
Proyecto Fin de Carrera de Ingenieŕıa en Informática

DESARROLLO DE FASES DE
COMPILACIÓN

PARA DESCUBRIR EL TIEMPO
DE EJECUCIÓN DE

PEOR CASO

Marta López Ara

Director: Juan Segarra Flor

Área de Arquitectura y Tecnoloǵıa de Computadores
Departamento de Informática e Ingenieŕıa de Sistemas

Escuela de Ingenieŕıa y Arquitectura
Universidad de Zaragoza

Septiembre 2011

Curso 2010 / 2011

Agradecimientos

Una vez llegado al final de este proyecto, me gustaŕıa expresar mi agradecimiento
a todas aquellas personas que de una manera u otra han contribuido a su realización.

En primer lugar a mi director de proyecto, Juan Segarra Flor, por conseguir que
llegara hasta aqúı gracias a sus continuas explicaciones, su apoyo y su confianza
depositada en mı́.

A Raúl por su inestimable ayuda, paciencia, tranquilidad, por estar ah́ı cuando
las fuerzas empiezan a flaquear y por infundir el color necesario para seguir traba-
jando cuando se ve todo de negro.

A mi padre y mi madre, por el apoyo, cariño y comprensión que me han dado
durante todos estos años.

A mis abuelos, por su amor incondicional.
A todos mis amigos de la universidad, por todos estos años compartidos juntos

que nunca olvidaré.
A mis amigos: compañeros de la escuela de idiomas, postgrado, monitores de

tiempo libre y alguno más que me puedo dejar en el tintero, porque gracias a su
amistad me han aportado algo más que buenos momentos.

¡¡Muchas gracias a todos!!

Desarrollo de fases de compilación para

descubrir el tiempo de ejecución de peor

caso

RESUMEN

Los dispositivos con requisitos de tiempo real son cada vez más utilizados, por
ejemplo en automóviles (e.g. ABS), aeronáutica, electrodomésticos, etc. Para poder
planificar los requisitos temporales de cualquier tarea, el primer paso es conocer (una
cota superior de) su tiempo de ejecución en el peor caso (worst case execution time
o WCET). Este cálculo depende de factores hardware y software, como por ejemplo
de las memorias cache y del compilador utilizado, y debe conocerse previamente a
su ejecución. Además, requiere información que maneja internamente el compilador
pero no queda expĺıcita en el ejecutable final, con lo que recuperarla es muy complejo.

Cuanto más ajustada sea la cota superior obtenida, mejor se aprovecharán los
recursos del sistema, aumentando aśı la planificabilidad del mismo.

Por todo lo anterior, se ha realizado este proyecto de fin de carrera, cuyo objetivo
principal ha sido la implementación de una serie de pasos (fases en la terminoloǵıa
usual de compiladores) que obtengan la información necesaria directamente en
el proceso de compilación: reúsos de bloques de memoria y número máximo de
iteraciones en bucles. Para ello se ha utilizado la infraestructura de compilación
Low Level Virtual Machine (LLVM).

Se han creado dos bibliotecas para ayudar al cálculo de la cota superior de los
procesos. Estas bibliotecas van a sacar a relucir los accesos a memoria que existen,
pudiendo aśı saber el reúso de variables y constantes, tanto temporal como espacial,
y el número de veces que se ejecuta cada bucle de instrucciones como máximo. En
particular:

La biblioteca libmarcarLoadsStores localiza en el código intermedio de LLVM
los accesos a memoria que existen (loads y stores) añadiéndoles los metadatas de
depuración para su posterior reconocimiento con sus correspondientes instrucciones
en el fichero que contiene el código ensamblador ARM.

La biblioteca libbuclesReusos analiza en profundidad el código LLVM Intermedia-
te Repesentation (IR) en busca de iteraciones y subiteraciones, indicando en fichero
ARM el máximo número de veces que se puede ejecutar un bloque básico de
instrucciones, siempre que se sepa este dato en tiempo de compilación. Además,
recoge los datos de los accesos a memoria, para poder identificar el reúso espacial y
temporal, la variable o constante a la cual se refiere, y el desplazamiento que existe.

Índice general

1. Introducción 1

1.1. Motivación . 1
1.2. Contexto de realización . 1
1.3. Objetivos . 2
1.4. Herramientas utilizadas . 2
1.5. Fases del trabajo . 3
1.6. Estructura de la memoria . 4

2. Planificación 6

2.1. Ciclo de vida . 6
2.2. Planificación del trabajo . 7

3. Conceptos 8

3.1. Funcionamiento del compilador LLVM 8
3.2. Bucles y reúsos en código ARM . 10

4. Desarrollo 13

4.1. Análisis y diseño . 13
4.1.1. Alcance del proyecto . 13
4.1.2. Análisis del proyecto . 14
4.1.3. Diseño del proyecto . 14

4.2. Implementación . 15
4.2.1. Cuenta de iteraciones . 15
4.2.2. Marcación de loads y stores 16
4.2.3. Localización de reúsos espaciales 17
4.2.4. Localización de reúsos temporales 20

4.3. Pruebas . 21

5. Conclusiones 22

5.1. Dificultades encontradas . 22
5.2. Trabajo futuro . 23
5.3. Conclusiones . 23
5.4. Valoración personal . 24

ÍNDICE GENERAL iv

A. LLVM Intermediate Representation 26

A.1. Visión general del juego de instrucciones 26
A.2. Tipos primarios y derivados . 27
A.3. SSA form (PHINODE) . 28
A.4. Acceso a direcciones de memoria . 29
A.5. Lectura y escritura en memoria . 30
A.6. Ejemplo completo comentado . 31

B. Gúıa de comandos LLVM 32

C. Pruebas 35

C.1. Cuenta de iteraciones . 35
C.2. Marcación de loads y stores . 47
C.3. Localización de reúsos temporales y espaciales 51

D. Manual de Uso 69

D.1. Introducción . 69
D.2. Requerimientos Software . 69
D.3. Compilación de las bibliotecas . 70
D.4. Compilación de los ficheros a analizar 71
D.5. Ficheros Resultado . 75

Bibliograf́ıa 76

Índice de figuras

2.1. Ciclo de vida incremental. 6
2.2. Diagrama de Gantt correspondiente a las fases de desarrollo 7

3.1. Arquitectura y módulos LLVM . 9
3.2. Código C de stores . 9
3.3. Código LLVM de stores . 10
3.4. Código ARM de stores . 10
3.5. Código ejemplo en C . 11
3.6. Código ejemplo en ARM . 11
3.7. Código ejemplo final ARM . 12

4.1. Optimización indvars . 16
4.2. Ejemplo de cuenta de iteraciones . 16
4.3. Ejemplo de debug en loads y stores 17
4.4. Ejemplo de metadatas . 17
4.5. Ejemplo de puntero con varios parámetros 18
4.6. Ejemplo de load con múltiples variables 18
4.7. Ejemplo de store con una variable . 18
4.8. Ejemplo de incremento constante . 19
4.9. Ejemplo de incremento variable . 19
4.10. Ejemplo de reúso temporal . 20
4.11. Ejemplo de store de pila . 20
4.12. Ejemplo de load de constante . 20

A.1. Código ejemplo en C . 31
A.2. Código ejemplo comentado en LLVM IR 31

C.1. Código del fichero bucle.c . 36
C.2. Bucle anidado . 37
C.3. Bucles con incremento constante . 37
C.4. Bucle con incremento variable . 37
C.5. Bucles con decremento constante . 37
C.6. Fichero bucle.ll . 38
C.7. Salida por pantalla al compilar bucle.c 41
C.8. Parte del fichero bucle.arm.opt.s que nos muestra la salida para los

bucles anidados . 42

ÍNDICE DE FIGURAS vi

C.9. Parte del fichero bucle.arm.opt.s que nos muestra la salida para
distintos bucles . 43

C.10.Parte del fichero bucle2.c . 44
C.11.Parte del fichero bucle2.arm.opt.s . 44
C.12.Parte del fichero bucle3.c . 45
C.13.Parte del fichero bucle3.arm.opt.s . 45
C.14.Ejemplo de bucle con instrucción do 45
C.15.Tranformación de bucle con instrucción do en lenguaje ARM 46
C.16.Ejemplo de prueba para marcación de loads y stores 47
C.17.Salida por pantalla al compilar el fichero stores.c 48
C.18.Fichero storesMarcado.ll . 49
C.19.Fichero stores.ll . 50
C.20.Parte del fichero stores.arm.opt.s . 51
C.21.Fichero pruebaStores.c . 52
C.22.Fichero pruebaStores.arm.opt.s . 55
C.23.Fichero jfdctint.c . 61
C.24.Fichero jfdctint.arm.opt.s . 68

D.1. Ejemplo de compilación de bibliotecas 70
D.2. Comandos para compilar las bibliotecas 70
D.3. Contenido de la carpeta . 71
D.4. Código ejemplo de Makefile . 73
D.5. Makefile de ”Prueba1” . 74

Caṕıtulo 1

Introducción

En este caṕıtulo se comentarán los aspectos más generales del presente Proyecto
Fin de Carrera, entre los que se encuentran: la motivación para la consecución
del mismo, su contexto de realización, los objetivos definidos en la propuesta, las
herramientas que se han utilizado durante su elaboración, las fases en las que se
ha dividido el trabajo y, por último, una breve explicación de la estructura del
documento.

1.1. Motivación

A la hora de elegir un proyecto, fueron varios los motivos que me hicieron
decantarme por éste. Para empezar, el hecho de contribuir a la utilización de
herramientas de software libre, en particular el proyecto Low Level Virtual Machine
(LLVM). Otro aspecto interesante fue la posibilidad de ampliar mis conocimientos
de ingenieŕıa del software, aśı como de los lenguajes ensamblador y C++.

También consideré interesante para completar mi formación el hecho de
incorporarme a un proyecto de investigación y tener que adaptarme a él y a las
necesidades del mismo, puesto que en mi futura vida laboral es una situación más
que probable. Y, por supuesto, el poner en práctica los conocimientos adquiridos
durante la carrera, que considero debe ser el principal objetivo de cualquier PFC.

1.2. Contexto de realización

El presente proyecto de fin de carrera se enmarca en temas de investigación
llevados a cabo dentro del grupo de Arquitectura de Computadores (gaZ) de
la Universidad de Zaragoza. Parte de dicha investigación consiste en desarrollar
metodologias para analizar el tiempo de ejecución en el peor caso (WCET) y
proponer componentes hardware alternativos a los existentes cuyo análisis sea
factible.

Para analizar el WCET en un sistema de tiempo real son necesarios parámetros
como el máximo número de iteraciones de cada bucle. En caso de que el sistema

1.3 Objetivos 2

final disponga de cache de datos, también resulta imprescindible conocer el reúso de
datos del programa a analizar.

En este PFC se obtienen dichos parámetros desde dentro del compilador, lo cual
facilita el posterior análisis y proporciona mayor independencia respecto al repertorio
de instrucciones final.

1.3. Objetivos

Los objetivos principales del proyecto son los siguientes:

1. Estudio del funcionamiento interno del compilador LLVM [1]

2. Localización de bucles y variables de iteración en código LLVM

3. Backtracking de variables de iteración para obtener el máximo número de
iteraciones en bucles cuando sea posible

4. Identificación de reúso espacial y temporal básico en accesos a memoria en
código LLVM

5. Generación de ensamblador ARM etiquetado con la información anterior
(máximo número de iteraciones en bucles e información de reúso en accesos a
memoria)

1.4. Herramientas utilizadas

Para realizar el desarrollo software habŕıa bastado simplemente con un editor de
texto y el entorno de desarrollo implementado por LLVM. Sin embargo, ha habido
muchas otras herramientas que han sido muy útiles durante todo el desarrollo. Éstas
han sido las herramientas utilizadas:

Gedit 2.30.4 [2] : Éste fue el editor elegido para codificar y manejar los diferentes
tipos de archivos. Destaca por su simpleza y rapidez, y por sus múltiples
funciones y plugins que ofrece a la hora de desarrollar. Y, sobre todo, por
poder manejar a la vez múltiples tipos de archivos (C, C++, ensamblador
ARM, LLVM IR) con facilidad.

GCC 4.5 [3] : Compilador de C/C++ del proyecto GNU/Linux. Usado para
compilar las bibliotecas.

LLVM 2.8 [1] : Infraestructura de compilación, junto con todas sus herramientas
llvm-gcc, llvm-dis, llc, opt. Estas herramientas permiten compilar programas,
pasar de un código a otro y hacer pasadas de análisis y compilación sobre el
código.

1.5 Fases del trabajo 3

TEX Live 2009-11 [4] : Es una distribución de LATEX para GNU/Linux, que permite
la fácil descarga y actualización de paquetes y componentes. Fue necesaria
para el desarrollo de la presente documentación.

Kile 2.1 beta 4 [5] : Es un editor de LATEX para GNU/Linux, con licencia GPL,
diseñado para trabajar con la distribución texlive. Conjuntamente con éste,
fue utilizado para escribir el presente documento.

Gantt Project [6] : Herramienta de software libre para la gestión de proyectos,
empleada en la generación de diagramas de Gantt.

1.5. Fases del trabajo

Una vez fijados los objetivos del proyecto, era el momento de comenzar el trabajo.
Por supuesto, este deb́ıa tener un orden razonable, por lo que al principio el tiempo
se empleó en adquirir los conocimientos que posteriormente se aplicaŕıan durante
el desarrollo del proyecto. Las principales etapas del trabajo realizado fueron las
siguientes:

1. Estudio de la infraestructura del compilador LLVM: Antes de empezar,
hab́ıa que conocer exactamente el funcionamiento de las diferentes fases del
compilador y sus herramientas.

2. Estudio de la referencia del lenguaje intermedio LLVM: Dado que el
trabajo se iba a centrar en el análisis y la traducción de este lenguaje, era
necesario aprender todo su repertorio de instrucciones, su estructura y lógica.
En el Apéndice A se muestra una visión general del conjunto de instrucciones
y de los tipos de datos de LLVM, centrándose en las instrucciones utilizadas
en el proyecto.

3. Estudio de parámetros de análisis y optimización: Ya que la principal
caracteŕıstica del compilador LLVM es el amplio repertorio de parámetros de
análisis y optimización, y cómo interactúan entre śı, hab́ıa que comprender
ampliamente cada uno de éstos.

4. Estudio de la API de LLVM y de cómo realizar una pasada de análisis

sobre el código LLVM IR: Para poder analizar las iteraciones y el reúso,
hab́ıa que estudiar en profundidad la API de LLVM, sus clases y métodos.
Aśı como realizar una pasada de análisis usando las bibliotecas que hab́ıa que
crear para poder usar dicha API sobre las instrucciones LLVM IR.

5. Estudio y comprensión del proceso de traducción: esta fase se centró en
el estudio del caṕıtulo referente a la traducción del código de representación
intermedia de LLVM a código ensamblador con el juego de instrucciones de
ARM [7]. En este punto, era básico comprender exactamente cómo se traduce
cada parte, para posteriormente poder realizar un diseño lo más adecuado
posible a la hora de implementar las bibliotecas.

1.6 Estructura de la memoria 4

6. Fase de implementación: una vez estudiados todos los aspectos previos, era
el momento de implementar la búsqueda y análisis de las iteraciones y de los
accesos a memoria en LLVM IR y su traducción a lenguaje ensamblador ARM.

1.6. Estructura de la memoria

El presente documento se encuentra dividido en dos partes. La primera es la que
engloba la memoria propiamente dicha, y la segunda parte está constituida por una
serie de anexos.

La parte inicial está estructurada de la siguiente forma:

Caṕıtulo 1. Introducción: Es el presente caṕıtulo. Como ya se ha visto, se
detallan brevemente los objetivos del proyecto, las herramientas utilizadas y
los contenidos de la memoria.

Caṕıtulo 2. Planificación: Este caṕıtulo contiene la distribución de las
diferentes tareas a lo largo de la duración del proyecto, y la organización de
las mismas.

Caṕıtulo 3. Conceptos: A lo largo de este caṕıtulo se va a explicar el
comportamiento de la herramienta LLVM, y los resultados a los que se queŕıa
llegar.

Caṕıtulo 4. Desarrollo: En este caṕıtulo se recogen los conocimientos
adquiridos durante la realización del proyecto y que han sido utilizados para
la realización del mismo.

Caṕıtulo 5. Conclusiones: Este último caṕıtulo de la memoria es uno de
los más importantes de la misma. En él se resume el trabajo realizado, se
resaltan las dificultades encontradas y, por último, se presentan una serie de
conclusiones.

La parte de los anexos tiene el siguiente contenido:

Apéndice A. LLVM Intermediate Representation: En el primer anexo
se habla del lenguaje LLVM IR. Su conjunto de instrucciones, sus tipos de
datos y se explican en profundidad las instrucciones analizadas en el proyecto.

Apéndice B. Gúıa de comandos LLVM: En este apéndice se detallan los
diferentes programas de ĺınea de comandos que provee el proyecto LLVM. Se
detalla cómo compilar archivos fuente a diferentes lenguajes, cómo pasar de
un lenguaje a otro y cómo realizar pasadas de compilación.

Apéndice C. Pruebas: Aqúı se presentan una serie de pruebas para la
verificación del funcionamiento de la herramienta, analizando los resultados
obtenidos.

1.6 Estructura de la memoria 5

Apéndice D. Manual de Uso: En este último apéndice se explica cómo
compilar y usar las bibliotecas realizadas, cómo pasarlas a los ficheros a
analizar, y cómo borrar los ficheros resultantes de todas las compilaciones
anteriores.

Caṕıtulo 2

Planificación

A la hora de hablar del desarrollo del proyecto, podemos diferenciar entre el
ciclo de vida seguido durante el desarrollo del mismo y la planificación del tiempo
empleado.

2.1. Ciclo de vida

Se puede considerar que durante este proyecto se siguió un ciclo de vida
incremental, puesto que los elementos se iban añadiendo secuencialmente, como
se explica en el Caṕıtulo 4. Por ejemplo, se empezó a trabajar con la cuenta de
iteraciones de los bucles, y hasta que no se comprobó el correcto funcionamiento de
la misma no se pasó a la siguiente fase. Además, para cada uno de los elementos
traducidos se siguió un ciclo de vida en cascada, como se puede ver en la Figura 2.1.
De esta forma se aseguraba que, si fallaba algo, era por el trabajo que se estaba
realizando en ese momento y no debido a un fallo en la implementación de algún
apartado anterior. Lógicamente, al estar todas las fases relacionadas entre śı, en las
pruebas de cada elemento no se inclúıa solamente él, sino todos los anteriores, para
comprobar que segúıan funcionando adecuadamente.

Figura 2.1: Ciclo de vida incremental. No se muestran todos los elementos
del proyecto por claridad

2.2 Planificación del trabajo 7

2.2. Planificación del trabajo

Este proyecto comienza en septiembre de 2010, cuando tras hablar con el
profesor Juan Segarra Flor me propone la realización del mismo. Se hizo un cálculo
aproximado de la duración del mismo de unos seis meses, aśı que se puede considerar
que se ha alargado más de lo deseado. Esto es debido a la dureza de la primera parte
del proyecto, la relativa al estudio de toda la documentación, y de que se ha hecho
a tiempo parcial. Una vez comenzada la implementación, el proyecto fue avanzando
a más velocidad.

En la Figura 2.2 se puede ver el diagrama de Gantt final del proyecto. Como
se observa, no es hasta principios de marzo de 2011 cuando se empiezan realmente
a implementar las bibliotecas. Asimismo, conviene destacar que la tarea Análisis
y optimización se extiende prácticamente a lo largo de todo el proyecto, puesto
que después del análisis inicial, para cada nuevo elemento se volv́ıan a estudiar las
optimizaciones a la hora de implementarlo. Lo mismo ocurre con la tarea Pruebas,
aunque ésta empieza algo más tarde y se extiende más allá de la fase de Imple-
mentación, para comprobar que el funcionamiento era correcto una vez finalizada
esta tarea.

Figura 2.2: Diagrama de Gantt correspondiente a las fases de desarrollo

Caṕıtulo 3

Conceptos

En este caṕıtulo se recogen algunos de los conceptos más importantes en los que
se basa este proyecto, para facilitar la comprensión de la herramienta LLVM y su
funcionamiento, además de explicar con mayor profundidad lo que se ha conseguido.

3.1. Funcionamiento del compilador LLVM

El proyecto Low Level Virtual Machine (LLVM) es una colección de compiladores
modulares y reutilizables. Primeramente el compilador transforma el código fuente
de un programa (C, C++, Objetive C, etc.) en un lenguaje intermedio llamado
LLVM Intermediate Representation (IR).

La representación del código LLVM está diseñada para ser utilizada de distintas
formas:

Como un lenguaje intermedio en memoria del compilador

Como una representación bitcode en disco (ideal para una ejecución
mediante máquina virtual Just-In-Time)

Como un lenguaje legible por humanos

Esto permite transformación, visualización y análisis del código.

La representación del lenguaje es independiente de la máquina, de bajo nivel,
estructurada y fuertemente tipada, lo que le hace ser muy potente. Este código in-
termedio puede generar códigos ejecutables para procesadores reales, como se puede
ver en la Figura 3.1, entre los que está ARM, en el cual nos vamos a centrar.

3.1 Funcionamiento del compilador LLVM 9

Figura 3.1: Arquitectura y módulos LLVM

En este proyecto nos vamos a basar principalmente en este lenguaje para analizar
los diferentes tipos de instrucciones, para calcular el número de iteraciones en
los bucles y los reúsos tanto temporales como espaciales. Una vez calculados y
localizados se escribirán en el código ARM correspondiente.

Para entenderlo mejor, se va a mostrar el mismo código de un bucle con dos
stores, tanto en lenguaje C como su transformación en lenguaje LLVM IR. En la
Figura 3.2 vemos cómo seŕıa el código en lenguaje C, en la Figura 3.3 vemos cómo
seŕıa el mismo código en lenguaje LLVM IR, y para terminar en la Figura 3.4 vemos
su transformación en lenguaje ensamblador ARM.

for (varBucle=0;varBucle<Tam;varBucle++)

{

Vector1[varBucle]=varBucle*5;

Vector2[varBucle]=varBucle*5;

}

Figura 3.2: Código C de stores

En el código representado en la Figura 3.3, bb indica la etiqueta de un bloque
básico que contiene todas las intrucciones siguientes del ejemplo. La instrucción
getelementptr devuelve un puntero con la dirección de memoria. Las instrucciones
add y mul son la suma y la multiplicación en código LLVM, mientras que br es el
salto. La instrucción store es la instrucción str en código ensamblador ARM.

3.2 Bucles y reúsos en código ARM 10

bb: ; preds = %bb, %bb.nph9

%varBucle.08 = phi i32 [0, %bb.nph9], [%tmp1, %bb]

%scevgep12 = getelementptr [5000 x i32]* %Vector1, i32 0, i32 %varBucle.08

%scevgep13 = getelementptr [5000 x i32]* %Vector2, i32 0, i32 %varBucle.08

%tmp = mul i32 %varBucle.08, 5

store i32 %tmp, i32* %scevgep12, align 4

store i32 %tmp, i32* %scevgep13, align 4

%tmp1 = add nsw i32 %varBucle.08, 1

%exitcond11 = icmp eq i32 %tmp1, 5000

br i1 %exitcond11, label %bb3, label %bb

Figura 3.3: Código LLVM de stores

.LBB0_1: @ %bb

@ =>This Inner Loop Header: Depth=1

str r0, [r2], #4

str r0, [r1], #4

add r0, r0, #5

cmp r0, r3

bne .LBB0_1

@ BB#2: @ %bb.bb3_crit_edge

add lr, sp, #1, 18 @ 16384

mov r4, #226, 30 @ 904

orr r4, r4, #1, 20 @ 4096

mov r5, sp

add r6, lr, #226, 28 @ 3616

ldr r7, .LCPI0_0

Figura 3.4: Código ARM de stores

3.2. Bucles y reúsos en código ARM

El código ARM es el lenguaje ensamblador propio de la arquitectura ARM. El
código escrito en lenguaje ensamblador es complejo ya que es una reprensentación
del lenguaje máquina, con instrucciones, registros y posiciones de memoria del
procesador. Al tratarse de un nivel tan bajo y tratar con registros de la máquina
es muy dif́ıcil poder ver con claridad las iteraciones de los bucles y reúsos mirando
directamente el código ARM.

El siguiente sencillo ejemplo en lenguaje C, Figura 3.5, nos permitirá explicar a
que nos referimos, mostrando bucles y reúsos espaciales. En el programa de ejemplo
podemos ver que hay dos vectores y un bucle que se va incrementando de uno en uno.
Dentro del bucle vemos que se produce una escritura en cada vector en la posición
“i” que es la variable de iteración. También vemos que el bucle se repetirá cinco
mil veces. Sabemos, por tanto, que se van a producir reúsos espaciales en los dos
vectores ya que se accede a una posición del vector que se va incrementando de
manera constante a lo largo del bucle.

3.2 Bucles y reúsos en código ARM 11

#include <stdio.h>

#define Tam 5000

int main()

{

int i=0;

int A[Tam];

int B[Tam];

for (i=0;i<Tam;i++)

{

A[i]=i*5;

B[i]=i*5;

}

}

Figura 3.5: Código ejemplo en C

Sin embargo al compilarlo a código ARM, esa información es muy dif́ıcil de ver,
como se puede observar en la Figura 3.6.

@ BB#0: @ %bb.nph9

stmdb sp!, {r4, r5, r6, r7, r8, lr}

sub sp, sp, #113, 26 @ 7232

sub sp, sp, #2, 18 @ 32768

add lr, sp, #1, 18 @ 16384

mov r0, #0

mov r1, sp

add r2, lr, #226, 28 @ 3616

mov r3, #106, 30 @ 424

orr r3, r3, #6, 20 @ 24576

.LBB0_1: @ %bb

@ =>This Inner Loop Header: Depth=1

str r0, [r2], #4

str r0, [r1], #4

add r0, r0, #5

cmp r0, r3

bne .LBB0_1

@ BB#2: @ %bb.bb3_crit_edge

add lr, sp, #1, 18 @ 16384

mov r4, #226, 30 @ 904

orr r4, r4, #1, 20 @ 4096

mov r5, sp

add r6, lr, #226, 28 @ 3616

ldr r7, .LCPI0_0

Figura 3.6: Código ejemplo en ARM

3.2 Bucles y reúsos en código ARM 12

Podemos ver que hay dos stores (instrucciones str) dentro de un bloque que se
repite (.LBB0 1), con un salto (bne) con comparación (cmp). El bloque pertenece
a un bucle, pero no podemos conocer fácilmente los reúsos de esos stores ni las
repeticiones que hará dicho bloque. El objetivo del proyecto es precisamente mostrar
claramente en el código ARM este tipo de información de forma clara y transparente.
La siguiente figura muestra el resultado final en código ARM después de pasar las
bibliotecas.

.LBB0_1: @ %bb

@ Numero de vueltas=5000

@ =>This Inner Loop Header: Depth=1

str r0, [r2], #4 @ Store var "A". Reuso espacial. Var iteracion "i".

Desplazamiento con "stride" 1

str r0, [r1], #4 @ Store var "B". Reuso espacial. Var iteracion "i".

Desplazamiento con "stride" 1

add r0, r0, #5

cmp r0, r3

bne .LBB0_1

@ BB#2: @ %bb.bb3_crit_edge

add lr, sp, #1, 18 @ 16384

mov r4, #226, 30 @ 904

orr r4, r4, #1, 20 @ 4096

mov r5, sp

add r6, lr, #226, 28 @ 3616

ldr r7, .LCPI0_0 @ Load Constante .LCPI0_0

Figura 3.7: Código ejemplo final ARM

Caṕıtulo 4

Desarrollo

Este caṕıtulo describe cómo se llevó a cabo el desarrollo del proyecto y las
decisiones más importantes tomadas durante el mismo.

4.1. Análisis y diseño

Durante toda la fase de análisis y diseño, se trabajó estrechamente con el profesor
Juan Segarra Flor para definir bien los siguientes puntos:

Alcance del Proyecto: Se definió, describió y preparó el escenario de
implementación.

Análisis del Proyecto: Se especificaron las necesidades actuales del proyecto,
y el encaminamiento para el futuro de la aplicación.

Diseño del Proyecto: Se describió su solución y las actividades de
implementación y testeo que se iban a hacer.

El objetivo de esta fase era poner en firme cuáles eran exactamente las
especificaciones del proyecto, la entrega y la preparación de la implementación.

4.1.1. Alcance del proyecto

Se empezó a trabajar para determinar el alcance de la implementación del
proyecto. En este paso, se determinó lo que cubriŕıa el proyecto, y cómo se ges-
tionaŕıa el tiempo para ello.

El resultado final de esta fase, fue la generación de dos documentos:

La propuesta del proyecto, que contiene el alcance descrito para el mismo.

Una primera planificación de la distribución del proyecto.

4.1 Análisis y diseño 14

4.1.2. Análisis del proyecto

En la fase del análisis se recogieron los requisitos necesarios. Para esto, se
quedó varios d́ıas con el profesor Juan Segarra Flor, y aśı se delimitaron las
necesidades halladas hasta el momento, las cuales cambiaŕıan muy poco en todo
el proceso.

Los requerimientos más importantes fueron:

Localizar los bucles dentro de un código fuente.

Calcular el número de iteraciones máximo, en tiempo de compilación, de cada
bloque de instrucciones.

Hallar el reúso espacial.

Encontrar el reúso temporal.

Mostrar todo lo anterior en el fichero ensamblador de ARM.

4.1.3. Diseño del proyecto

Posteriormente, una vez establecidos los requisitos y hecha la propuesta, se
diseñó la biblioteca y sus dependencias.

Se llevó a cabo un mapeo de las tecnoloǵıas disponibles para su ejecución y
un profundo estudio de la herramienta LLVM. Se siguieron haciendo reuniones para
asegurar si el camino llevado hasta el momento era el correcto y para resolver dudas.

Se fijó que hab́ıa que realizar una biblioteca que leyera el código intermedio
LLVM IR y que usándola mediante una pasada de análisis sobre un programa pu-
diéramos leer los datos de sus instrucciones. Aśı se tendŕıa acceso a la secuencia de
instrucciones y podŕıamos analizarlas en profundidad.

Se estableció como hab́ıa que realizar dicha biblioteca y las opciones del makefile.
Se describieron los archivos makefile, tanto de la biblioteca como de los programas a
analizar. Se establecieron también los comandos para poder realizar una pasada de
análisis-optimización usando la biblioteca sobre el código LLVM IR. Se estudiaron
todos los parámetros de optimización de LLVM y los diferentes niveles de opti-
mización a la hora de compilar.

Se realizaron varios ejemplos básicos de bibliotecas que realizaban un recorrido
básico sobre las instrucciones LLVM IR. Se comprobó aśı que teńıamos acceso a
dichas instrucciones y sus parámetros. Se fijaron también los diferentes tipos de
programas-pruebas en C que habŕıa que realizar para probar nuestra biblioteca:
diferentes tipos de bucles (while, for, etc), acceso a vectores sobre la variable de
iteración en los bucles y varios programas completos de prueba.

4.2 Implementación 15

Es gracias a esta fase y a la de análisis, que la fase de implementación ha sido
más corta de lo que se esperaba, teniendo una duración final esta última de dos
meses a tiempo parcial, como se puede ver en la Sección 2.2.

4.2. Implementación

Fue requisito del proyecto que el lenguaje de desarrollo fuese C++, ya que es el
lenguaje del código fuente de las bibliotecas de LLVM.

Para poder entender bien la implementación, se va a dividir esta sección en
tres partes. En la primera, se va a explicar cómo se construyó la biblioteca
para la cuenta de iteraciones de bloques. En la segunda, se mostrará cómo se
creó la biblioteca libMarcarLoadsStores. Para finalizar, se detallará cómo se pasaron
los reúsos temporales y espaciales marcados en el código LLVM IR al fichero
ensamblador ARM, y varios detalles adicionales que se hicieron para complementar
el trabajo realizado.

4.2.1. Cuenta de iteraciones

Después de estudiar el funcionamiento de LLVM y su API se decidió realizar
primero el conteo de iteración de los bucles. Para ello, hubo que realizar una
biblioteca, ya que se ésta se puede cargar en una pasada de análisis. Por consiguiente,
se creó la biblioteca libcuentaBucles, que después se pasaŕıa a llamar libbuclesReusos.

Para poder utilizarla, hubo que usar la herramienta “opt” que realiza pasadas
de análisis y optimización sobre código LLVM IR, y a la que se le pueden añadir
muchos parámetros según la necesidad que se tenga.

Para hallar el número de veces que se pasa por un bloque de instrucciones, fue
de gran ayuda la clase “LoopInfo” de la API. Gracias a ella, se pod́ıa acceder a la
información de cada bucle. Dentro de esa información, destacan los siguientes datos:

Etiqueta del bloque de instrucciones

Número de vueltas

Variable de iteración

Además de cada una de las instrucciones incluidas en cada bloque.

De gran importancia, fue la optimización “indvars”. Gracias a esto se pudieron
convertir todos los bucles en bucles naturales con variable de iteración canónica, es
decir, que todos empezaran en cero y fueran incrementándose de uno en uno, como
se muestra en la siguiente figura.

4.2 Implementación 16

for (i = 10; i < 5000; i+=2) => for (i = 0; i < 2495; i++)

for (i = 7; i*i < 1000; i++) => for (i = 0; i != 25; i++)

Figura 4.1: Optimización indvars

Con esto, ya se pod́ıa saber las iteraciones que se produciŕıan en cada bucle y
su etiqueta. El nombre de las etiquetas en código LLVM IR y en código ARM son
idénticos, por lo cual, se pod́ıa escribir en el fichero ARM el número de vueltas
calculado.

En la siguiente figura podemos ver un ejemplo de bucles anidados:

.LBB0_1: @ %bb2.preheader

@ Numero de vueltas=5000

@ =>This Loop Header: Depth=1

@ Child Loop BB0_2 Depth 2

mov r7, #0

.LBB0_2: @ %bb1

@ Numero de vueltas=3000

@ Parent Loop BB0_1 Depth=1

@ => This Inner Loop Header: Depth=2

mov r1, r7

mov r0, r5

add r7, r7, #1

bl printf

cmp r7, r6

bne .LBB0_2

Figura 4.2: Ejemplo de cuenta de iteraciones

4.2.2. Marcación de loads y stores

El siguiente paso fue localizar los reúsos, tanto temporales como espaciales, en
el código LLVM IR.

Gracias a la biblioteca creada se pod́ıa acceder a las instrucciones y comprobar
si éstas eran loads o stores. También, se pod́ıa saber cuál era la variable que se
cargaba en cada momento, siempre hablando en tiempo de compilación, y si ésta se
incrementaba con la variable de iteración. Pero como el objetivo del proyecto era
localizarlos en el ARM aqúı estuvo el primer gran problema.

El código LLVM IR usa nombres para variables mientras que el código ARM sólo
usa los registros (r1, r2, r3, etc). Por este motivo, no se pod́ıa saber qué instrucción
ARM correspond́ıa con cada load o store localizado en el código LLVM IR.

Primero se pensó en añadir anotaciones o comentarios en las instrucciones
del código LLVM para que al compilarlo a código ARM estuvieran alĺı en las

4.2 Implementación 17

instrucciones correspondientes, pero los comentarios se eliminaban en el proceso
de traducción.

Después de mucho investigar, se comprobó que la información del tipo
“metadata” de LLVM (Figura 4.3) diseñada para DEBUG, y disponible desde la
versión 2.7 de LLVM, se transformaba en comentarios en el código ARM (Figura 4.4)
a la hora de compilar. Escribiendo un metadata en una instrucción LLVM se pod́ıa
saber con qué instrucción o instrucciones se correspond́ıa en el código ARM.

%tmp2 = load i32* %scevgep, align 4, !dbg !7

%tmp4 = load i32* %scevgep10, align 4, !dbg !8

Figura 4.3: Ejemplo de debug en loads y stores

declare i32 @printf(i8* nocapture, ...) nounwind

!1 = metadata !{i32 524329, metadata !"load", null, null}

!2 = metadata !{i32 524329, metadata !"store", null, null}

!3 = metadata !{i32 524299, null, i32 6, i32 0, metadata !1, i32 0}

!4 = metadata !{i32 524299, null, i32 6, i32 0, metadata !2, i32 0}

!5= metadata !{i32 0, i32 0, metadata !4, null}

!6= metadata !{i32 1, i32 0, metadata !4, null}

!7= metadata !{i32 0, i32 0, metadata !3, null}

!8= metadata !{i32 1, i32 0, metadata !3, null}

Figura 4.4: Ejemplo de metadatas

Aśı pues, hab́ıa que escribir los metadatas en los loads y stores del código LLVM
IR y después compilarlo para acceder a dicha información en el ARM. Como hab́ıa
que marcar los loads y stores, y después, compilar para obtener el ARM con la in-
formación necesaria para poder relacionar las instrucciones, se optó por crear dos
bibliotecas en vez de una.

Por este motivo, se desarrolló una nueva biblioteca llamada libmarcarLoadsStores
que se encargaŕıa de escribir los metadatas correspondientes en los loads y stores
del código LLVM. Aśı, cuando se compilara el código pasándole esta biblioteca, ya
tendŕıamos el código LLVM con metadatas y faltaŕıa pasarlo a código ARM. Es
entonces, cuando se decidió que la biblioteca llamada libcuentaBucles, mencionada
anteriormente, también fuera la encargada de realizar todo el proceso de comprobar
los diferentes reúsos de los loads y stores (temporal y espacial), y pasó a llamarse
libbuclesReusos.

4.2.3. Localización de reúsos espaciales

El reúso espacial que se ha calculado en este proyecto se centra en el acceso a
diferentes posiciones de vectores, matrices o estructuras, en especial, cuando estas
posiciones dependen directa o indirectamente de la variable de iteración de los bucles.

4.2 Implementación 18

Ya que se hab́ıa calculado el número de iteraciones en los bucles y se teńıa la
variable de iteración, se optó por continuar con la localización de reúsos espaciales.

Para continuar, lo primero que hab́ıa que entender era lo que significaba cada
parámetro de las instrucciones, en particular las de loads y stores. Estas instrucciones
tienen dos parámetros. Uno es la variable o el valor de lectura, o de escritura,
dependiendo de si es un load o un store. El otro parámetro es, en el caso de los
reúsos espaciales, un puntero a una posición de un vector. Dicho puntero es el que
nos interesaba analizar con profundidad.

Los punteros también tienen varios parámetros (ver Figura 4.5). El primero es el
vector al que se quiere acceder, y los demás parámetros son variables, instrucciones
o valores que nos indican los ı́ndices de desplazamiento sobre éste. Nos interesaba
saber el nombre de la variable del vector y los parámetros de desplazamiento.

El principal objetivo aqúı era saber cuántos parámetros teńıa cada puntero
de los loads y stores. Si teńıa más de un parámetro, estábamos ante un vector
multidimensional o una estructura.

%scevgep = getelementptr [100 x [100 x i32]]* @A, i32 0, i32 %i.119, i32 %k.016

%scevgep25 = getelementptr [100 x [100 x i32]]* @B, i32 0, i32 %k.016, i32 %j.117

Figura 4.5: Ejemplo de puntero con varios parámetros

Aunque no fue un requisito inicial, se prefirió dar una explicación más detallada
de la instrucción a analizar. Por lo cual, además de avisar que hab́ıa reúso espacial, a
partir de ahora, también se indicaŕıa si era de una o múltiples variables, y el nombre
de las mismas o el valor, según el caso, como se muestra en la figura Figura 4.6.

ldr r6, [r4, -r12] @ Load var "A". Reuso espacial. Multiples variables "i" "k"

ldr r7, [r2], #400 @ Load var "B". Reuso espacial. Multiples variables "k" "j"

Figura 4.6: Ejemplo de load con múltiples variables

En el caso de que fuera una sola variable la del desplazamiento sobre el puntero,
se acordó que se mostraŕıa el “stride”, es decir, la separación entre una posición y la
siguiente a la que se accediera, siempre expresado en elementos del tipo declarado
en el vector.

str r0, [r2], #4 @ Store var "A". Reuso espacial. Var iteracion "i".

Desplazamiento con "stride" 1

str r0, [r1], #4 @ Store var "B". Reuso espacial. Var iteracion "i".

Desplazamiento con "stride" 1

Figura 4.7: Ejemplo de store con una variable

4.2 Implementación 19

Aśı pues, hubo que comprobar las operaciones realizadas sobre esa variable dentro
del bucle. Se vio que todas las variables de incremento constante teńıan relación
con el phinode1 del bucle. Entonces, lo que se teńıa que hacer era seguir todas las
operaciones que se haćıan sobre dicha variable hasta llegar a su phinode.

Debido a que se estaba usando la optimización “indvars”, la variable directa de
todos los phinodes se incrementaba de uno en uno, es decir, teńıa “stride” uno. Por
lo cual, teńıamos una referencia clara.

Por esto se implementó una función en la biblioteca que recorriera todas las
instrucciones realizadas sobre una variable, y sus resultados, hasta llegar al phinode.
Aqúı surgieron dos posibles resultados:

Incremento constante

Incremento variable

Dentro de los casos de incremento constante, cualquier variable que apuntara al
phinode directamente tendŕıa “stride” uno. Por el contrario, en muchas ocasiones, se
realizan operaciones (desplazamiento de bits, multiplicación, etc) sobre el phinode,
aśı que hab́ıa que calcular el valor de dichas operaciones en base al valor uno del
phinode, para poder saber su valor. Además, se indicó en el código ARM, que el
incremento era debido a una variable calculada basada en la variable de iteración.

ldr r1, [r5], #20 @ Load var "A". Reuso espacial.

Var calculada basada en var iteracion "i".

Desplazamiento con "stride" 5

Figura 4.8: Ejemplo de incremento constante

Por otro lado, están los resultados en los que el incremento no es constante a
lo largo del bucle. Esto sucede cuando la variable, o las instrucciones sobre ésta no
apuntan al phinode o apuntan a un phinode que no es el principal del bucle. Aqúı,
hubo que indicar en el código ARM que el incremento no era constante.

ldr r1, [r7, r5, lsl #2] @ Load var "B". Reuso espacial. Var iteracion "i".

Desplazamiento con "stride"

no constante

Figura 4.9: Ejemplo de incremento variable

1Ver Sección A.3 para más detalles

4.2 Implementación 20

4.2.4. Localización de reúsos temporales

Para acabar el proyecto sólo faltaba localizar los reúsos temporales. Lo primero
que hubo que hacer fue extraer los nombres de las variables de cada reúso temporal
del código LLVM IR para su posterior indicación en el código ARM.

En este tipo de reúsos, se decidió mostrar el desplazamiento de bytes, aunque no
fuera requisito incial. Este desplazamiento se extrajo directamente del código ARM.

strb r2, [r12], #1 @ Store var "outp.133.i". Desplazamiento 1 bytes

Figura 4.10: Ejemplo de reúso temporal

Posteriormente, se comprobó que en el código ARM exist́ıan más loads y stores
que en el código LLVM IR. Esto es debido a que LLVM IR, al no trabajar con
registros, no tiene ninguna limitación, mientras que ARM tiene un número de
registros limitado, por lo cual necesita, en algunas ocasiones, reutilizarlos y crear
más instrucciones. Igualmente pasa con las instrucciones de pila.

Por consiguiente, hubo que indicar en estos loads y stores el tipo de reúso y el
desplazamiento. De igual modo, se indicaron los loads y stores en el caso de las
constantes del código ARM.

str r2, [sp] @ Store de pila. Desplazamiento 0

str r3, [sp, #8] @ Store de pila. Desplazamiento 8 bytes

Figura 4.11: Ejemplo de store de pila

ldr r1, .LCPI0_0 @ Load Constante .LCPI0_0

Figura 4.12: Ejemplo de load de constante

4.3 Pruebas 21

4.3. Pruebas

Las pruebas del sistema son una parte muy importante del desarrollo software, ya
que permiten comprobar el correcto funcionamiento del sistema. Estas pruebas han
sido desarrolladas durante todo el proceso de desarrollo del proyecto y no solamente
al final, para poder solucionar el mayor número de errores posibles en cada etapa,
y no ir arrastrándolos a medida que se va avanzando.

Las diferentes pruebas realizadas han sido las siguientes:

Pruebas de unidad : En estas pruebas se han comprobado todas y cada una de las
funcionalidades de las bibliotecas, verificando el comportamiento esperado de
todos los métodos.

Pruebas de integración: Se ha comprobado exhaustivamente la combinación de las
dos bibliotecas, constatando el correcto funcionamiento del proceso global.

En el Apéndice C se pueden ver algunos ejemplos de pruebas que se han realizado
para la comprobación del desempeño de las bibliotecas.

Caṕıtulo 5

Conclusiones

En este caṕıtulo se resumirá el trabajo realizado en este proyecto. Además de la
implementación, se señalarán también las dificultades más destacables, para finalizar
con las conclusiones obtenidas.

5.1. Dificultades encontradas

La labor de cumplir los objetivos marcados al principio del proyecto y plasmados
en la propuesta no ha sido fácil. Antes de empezar sab́ıa que llegar a comprender
todo el entramado de LLVM llevaŕıa mucho trabajo, pero además la gran cantidad
de documentación sobre muchos aspectos del mismo y la escasez de ejemplos hicieron
que fuese más complicado de lo previsto.

El primer obstáculo destacable fue comprender toda la teoŕıa relacionada con el
compilador LLVM, tanto del frontend como del backend. El primer paso que se dio
fue recordar los conocimientos ya adquiridos sobre lenguaje ensamblador y, además,
adquirir algunos nuevos, propios del lenguaje de código intermedio de LLVM. Sin
embargo, la parte más complicada de esto fue la comprensión de la traducción de
código de alto nivel (por ejemplo, código en lenguaje C), al código intermedio de
LLVM, ya que hubo que estudiar varios art́ıculos.

Una vez comprendida esta traducción y la organización del código, era la hora
de empezar a entender cómo se pasaba del código LLVM a código ensamblador ARM.

Otro aspecto importante fueron las optimizaciones precisas necesarias tanto a la
hora de compilar los archivos fuente de las pruebas (-O0...-O3) como a la hora de
hacer la pasada de optimización sin que afectara demasiado a las instrucciones tanto
en LLVM IR como en ARM. Hubo que investigar mucho las diferentes opciones del
optimizador de LLVM.

Por último, a la hora de implementar las bibliotecas, también aparecieron
dificultades. La más destacable, por la cantidad de problemas que causó, fue el paso
de los comentarios de las instrucciones del código LLVM IR al código ensamblador

5.2 Trabajo futuro 23

de ARM. Al usar, este último, registros en vez de variables, no estaba claro
qué instrucción correspond́ıa con cada una del anterior código. Al final, se optó por
utilizar los metadatas de depuración para poder relacionarlas.

5.2. Trabajo futuro

El trabajo futuro que se podŕıa realizar está dividido en dos ramas:

Analizar otros aspectos de un programa: Ya que tenemos acceso fácil a las
instrucciones LLVM IR y su correspondencia en ensamblador, seŕıa posible
estudiar y anotar otro tipo de aspectos de los programas. Por ejemplo, el
número de variables usadas, número de usos de esa variable, tamaño que
ocupan en memoria dichas variables, diferentes saltos entre bloques. En
definitiva cualquier dato del flujo del programa, de las variables y de las
diferentes operaciones como multiplicaciones, sumas, llamadas a funciones,
etc.

Permitir trabajar con otras arquitecturas: Poder trabajar con otras arquitectu-
ras y ensambladores diferentes de ARM como SPARC, MIPS, x86. Anotando
en sus correspondientes archivos los diferentes datos calculados.

A parte de todo esto, se van a distribuir los códigos fuentes de las bibliotecas
con licencia de software libre, para que se puedan utilizar en otras investigaciones.

5.3. Conclusiones

Durante la realización de este proyecto se han puesto en práctica parte de los
conocimientos adquiridos durante la carrera, aśı como otros muchos que han sido
adquiridos especialmente para él.

Considero especialmente interesante la práctica adquirida en el desarrollo en
C++, ya que es el primer lenguaje orientado a objetos (OO) que conozco en
profundidad, y uno de los más extendidos. Asimismo, el mayor conocimiento del
compilador LLVM.

También he aprendido que una correcta planificación y documentación inicial es
muy importante, especialmente cuando se habla de proyectos de cierta envergadura.
Si no hubiera tanta documentación sobre LLVM me hubiera encontrado con muchos
problemas que hubieran requerido emplear mucho tiempo en solucionarlos.

Al ser unas bibliotecas desarrolladas para ser integradas en un proyecto de inves-
tigación que llevan varias personas, ha tenido una gran importancia que las salidas
fueran claras y concisas, según los requerimientos con el máximo detalle posible.
Puede ser muy desesperante para alguien que continúa, o que integra, un proyecto
encontrar cosas que no comprende y tener que estudiar casi todo el código para

5.4 Valoración personal 24

cambiar los datos de salida a lo que necesita.

Por todo esto, creo que este proyecto ha contribuido a prepararme para un
futuro entorno laboral, en el que espero poder poner en práctica algunos de los
conocimientos aprendidos aqúı.

5.4. Valoración personal

Una vez llegado al final de este proyecto, me gustaŕıa hacer una
valoración personal de lo que ha supuesto todo este tiempo. Respecto al trabajo
realizado, me siento muy satisfecha por los resultados conseguidos. Los objetivos
que se marcaron en un principio han sido superados, e incluso se ha realizado una
pequeña ampliación de éstos llevando a realizar un trabajo muy completo.

El hecho de realizar un trabajo que puede ayudar a la investigación y que al final
del mismo va a ser utilizado, es una experiencia muy enriquecedora. Añadir que me
ha servido para ver muchas partes de la arquitectura de computadores que se dan
sólo en teoŕıa.

A nivel personal, la realización de este proyecto me ha enseñado much́ısimo. He
aprendido por primera vez a afrontar un proyecto de esta envergadura
de principio a fin, pasando por todas las fases del mismo. He aprendido a aplicar
y reforzar conocimientos de la carrera, aśı como much́ısimos conceptos nuevos no
enseñados en ella. Pero lo más importante que he aprendido es que gracias al trabajo
diario y a la lucha continua se consigue llegar a la meta.

Además, he sabido aprovechar la experiencia y sabiduŕıa de mi profesor que me
ha enseñado y guiado en los momentos dif́ıciles.

