con una palabra geodésica.
Luego podemos calcular DY, y T D15 para T = a simplemente observando como actiia a a izquierda o a
derecha, dando lugar a

Dy, =1,c,ca,cac,caca, cacac

D' =1,c¢,ac,cac,acac, cacac

Lema 2.6. Sea G grupo de Coxeter y T un subconjunto de generadores de G, entonces

a) Paratodow € G existenu € (T) yv €’ G tales que w = uv cumpliendo l(w) = L(u) +1(v) y I (u) =

I(u).
b) Paratodow € (T), l(w) = Ir(w).

Demostracién. a) Dado w € G, denotamos por D al conjunto de pares (u,v) conu € (T) y v €’ G tales
que

w=uvconl(w)=1(u)+1v)yl(u)=Ir(u).

Es claro que no es vacio ya que (1,w) € D. Sea ahora (u,v) € D que maximiza /(u). Supongamos
que v §§T W, es decir, que existe r € T tal que [(v) > I(tv), entonces por lema 2.1 v = fx para algina
palabra geodésicaxy I(v) = I(x) + 1.

Tenemos entonces que w = (ut)x conx € Gy ut € (T'), entonces

o) < 1(ur) +1(x) < (1) + 1)+ (1) = 1) = [(w)

por lo que se tiene [(ut) = l(u) + 1y [(w) = [(ut) 4+ 1(x). Ademads I(ut) < lp(ut) <lIr(u)+1 =
I(u)+ 1 = 1(ut), luego I(ut) = Iy (ut) y tenemos (ut,x) € D con I(u) < [(ut), contradiciendo la
maximalidad de (u). Por tanto v €7 W.

b) Dado w € (T) C G, por a) sabemos que w = uv con u,v tales que u € (T), v €l Gy Ir(u) = I(u).
Ademds como w € (T), v € (T), se tiene v = 1, es decir w = u. Luego I(w) = l(u) + (1) =1(u) =
lT(u) == lT(W).

O
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Definicion 2.7. Dada una matriz n X n de Coxeter M, le podemos asociamos un grafo de n vértices
{v1,...,vn} de forma que hay un eje entre v; y v; si m;; # 2. Si este grafo tiene una iinica componente
conexa diremos que M irreducible, e igualmente diremos que le grupo de Coxeter G(M) de matriz de
coxeter M es irreducible.

Se puede entender que cada componente conexa del grafo esta formada por generadores a; coni € I
que conmutan con todos los generadores b con j € J que no pertenecen a dicha componente, ya que
(aibj)*> =1 paratodoi€l, j €Jy portanto aibj = ba;.

Ejemplo 2.8. Tomamos el grupo de Coxeter tipo M con

1 3
M=13 1
2 3

—_— W N

generado por la familia {a,b,c} entonces el grafo me queda tiene una tinica componente conexa, luego

M es irreducible.
c
I_Q

b

Consideremos una matriz de Coxeter M no irreducible y denotemos J C [n], podemos tomar la
matriz M|, o simplemente J. Entonces podemos considerar G(J) como el grupo de Coxeter tipo J.
El razonamiento anterior implica.

Proposicion 2.9. Dado un grupo de Coxeter G(M) tomamos una particion del grafo de M en compo-
nentes conexas Ji,...J,, entonces G(M) = G(J) X --- x G(J,).

2.2. Espacio afin de un espacio vectorial

Definicion 2.10. Dado un espacio vectorial V sobre un cuerpo IK, un subespacio de este S <V, y un
elemento v €V, se dice clase de v € V al conjunto v+ S. Ademas llamaremos cociente V /S al conjunto
de clases {v+ S|v € V}, dicho conjunto es también un espacio vectorial.

Definicion 2.11. Sea V un espacio vectorial sobre un cuerpo KK, entonces el espacio afin de V es el
conjunto de puntos 'V dotados de una coleccion de subespacios afines y de la relacion de paralelismo,
definidos de la siguiente manera:

Un subespacio afin de A(V) es una clase de un subespacio lineal de V.

Dos subespacios afines son paralelos si son clases del mismo subespacio lineal de V, es decir, si son de
la formavi+Syvy+Sconvi,v, eVyS<V.

A este espacio afin lo denotaremos con A(V), y si los subespacios afines X e Y son paralelos, escribire-
mos X||Y.

El paralelismo es una relacién de equivalencia, y todos los los subespacios paralelos a un subesapcio
dado dado dan una particién del total. Esto significa V =U{v+S|v € V/S}.

Definicion 2.12. Si Y es la clase v+ S conv €V y con S <V subespacio lineal de dimension d, entonces
decimos que dim(Y) = d, en particular dim(A(V)) = dim(V).

Al conjunto vacio le diremos de dimension —1, un subespacio afin de dimension 1 es un vinico punto, y
de dimension 1 es una recta.

La interseccion de subespacios afines es un subespacio afin, y por tanto dado un subconjunto X de'V, se
define como subespacio generado por X a la interseccion de todos los subespacios afines que contienen
a X,y sedenota (X).



10 Capitulo 2. Presentaciones de Grupos de Coxeter

Definicion 2.13. Un hiperplano de V = R" es un subespacio afin de dimension n— 1.

Definicion 2.14. Una transformacion lineal sobre un espacio vectorial V es una aplicacion f:V —V
tal que f(u+v) = f(u)+ f(v) para todo u,v € V. Un automorfismo de A(V) es una aplicacion biyectiva
deV enV que preserva contenidos y paralelismos.

Denotaremos GL(V') al grupo de transformaciones de V'y Aut((A(V)) al grupo de automorfismos.

Si tenemos un producto escalar en el espacio V, una isometria es una aplicacion de'V en'V que conserva
la distancia asociada a dicho producto escalar.

Definicion 2.15. Una traslacion t, : V — V es un automorfismo de la forma t,(x) = x + v para todo
xeV.
Asimismo, denotamos T (V) al grupo de traslaciones de V., el cual es un un subgrupo del grupo Aut(A(V)).

Definicion 2.16. El subgrupo de Aut(A(V)) generado por T(V) y GL(V) es el grupo afin lineal de V,
lo denotamos AGL(V).

Definicion 2.17. Dado v € V, una reflexion p respecto a un hiperplano H de V (es decir, un subepacio
afin de dimension n — 1 que pasa por el origen) es una transormacion lineal de V que deja fijos los
puntos H, y que tiene un vector v no trivial de valor propio —1.

H se llama espejo de p y v raiz de p.

Una reflexion afin respecto a un hiperplano arbitrario H es un elemento p del grupo afin lineal de V
que fija los puntos de H y tal que p*> = 1.

Se puede comprobar que una reflexion es una isometria respecto a un producto escalar si y sélo si
su espejo y su raiz son ortogonales entre si respecto a dicho producto escalar.

2.3. Representacion por reflexiones

En esta seccién vamos a tomar un grupo de Coxeter G generado por S = {sy,...,s,}, y construir
una representacion lineal de G de grado n haciendo corresponder a cada s; una reflexién del espacio afin
RR”. Estas reflexiones no son en general isometrias respecto al producto escalar habitual pero en cierto
sentido, vamos a deformar la geometria de R"” de forma que las raices y los espejos las reflexiones s;
sean ortogonales.

Definicién 2.18. Sean G, grupo de coxeter de tipo M = (m;j); jejn, ¥ V, espacio vectorial real V con
base (e;) ic[n]- Entonces denotaremos By a la forma bilineal simétrica de V x V a R dada por

Bu(ej,ej) = —2cos(m/myj) Vi, j € [n] con By(ej,ej) = =2 sim;j = oo

Notemos que es simétrica ya que m;j = mj; para todo i, j € [n], y ademds B(e;,e;) =2, ya que m; ; = 1
para todo .

Si M esta clara, pondremos simplemente B.

Ejemplo 2.19. Tomemos el grupo D1,, correspondiente al diédrico del hexdgono, como vimos en el
capitulo anterior, D> = {(a,c|a®> = ¢* = (ac)® = 1).
Por tanto se trata de un grupo de Coxeter tipo M, con

(%)

y le podemos asociar un grafo con dos tinicos nodos unidos entre si, ya que m; » = 6 # 2 (observemos
que se trata pues de un grupo irreducible, ya que su grafo asociado tiene solo una componente conexa).
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Tomemos ahora el espacio R? con base candnica ey, e;.
Calculamos la forma bilineal simétrica asociada a M mediante

B(ejer) = —2COS(%) = —2cos(m) =2

B(ejer) = —ZCOS(%) = —2c0s(g) = /3.

Como my )} =m2,2ymy o =m2,1, entonces B(eje1) = B(ezez) y B(eje2) = B(ezey), quedando asi

By=( V3
M=\ _ \/37 o) .
Definicion 2.20. Dada B previamente definida, la forma cuadrdtica asociada a M, denotada como Qyy,
o simplemente Q es la dada por
O(x) = 1B(x,x) Vx € V.
Es decir, para x = Xicjpxie; €V

1
O(x) = 5% jepixjBlei e ) = —Ii jepxixjeos(m/mij)
Ademas, B(x,y) = Q(x+y) — O(x) — O(y).

En la siguiente proposicién veremos como construir un conjunto de reflexiones sobre R" que pre-
servan By, de manera que generan que mds adelante veremos que es isomorfo al grupo de Coxeter tipo
M dado. Estas reflexiones ademds cumplirdn que sus espejos y raices serdn ortogonales respecto a la
forma bilineal By, aunque no lo sean para la métrica habitual.

En el siguiente resultado el simbolo | denota ortogonalidad respecto a la forma bilineal B.

Proposicion 2.21. Sea G un grupo de Coxeter tipo M con B forma bilineal simétrica asociada a M, y
sea la transformacion lineal p; : V — V dada por

pi(x) =x—B(x,e;)e;
coni € [n]. Para todo i, j € [n] se tiene:
a) Blej,e;) =2.
b) B(ei,ej) <O0sii+# j,ysetiene B(ej,ej) =0 siy solo sim;j =2.
c) pi es una reflexion sobre V con espejo ei- = {x € V|B(x,e;) = 0} y raiz e;.
d) B(x,y) = B(pix,piy), es decir, p; preserva B.
e) pipj tiene orden exactamente m;;.

Demostracion. a)y b) son consecuencia directa de la definicion de B.

c¢) Sabemos que p; es una transformacion lineal. Vamos a ver que e;-
que tiene dimensién n — 1.
Para ello consideramos B(-,¢;) : V — R la aplicacién que actia s — B(s, e;). Por definicién de e;-

es claro que

es un hiperplano de Ve s decir

Ker(B(-,e;)) = ei-.

1
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d)

e)
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Es claro también que B(-,e;) # 0 luego Im(B(-,¢;)) = R, por tanto

dim(e;j-) = dim(Ker(B(-,e;))) = dim(V) — dim(R) = n — 1.

Sea x € eit, es decir, B(x, e;)e; = 0. Entonces

pi(x) =x—B(x,e;)e; = x,

1

i

luego p; fija los elementos del subespacio e

Ademds
pi(e;) = e; — Blei,e;)e; = e; — 2¢; = —e;,

luego e; es vector de valor propio, y por tanto es la raiz de p;.
Dados x,y € V, aplicando directamente las propiedades y la definicién de B obtenemos
B(pix,piy) = B(x— B(x,e;)ei,y — B(y,ei)e;) =
= B(x,y) — B(x,e;)B(e;,y) — B(x,e;)B(y,e;) + B(x,e;)B(y,e;)B(e;,e;) =
= B(x,y) — B(x,e;)B(ei,y) — B(x,e;)B(y,e;) + 2B(x,e;)B(y,e;) =
= B(x,y).

Sea el subespacio de V, U = Re; + Re;, invariante respecto p; y p; y denotemos b = B(ej, ¢;).
Entonces podemos expresar las matrices de las transformaciones lineales p; y p; de U respecto a la

base e;, e}, es decir
-1 —-b 1 0

—1+40? b>

Luego p;p; tiene matriz R = ( b 1

cuyo polinomio caracteristico es A2 — (b> —2)A + 1, el cual se descompone en factores como
j 2% _j2r

(A—emi)(A—e ™i).

En efecto
j2n _j2r i 28 _j2r
(A—emi)(A—e Mi)=A*—(e"ide A +1=A%— (P —2)A+1
ya que

T T 2n j 21 _j2m
b? —2 =4cos*(—)—2=2 <2€os2() - 1> =2cos(==) =e"Mi +¢ i
mij mij m,-j

Vamos a ver que p;p; tiene orden m;;. Para ello primero hacemos la observacion de que p;p; no
puede ser la identidad, y ahora separaremos en dos casos, cuando m;; = ooy cuando m;; < oo.

-2 -1
Si R™ = I, entonces el polinomio tendria que dividir a A™ — 1, pero (A — 1)? no divide a A™ — 1,
luego R tiene orden infinito, y por tanto lo tiene p;p;.

Si mjj = oo. Tenemos que R = ( ), cuyo polinomio minimo es (A — 1)2.

Si m;; < . Consideremos el subespacio de dimensién n —2, U = ¢ Ne;. La restriccién de Q a U
es
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O(xje; +xjej) =x7 — 2xixjcos(mlij) +x§ = (x; —)cjcos(mlij))2 —|—x§sin2(mlij).
Por tanto Q es definida positiva en U, luego U NU+ =0y U @ U+ = V. Como p; fija los puntos de
ety p; fijalos de e]*, pip; fija todos los puntos de U L. Es decir, el orden de de p;p ;j sera el orden de
esta en U, donde p;p; tiene matriz R y por tanto polinomio caracteristico

_j2m

(A—em)(A—e ™)

P 2m i2n
. Lo L . =
Los valores propios de p;p; en U son entonces e "/ 'y e "/, los cuales son las raices m;;—€simas de
P21 P21
. . . . . 1= —l = . .
la identidad y R es semejante a la matriz diagonal con e "i y e ™ii en la diagonal. Concluimos pues

que R, y p;p;j, tienen orden exactamente m;;.
O

Ejemplo 2.22. Retomemos el ejemplo 2.19. Ahora queremos encontrar ahora las reflexiones p1 'y pa
del teorema anterior:
p1 es la reflexion respecto al hiperplano el-L, que en este caso de dimension dos, es la recta dada por

{(x1,%2) € R?|B((x1,x2),e1) = 0}.

B((xi2)er) = (1 x2) (_zﬁ ‘f) <§))=<x1 ) <_f@>=o

luego 2x; — V3x, = 0. Por lo tanto p1 es la relexion en el plano R2 respecto a la recta x; = %xl con
-1 =3
0 1

De forma andloga se ve que p> es la reflexion respecto a la recta x, = ?xl con raiz ey.Ademds, P

tiene matriz
1 0
V3 —-1)°

Ahora consideramos el grupo generado por las reflexiones p; y po» como las acabamos de definir,
veremos en el teorema siguiente que es isomorfo al grupo Di».

raiz e;. Ademds, p; tiene matriz

Ademas los espejos de las reflexiones py y pa, las rectas x; = %xl YXy = éxl, v las raices de py y pa,
e1 y ea, son ortogonales respecto a la métrica dada por Byy. Es decir hemos deformado la geometria del
plano euclideo R? de manera que los espejos y las raices de las simetrias que generan los movimientos
que dejan fijo un hexdgono sean ortogonales.

Ejemplo 2.23. Tomemos el grupo diédrico infinito D. = (a,c|a* = c?), es decir, un grupo de Coxeter
1 o
tipoMcoan(oo l)'

Tomemos ahora el espacio R? con la base candnica ey, es, y contruyamos la forma bilineal simétrica
asociada a M:
Bei,e1) = —2cos(;[-) =2, B(ez, e2) = —2cos(;.>) =2y B(e1,e2) = B(e1,e2) = 2. Es decir

mi
2 =2
= (2 )

Busquemos ahora la reflexiones py. Para ello, veamos quien es elL.

Boane) = x) (5, ) (5) =t ) (3) o
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luego 2x1 4+ 2x, = 0. Es decir, elL es la recta xy = xj.
Por tanto p; es una reflexion respecto a x, = x| con raiz e|. Ademds, Py tiene matriz

(5 1)

Andlogamente p, es una reflexion respecto a x, = x| con raiz e>. Ademds, P> tiene matriz

G5

Teorema 2.24. Dado G un grupo de Coxeter tipo M generado por S = {sy,...,s,}, y V un espacio
vectorial real de dim V = n definimos una aplicacion p : S — GL(V) mediante p(s;) = p;. Entonces:

a) Esta aplicacion se puede extender a todo G, dando lugar a una representacion lineal de G mediante
un homomorfismo de grupos p : G — GL(V) cuya imagen preserva B.

b) pi # pj para todo i # j.
c) p restringido al subgrupo (s;,s;) de G es fiel para todo i, j € [n].

Demostracion. a) Por c) y e) de la proposicion 2.21 se puede ver facilmente que los p; cumplen las
relaciones de coxeter, ademds p preserva claramente B por d) de la proposicién 2.21.

b) Sean p; = p; entonces por la proposicion 2.21 m;; = orden de p;p; = p;p;, que tiene orden 1 puesto
que es la identidad. Luego m;; = 1, y por ser M matriz de Coxeter, solo puede ser i = j.

c) Seap: (s;,sj) = GL(V), veamos que es inyectiva.
Veamos que todos los elementos de (s;,s;) son de la forma (s;s;)" 6 s;(s;s;)" con algtn r € IN.

Es claro que w € (s;,s;) es de laformaw =...s;s;s;s; ... yaque s;s; = s;s; = 1, diferenciando cuando
empieza y acaba por la misma letra, y cuando lo hace con letra distinta. Si empieza y acaba por la
misma letra entonces

w=1s;5;...5;8; = si(s;s;)" para algin r
o)
— — [ mii—s __
w=1s;s;...5:85] = 5j(s:5;)" = sj(sj85:)" " = s5i(s8i
luego w = s;(s;s;)™ ! para algtn s, basta tomar r = m;; —s — 1.

)ml‘ijS‘*l

Si empiezan y acaban por distinta letra entonces

— — r 3
w=s;5j...5;8; = (s;5;)" para algin r
6
w=us;s;...5;8; = (sj8:)° = (5)8;)
luego w = (s;s;)™~* para algtn s, basta tomar r = m;; — s.

mjj—s
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Ahora vamos a ver que si p(w) = 1 entonces necesariamente w = 1.

Siw = (s;i5;)".
p((sis;)") = (pipj)" = 1 implica p;p; tiene orden divisor de r. El orden de p;p; es m; ;= orden de s;s,
luego (sisj)" = (sis;)"* =1° = 1.

Siw =s;(s;si)".

p(si(sjsi)") = pi(pjpi)” = 1 implica (p;p;)" = p;" = pi.

Las matrices p; tienen determinante —1 luego (p;p;)" deberia tener determinante —1. Pero (p;p;)"
tiene determinante ((—1)(—1))" = 1" =1, lo que es una contradiccién. Por tanto no w tal que
p(w) = 1 no puede ser de la forma w = s;(s;s;)".

En conclusion, p(w) = 1 implica w = 1, y por tanto p es inyectiva en (s;,s;).
]

Definicion 2.25. Dado G grupo de Coxeter tipo M generado por S, a la representacion lineal p : G —
GL(V) se le llama representacion por reflexiones de G.






Capitulo 3

Linealidad de los grupos de Coxeter

3.1. Grupos generados por reflexiones afines

Cualquier grupo G generado por un conjunto de involuciones {p;|i € [n]} es imagen homomorfica
de un grupo W de Coxeter de tipo M = (m;;); jc[») con m;; =orden de p;p;. En esta seccién vamos a ver
que para G subgrupo de AGL(V) generado por reflexiones afines que satisfacen cierta condicion, este
homomorfisto es un isomorfismo.

Definicion 3.1. Si un grupo G actiia sobre un conjunto E, un dominio prefundamental de G es un
subconjunto no vacio D C E tal que DN gD = 0 para todo g € G distinto de 1.

Ejemplo 3.2. Consideremos un cubo en el espacio euclideo R> donde los vértices del cubo son los
puntos de la forma (£1,+1,+1). Ahora contruimos la subdivision baricéntrica de cada cara, dando
lugar a una serie de triangulos a los cuales llamaremos camaras.

Cada una de las 48 camaras se corresponde con una unica seleccion de cara, arista y vértice del
cubo, vamos a fijarnos simplemente en la cdmara correspondiente al vértice vl = (1,1,1), la arista al =
{v1,(1,-1,1)}yalacaracl =alU{(1,1,-1),(1,—1,—1)}. Este tridngulo determina tres reflexiones
P1, P2 y p3 correspondientes a la simetria respecto al plano centrado en el origen que pasa por cada
uno de los lados del mismo.

Asi pues, pi es la simetria que deja invariante el cubo tal que mi cdmara cambia de vértice asociado,
pero sigue asociado a la misma cara y arista, mientras que Py y p3 cambian mi cdmara de arista y de
cara asociada respectivamente.

17
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p3

P1
P2

Se puede probar que estas tres simetrias generan el grupo G de las 48 isometrias en R> que dejan
invariante el cubo. Ademds puede verse que cada uno de las 48 isometrias mueve mi cdmara a cada de
las posiciones de las 48 cdmaras del cubo.

Como dos cdmaras solo pueden intersecar en su borde (0 un vértice o una arista) es fdcil ver que
el interior de las camaras del cubo son dominios prefundamentales.

El interior de las cdmaras del ejemplo anterior son un ejemplo de dominio prefundamental, ya que
aplicar una isometria distinta de la identidad que deja fijo el cubo mueve una cdmara a otra posicién, de
forma que la interseccion del interior de una cdmara y su imagen es vacia.

Definicion 3.3. Sea V un espacio vectorial y W un grupo de Coxeter que actiia en A(V) y sea S =
{s1]i € I} una familia generadora de W. Para cada s;, sea A; C'V de la forma A;NsiA; =0y sea
A =NA;. Consideramos las siguientes afirmaciones:

(Py): Para todo i € I, w € W con I(w) < q se tiene wA C A; 6 wA C s;A;, en este ultimo caso
I(siw) =1(w)—1.

(P): Se cumple (F;) para todo q # 0.

Definicion 3.4. Sea G grupo generado por reflexiones afines {p;|i € I = [m]} respeto a hiperplanos H;
del espacio afin A(V).

Entonces el grupo de Coxeter asociado a G es W generado por {s;|i € [m]} con la matriz de coxeter
dada por

m;j = orden(pip;).

Tenemos p — G bien definida por la proposicion 1.4 que induce una accion de W en A(V).
Ademds denotaremos p(w)X 1= wX.

Teorema 3.5 (Lema de Tits). Sea G un grupo generado por reflexiones afines como en la definicion
anterior. Sea A; una de las dos mitades de V determinadas por H; y supongamos que A = Nic[A; # 0.
Sea W el grupo de Coxeter asociado a G como en la definicion anterior y para cada par de generadores
s;y sj de W denotamos W;; al subgrupo de W generado por s;,s ;.

Suponemos que para todo i, j W;; cumple (P) respecto A;,A ;. Entonces
a) A es dominio prefundamental de G.
b) p: W — G es isomorfismo.

Demostracion. Primero, vamos a probar que si W cumple la afirmacién (P) respecto Ay, ... A, entonces
se cumplen a) y b).

b) Seaw € Ker(a), es decir, o(w) = 1, entonces a(w)A = wA = A. Esto implica que para todo i € 1,

S,‘WA = Sl'A Q S,'A,'
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por (P,) con g = [(s;w), se tiene I(s?w) = [(s;w) — 1, es decir, I(s;w) = [(w) + 1. Esto significa
que w no empieza por s; para ningdn i € [ y por tanto w = 1. Se deduce que Ker(o) = {1}, luego
G es isomorfo a W.

a) Supongamos que para w € W se tiene A NwA # @, entonces para todo i € I se tiene A; N wA # 0.
Como a;Ns;A; = 0, por (P,) con g = I(w), se deduce wA C Ay por tanto sA C A. Pero la suposicién
sobre w € W también significa que w—'ANA # 0, asi que de manera similar se prueba w™'A C A,
luego A C wA. En consecuencia A = wA, y por el mismo argumento que en b), w = 1. Tenemos
pues que A es dominio prefundamental para W, y al ser G = W, se tiene a).

Ahora, veamos que (P) para W;; implica (P) para W. Procederemos por induccién sobre g, partiendo
de que (P) es trivialmente cierto.

Supongamos cierto (F,) y veamos (P 1):
Seaw € W con [(w) = g+ 1, tomamos j € I tal que w = s;w’ para algin w’ € W y ademds /(w') = ¢ con
I(w) =1(s;w") # 1(w') — 1. Aplicando (P,) a w' se decuce w'A C s;A;, luego

wA =s;wA CsjAj,yenestecaso [(sjw) =I(w)=qg=q+1—1l(w)—1

luego se cumple (P, 1) para w y el indice j.
Sea ahora i € [ tal que I(s;w) = I(w)+ 1,y sea j como antes, es decir, [(s,,) = [(w) — 1, en particular
i # j. Por el lema 2.1 existen u € (s;,s;) = W;; y v €!"/} W de manera que

w' = uv cumpliendo [(w') = l(uv) = l;j(u) +1(v) = 1(u) +1(v)
Como v €{%/} W por definicién, sabemos que [(s;v) > [(v) y [(s;v) > I(v). Vamos a provar que

VA QA,-.,-:A,-HAJ- 3.1)

Notar que /(v) < g+ 1, luego como (P,) se aplicar para v.
Si fuese v C A; I(s;v) = I(v) — 1, es decir, I(s;v) < I(v), pero sabemos que [(s;v) > [(v), luego vA C A,.
Andlogamente deducimos que vA C A}, y por tanto 3.1 se cumple.

Obtenemos entonces wA = s;w'A = s;uvA C sjuA;j. Vamos a aplica (P) para el grupo W;;, la cual
sabemos que es cierta, al elemento s;u € W;;. Es decir, s;uA;; C A; 6 s;A;, cumpliendo en este ultimo
caso I(s;s;) = I(sju) — 1.

Por 3.1 tenemos wA C s;uA;;, luego wA esta contenido en A; 6 5;A;, teniendo asi la primer afirmacion
de (Py+1).

Ademds, si wA C 5;A;, tenemos wA C s;uA;; C 5;A;, se tiene
I(siw) = 1((sisju) (u"w)) < I(sisju) +1(u'w')

< Usisu) + 10) — 1(u) < U(sju) — 1 +q— 1) < g

y como [(w) = g+ 1, obtenemos I(s;w) = ¢ = [(w) — 1, quedando demostrado (P,1). O

3.2. Representacion por reflexiones lineales

En esta seccion culmina con la demostracién, mediante la aplicacién del lema de Tits, de que la re-
presentacion por reflexiones p contruida en el teorema 2.24 es fiel. Para ello vamos a tener que modificar
la representacion.
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Partimos de una representacion lineal de un grupo G
p:G— GL(V)
y definimos p* : G — GL(V') como

p*(g)=p(g~") paratodo g € G

donde ¢ indica la matriz traspuesta.
Hay que ver que es homomorfismo de grupos:

P (2182) =p((g182) ") =p(&; &) = (p(e2 )P (e ) = (p(gr ) (p (g, ') = p*(g1)p" (g1)
Por tanto p* es una representacién del grupo G.
El siguiente lema es trivial.
Lema 3.6. p* es fiel siy solo si p es fiel

Observemos la siguiente relacion entre los vectores propios de una matriz Py los de su traspuesta P':

Sea < -,- > el producto espalar habitual. Si v es vector propio de P de valor propio & y w vector
propio de P’ de valor propio 8, con o # 3

alv,w) = (av,w) = (Pv,w) = (Pv)'w =

VIP'w = (v, P'w) = (v, Bw) = B(v,w).

Como «a # B, esto implica (v,w) = 0, es decir, v y w son ortogonales respecto al producto escalar
habitual.
Ahora, supongamos que P = p(s) con s € S familia generadora de W grupo de Coxeter. Entonces

P (s)=p(s™) =p(s) =P
Los vectores propios de P, como ya hemos estudiado, son:

e (raiz) de valor propio —1
el subespacio de dimensién n — 1, e# (espejo) de valor propio 1

donde L 5 se refiere a ortogonalidad respecto a B como en el tema 2.
La matriz P' tiene también valores propios 1 y —1 con multiplicidades n — 1 y 1 respectivamente.
Asi que si v es raiz de P, se tiene

(v,w) = 0 para todo w € e"%.
Ademids, el espejo de P es ortogonal respecto a < -,- > de e, es decir
espejo de P' = {u € V|(u,e) =0}.
En resumen:

P = p(s) tiene espejo e’ ? y raiz e
P' = p*(s) tiene espejo e-<> y raiz (e1#)1<>,
Aplicando esto a un s; € W con raiz e; tenemos:
espejode p; = (e1,...,€i—1,€it11,...,€n).

Lema 3.7. Para D.., la accién en R? asociada a p* cumple la propiedad (P) respecto de ciertos A;, A j
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Demostracién. Como ya vimos en el ejemplo 2.23, el grupo diédrico infinito es Do, = (a,c|a’ = ¢?) y
p : Do — GL(V) es la presentacién por reflexiones sobre el plano R? con

a+— p1, la reflexién de matriz <_01 _12>

¢ — P2, la reflexién de matriz (_12 _01>

tal y como hemos visto en el tema 2. Llamaremos a estas matrices también p; y p, respectivamente,
vamos a estudiar como son las reflexiones correspondientes a la representacion dada por p*.
Notemos que p; = p} y p; = pj. Luego las matrices de mis nuevas reflexiones son simplemente

. (-1 0
p1 = —2 1
. (1 =2
27\0 -1

Por lo dicho anteriormente, obtenemos que el espejo de p! es la recta x; = 0, mientras que su raiz

()
es el vector 1)

De igual manera obtenemos que x, = 0 es el espejo de pj, y su raiz es (_1 1)

el

Al contrario que lo que pasa para p; y rho;, ahora p! y p} tienen distintos espejos y la misma raAz.
Queremos ver que el conjunto A;NA; al que denotaremos simplemente A es dominio prefundamental
para el grupo (pjp}). Para ello, basta con fijarse como actdan los elementos de este sobre A.
En el siguiente dibujo denotaremos pj y p} como r y s respectivamente:

espejo de r
N rA
A
raiz
: IAj
espejo de s
sA
L sTA
N \ srsA

—

Ai

As{ pues concluimos que wA siempre va a estar exactamente en una de las mitades de V determinada

por el espejo de r, y lo mismo respecto el de s, es decir, cumple la primera parte de la afirmacién (P).

Por tltimo, observemos que las imdgenes wA de A con w € D., que estdn contenidas en rA; son de la
forma wA con w = rw/, luego [(rw) = I(w) — 1, andlogamente para A ;. O

Lema 3.8. Para D,, con m < oo, la accién en R? asociada a p* cumple la propiedad (P) respecto de
ciertos A;, Aj.
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Demostracion. Procediendo de igual forma que la demostracién del teorema anterior, obtenemos que

para D,,:
Pr = 2cos 1

N 1 2cosZt
p2 = (0 _lm)

. ) 1
con espejo ey y raiz <—cos”)’ y

m

) . [ —cosZ
con espejo e; y raiz 1 m .

Para ver gréficamente con facilidad como actian los elementos w de D,, sobre A vamos hacer un
cambio de base de IR?. Tomamos la nueva base

_ (1 _ —cosT\
! 0 vV 1 sen’

Calculando las coordenadas de los vectores anteriores en la nueva base obtenemos facilmente que
transformaciones lineales tenemos en cada caso:

*

Pi
. 1 . senZ -
Raiz: - | enla base anterior — " | sen:. en la nueva base.
—cos;. —cos:.
. (0 . cosZ
Espejo: 1) en la base anterior — ™ | en la nueva base.

sen’.
*
P2

V3
. —cos* ) 0
Raiz: < 1 ’") en la base anterior — <1> sen’ en la nueva base.

é) en la nueva base.

. 1 .
Espejo: <O> en la base anterior — <
Asi, las raices son ortogonales a los espejos en el nuevo sistema de referencia. Los espejos de p; y
p; forman un dngulo de 7.
espejo de p;
raiz de py

espejo de p;

Ahora hay que razonar que se cumple (P) en este sistema de referencia, para lo cual analizaremos
unicamente el caso m = 6 que nos servird para deducirlo para todo m < oo.

En la siguiente figura denotaremos r y s tanto a p;° p; respectivamente como a sus espejos. Se ve
claramente en la siguiente figura que wA estd contenido exactamente en una de las dos mitades de V
determinadas por r, e igualmente con s.
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r
rA
rsA A
s
rsrA SA
SrA

Tenemos asi la primera parte de la afirmacién (P). La segunda se puede ver simplemente analizando
cada w € D,,, ya que es un grupo finito, y se ve que se cumple también.

Luego (P) se cumple para el nuevo sistema de referencia, y ademads, volviendo al sistema de refe-
rencia original, se deduce también que (P) se cumple.

Por dltimo, en el caso de un m arbitrario, servirfa la misma demostracién pero con m sectores en
lugar de 6. O

Teorema 3.9. Sea W un grupo de Coxeter con generadores {sy...s,} y p la aplicacion construida en
el teorema 2.24. Entonces p es inyectiva.

Demostracion. Basta probar que p* es inyectiva. Y por el resultado principal de la seccién anterior,
basta probar que para Ay, ...,A, asociados a la acciéon de W en V = R" dada por p* y para cada i, j, el
grupo W;; generado por s;,s; cumple (P) respecto de A;, A ;.

Sea U la interseccion de los espejos de p; y p; y S el subespacio generado por las raices de p;" y
p;. Vamos a ver que son invariantes para p; y p;.

Es claro que p;" y p; actian trivialmente en U ya que es interseccion de sus espejos. Ademds
U= <€1,- <y €im15€i41y -, €j—1,€j 41, 7en>'

Por otra parte
S = (€)= (e ") ) = (e Nty e

es decir, S es el subesapcio ortogonal respecto al producto escalar habitual de la interseccién de los

espejos de p; y p;.
Sea v € S. Entonces para todo w en la interseccion de los espejos de p; y p; se tiene

< pivw >=<v,pw>=<v,w>=0

luego p;/'v € S.
Andlogamente se prueba que S es invariante para p;.

Se puede probar, aunque no entraremos en detalles, que ademds las matrices de la restriccién de p;*

y pj son o como en el lema 3.7 o en el lema 3.8. Esto implica que las restricciones cumplen (P) respecto

aA;NSyA;NSy, teniendo en cuenta que ambos actiian trivialmente en U y que U © S =V, se puede
deducir ficilmente que p;" y p; también cumplen (P) respecto A; y A;.

O
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Para finalizar con este trabajo, vamos a ver como son los subespacios S y U del el teorema anterior
en el caso del grupo introducido en el ejemplo 1.14.

Ejemplo 3.10. Recordemos que el grupo del ejemplo 1.14 era un grupo G formado por movimientos
(no todos) del plano que dejan una teselacion formada por cuadrados. Este grupo tiene presentacion

G = (e,d, f|(de)*, (df)*,d* &, f)

y es un grupo de Coxeter tipo M = . A partir de M, como haciamos en el capitulo 2,

g & —
A = B

podemos obtener
2 V2 =2
B=|-vV2 2 -2
-2 =2 2
Tomamos la base candnica ey, ey, e3 del espacio vectorial R>. Vamos a fijarnos tinicamente en el
par de reflexiones p1 y pa (correspondientes a ey f), las cuales se pueden calcular y son:

-1 V2 2

pi=1| 0 1 0] deespejo elLB y raiz ey.
0 0 1
1 0 O
pr=|Vv2 —1 2| deespejo eZLB y raiz e;.
0 0 1
De esta manera:
-1 0 0
pi=|Vv2 1 0| deespejo(er,e3)y raiz (e;”) <>
2 01
1 V2 0
p;=10 —1 0| deespejo (ey,e3)y raiz (ezl’*)l<‘~'>.
0 V2 1

Ahora utilizamos lo que sabemos de Sy U por el teorema anterior y tenemos que

» U es la interseccion de los espejos de py y p;, por tanto

U = (e3).

= S es el subgrupo generado por las raices de p; y p3, por tanto S = ((e1?) == (ey?) =),
Haciendo los cdlculos necesarios de dlgebra lineal se puede ver que es el plano

3v2x) +4x2 +V2x3 = 0.
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