Proyecto Fin de Carrera de Ingenieria en Informatica

------- Departamento de
"i! Informiatica e Ingenieria

(111 de Sistemas

Universidad Zaragoza

DESARROLLO DE EASES DE
COMPILACION

PARA DESCUBRIR EL TIEMPO
DE EJECUCION DE

PEOR CASO

Marta Lopez Ara

Director: Juan Segarra Flor

Area de Arquitectura y Tecnologia de Computadores
Departamento de Informética e Ingenieria de Sistemas
Escuela de Ingenieria y Arquitectura
Universidad de Zaragoza

Septiembre 2011

Curso 2010 / 2011

Agradecimientos

Una vez llegado al final de este proyecto, me gustaria expresar mi agradecimiento
a todas aquellas personas que de una manera u otra han contribuido a su realizacion.

En primer lugar a mi director de proyecto, Juan Segarra Flor, por conseguir que
llegara hasta aqui gracias a sus continuas explicaciones, su apoyo y su confianza
depositada en mi.

A Raul por su inestimable ayuda, paciencia, tranquilidad, por estar ahi cuando
las fuerzas empiezan a flaquear y por infundir el color necesario para seguir traba-
jando cuando se ve todo de negro.

A mi padre y mi madre, por el apoyo, carino y comprension que me han dado
durante todos estos anos.

A mis abuelos, por su amor incondicional.

A todos mis amigos de la universidad, por todos estos anos compartidos juntos
que nunca olvidaré.

A mis amigos: companeros de la escuela de idiomas, postgrado, monitores de
tiempo libre y alguno mas que me puedo dejar en el tintero, porque gracias a su
amistad me han aportado algo mas que buenos momentos.

iiMuchas gracias a todos!!

Desarrollo de fases de compilacién para
descubrir el tiempo de ejecucion de peor
caso

RESUMEN

Los dispositivos con requisitos de tiempo real son cada vez més utilizados, por
ejemplo en automéviles (e.g. ABS), aerondutica, electrodomésticos, etc. Para poder
planificar los requisitos temporales de cualquier tarea, el primer paso es conocer (una
cota superior de) su tiempo de ejecucién en el peor caso (worst case execution time
o WCET). Este calculo depende de factores hardware y software, como por ejemplo
de las memorias cache y del compilador utilizado, y debe conocerse previamente a
su ejecucion. Ademas, requiere informacion que maneja internamente el compilador
pero no queda explicita en el ejecutable final, con lo que recuperarla es muy complejo.

Cuanto mas ajustada sea la cota superior obtenida, mejor se aprovecharan los
recursos del sistema, aumentando asi la planificabilidad del mismo.

Por todo lo anterior, se ha realizado este proyecto de fin de carrera, cuyo objetivo
principal ha sido la implementacién de una serie de pasos (fases en la terminologia
usual de compiladores) que obtengan la informacién necesaria directamente en
el proceso de compilacion: retsos de bloques de memoria y nimero maximo de
iteraciones en bucles. Para ello se ha utilizado la infraestructura de compilacién
Low Level Virtual Machine (LLVM).

Se han creado dos bibliotecas para ayudar al calculo de la cota superior de los
procesos. Estas bibliotecas van a sacar a relucir los accesos a memoria que existen,
pudiendo asi saber el retiso de variables y constantes, tanto temporal como espacial,
y el nimero de veces que se ejecuta cada bucle de instrucciones como maximo. En
particular:

La biblioteca libmarcarLoadsStores localiza en el cédigo intermedio de LLVM
los accesos a memoria que existen (loads y stores) anadiéndoles los metadatas de
depuracién para su posterior reconocimiento con sus correspondientes instrucciones
en el fichero que contiene el codigo ensamblador ARM.

La biblioteca libbuclesReusos analiza en profundidad el codigo LLVM Intermedia-
te Repesentation (IR) en busca de iteraciones y subiteraciones, indicando en fichero
ARM el maximo nimero de veces que se puede ejecutar un bloque bésico de
instrucciones, siempre que se sepa este dato en tiempo de compilacién. Ademaés,
recoge los datos de los accesos a memoria, para poder identificar el retiso espacial y
temporal, la variable o constante a la cual se refiere, y el desplazamiento que existe.

Indice general

1. Introduccién

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.

Motivacion
Contexto de realizacién
Objetivos
Herramientas utilizadas
Fases del trabajo
Estructura de la memoria

2. Planificacién

2.1.
2.2.

Ciclode vida

Planificacién del trabajo L.

3. Conceptos

3.1.
3.2.

Funcionamiento del compilador LLVM
Bucles y retisos en codigo ARMo

4. Desarrollo

4.1.

4.2.

4.3.

Andlisis y diseno
4.1.1. Alcance del proyecto
4.1.2. Anadlisis del proyecto
4.1.3. Diseno del proyecto oL
Implementacion
4.2.1. Cuenta de iteraciones
4.2.2. Marcacién de loads y stores
4.2.3. Localizacion de redsos espaciales
4.2.4. Localizacién de retusos temporales
Pruebas

5. Conclusiones

5.1
5.2,
5.3.
0.4.

Dificultades encontradas
Trabajo futuro
Conclusiones e
Valoracion personal

10

13
13
13
14
14
15
15
16
17
20
21

INDICE GENERAL

v

A. LLVM Intermediate Representation 26
A.1. Visién general del juego de instrucciones 26
A.2. Tipos primarios y derivados 27
A3. SSA form (PHINODE)o 28
A.4. Acceso a direcciones de memoria 29
A.5. Lectura y escritura en memoria 30
A.6. Ejemplo completo comentado 31

B. Guia de comandos LLVM 32
C. Pruebas 35
C.1. Cuenta de iteraciones 35
C.2. Marcacion de loads y storeso 47
C.3. Localizacién de retisos temporales y espaciales 51

D. Manual de Uso 69
D.1. Introduccién 69
D.2. Requerimientos Software 69
D.3. Compilacién de las bibliotecas 70
D.4. Compilacién de los ficheros a analizar 71
D.5. Ficheros Resultado, 75
Bibliografia 76

Indice de figuras

2.1.
2.2.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.

Al
A2

C.1.
C.2.
C.3.
CA4.
C.5.
C.6.
C.7.
C.8.

Ciclo de vida incremental. 6
Diagrama de Gantt correspondiente a las fases de desarrollo 7
Arquitectura y médulos LLVMo 9
Cédigo Cdestores 9
Cédigo LLVM de stores oo 10
Cédigo ARM de stores 10
Cédigo ejemploen Co 11
Cédigo ejemplo en ARM 11
Cédigo ejemplo final ARMo 12
Optimizacion indvars 16
Ejemplo de cuenta de iteraciones 16
Ejemplo de debug en loads y stores 17
Ejemplo de metadatas oo 17
Ejemplo de puntero con varios pardmetros 18
Ejemplo de load con multiples variables 18
Ejemplo de store con una variable00 18
Ejemplo de incremento constanteo 19
Ejemplo de incremento variableo 000000 19
Ejemplo de retso temporal00 o000 20
Ejemplo de store de pilao 20
Ejemplo de load de constante 20
Cédigo ejemploen Co 31
Cédigo ejemplo comentado en LLVM IR 31
Cédigo del fichero bucle.c 36
Bucle anidadoo 37
Bucles con incremento constanteo 37
Bucle con incremento variableo 0000000 37
Bucles con decremento constante 37
Fichero bucledlo o 38
Salida por pantalla al compilar bucle.c 41
Parte del fichero bucle.arm.opt.s que nos muestra la salida para los

bucles anidados 42

INDICE DE FIGURAS VI

C.9. Parte del fichero bucle.arm.opt.s que nos muestra la salida para

distintos bucles 43
C.10.Parte del fichero bucle2.c 44
C.11.Parte del fichero bucle2.arm.opt.s 44
C.12.Parte del fichero bucled.c 45
C.13.Parte del fichero bucle3.arm.opt.s 45
C.14.Ejemplo de bucle con instruccion do. 45
C.15. Tranformacion de bucle con instruccion do en lenguaje ARM 46
C.16.Ejemplo de prueba para marcacion de loads y stores 47
C.17.Salida por pantalla al compilar el fichero stores.c. 48
C.18.Fichero storesMarcado.ll 49
C.19.Fichero stores.1l 50
C.20.Parte del fichero stores.arm.opt.s 51
C.21.Fichero pruebaStores.c 52
C.22.Fichero pruebaStores.arm.opt.s 55
C.23.Fichero jfdctint.co 61
C.24.Fichero jfdctint.arm.opt.s. oL 68
D.1. Ejemplo de compilacién de bibliotecas 70
D.2. Comandos para compilar las bibliotecas 70
D.3. Contenido de la carpeta L. 71
D.4. Cédigo ejemplo de Makefile 73

D.5. Makefile de "Pruebal” 74

Capitulo 1

Introduccion

En este capitulo se comentaran los aspectos més generales del presente Proyecto
Fin de Carrera, entre los que se encuentran: la motivaciéon para la consecucion
del mismo, su contexto de realizacién, los objetivos definidos en la propuesta, las
herramientas que se han utilizado durante su elaboracién, las fases en las que se
ha dividido el trabajo y, por ultimo, una breve explicacién de la estructura del
documento.

1.1. Motivacion

A la hora de elegir un proyecto, fueron varios los motivos que me hicieron
decantarme por éste. Para empezar, el hecho de contribuir a la utilizacién de
herramientas de software libre, en particular el proyecto Low Level Virtual Machine
(LLVM). Otro aspecto interesante fue la posibilidad de ampliar mis conocimientos
de ingenieria del software, asi como de los lenguajes ensamblador y C++.

También consideré interesante para completar mi formacién el hecho de
incorporarme a un proyecto de investigacion y tener que adaptarme a él y a las
necesidades del mismo, puesto que en mi futura vida laboral es una situacién mas
que probable. Y, por supuesto, el poner en practica los conocimientos adquiridos
durante la carrera, que considero debe ser el principal objetivo de cualquier PFC.

1.2. Contexto de realizacion

El presente proyecto de fin de carrera se enmarca en temas de investigacion
llevados a cabo dentro del grupo de Arquitectura de Computadores (gaZ) de
la Universidad de Zaragoza. Parte de dicha investigacion consiste en desarrollar
metodologias para analizar el tiempo de ejecucién en el peor caso (WCET) y
proponer componentes hardware alternativos a los existentes cuyo analisis sea
factible.

Para analizar el WCET en un sistema de tiempo real son necesarios parametros
como el maximo numero de iteraciones de cada bucle. En caso de que el sistema

1.3 OBJETIVOS 2

final disponga de cache de datos, también resulta imprescindible conocer el retiso de
datos del programa a analizar.

En este PFC se obtienen dichos parametros desde dentro del compilador, lo cual
facilita el posterior andlisis y proporciona mayor independencia respecto al repertorio
de instrucciones final.

1.3. Objetivos

Los objetivos principales del proyecto son los siguientes:

1. Estudio del funcionamiento interno del compilador LLVM [1]
2. Localizacion de bucles y variables de iteracion en codigo LLVM

3. Backtracking de variables de iteraciéon para obtener el maximo nimero de
iteraciones en bucles cuando sea posible

4. Identificacién de retso espacial y temporal basico en accesos a memoria en
cédigo LLVM

5. Generacion de ensamblador ARM etiquetado con la informacién anterior
(maximo numero de iteraciones en bucles e informacion de retiso en accesos a
memoria)

1.4. Herramientas utilizadas

Para realizar el desarrollo software habria bastado simplemente con un editor de
texto y el entorno de desarrollo implementado por LLVM. Sin embargo, ha habido
muchas otras herramientas que han sido muy 1tiles durante todo el desarrollo. Estas
han sido las herramientas utilizadas:

Gedit 2.30.4 [2]: Este fue el editor elegido para codificar y mancjar los diferentes
tipos de archivos. Destaca por su simpleza y rapidez, y por sus multiples
funciones y plugins que ofrece a la hora de desarrollar. Y, sobre todo, por
poder manejar a la vez multiples tipos de archivos (C, C++, ensamblador

ARM, LLVM IR) con facilidad.

GCC 4.5 [3]: Compilador de C/C++ del proyecto GNU/Linux. Usado para
compilar las bibliotecas.

LLVM 2.8 [1]: Infraestructura de compilacién, junto con todas sus herramientas
llvm-gcce, llvim-dis, llc, opt. Estas herramientas permiten compilar programas,
pasar de un cédigo a otro y hacer pasadas de analisis y compilacién sobre el
coédigo.

1.5 FASES DEL TRABAJO 3

TEX Live 2009-11 [4]: Es una distribucién de WTEX para GNU/Linux, que permite

la facil descarga y actualizacion de paquetes y componentes. Fue necesaria
para el desarrollo de la presente documentacién.

Kile 2.1 beta 4 [5]: Es un editor de IXTEX para GNU/Linux, con licencia GPL,

disenado para trabajar con la distribucién texlive. Conjuntamente con éste,
fue utilizado para escribir el presente documento.

Gantt Project [6]: Herramienta de software libre para la gestion de proyectos,

1.5.

empleada en la generacién de diagramas de Gantt.

Fases del trabajo

Una vez fijados los objetivos del proyecto, era el momento de comenzar el trabajo.
Por supuesto, este debia tener un orden razonable, por lo que al principio el tiempo
se empled en adquirir los conocimientos que posteriormente se aplicarian durante
el desarrollo del proyecto. Las principales etapas del trabajo realizado fueron las
siguientes:

1.

Estudio de la infraestructura del compilador LLVM: Antes de empezar,
habia que conocer exactamente el funcionamiento de las diferentes fases del
compilador y sus herramientas.

Estudio de la referencia del lenguaje intermedio LLVM: Dado que el
trabajo se iba a centrar en el andlisis y la traduccién de este lenguaje, era
necesario aprender todo su repertorio de instrucciones, su estructura y logica.
En el Apéndice A se muestra una vision general del conjunto de instrucciones
y de los tipos de datos de LLVM, centrandose en las instrucciones utilizadas
en el proyecto.

Estudio de parametros de analisis y optimizacion: Ya que la principal
caracteristica del compilador LLVM es el amplio repertorio de parametros de
analisis y optimizacién, y cémo interactiian entre si, habia que comprender
ampliamente cada uno de éstos.

. Estudio de la API de LLVM y de cémo realizar una pasada de analisis

sobre el codigo LLVM IR: Para poder analizar las iteraciones y el reuso,
habia que estudiar en profundidad la API de LLVM, sus clases y métodos.
Asi como realizar una pasada de analisis usando las bibliotecas que habia que
crear para poder usar dicha API sobre las instrucciones LLVM IR.

. Estudio y comprensién del proceso de traduccién: esta fase se centré en

el estudio del capitulo referente a la traduccién del cédigo de representacion
intermedia de LLVM a cédigo ensamblador con el juego de instrucciones de
ARM [7]. En este punto, era basico comprender exactamente como se traduce
cada parte, para posteriormente poder realizar un diseno lo mas adecuado
posible a la hora de implementar las bibliotecas.

1.6 ESTRUCTURA DE LA MEMORIA 4

6. Fase de implementacién: una vez estudiados todos los aspectos previos, era
el momento de implementar la busqueda y analisis de las iteraciones y de los
accesos a memoria en LLVM IR y su traduccién a lenguaje ensamblador ARM.

1.6. Estructura de la memoria

El presente documento se encuentra dividido en dos partes. La primera es la que
engloba la memoria propiamente dicha, y la segunda parte esta constituida por una
serie de anexos.

La parte inicial esta estructurada de la siguiente forma:

= Capitulo 1. Introduccién: Es el presente capitulo. Como ya se ha visto, se
detallan brevemente los objetivos del proyecto, las herramientas utilizadas y
los contenidos de la memoria.

= Capitulo 2. Planificacion: Este capitulo contiene la distribucion de las
diferentes tareas a lo largo de la duracion del proyecto, y la organizacién de
las mismas.

= Capitulo 3. Conceptos: A lo largo de este capitulo se va a explicar el
comportamiento de la herramienta LLVM, y los resultados a los que se queria
llegar.

= Capitulo 4. Desarrollo: En este capitulo se recogen los conocimientos
adquiridos durante la realizacién del proyecto y que han sido utilizados para
la realizacién del mismo.

= Capitulo 5. Conclusiones: Este ultimo capitulo de la memoria es uno de
los més importantes de la misma. En él se resume el trabajo realizado, se
resaltan las dificultades encontradas y, por tltimo, se presentan una serie de
conclusiones.

La parte de los anexos tiene el siguiente contenido:

= Apéndice A. LLVM Intermediate Representation: En el primer anexo
se habla del lenguaje LLVM IR. Su conjunto de instrucciones, sus tipos de
datos y se explican en profundidad las instrucciones analizadas en el proyecto.

= Apéndice B. Guia de comandos LLVM: En este apéndice se detallan los
diferentes programas de linea de comandos que provee el proyecto LLVM. Se
detalla como compilar archivos fuente a diferentes lenguajes, como pasar de
un lenguaje a otro y cémo realizar pasadas de compilacién.

= Apéndice C. Pruebas: Aqui se presentan una serie de pruebas para la
verificacion del funcionamiento de la herramienta, analizando los resultados
obtenidos.

1.6 ESTRUCTURA DE LA MEMORIA 5

= Apéndice D. Manual de Uso: En este ultimo apéndice se explica céomo
compilar y usar las bibliotecas realizadas, como pasarlas a los ficheros a
analizar, y como borrar los ficheros resultantes de todas las compilaciones
anteriores.

Capitulo 2

Planificacion

A la hora de hablar del desarrollo del proyecto, podemos diferenciar entre el
ciclo de vida seguido durante el desarrollo del mismo y la planificaciéon del tiempo
empleado.

2.1. Ciclo de vida

Se puede considerar que durante este proyecto se siguié un ciclo de vida
incremental, puesto que los elementos se iban anadiendo secuencialmente, como
se explica en el Capitulo 4. Por ejemplo, se empez6 a trabajar con la cuenta de
iteraciones de los bucles, y hasta que no se comprobd el correcto funcionamiento de
la misma no se pasé a la siguiente fase. Ademds, para cada uno de los elementos
traducidos se sigui6 un ciclo de vida en cascada, como se puede ver en la Figura 2.1.
De esta forma se aseguraba que, si fallaba algo, era por el trabajo que se estaba
realizando en ese momento y no debido a un fallo en la implementaciéon de algin
apartado anterior. Logicamente, al estar todas las fases relacionadas entre si, en las
pruebas de cada elemento no se incluia solamente €él, sino todos los anteriores, para

comprobar que seguian funcionando adecuadamente.
Andlsis
Disefio

Andlisis Andlisis
Disafic Dissfio
Implementacién

Implementacién Implementacién

Cuenta de iteraciones Reuso espacial Relso tempaoral

Figura 2.1: Ciclo de vida incremental. No se muestran todos los elementos
del proyecto por claridad

2.2 PLANIFICACION DEL TRABAJO

2.2. Planificacion del trabajo

Este proyecto comienza en septiembre de 2010, cuando tras hablar con el
profesor Juan Segarra Flor me propone la realizacion del mismo. Se hizo un calculo
aproximado de la duracién del mismo de unos seis meses, asi que se puede considerar
que se ha alargado mas de lo deseado. Esto es debido a la dureza de la primera parte
del proyecto, la relativa al estudio de toda la documentacién, y de que se ha hecho
a tiempo parcial. Una vez comenzada la implementacién, el proyecto fue avanzando
a mas velocidad.

En la Figura 2.2 se puede ver el diagrama de Gantt final del proyecto. Como
se observa, no es hasta principios de marzo de 2011 cuando se empiezan realmente
a implementar las bibliotecas. Asimismo, conviene destacar que la tarea Andlisis
y optimizacion se extiende préacticamente a lo largo de todo el proyecto, puesto
que después del analisis inicial, para cada nuevo elemento se volvian a estudiar las
optimizaciones a la hora de implementarlo. Lo mismo ocurre con la tarea Pruebas,
aunque ésta empieza algo mas tarde y se extiende més alla de la fase de Imple-
mentacion, para comprobar que el funcionamiento era correcto una vez finalizada
esta tarea.

12010

bl

Estudio de LLVM

—

Estudio dz LLVM IR

(==

Analisis y oplimizaciin

b
et o s b e b ol e

[

Estudio APl de LLVM

Estudio de traduccion a ARM

Disefio

Implamentacion

Cugnta da Haraciones

Marcacidn loads y stores

Localizacion redso espacial

Localizacién raiso ternposal

Pruebas

Dogumentaciin

(1]
]

Figura 2.2: Diagrama de Gantt correspondiente a las fases de desarrollo

Capitulo 3

Conceptos

En este capitulo se recogen algunos de los conceptos mas importantes en los que
se basa este proyecto, para facilitar la comprension de la herramienta LLVM y su
funcionamiento, ademas de explicar con mayor profundidad lo que se ha conseguido.

3.1. Funcionamiento del compilador LLVM

El proyecto Low Level Virtual Machine (LLVM) es una coleccién de compiladores
modulares y reutilizables. Primeramente el compilador transforma el codigo fuente
de un programa (C, C++, Objetive C, etc.) en un lenguaje intermedio llamado
LLVM Intermediate Representation (IR).

La representacion del codigo LLVM esta disenada para ser utilizada de distintas
formas:

= Como un lenguaje intermedio en memoria del compilador

» Como wuna representacién bitcode en disco (ideal para una ejecucion
mediante maquina virtual Just-In-Time)

= Como un lenguaje legible por humanos

Esto permite transformacion, visualizacion y analisis del codigo.

La representacion del lenguaje es independiente de la maquina, de bajo nivel,
estructurada y fuertemente tipada, lo que le hace ser muy potente. Este codigo in-
termedio puede generar codigos ejecutables para procesadores reales, como se puede
ver en la Figura 3.1, entre los que estd ARM, en el cual nos vamos a centrar.

3.1 FUNCIONAMIENTO DEL COMPILADOR LLVM 9

LLVM IR

i

i
Code Generator 1F::::;

{Lowdeval Virtual Machina)

k. J

Figura 3.1: Arquitectura y médulos LLVM

En este proyecto nos vamos a basar principalmente en este lenguaje para analizar
los diferentes tipos de instrucciones, para calcular el nimero de iteraciones en
los bucles y los reusos tanto temporales como espaciales. Una vez calculados y
localizados se escribiran en el codigo ARM correspondiente.

Para entenderlo mejor, se va a mostrar el mismo cédigo de un bucle con dos
stores, tanto en lenguaje C como su transformacion en lenguaje LLVM IR. En la
Figura 3.2 vemos cémo seria el cédigo en lenguaje C, en la Figura 3.3 vemos cémo
serfa el mismo cddigo en lenguaje LLVM IR, y para terminar en la Figura 3.4 vemos
su transformacién en lenguaje ensamblador ARM.

for (varBucle=0;varBucle<Tam;varBucle++)
{
Vectorl[varBucle]=varBuclex*5;
Vector2[varBucle]=varBuclex*5;

Figura 3.2: Cédigo C de stores

En el cédigo representado en la Figura 3.3, bb indica la etiqueta de un bloque
bésico que contiene todas las intrucciones siguientes del ejemplo. La instruccién
getelementptr devuelve un puntero con la direccién de memoria. Las instrucciones
add y mul son la suma y la multiplicaciéon en cédigo LLVM, mientras que br es el
salto. La instruccion store es la instruccion str en cédigo ensamblador ARM.

3.2 BUCLES Y REUSOS EN cODIGO ARM 10

bb: ; preds = Jbb, %bb.nph9
%varBucle.08 = phi i32 [0, %bb.nph9 1, [%tmpl, %bb]
%hscevgepl2 = getelementptr [5000 x i132]* YVectorl, i32 0, i32 Y%varBucle.08
hscevgepl3 = getelementptr [5000 x i132]* YVector2, i32 0, i32 %varBucle.08
%tmp = mul i32 %varBucle.08, 5
store 132 Ytmp, i32% Yscevgepl2, align 4
store 132 Ytmp, i32* %scevgepl3, align 4
%tmpl = add nsw i32 YvarBucle.08, 1
%exitcondll = icmp eq i32 Ytmpl, 5000
br il %exitcondl1l, label %bb3, label %bb

Figura 3.3: Cédigo LLVM de stores

.LBBO_1: @ %bb
@ =>This Inner Loop Header: Depth=1
str r0, [r2], #4
str r0, [r1], #4
add r0, r0, #5
cmp r0, r3
bne .LBBO_1
@ BB#2: @ %bb.bb3_crit_edge
add 1r, sp, #1, 18 @ 16384
mov r4, #226, 30 @ 904
orr r4, r4, #1, 20 @ 4096
mov r5, sp
add r6, 1lr, #226, 28 @ 3616
1ldr r7, .LCPIO_O

Figura 3.4: Cédigo ARM de stores

3.2. Bucles y retisos en cédigo ARM

El cédigo ARM es el lenguaje ensamblador propio de la arquitectura ARM. El
cédigo escrito en lenguaje ensamblador es complejo ya que es una reprensentaciéon
del lenguaje maquina, con instrucciones, registros y posiciones de memoria del
procesador. Al tratarse de un nivel tan bajo y tratar con registros de la maquina
es muy dificil poder ver con claridad las iteraciones de los bucles y retisos mirando
directamente el codigo ARM.

El siguiente sencillo ejemplo en lenguaje C, Figura 3.5, nos permitird explicar a
que nos referimos, mostrando bucles y retisos espaciales. En el programa de ejemplo
podemos ver que hay dos vectores y un bucle que se va incrementando de uno en uno.
Dentro del bucle vemos que se produce una escritura en cada vector en la posicién
“i” que es la variable de iteracion. También vemos que el bucle se repetird cinco
mil veces. Sabemos, por tanto, que se van a producir reusos espaciales en los dos
vectores ya que se accede a una posicion del vector que se va incrementando de
manera constante a lo largo del bucle.

3.2 BUCLES Y REUSOS EN cODIGO ARM 11

#include <stdio.h>
#define Tam 5000

int main()

{
int i=0;
int A[Tam];
int B[Tam] ;

for (i=0;i<Tam;i++)
{
A[i]l=i%5;
B[i]=1i%5;

Figura 3.5: Codigo ejemplo en C

Sin embargo al compilarlo a cédigo ARM, esa informacién es muy dificil de ver,
como se puede observar en la Figura 3.6.

@ BB#0: @ %bb.nph9
stmdb sp!, {r4, r5, r6, r7, r8, 1r}
sub sp, sp, #113, 26 Q@ 7232
sub sp, sp, #2, 18 @ 32768
add 1r, sp, #1, 18 @ 16384
mov r0, #0
mov rl, sp
add r2, lr, #226, 28 @ 3616
mov r3, #106, 30 @ 424
orr r3, r3, #6, 20 @ 24576
.LBBO_1: @ %bb
@ =>This Inner Loop Header: Depth=1
str r0, [r2], #4
str r0, [ri1], #4
add r0, r0, #5
cmp r0, r3
bne .LBBO_1
@ BB#2: @ %bb.bb3_crit_edge
add 1lr, sp, #1, 18 @ 16384
mov rd4, #226, 30 @ 904
orr r4, r4, #1, 20 @ 4096
mov r5, sp
add r6, lr, #226, 28 @ 3616
1ldr r7, .LCPIO_O

Figura 3.6: Cédigo ejemplo en ARM

3.2 BUCLES Y REUSOS EN cODIGO ARM 12

Podemos ver que hay dos stores (instrucciones str) dentro de un bloque que se
repite (.LBB0_1), con un salto (bne) con comparaciéon (cmp). El bloque pertenece
a un bucle, pero no podemos conocer facilmente los retisos de esos stores ni las
repeticiones que hara dicho bloque. El objetivo del proyecto es precisamente mostrar
claramente en el cédigo ARM este tipo de informacion de forma clara y transparente.
La siguiente figura muestra el resultado final en codigo ARM después de pasar las
bibliotecas.

.LBBO_1: @ %bb
@ Numero de vueltas=5000
@ =>This Inner Loop Header: Depth=1
str r0, [r2], #4 @ Store var "A". Reuso espacial. Var iteracion "i".
Desplazamiento con "stride" 1
str r0, [r1], #4 @ Store var "B". Reuso espacial. Var iteracion "i".
Desplazamiento con "stride" 1
add rO, r0, #5

cmp r0, r3
bne .LBBO_1
Q@ BB#2: @ %bb.bb3_crit_edge

add 1r, sp, #1, 18 @ 16384

mov r4, #226, 30 @ 904

orr r4, r4, #1, 20 @ 4096

mov r5, sp

add r6, 1lr, #226, 28 @ 3616

1ldr r7, .LCPIO_O @ Load Constante .LCPIO_O

Figura 3.7: Cédigo ejemplo final ARM

Capitulo 4

Desarrollo

Este capitulo describe cémo se llevé a cabo el desarrollo del proyecto y las
decisiones mas importantes tomadas durante el mismo.

4.1. Analisis y diseno

Durante toda la fase de analisis y diseno, se trabajo estrechamente con el profesor
Juan Segarra Flor para definir bien los siguientes puntos:

= Alcance del Proyecto: Se definié, describié y preparé el escenario de
implementacion.

= Analisis del Proyecto: Se especificaron las necesidades actuales del proyecto,
y el encaminamiento para el futuro de la aplicacion.

= Diseno del Proyecto: Se describié su solucién y las actividades de
implementacion y testeo que se iban a hacer.

El objetivo de esta fase era poner en firme cudles eran exactamente las
especificaciones del proyecto, la entrega y la preparaciéon de la implementacién.

4.1.1. Alcance del proyecto

Se empezo a trabajar para determinar el alcance de la implementacion del
proyecto. En este paso, se determind lo que cubriria el proyecto, y cémo se ges-
tionaria el tiempo para ello.

El resultado final de esta fase, fue la generacion de dos documentos:

= La propuesta del proyecto, que contiene el alcance descrito para el mismo.

= Una primera planificaciéon de la distribucion del proyecto.

4.1 ANALISIS Y DISENO 14

4.1.2. Analisis del proyecto

En la fase del andlisis se recogieron los requisitos necesarios. Para esto, se
qued6 varios dias con el profesor Juan Segarra Flor, y asi se delimitaron las
necesidades halladas hasta el momento, las cuales cambiarian muy poco en todo
el proceso.

Los requerimientos mas importantes fueron:

Localizar los bucles dentro de un cédigo fuente.

Calcular el nimero de iteraciones maximo, en tiempo de compilacion, de cada
bloque de instrucciones.

Hallar el retso espacial.

Encontrar el retso temporal.

Mostrar todo lo anterior en el fichero ensamblador de ARM.

4.1.3. Diseno del proyecto

Posteriormente, una vez establecidos los requisitos y hecha la propuesta, se
disené la biblioteca y sus dependencias.

Se llevé a cabo un mapeo de las tecnologias disponibles para su ejecucion y
un profundo estudio de la herramienta LLVM. Se siguieron haciendo reuniones para
asegurar si el camino llevado hasta el momento era el correcto y para resolver dudas.

Se fij6 que habia que realizar una biblioteca que leyera el cédigo intermedio
LLVM IR y que usdndola mediante una pasada de andlisis sobre un programa pu-
diéramos leer los datos de sus instrucciones. Asi se tendria acceso a la secuencia de
instrucciones y podriamos analizarlas en profundidad.

Se establecié como habia que realizar dicha biblioteca y las opciones del makefile.
Se describieron los archivos makefile, tanto de la biblioteca como de los programas a
analizar. Se establecieron también los comandos para poder realizar una pasada de
andlisis-optimizacién usando la biblioteca sobre el codigo LLVM IR. Se estudiaron
todos los parametros de optimizacién de LLVM y los diferentes niveles de opti-
mizacion a la hora de compilar.

Se realizaron varios ejemplos basicos de bibliotecas que realizaban un recorrido
bésico sobre las instrucciones LLVM IR. Se comprob6 asi que teniamos acceso a
dichas instrucciones y sus pardmetros. Se fijaron también los diferentes tipos de
programas-pruebas en C que habria que realizar para probar nuestra biblioteca:
diferentes tipos de bucles (while, for, etc), acceso a vectores sobre la variable de
iteracion en los bucles y varios programas completos de prueba.

4.2 IMPLEMENTACION 15

Es gracias a esta fase y a la de andlisis, que la fase de implementacion ha sido
mas corta de lo que se esperaba, teniendo una duracién final esta tultima de dos
meses a tiempo parcial, como se puede ver en la Seccién 2.2.

4.2. Implementacion

Fue requisito del proyecto que el lenguaje de desarrollo fuese C++, ya que es el
lenguaje del cédigo fuente de las bibliotecas de LLVM.

Para poder entender bien la implementacién, se va a dividir esta seccion en
tres partes. En la primera, se va a explicar como se construyo la biblioteca
para la cuenta de iteraciones de bloques. En la segunda, se mostrara cémo se
cred la biblioteca libMarcarLoadsStores. Para finalizar, se detallara cémo se pasaron
los retsos temporales y espaciales marcados en el cédigo LLVM IR al fichero
ensamblador ARM, y varios detalles adicionales que se hicieron para complementar
el trabajo realizado.

4.2.1. Cuenta de iteraciones

Después de estudiar el funcionamiento de LLVM y su API se decidié realizar
primero el conteo de iteraciéon de los bucles. Para ello, hubo que realizar una
biblioteca, ya que se ésta se puede cargar en una pasada de analisis. Por consiguiente,
se creo la biblioteca libcuentaBucles, que después se pasaria a llamar libbuclesReusos.

Para poder utilizarla, hubo que usar la herramienta “opt” que realiza pasadas
de analisis y optimizacion sobre cédigo LLVM IR, y a la que se le pueden anadir
muchos pardmetros segin la necesidad que se tenga.

Para hallar el nimero de veces que se pasa por un bloque de instrucciones, fue
de gran ayuda la clase “LoopInfo” de la API. Gracias a ella, se podia acceder a la
informacién de cada bucle. Dentro de esa informacién, destacan los siguientes datos:

= Etiqueta del bloque de instrucciones
= Numero de vueltas

= Variable de iteracién
Ademas de cada una de las instrucciones incluidas en cada bloque.

De gran importancia, fue la optimizaciéon “indvars”. Gracias a esto se pudieron
convertir todos los bucles en bucles naturales con variable de iteracién canonica, es
decir, que todos empezaran en cero y fueran incrementandose de uno en uno, como
se muestra en la siguiente figura.

4.2 IMPLEMENTACION 16

10; i < 5000; i+=2) => for (i = 0; i < 2495; i++)
7; i*i < 1000; i++) => for (i = 0; i !'= 25; i++)

for (i
for (i

Figura 4.1: Optimizacién indvars

Con esto, ya se podia saber las iteraciones que se producirian en cada bucle y
su etiqueta. El nombre de las etiquetas en cédigo LLVM IR y en cédigo ARM son
idénticos, por lo cual, se podia escribir en el fichero ARM el nimero de vueltas
calculado.

En la siguiente figura podemos ver un ejemplo de bucles anidados:

.LBBO_1: %bb2.preheader
Numero de vueltas=5000
=>This Loop Header: Depth=1

Child Loop BBO_2 Depth 2

©@ © © ©

mov r7, #0

.LBBO_2: %bbl

Numero de vueltas=3000
Parent Loop BBO_1 Depth=1

=> This Inner Loop Header: Depth=2

©@ © 6 ©

mov rl, r7
mov r0, r5
add r7, r7, #1
bl printf

cmp r7, r6
bne .LBBO_2

Figura 4.2: Ejemplo de cuenta de iteraciones

4.2.2. Marcacion de loads y stores

El siguiente paso fue localizar los reusos, tanto temporales como espaciales, en
el cédigo LLVM IR.

Gracias a la biblioteca creada se podia acceder a las instrucciones y comprobar
si éstas eran loads o stores. También, se podia saber cudl era la variable que se
cargaba en cada momento, siempre hablando en tiempo de compilacion, y si ésta se
incrementaba con la variable de iteracién. Pero como el objetivo del proyecto era
localizarlos en el ARM aqui estuvo el primer gran problema.

El cédigo LLVM IR usa nombres para variables mientras que el cédigo ARM sélo
usa los registros (rl, r2, r3, etc). Por este motivo, no se podia saber qué instruccion
ARM correspondia con cada load o store localizado en el cédigo LLVM IR.

Primero se pensé en anadir anotaciones o comentarios en las instrucciones
del codigo LLVM para que al compilarlo a cédigo ARM estuvieran alli en las

4.2 IMPLEMENTACION 17

instrucciones correspondientes, pero los comentarios se eliminaban en el proceso
de traduccion.

Después de mucho investigar, se comprobé6 que la informacién del tipo
“metadata” de LLVM (Figura 4.3) disenada para DEBUG, y disponible desde la
version 2.7 de LLVM, se transformaba en comentarios en el cédigo ARM (Figura 4.4)
a la hora de compilar. Escribiendo un metadata en una instruccién LLVM se podia
saber con qué instruccion o instrucciones se correspondia en el cédigo ARM.

%tmp2 = load i32% Yscevgep, align 4, !dbg !7

%tmp4 = load i32% YscevgeplO, align 4, !dbg !8

Figura 4.3: Ejemplo de debug en loads y stores
declare i32 @printf (i8+* nocapture, ...) nounwind
'1 = metadata !{i32 524329, metadata !"load", null, null}

12 metadata !'{i32 524329, metadata !"store", null, null}

13 = metadata !{i32 524299, null, i32 6, i32 0, metadata !1, i32 0}
14 = metadata !{i32 524299, null, i32 6, i32 0, metadata !2, i32 0}
15= metadata !{i32 0, i32 0, metadata '4, null}

16= metadata !'{i32 1, i32 0, metadata '4, null}

17= metadata !{i32 0, i32 0, metadata !3, null}

18= metadata !{i32 1, i32 0, metadata '3, null}

Figura 4.4: Ejemplo de metadatas

Asi pues, habia que escribir los metadatas en los loads y stores del cédigo LLVM
IR y después compilarlo para acceder a dicha informacion en el ARM. Como habia
que marcar los loads y stores, y después, compilar para obtener el ARM con la in-
formacién necesaria para poder relacionar las instrucciones, se optd por crear dos
bibliotecas en vez de una.

Por este motivo, se desarrollé una nueva biblioteca llamada libmarcarLoadsStores
que se encargaria de escribir los metadatas correspondientes en los loads y stores
del cédigo LLVM. Asi, cuando se compilara el cédigo pasandole esta biblioteca, ya
tendriamos el cédigo LLVM con metadatas y faltaria pasarlo a codigo ARM. Es
entonces, cuando se decidié que la biblioteca llamada libcuentaBucles, mencionada
anteriormente, también fuera la encargada de realizar todo el proceso de comprobar
los diferentes retisos de los loads y stores (temporal y espacial), y paso a llamarse
libbuclesReusos.

4.2.3. Localizaciéon de retsos espaciales

El retso espacial que se ha calculado en este proyecto se centra en el acceso a
diferentes posiciones de vectores, matrices o estructuras, en especial, cuando estas
posiciones dependen directa o indirectamente de la variable de iteracién de los bucles.

4.2 IMPLEMENTACION 18

Ya que se habia calculado el nimero de iteraciones en los bucles y se tenia la
variable de iteracion, se optd por continuar con la localizacion de retsos espaciales.

Para continuar, lo primero que habia que entender era lo que significaba cada
parametro de las instrucciones, en particular las de loads y stores. Estas instrucciones
tienen dos parametros. Uno es la variable o el valor de lectura, o de escritura,
dependiendo de si es un load o un store. El otro parametro es, en el caso de los
retisos espaciales, un puntero a una posicién de un vector. Dicho puntero es el que
nos interesaba analizar con profundidad.

Los punteros también tienen varios parametros (ver Figura 4.5). El primero es el
vector al que se quiere acceder, y los demés parametros son variables, instrucciones
o valores que nos indican los indices de desplazamiento sobre éste. Nos interesaba
saber el nombre de la variable del vector y los pardmetros de desplazamiento.

El principal objetivo aqui era saber cuantos pardmetros tenia cada puntero
de los loads y stores. Si tenia mas de un parametro, estdbamos ante un vector
multidimensional o una estructura.

%scevgep

= getelementptr [100 x [100 x i32]]* @A, i32 0, i32 %i.119, i32 %k.016
%scevgep2b =

getelementptr [100 x [100 x i32]]1* @B, i32 0, i32 %k.016, 132 %j.117

Figura 4.5: Ejemplo de puntero con varios pardmetros

Aunque no fue un requisito inicial, se prefirié dar una explicaciéon mas detallada
de la instruccién a analizar. Por lo cual, ademaés de avisar que habia retso espacial, a
partir de ahora, también se indicaria si era de una o multiples variables, y el nombre
de las mismas o el valor, seguin el caso, como se muestra en la figura Figura 4.6.

ldr r6, [rd4, -ri12] @ Load var "A". Reuso espacial. Multiples variables "i" "k"
ldr r7, [r2], #400 @ Load var "B". Reuso espacial. Multiples variables "k" "j"

Figura 4.6: Ejemplo de load con multiples variables

En el caso de que fuera una sola variable la del desplazamiento sobre el puntero,
se acordd que se mostraria el “stride”, es decir, la separacion entre una posiciéon y la
siguiente a la que se accediera, siempre expresado en elementos del tipo declarado
en el vector.

str r0, [r2], #4 @ Store var "A". Reuso espacial. Var iteracion "i".
Desplazamiento con "stride" 1
str r0, [r1], #4 @ Store var "B". Reuso espacial. Var iteracion "i".

Desplazamiento con "stride" 1

Figura 4.7: Ejemplo de store con una variable

4.2 IMPLEMENTACION 19

Asi pues, hubo que comprobar las operaciones realizadas sobre esa variable dentro
del bucle. Se vio que todas las variables de incremento constante tenian relacion
con el phinode® del bucle. Entonces, lo que se tenia que hacer era seguir todas las
operaciones que se hacian sobre dicha variable hasta llegar a su phinode.

Debido a que se estaba usando la optimizacion “indvars”, la variable directa de
todos los phinodes se incrementaba de uno en uno, es decir, tenia “stride” uno. Por
lo cual, teniamos una referencia clara.

Por esto se implementé una funcién en la biblioteca que recorriera todas las
instrucciones realizadas sobre una variable, y sus resultados, hasta llegar al phinode.
Aqui surgieron dos posibles resultados:

» [ncremento constante

s Incremento variable

Dentro de los casos de incremento constante, cualquier variable que apuntara al
phinode directamente tendria “stride” uno. Por el contrario, en muchas ocasiones, se
realizan operaciones (desplazamiento de bits, multiplicacién, etc) sobre el phinode,
asi que habia que calcular el valor de dichas operaciones en base al valor uno del
phinode, para poder saber su valor. Ademds, se indicé en el cédigo ARM, que el
incremento era debido a una variable calculada basada en la variable de iteracion.

ldr r1, [r5], #20 @ Load var "A". Reuso espacial.
Var calculada basada en var iteracion "i".
Desplazamiento con "stride" 5

Figura 4.8: Ejemplo de incremento constante

Por otro lado, estan los resultados en los que el incremento no es constante a
lo largo del bucle. Esto sucede cuando la variable, o las instrucciones sobre ésta no
apuntan al phinode o apuntan a un phinode que no es el principal del bucle. Aqui,
hubo que indicar en el cédigo ARM que el incremento no era constante.

ldr r1, [r7, r5, 1sl #2] @ Load var "B". Reuso espacial. Var iteracion "i"
Desplazamiento con "stride"
no constante

Figura 4.9: Ejemplo de incremento variable

Ver Seccién A.3 para més detalles

4.2 IMPLEMENTACION 20

4.2.4. Localizacion de retsos temporales

Para acabar el proyecto sélo faltaba localizar los retsos temporales. Lo primero
que hubo que hacer fue extraer los nombres de las variables de cada retuso temporal
del cédigo LLVM IR para su posterior indicacion en el codigo ARM.

En este tipo de retsos, se decidié mostrar el desplazamiento de bytes, aunque no
fuera requisito incial. Este desplazamiento se extrajo directamente del cédigo ARM.

strb r2, [r12], #1 @ Store var "outp.133.i". Desplazamiento 1 bytes

Figura 4.10: Ejemplo de retso temporal

Posteriormente, se comprobd que en el cédigo ARM existian mas loads y stores
que en el cédigo LLVM IR. Esto es debido a que LLVM IR, al no trabajar con
registros, no tiene ninguna limitacion, mientras que ARM tiene un nimero de
registros limitado, por lo cual necesita, en algunas ocasiones, reutilizarlos y crear
mas instrucciones. Igualmente pasa con las instrucciones de pila.

Por consiguiente, hubo que indicar en estos loads y stores el tipo de retso y el
desplazamiento. De igual modo, se indicaron los loads y stores en el caso de las
constantes del codigo ARM.

str r2, [sp] @ Store de pila. Desplazamiento O
str r3, [sp, #8] @ Store de pila. Desplazamiento 8 bytes

Figura 4.11: Ejemplo de store de pila

1ldr r1, .LCPIO_O @ Load Constante .LCPIO_O

Figura 4.12: Ejemplo de load de constante

4.3 PRUEBAS 21

4.3. Pruebas

Las pruebas del sistema son una parte muy importante del desarrollo software, ya
que permiten comprobar el correcto funcionamiento del sistema. Estas pruebas han
sido desarrolladas durante todo el proceso de desarrollo del proyecto y no solamente
al final, para poder solucionar el mayor nimero de errores posibles en cada etapa,
y no ir arrastrandolos a medida que se va avanzando.

Las diferentes pruebas realizadas han sido las siguientes:

Pruebas de unidad: En estas pruebas se han comprobado todas y cada una de las
funcionalidades de las bibliotecas, verificando el comportamiento esperado de
todos los métodos.

Pruebas de integracion: Se ha comprobado exhaustivamente la combinacién de las
dos bibliotecas, constatando el correcto funcionamiento del proceso global.

En el Apéndice C se pueden ver algunos ejemplos de pruebas que se han realizado
para la comprobacién del desempeno de las bibliotecas.

Capitulo 5

Conclusiones

En este capitulo se resumira el trabajo realizado en este proyecto. Ademas de la
implementacion, se senalaran también las dificultades més destacables, para finalizar
con las conclusiones obtenidas.

5.1. Dificultades encontradas

La labor de cumplir los objetivos marcados al principio del proyecto y plasmados
en la propuesta no ha sido facil. Antes de empezar sabia que llegar a comprender
todo el entramado de LLVM llevaria mucho trabajo, pero ademas la gran cantidad
de documentacion sobre muchos aspectos del mismo y la escasez de ejemplos hicieron
que fuese mas complicado de lo previsto.

El primer obstaculo destacable fue comprender toda la teoria relacionada con el
compilador LLVM, tanto del frontend como del backend. El primer paso que se dio
fue recordar los conocimientos ya adquiridos sobre lenguaje ensamblador y, ademas,
adquirir algunos nuevos, propios del lenguaje de cédigo intermedio de LLVM. Sin
embargo, la parte mas complicada de esto fue la comprension de la traduccion de
codigo de alto nivel (por ejemplo, cédigo en lenguaje C), al cédigo intermedio de
LLVM, ya que hubo que estudiar varios articulos.

Una vez comprendida esta traduccién y la organizacién del cédigo, era la hora
de empezar a entender como se pasaba del cédigo LLVM a cédigo ensamblador ARM.

Otro aspecto importante fueron las optimizaciones precisas necesarias tanto a la
hora de compilar los archivos fuente de las pruebas (-O0...-O3) como a la hora de
hacer la pasada de optimizacion sin que afectara demasiado a las instrucciones tanto
en LLVM IR como en ARM. Hubo que investigar mucho las diferentes opciones del
optimizador de LLVM.

Por tltimo, a la hora de implementar las bibliotecas, también aparecieron
dificultades. La mas destacable, por la cantidad de problemas que causé, fue el paso
de los comentarios de las instrucciones del cédigo LLVM IR al cédigo ensamblador

5.2 TRABAJO FUTURO 23

de ARM. Al usar, este tultimo, registros en vez de variables, no estaba claro
qué instruccion correspondia con cada una del anterior cédigo. Al final, se opté por
utilizar los metadatas de depuracién para poder relacionarlas.

5.2. Trabajo futuro

El trabajo futuro que se podria realizar esta dividido en dos ramas:

= Analizar otros aspectos de un programa: Ya que tenemos acceso facil a las
instrucciones LLVM IR y su correspondencia en ensamblador, seria posible
estudiar y anotar otro tipo de aspectos de los programas. Por ejemplo, el
nimero de variables usadas, nimero de usos de esa variable, tamano que
ocupan en memoria dichas variables, diferentes saltos entre bloques. En
definitiva cualquier dato del flujo del programa, de las variables y de las
diferentes operaciones como multiplicaciones, sumas, llamadas a funciones,
etc.

= Permitir trabajar con otras arquitecturas: Poder trabajar con otras arquitectu-
ras y ensambladores diferentes de ARM como SPARC, MIPS, x86. Anotando
en sus correspondientes archivos los diferentes datos calculados.

A parte de todo esto, se van a distribuir los codigos fuentes de las bibliotecas
con licencia de software libre, para que se puedan utilizar en otras investigaciones.

5.3. Conclusiones

Durante la realizacién de este proyecto se han puesto en practica parte de los
conocimientos adquiridos durante la carrera, asi como otros muchos que han sido
adquiridos especialmente para él.

Considero especialmente interesante la practica adquirida en el desarrollo en
C++, ya que es el primer lenguaje orientado a objetos (OO) que conozco en
profundidad, y uno de los mas extendidos. Asimismo, el mayor conocimiento del
compilador LLVM.

También he aprendido que una correcta planificacion y documentacion inicial es
muy importante, especialmente cuando se habla de proyectos de cierta envergadura.
Si no hubiera tanta documentacion sobre LLVM me hubiera encontrado con muchos
problemas que hubieran requerido emplear mucho tiempo en solucionarlos.

Al ser unas bibliotecas desarrolladas para ser integradas en un proyecto de inves-
tigacion que llevan varias personas, ha tenido una gran importancia que las salidas
fueran claras y concisas, segun los requerimientos con el méaximo detalle posible.
Puede ser muy desesperante para alguien que contintda, o que integra, un proyecto
encontrar cosas que no comprende y tener que estudiar casi todo el cédigo para

5.4 VALORACION PERSONAL 24

cambiar los datos de salida a lo que necesita.

Por todo esto, creo que este proyecto ha contribuido a prepararme para un
futuro entorno laboral, en el que espero poder poner en practica algunos de los
conocimientos aprendidos aqui.

5.4. Valoracion personal

Una vez llegado al final de este proyecto, me gustaria hacer una
valoracion personal de lo que ha supuesto todo este tiempo. Respecto al trabajo
realizado, me siento muy satisfecha por los resultados conseguidos. Los objetivos
que se marcaron en un principio han sido superados, e incluso se ha realizado una
pequena ampliacion de éstos llevando a realizar un trabajo muy completo.

El hecho de realizar un trabajo que puede ayudar a la investigacién y que al final
del mismo va a ser utilizado, es una experiencia muy enriquecedora. Anadir que me
ha servido para ver muchas partes de la arquitectura de computadores que se dan
sélo en teoria.

A nivel personal, la realizacién de este proyecto me ha ensenado muchisimo. He
aprendido por primera vez a afrontar un proyecto de esta envergadura
de principio a fin, pasando por todas las fases del mismo. He aprendido a aplicar
y reforzar conocimientos de la carrera, asi como muchisimos conceptos nuevos no
ensenados en ella. Pero lo mas importante que he aprendido es que gracias al trabajo
diario y a la lucha continua se consigue llegar a la meta.

Ademas, he sabido aprovechar la experiencia y sabiduria de mi profesor que me
ha ensenado y guiado en los momentos dificiles.

