Anexos

Apéndice A

LLVM Intermediate
Representation

En este anexo se habla del cédigo intermedio LLVM Intermediate Representation
(IR) que es lenguaje que se ha analizado a lo largo del proyecto. Poniendo especial
énfasis en las instrucciones analizadas para los objetivos del mismo.

Primeramente se comenta una visiéon general del juego de instrucciones y de
los tipos que se definen en el lenguaje. Luego se expone claramente una parte
fundamental del control de flujo del lenguaje, la forma Static Single Assignment
(SSA) y la funcién @, parte fundamental para calcular el nimero de vueltas de los
bucles y las variables de iteracion. A continuacién se explican las instrucciones més
analizadas en las bibliotecas ya que gracias a ellas se pueden observar los retsos: las
instrucciones load, store y getelementptr. Finalmente se muestra un sencillo ejemplo
de codigo LLVM IR comentado de un bloque que pertenece a un bucle y donde se
realizan dos stores, explicando lo que realiza cada instruccion.

A.1. Vision general del juego de instrucciones

El juego de instruciones de LLVM esta disenado como una representacion de
bajo nivel pero con informacién de tipos de alto nivel. Provee informacion de todos
los valores del programa y posiciones de memoria. LLVM IR consta de veintiocho
instrucciones, numerosos tipos primarios y cuatro tipos derivados.

Aritmética add, sub, mul, div, rem

Légica and, or, xor, shl, shr

Comparacion seteq, setne, setlt, setgt, setle, setge
Control de flujo | ret, br, mbr, invoke, unwind
Memoria load, store, getelementpt

Otros cast, call, phi

El sistema de tipos consiste en tipos primarios con tamafio predefinido (ubyte, uint,
float, double, etc...) y cuatro tipos derivados (pointer, array, structure, function).

A.2 TIPOS PRIMARIOS Y DERIVADOS 27

A.2. Tipos primarios y derivados

LLVM es una representacién estrictamente tipada, en el que cada valor SSA y
cada ubicacién de memoria tiene una tipo asociado. Todas las operaciones obedecen
a reglas estrictas de tipo.

El sistema de tipos LLVM incluye tipos primitivos (void, booleanos, enteros con
y sin signo de 8 a 64 bits, valores de coma flotante de simple y doble precisién) y
derivados (punteros, arrays, estructuras y funciones). Estos tipos son independientes
del lenguaje de representacién de datos que se asignan desde los tipos de lenguaje
de alto nivel.

Se va a explicar cada uno de los tipos derivados mas en detalle para su mejor
comprension:

Tipo Puntero

Sintaxis:
<tipo> *
Nota: No estan permitidos punteros a void.
Ejemplos:
[4 x i32]* Puntero a un array de 4 enteros
132 (i32#)* Puntero a una funcién que toma un puntero a un entero

y devuelve un entero

Tipo Array

Sintaxis:

[<# elementos> x <tipoelemento>]
Ejemplos:

[40 x 132] Array de 40 enteros de 32 bits.
[4 x i8] Array de 4 enteros de 8 bits.
[3 x [4 x i32]] Array de 3x4 de enteros de 32 bits.

Tipo Estructura

Sintaxis:
»T1 = type { <lista de tipos> }
Ejemplos:

{ i32, i32, i32 } 3 enteros de 32 bits
{ int, [10 x [20 x int]], int} 1 entero, 1 array de 10x20 enteros, 1 entero

A.3 SSA rorM (PHINODE) 28

Tipo Funcién

Sintaxis:

<tipo de retorno> (<lista de parametros>)
Ejemplos:

i32 (i32) Funcidén que coge un entero y retorna un entero
float(i16,i32%) Funcién que toma un entero de 16 bits y un puntero a un entero
y devuelve un float

A.3. SSA form (PHINODE)

LLVM usa Static Single Assignment (SSA) form, forma de asignacién estatica
individual. La forma SSA se basa en la premisa de que cada variable es asignada
unicamente en una parte del programa, y si se producen otras asignaciones a la
misma variable, se crean nuevas versiones de ésta.

A veces no es posible determinar cudl es la tltima asignacion realizada, como
resultado de ramificaciones y bucles. Para solventarlo, la forma SSA introduce un
nuevo tipo de operacion llamada funcién @, que une varias versiones de una variable
y genera una variable nueva.

En esencia, lo que permite la forma SSA es unir cada uso de una variable en el
programa a su correspondiente y unica definicion, lo que permite implementaciones
muy eficientes de analisis y transformaciones de optimizacién, porque simplifica
enormemente las cadenas de uso-definicion de variables, y en consecuencia el flujo
de datos.

En LLVM la funcién ¢ esta definida en la instruccion phi.
Phinode

Sintaxis:
result = phi <type> [<val0>, <label0>], ... , [<valN>, <labelN>]

A result se le asigna el valor val0 si el control llega a esta instruccion desde
el bloque bésico de la etiqueta label0, vall si estamos aqui desde el bloque basico
labell, y asi sucesivamente.

Ejemplos:

Loop: ; Bucle infinito de O hacia arriba

%indvar = phi i32 [0, YLoopHeader], [%nextindvar, %Loop]

Ynextindvar = add i32 %indvar, 1

br label J%Loop

; hindvar valdra %nextindvar en cada vuelta ya que proviene del bloque %Loop

A.4 ACCESO A DIRECCIONES DE MEMORIA 29

bb3: ; Bucle de 0 a 1000

%indvar46 = phi i32 [%indvar.next47, %bb3 1, [0, %bb]

%indvar.next47 = add i32 %indvar46, 1

%exitcond48 = icmp eq 132 Y%indvar.next47, 1000

br il Yexitcond48, label %bb8.preheader, label %bb3

; hindvar46 valdrd %indvar.next47 en cada vuelta ya que proviene del bloque %bb3

A.4. Acceso a direcciones de memoria

Para obtener la direccién de un subelemento de una estructura de datos se usa la
instruccion getelementptr. Sirve para conocer la direccion de memoria de una posi-
cién especifica de arrays y estructuras. Esta instruccion sélo realiza el calculo de la
direccién tnica pero no accede a la memoria.

Podemos encontrarnos con dos casos:

» Dado un puntero a una estructura y un ntmero de campo, la instruccion
getelementptr obtiene un puntero al campo.

= Dado un puntero a una matriz y un ntmero de elemento, la instruccién
devuelve un puntero al elemento especificado.

Se pueden especificar varios indices en la misma instruccién, por ejemplo, se
puede acceder a la posicion Ali|[j].

El primer argumento siempre es un puntero, el resto de argumentos son los indices
del elemento que queremos acceder.

Getelementptr

Sintaxis:

<resultado> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
Ejemplos:

%scevgep = getelementptr [100 x [100 x i32]]* @A, i32 0, i32 %i.119, i32 %k.016
; Accedemos a %A[%i] [%k]
%scevgepb3 = getelementptr [5000 x i32]* YVectorl, i32 0, 132 YvarBucle.034
; Accedemos a %Vectorl[%varBucle]
%hscevgep = getelementptr [5000 x [5000 x i32]]1* %A, i32 0, i32 0, i32 %i.17
; Accedemos a %A[0] [%il
%scevgepl2 = getelementptr [5000 x Ystruct..Ostructural* Jestructuras,
i32 0, i32 %i.08, i32 1
; Accedemos a Y%estructuras([%i].campol

A.5 LECTURA Y ESCRITURA EN MEMORIA 30

A.5. Lectura y escritura en memoria

Para acceder a la memoria en LLVM se usan las instrucciones load y store. Load
para leer de una posicién de memoria y store para escribir en una posicion.

Load

La instruccion load sirve para devolver el valor que reside en una posicion de
memoria. El primer argumento siempre es una direccién de memoria mediante
un puntero a dicha direcciéon. Ese puntero se obtiene mediante la instruccion
getelementptr. El parametro opcional align especifica la alineacion de la operacion,
es decir, la alineacion de la memoria.

Sintaxis:

<resultado> = load <ty>* <pointer>[, align <alignment>]
Ejemplos:

%tmp5 = load i32% Yscevgep, align 4
; Cargamos en %tmp5 el valor que se encuentra en la direccién de puntero ¥%scevgep
%tmpl3 = load i32* %tmpl2, align 4
; Cargamos en %tmpl3 el valor que se encuentra en la direccién de puntero %tmpl2

Store

La instruccion store sirve para escribir un valor en una posiciéon de memoria.
La instruccion tiene dos argumentos, el primero es el valor que queremos escribir
y el segundo es una direccién de memoria mediante un puntero a dicha direccion.
Ese puntero se obtiene mediante la instruccion getelementptr. El parametro opcional
align especifica la alineacién de la operacion, es decir, la alineacién de la memoria.

Sintaxis:

store <ty> <value>, <ty>* <pointer>[, align <alignment>]
Ejemplos:

store 132 %tmp3, i32* Yscevgep33, align 4

; Escribimos el valor de /tmp3 en la direccién de memoria del puntero Y%scevgep33
store i32 0, i32* Yscevgep35, align 4

; Escribimos el valor O en la direccién de memoria del puntero %scevgep35

A.6 EJEMPLO COMPLETO COMENTADO

31

A.6. Ejemplo completo comentado

for (varBucle=0;varBucle<Tam;varBucle++)

{
Vectorl[varBucle]=varBuclex*5;
Vector2[varBucle]=varBuclex*5;
}
Figura A.1: Cédigo ejemplo en C
bb: ; preds = Jbb, %bb.nph35

%varBucle.034 = phi i32 [0, %bb.nph35 1, [%tmp, %bb]

; SSA form phinode %varBucle con variable de iteracién interna %tmp
%scevgepb3 = getelementptr [5000 x i32]* YVectorl, i32 0, 132 YvarBucle.034
; Puntero a la posicién de memoria de %Vectorl[%varBucle]

%scevgepb4 = getelementptr [5000 x i32]* YVector2, i32 0, i32 %varBucle.034
; Puntero a la posicién de memoria de %Vector2[%varBucle]

%tmp55 = mul i32 YvarBucle.034, 5

; %varBuclex*b

store 132 %tmp55, i32% Yscevgep53, align 4

; Escritura en la direccién %Vectori[%varBucle] el valor de Y%varBuclex*b
store i32 Jtmpb5, i32% Yscevgepb4, align 4

; Escritura en la direccién %Vector2[%varBucle] el valor de %varBuclex5
%tmp = add nsw i32 %varBucle.034, 1

; Incremento de la variable de iteracion del phinode en 1

%exitcondb2 = icmp eq 132 Ytmp, 5000

; Comparacién si la variable de iteracidén %tmp es 5000

br il Yexitcond52, label %bb3, label Ibb

; Salto hacia fuera del bloque si se cumple la condicién

Figura A.2: Cédigo ejemplo comentado en LLVM IR

Apéndice B
Guia de comandos LLVM

A continuacién se indican las herramientas de lineas de comandos de LLVM que
se han utilizado, explicando su funciéon y un pequeno esquema de opciones.

llvm-gcc:

Es un frontend para el compilador LLVM basado en GCC. Compila archivos
fuentes en lenguaje C y Objetive C en objetos nativos, LLVM bitcode o LLVM IR,
dependiendo de las opciones. Por defecto compila a objetos nativos.

Con las opciones -emit-llum -c¢ genera codigo LLVM bitcode y con las opciones
-emit-llvm -S genera cédigo LLVM IR.

Al ser derivado de gce tiene muchas de sus caracteristicas y acepta la mayoria
de sus opciones, como los niveles de optimizacién (00...03).

Sintaxis:
1lvm-gcc [opciones] nombrefichero
Opciones:
= -0 nombreFichero: Especifica el archivo de salida.

» -emit-llum: Genera la salida a LLVM bitcode (con -¢) o a LLVM IR (con -S).

Ejecuta un programa compilado en bitcode. Toma el archivo en cédigo bitcode
y lo ejecuta en una maquina virtual o lo interpreta.

Sintaxis:

11i [opciones] [nombreFichero] [argumentos del programal

33

llvim-dis:
Es el desamblador de LLVM. Convierte cédigo LLVM bitcode en LLVM IR.

Sintaxis:
1lvm-dis [opciones] [nombrefichero]

Opciones:

= -0 nombreFichero: Especifica el archivo de salida. Si se omite el cddigo
sera mostrado en la salida estandar.

llc:

Compilador estéatico. Genera cdédigo nativo de la maquina a partir de LLVM
bitcode o de LLVM IR. Compila el cédigo fuente para una arquitectura especifica.
Con la opcion -march podemos elegir dicha arquitectura.

Sintaxis:
11c [opciones] [nombrefichero]

Opciones:

= -march=arch: Especifica la arquitectura para generar el cdédigo. Por ejemplo
-march=arm genera cdédigo ARM.

= -O=numero: Genera codigo con determinado nivel de optimizacién. Correspon-
de con las opciones (00...03) de llvm-gce o de gece.

opt:

Es el optimizador y analizador de LLVM. Toma archivos con cédigo LLVM IR
o LLVM bitcode y realiza los analisis y las optimizaciones indicadas, generando
el archivo optimizado o los resultados de los analisis. Es lo que se conoce como
pasadas de optimizacién. Las optimizaciones o analisis disponibles dependen de las
bibliotecas vinculadas a ella, asi como cualquier biblioteca cargada mediante la op-
cién -load. Esto permite crear pasadas de optimizacién y andlisis propias mediante
bibliotecas externas.

Sintaxis:

opt [opciones] [nombreFichero]

34

Opciones:

= -0 nombreFichero: Especifica el archivo de salida.
= -S: Escribe la salida como LLVM IR.

= -nombrePase: Proporciona la capacidad de ejecutar cualquier pasada de
optimizacién o analisis en el orden indicado. Existen numerosas pasadas
disponibles como indvars, loops, loop-reduce, etc. También se puede ejecutar
cualquier pasada creada, registrada y cargada de una biblioteca mediante la
opcién -load.

s -load=biblioteca: Carga la biblioteca seleccionada. Esta biblioteca debe
registrar las nuevas pasadas de optimizacién o andlisis implementados en ella.
Una vez cargada agrega nuevas opciones de linea a la linea de comandos opt
para permitir las pasadas registradas en la biblioteca.

Ejemplo:

opt -indvars -load ../buclesReusos/libbuclesReusos.so -cuenta ejemplo.

Esta secuencia realizaria la pasada de optimizacion indvars, cargaria la biblioteca
libbuclesReusos y realizaria la pasada cuenta que ha sido implementada y registrada
en la biblioteca cargada.

11

Apéndice C
Pruebas

En este anexo se van a exponer algunas de las pruebas que se utilizaron para la
verificacion del buen funcionamiento de las bibliotecas creadas.

Se cre6 una gran cantidad de programas, en lenguaje C, con distintas
funcionalidades, segiin el caso a evaluar, para pasarselos a las bibliotecas. Al ser
muy extensa la bateria de pruebas, se va a mostrar sélo alguno de estos programas,
ya que sino se extenderia mucho.

En cada ejemplo se ofrece el codigo en C, parte del codigo LLVM IR que se crea
y el codigo en lenguaje ARM que se genera al final. Para cada una de las pruebas,
se explican los resultados obtenidos para que se pueda comprender lo mejor posible.
Este apéndice, se divide en tres partes:

» Cuenta de iteraciones
= Marcacién de loads y stores

= Localizacion de retisos temporales y espaciales

C.1. Cuenta de iteraciones

Como lo primero que se cred fue la biblioteca para contar el nimero de veces
que pasaba por un bucle, fue lo primero que se probé. En este caso lo primero que
se verifico fueron los casos mas tipicos de bucles, es decir los for y while de C.

Uno de los ejemplos que mejor ratifica el correcto comportamiento de la biblioteca
ante este tipo de iteraciones, es el fichero bucle.c de la pila de pruebas. El cédigo es
el siguiente:

C.1 CUENTA DE ITERACIONES 36

#include <stdio.h>

int main()

{
int i=0, j=0, z=0;
for (i=0;i<5000;i++)
{
for (j=0;3j<3000; j++)
{
printf ("%i", j);
}
}
for (i=0;i<5000;i++)
{
printf ("%i", 1);
}
for (j=1;j<5000;j=j*2)
{
printf ("%i", j);
}
for (z=100;z<5000;z+=50)
{
printf ("i", z);
}
for (z=5000;z>1500;z--)
{
printf ("%i", z);
}
z=5000;
while (z>0)
{
z-=100;
printf ("%i", z);
}
}

Figura C.1: Cédigo del fichero bucle.c

En esta prueba, se contemplan bucles anidados (Figura C.2), con incremento
constante de uno en uno y de cincuenta en cincuenta (Figura C.3), con incremento
variable (Figura C.4), y con decremento (Figura C.6).

C.1 CUENTA DE ITERACIONES 37

for (i=0;i<5000;i++)

{
for(j=0;j<3000; j++)
{
printf ("%i", j);
}
}

Figura C.2: Bucle anidado

for (i=0;i<5000;i++)

{
printf ("%i", 1);
}
for (z=100;z<5000;z+=50)
{
printf ("%i", z);
}

Figura C.3: Bucles con incremento constante

for (j=1;3j<5000;j=3%2)
{

printf ("%i", j);
}

Figura C.4: Bucle con incremento variable

for (z=5000;z>1500;z--)

{

printf ("%i", z);
}
z=5000;

while (z>0)
{
z—-=100;
printf ("%i", z);

Figura C.5: Bucles con decremento constante

Al compilarlo y analizarlo pasédndole la biblioteca libcuentaBucles.so (primera
biblioteca que se creé como se explica en el Capitulo 4), se creaba el fichero con el
cddigo LLVM IR siguiente:

C.1 CUENTA DE ITERACIONES

38

e
| H“"-I“'I

T
0w grd)|), gl] g, S |
w ksl]

-
ol

o

[
e 13| M,] | [K]y |

el Ul i T (W, 7 " i st i 1 A B, 10 1T L (17]| i 1

W = e L L
el w1 gl 0
P L T)

\

b

: wi
h""* Vel m i v i1 S 1R, 1
Veinibiral] = b 10 S WORD

i SaeT e S e T P

'

[
rmpl. m el (1 | g, il |0, Sl |
o L T]

iy e 1 e |
sl = i (17 Sl OO
1 et s, s e,

i, s e v A F fae 000 T 0 e earam

—

'

[

gyt w s O |], o L I, |

RTE g | g || 1, b

il bl (131, P s Y sk pubwimursie i {00 0 o 036 1 0 035 A7) s
Sl = T L

i a1 0 L i |

il v g 1 S i, |3 II
] sl Lan ST Lo i

T 7 /

l i

[™E]

Sumpewrls g B | v ramil] bkl | (i S |
Skl =l 11wl

S = s R
g m el o 00 o, i i e iy 01 0 W e, AR, L R e e
Smroaramil] v sl iT] el N
amstremid 0 omy] Sebramil] 6
] b1,] AT il T

| T "

l S,

el

T S P R] e . P | LT

1w gt 0 B e

Syl o il B P ekl meaias praaeam i1 o dF o ae, 330 000 8 0 4 1) raraiea
Fmrvm rami 0wl] HrwaeH |

Smsrgmi10 = ey 11 b 7, B0 "I
] P, b BT, b AL

'] ' /

| —

(21
e m e (1 | e gy, Sl L] B, Sl |
g w1 Ve

[T e—_——

Tl] B, P s i ey a1 A 1, 000 D Vil il
T o 1 e L .
e w g o R e, H |
o | e R e s

1 | i

—

M e e

Figura C.6: Fichero bucle.ll

Ademas de darnos el fichero ARM con el numero de iteraciones de cada bucle,
daba una salida por pantalla con informacién de cada bucle, como se puede ver a

continuacion:

C.1 CUENTA DE ITERACIONES

39

printDSpLoc: analizando <main>...
Tiene bucles

BUCLE 1

PHI NODE:
%1.033 = phi 132 [0, %bb.nph34 1, [%3, %bb3]

INSTRUCCIONES:
%3 = add nsw i32 %i.033, 1
hexitcondll = icmp eq 132 %3, 5000
br il %exitcondll, label %Dbb6.preheader, label %bb2.preheader

ITERACIONES: 5000

PHI NODE:
%0 = phi i32 [%2, %bbl 1, [O, %bb2.preheader]

INSTRUCCIONES:
%0 = phi i32 [%2, %bb1l 1, [O, %bb2.preheader]
%1 = tail call i32 (i8%, ...)* @printf(i8* noalias getelementptr

inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %0) nounwind
%2 = add nsw i32 %0, 1
%exitcond10 = icmp eq i32 %2, 3000
br il %exitcond10, label %bb3, label %bbil
ITERACIONES SUBBUCLE NIVEL 2: PARCIALES 3000
ITERACIONES TOTALES BUCLE 15000000

BUCLE 3

PHI NODE:
%4 = phi 132 [%6, %bb6 1, [O, %bb6.preheader]

INSTRUCCIONES:
%4 = phi 132 [%6, %bb6 1, [O, %bb6.preheader]
%5 = tail call 132 (i8%, ...)* Q@printf(i8* noalias getelementptr

inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %4) nounwind
%6 = add nsw i32 %4, 1
%exitcond9 = icmp eq 132 %6, 5000
br il Yexitcond9, label %bb9.preheader, label %bb6

ITERACIONES: 5000

C.1 CUENTA DE ITERACIONES

40

BUCLE 4

PHI NODE:
%indvar46é = phi i32 [%indvar.next47, %bb9 1, [O, %bb9.preheader]

INSTRUCCIONES:
%indvar46é = phi i32 [%indvar.next47, %bb9 1, [O, %bb9.preheader]
%j.127 = phi 132 [%8, %bb9 1, [1, %bb9.preheader]

%7 = tail call i32 (i8*, ...)* @printf(i8* noalias getelementptr
inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %j.127) nounwind
%8 = shl i32 %j.127, 1

%indvar.next47 = add i32 %indvar46, 1
%hexitcond8 = icmp eq i32 %indvar.next47, 13
br il Yexitcond8, label %bbl2.preheader, label %bb9

ITERACIONES: 13

BUCLE 5

PHI NODE:
%indvar4l = phi i32 [%indvar.next42, %bbl2], [0, %bbl2.preheader]

INSTRUCCIONES:
%indvar4l = phi i32 [%indvar.next42, %bbl2], [0, %bbl2.preheader]
%tmp6 = mul i32 Y%indvar4l, 50
%z.025 = add i32 %tmp6, 100
%9 = tail call i32 (i8%, ...)* @printf(i8* noalias getelementptr
inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %=z.025) nounwind
%indvar.next42 = add i32 %indvar4l, 1
%exitcondb = icmp eq 132 %indvar.next42, 98
br il Jexitcond5, label Jbbl5.preheader, label %bbl2

ITERACIONES: 98

BUCLE 6

PHI NODE:
%indvar36 = phi i32 [%indvar.next37, %bbl5], [0, %bblb.preheader]

INSTRUCCIONES:
%indvar36 = phi i32 [%indvar.next37, %bbl5], [0, %bblb.preheader]
%tmp = mul i32 %indvar36, -1
%z.123 = add i32 Ytmp, 5000
%10 = tail call i32 (i8%*, ...)* Qprintf(i8* noalias getelementptr
inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %z.123) nounwind
%indvar.next37 = add i32 %indvar36, 1
%exitcond = icmp eq i32 %indvar.next37, 3500
br il Jexitcond, label %bbl8.preheader, label %bblb

C.1 CUENTA DE ITERACIONES 41

ITERACIONES: 3500

BUCLE 7

PHI NODE:
%indvar = phi i32 [Yindvar.next, %bb18], [0, %bbl8.preheader]

INSTRUCCIONES:
%hindvar = phi i32 [%indvar.next, %bb18], [0, %bbl8.preheader]
%tmp2 = mul 132 %indvar, -100
Ytmp35 = add i32 %tmp2, 4900
%11 = tail call i32 (i8%, ...)* Q@printf(i8* noalias getelementptr
inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %tmp35) nounwind
%indvar.next = add i32 %indvar, 1
%hexitcondl = icmp eq i32 %indvar.next, 50
br il %exitcondl, label %return, label %bbil8

ITERACIONES: 50

1 ETIQUETA bb2.preheader VUELTAS 5000
2 ETIQUETA bbl VUELTAS 3000
3 ETIQUETA bb6 VUELTAS 5000
BUCLE 4 ETIQUETA bb9 VUELTAS 13
5 ETIQUETA bbl2 VUELTAS 98
6 ETIQUETA bbl5 VUELTAS 3500
7 ETIQUETA bb18 VUELTAS 50

Figura C.7: Salida por pantalla al compilar bucle.c

Asi podiamos saber :
= El ntmero de veces que pasaba por cada bucle

Las instrucciones de cada bloque de repeticion

El phinode de cada uno

La etiqueta en la que esta el bucle (tanto en cédigo LLVM como en cédigo
ensamblador ARM)

Gracias a la informacién anterior y al fichero con el cédigo ensamblador ARM
se pudo asegurar que la biblioteca cumplia sus funciones, por lo menos, para los
casos mas usuales de bucles. En la siguientes figuras podemos ver parte del cédigo
ensamblador ARM que nos daba.

C.1 CUENTA DE ITERACIONES 42

.LBBO_1: %bb2.preheader
Numero de vueltas=5000
=>This Loop Header: Depth=1

Child Loop BBO_2 Depth 2

©@ © © ©

mov r7, #0

.LBBO_2: J%bbl

Numero de vueltas=3000
Parent Loop BBO_1 Depth=1

=> This Inner Loop Header: Depth=2

©@ 0 0 ©

mov rl, r7
mov r0, r5
add r7, r7, #1
bl printf

cmp r7, r6
bne .LBBO_2

Figura C.8: Parte del fichero bucle.arm.opt.s que nos muestra la salida
para los bucles anidados

Tanto en la figura anterior como en la siguiente, se puede ver la salida en codi-
go ensamblador ARM que resulta de compilar el fichero bucle.c con la biblioteca
libcuentaBucles.so. En la anterior, se ve como quedaria comentado en este cédigo,
cuando se introduce un bucle anidado. En la posterior, se ve el resultado de otro
tipo de bucles para que se pueda ratificar que es correcto.

C.1 CUENTA DE ITERACIONES 43

.LBBO_7: @ %bb9
Numero de vueltas=13
@ =>This Inner Loop Header: Depth=1

@

mov rl, r6

mov r0, r4d

1sl r6, r6, #1

bl printf

subs r8, r8, #1

bne .LBBO_7

@ BB#8:

mov r6, #107, 30

mov r8, #8386

1ldr r4, .LCPIO_O

orr r6, r6, #3, 22

orr r8, r8, #19, 24

.LBB0_9: @ %bbl2

Numero de vueltas=98
@ =>This Inner Loop Header: Depth=1

@

mov r0, réd

mov rl, r7

bl printf

add r0, r7, #50

cmp r7, r8

mov r7, r0O

bne .LBBO_9

@ BB#10:

mov r7, #201, 30

1ldr r4, .LCPIO_O

orr r7, r7, #1, 20

.LBBO_11: @ %bbib

Numero de vueltas=3500
@ =>This Inner Loop Header: Depth=1

@

mov rl, rb

mov r0, r4

sub r5, r5, #1
bl printf

subs r6, r6, #1
bne .LBBO_11

Figura C.9: Parte del fichero bucle.arm.opt.s que nos muestra la salida
para distintos bucles

A partir de ahora, se podia comprobar con bucles mas inusuales, pero también
posibles, y mas complicados. Estas pruebas estan en los ficheros bucle2.c y bucle3.c.
A continuacién se van a poner algunos pequenos ejemplos de distintos tipos de bucles:

C.1 CUENTA DE ITERACIONES

44

for (j=0;j<10;j++)

Figura C.10: Parte del fichero bucle2.c

A continuacién se indica el cédigo resultante para el cdédigo C anterior.

{
for (m=0;m<20;m++)
{
for (k=0;k<20;k++)
{
printf ("\t%i\n", k);
}
}
}
.LBBO_1: Q
Q
Q
Q

mov rl, r6
mov r0O, rb
add r6, r6, #1

bl printf

cmp r6, #20

bne .LBBO_1

@ BB#2: @
Q

subs r7, r7, #1

beq .LBBO_4

© BB#3: Q
Q
Q

mov r6, #0

b .LBBO_1

.LBBO_4: @
Q

subs r4, r4, #1
moveq r0, #0

%#bb2
Numero de vueltas=20
Parent Loop BBO_5 Depth=1
=> This Inner Loop Header: Depth=2

%bbd
in Loop: Header=BBO_1 Depth=2

%bb3.preheader
Numero de vueltas=20
in Loop: Header=BBO_1 Depth=2

%bb6
in Loop: Header=BB0O_5 Depth=1

ldmiaeq sp!, {r4, r5, r6, r7, pc} @ Load de pila. Desplazamiento O

.LBBO_5: Q
Q
Q
Q

mov r7, #20

mov r6, #0

b .LBBO_1

%bb5.preheader

Numero de vueltas=10

=>This Loop Header: Depth=1
Child Loop BBO_1 Depth 2

Figura C.11: Parte del fichero bucle2.arm.opt.s

C.1 CUENTA DE ITERACIONES 45

Otro ejemplo seria el siguiente:

int 1=0;

while (1<30)

{
if (1==10) break;
printf ("%i\n", 1);

1++;
}
Figura C.12: Parte del fichero bucle3.c
Cuya compilacién da:
@ BB#0: @ %bb.nph

stmdb sp!, {r4, r5, 1r}

mov r4, #0

1ldr r5, .LCPIO_O

.LBBO_1: @ %bbl

Numero de vueltas=10

@ =>This Inner Loop Header: Depth=1

@

mov rl, r4
mov r0, r5
add r4, r4, #1
bl printf

cmp r4, #10
bne .LBBO_1

Figura C.13: Parte del fichero bucle3.arm.opt.s

Para acabar esta parte, se deja el ejemplo de un bucle con la instruccion do en
cédigo C.

int m=0;

do

{
printf("%i\n", m);
m=m+3;

}

while (m<100);

Figura C.14: Ejemplo de bucle con instruccion do

C.1 CUENTA DE ITERACIONES 46

@ BB#0: @ Yentry
stmdb sp!, {r4, r5, 1lr}
mov r4, #0
1dr r5, .LCPIO_O
.LBBO_1: @ %bb
@ Numero de vueltas=34

@ =>This Inner Loop Header: Depth=1
mov rl, r4
mov r0O, rb
add r4, r4, #3
bl printf
cmp r4, #102
bne .LBBO_1

Figura C.15: Tranformacién de bucle con instruccion do en lenguaje ARM

A parte de estos ejemplos, y de otros muchos mas, también se utilizaron otros
cédigos no disenados especificamente para probar la biblioteca, sino que existian
anteriormente, y todo resulto bien.

C.2 MARCACION DE LOADS Y STORES 47

C.2. Marcacion de loads y stores

Al llegar a esta parte, se empezaron a crear pruebas para la marcacion de loads
y stores en los ficheros con el cédigo LLVM IR. En este punto también habia que
mirar si habia retisos temporales y espaciales. Uno de los ejemplos que ensena las
primeras pruebas que se hicieron es:

#include <stdio.h>
#define Tam 5000
int main()

{
int i=0;
int A[Tam];
int B[Tam];
for (i=0;i<Tam;i++)
{
A[i]=i%5;
printf("%i", A[il);
B[i]=0;
}
for (i=0;i<Tam;i++)
{
printf("%i", A[il);
printf ("%i", B[il);
}
}

Figura C.16: Ejemplo de prueba para marcacion de loads y stores

Este programa da como resultado el fichero stores.ll, el cual se puede ver en la
Figura C.19.

Ademas del fichero ARM, al principié se sacaban por pantalla algunos datos para
confirmar que iba bien.

C.2 MARCACION DE LOADS Y STORES

48

STORE : store 132 0, i32% Yscevgep20, align 4

OPERANDO O0: 132 O

OPERANDO 1: Y%scevgep20 = getelementptr [5000 x i132]* %A, i32 0, i32 %i.013
DIRECCION MEMORIA 0x8b4ac3c

STORE : store 132 Ytmp, i32% Yscevgepl7, align 4

OPERANDO O: %tmp = mul i32 %i.111, 5

OPERANDO 1: Yscevgepl7 = getelementptr [5000 x 132]* %A, i32 0, i32 %i.111
DIRECCION MEMORIA 0Ox8b4aa84

STORE : store 132 0, i32% Yscevgepl8, align 4

OPERANDO 0: i32 0

OPERANDO 1: Y%scevgepl8 = getelementptr [5000 x i32]* B, i32 0, i32 %i.111
DIRECCION MEMORIA 0x8b4a67c

LOAD : %4 = load i32* Yscevgep, align 4
OPERANDO 0: Yscevgep = getelementptr [5000 x i32]* %A, 132 0, i32 %i.210
DIRECCION MEMORIA 0Ox8b4alfc

LOAD : %6 = load i32* %scevgeplb, align 4

OPERANDO 0: ’scevgeplb = getelementptr [5000 x i32]* %B, i32 0, i32 %i.210
DIRECCION MEMORIA 0Ox8b4al34

Figura C.17: Salida por pantalla al compilar el fichero stores.c

La biblioteca libMarcarLoadsStores.so al pasarsela en compilaciéon a cualquier

fichero de cédigo C, genera un fichero llamado <nombreFichero >Marcado.ll.

Es aqui donde se escriben todos metadatas necesarios. Uno en cada load y store
que exista en el fichero. Ademdas se anaden al final del archivo otros metadatas
indicando lo que se tiene que escribir en cada uno en el cédigo ensamblador ARM.
Para el caso anterior se generd el fichero storesMarcado.ll, de donde se va a sacar

una parte:

C.2 MARCACION DE LOADS Y STORES 49

bb: ; preds = Jbb, %bb.nph9
%i.08 = phi 132 [0, %bb.nph9 1, [%tmp2, %bb]
%hscevgepl2 = getelementptr [5000 x i132]* %A, i32 0, i32 %i.08
%scevgepl3 = getelementptr [5000 x i32]* B, i32 0, 132 %i.08
%tmp = mul i32 %i.08, 5
store i32 Ytmp, i32* Yscevgepl2, align 4, !dbg !5
%tmpl = call i32 (i8%, ...)* Qprintf(i8* noalias getelementptr
inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 Y%tmp) nounwind
store i32 0, i32* Yscevgepl3, align 4, !dbg !6
%tmp2 = add nsw 132 %i.08, 1
%exitcondll = icmp eq i32 Jtmp2, 5000
br il %exitcondl1l, label %bb3, label %bb

bb3: ; preds = %bb3, %bb
%1.17 = phi 132 [%tmp7, %bb3 1, [O, %bb]
%scevgep = getelementptr [5000 x i32]* %A, i32 0, i32 %i.17
hscevgeplO = getelementptr [6000 x i132]* B, i32 0, i32 %i.17
%tmp3 = load i32* Yscevgep, align 4, !dbg !7
%tmp4d = call i32 (i8%, ...)* Qprintf(i8* noalias getelementptr
inbounds ([3 x i8]* @.str, i32 0, i32 0), 132 %tmp3) nounwind
%tmp5 = load i32% YscevgeplO, align 4, !dbg !8
%tmp6 = call i32 (i8*, ...)* Qprintf(i8* noalias getelementptr
inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 Ytmp5) nounwind
%tmp7 = add nsw 132 %i.17, 1
%exitcond = icmp eq i32 %tmp7, 5000
br il %exitcond, label Yreturn, label %bb3

return: ; preds = %bb3
ret i32 undef

Figura C.18: Fichero storesMarcado.ll

En este apartado se muestra un simple ejemplo, ya que todos los resultados son
muy parecidos, por lo que no se pueden sacar grandes diferencias, como ocurria en
el apartado anterior.

20

C.2 MARCACION DE LOADS Y STORES

USRI LI, 10§ T3

Bpun Zgl 384
RIFL T

I

4 _ i

£00%; [BgE] ‘LINJ3IL B ‘puooyEB; TIIg

0005 "fdwysg 78 b dwn m puoojixecg

T L1195 TE! Msu ppe = podungsg

pulsunou (gdwisg 781 (0 2810 TE 435°E W8 ¥ £]) spunogu) ydjuawaRiel seecu (BIMILdE W W1 TR e2 = gdungeg
tr ufiye ‘grd=bneose; FE1 peop = gduntg

putsuneou (gdugeg 81 (0 810 £ 435 E 8! ¥ £]) spunogu) Jydiuswaregel seeou La1ued @ L LB 28 10 = pduntg
tr ubiie ‘dafinaoss; L781 peo] = gdwdsg

L1108 TE! '0 281 ‘8% JTE ® 0pos) ndivewsieish = grdebnedstg

L1 TE! ‘0 28 Wi [TE ¥ goos] Ndiuswseisl m dabreasy;

[gaeg "0][eaae "rdwiesg] e gd = L1709

“Efg

L

puimuncy (duge; 2 (0 TE 0 28 958 W[/ % g]) spunegul gdjusweEreb sejeow L8 0udE) 7 W81 ZE e = Tdwiltg

g [Bge] '£999%; |SQe| T TRL0IMNSE, T1 4
000§ ‘Tdwlisg £ ba dws m [Tpuosiines;
T 80018 751 MEU ppe = Fdwyeg

f ubipe ‘grdabazoss; (ZE 0 TE 2401E

p ubye ‘zdabasosy LTE dwity 78 94008

§ 'BO1% TE INW = dwijsg

S071% T 0 TE 8% «[7E ¥ 0005] Bduswsegeb = gdabaacst
S071% T8 0 TE W% #[7E ¥ 0005] Bduswsegeb = zTdabraost
[@ges ‘Fdwizg][gudugges ‘o] 8 yd = 307195

]

Gt e Y
¥ Ui [28 ¥ po0S5] B30)e = g4
¥ uine [ze ¥ poos] Bv0)e = iy

ELdu gy

Figura C.19: Fichero stores.ll

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES 51

C.3. Localizacion de retiisos temporales y espaciales

Aqui también se hizo una gran cantidad de pruebas. Se van a destacar algunas,
aunque es muy dificil ensenar todos ejemplos posibles.

Para estas pruebas, ademas de crear nuevos programas, se reutilizaron los creados
para marcacion de loads y stores. En la Figura C.20 podemos apreciar una muestra
del resultado del fichero stores.c después de realizar la localizacion.

.LBBO_1: @ %bb
@ Numero de vueltas=5000
@ =>This Inner Loop Header: Depth=1
mov r0, r7
mov rl, r9
str r9, [r6], #4

@

Store var "A". Reuso espacial. Var iteracion "i".
@ Desplazamiento con "stride" 1
add r9, r9, #5

bl printf

str r4, [r5], #4 @ Store var "B". Reuso espacial. Var iteracion "i".
@ Desplazamiento con "stride" 1

cmp r9, r8

bne .LBBO_1

@ BB#2: @ %bb.bb3_crit_edge

add 1lr, sp, #1, 18
mov r4, #226, 30
orr r4, r4, #1, 20
1ldr r7, .LCPIO_O @ Load Constante .LCPIO_O
mov r5, sp
add r6, lr, #226, 28
.LBBO_3: Q@ %bb3
@ Numero de vueltas=5000
@ =>This Inner Loop Header: Depth=1
Load var "A". Reuso espacial. Var iteracion "i".
@ Desplazamiento con "stride" 1

@

1dr r1, [r6], #4

mov r0O, r7

bl printf

ldr r1, [r5], #4 @ Load var "B". Reuso espacial. Var iteracion "i".
@ Desplazamiento con "stride" 1

mov rO, r7

bl printf

subs r4, r4, #1

bne .LBBO_3

© BB#4: @ %return

add sp, sp, #113, 26 Q@ 7232

add sp, sp, #2, 18 @ 32768

ldmia sp!, {r4, r5, r6, r7, r8, r9, rl0, pc} @ Load de pila. Desplazamiento O

Figura C.20: Parte del fichero stores.arm.opt.s

En la figura anterior, se puede comprobar que se indica el retiso espacial que
existe en los vectores A y B, y un load de pila (ldmia sp). Igualmente, se constata
que la variable de iteracion es 4 en los dos bucles, y que el “stride” de ambos es uno.

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES 52

Un ejemplo mas completo se puede ver a continuacién. En la Figura C.21 se ve
el codigo del fichero pruebaStores.c.

#include <stdio.h>
#define Tam 5000
int main()

{

int varBucle=0;

int varBucle2=0;

int i=0;

int Vectorl[Tam] ;

int Vector2[Tam];

int Vector3[Tam] [Tam];

int mivar=0;

int mivar2=0;

for (varBucle=0;varBucle<Tam;varBucle++)

{
Vectorl[varBucle]=varBuclex*5;
Vector2[varBucle]=varBuclex*5;

}

for (varBucle2=0;varBucle2<Tam;varBucle2+=5)

{
printf ("%i", Vectorl[varBucle2]);
printf ("%i", Vector2[varBucle2]);

}

for (varBucle=0;varBucle<Tam;varBucle++)

{
for (varBucle2=0;varBucle2<Tam;varBucle2++)
{

Vector3[varBucle] [varBucle2] =varBucle*varBucle2;

}

}

for (varBucle=0;varBucle<Tam;varBucle++)

{
for (varBucle2=0;varBucle2<Tam;varBucle2++)
{

printf ("%i", Vector3[varBucle] [varBucle2]);

}

}

int j=Tam;

for (i=1;i<Tam;i=ix5)

{
=3
printf ("%i", Vectorl[i]);
printf ("%i", Vector2[jl);

}

}

Figura C.21: Fichero pruebaStores.c

En la Figura C.22 se puede cotejar el funcionamiento de la biblioteca con distintos

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES 53

tipos de reuso espacial, entre los que estan los de “stride” uno, de “stride” cinco, de
“stride” negativo y de “stride” no constante. [gualmente, se ven retisos espaciales
sobre multiples variables y reisos temporales de constantes.

.LBBO_1: @ %bb
@ Numero de vueltas=5000
@ =>This Inner Loop Header: Depth=1
Store var "Vectorl". Reuso espacial.
Var iteracion "varBucle".
Desplazamiento con "stride" 1
Store var "Vector2". Reuso espacial.
Var iteracion "varBucle".
Desplazamiento con "stride" 1

str r0, [r2], #4

str r0, [ri], #4

© 0 0 0 0

add r0, r0O, #5

cmp r0, r3
bne .LBBO_1
@ BB#2: @ %bb.bb3_crit_edge

add 1r, sp, #245, 16 @ 16056320
mov r4, #250, 30 @ 1000
1ldr r7, .LCPIO_O @ Load Constante .LCPIO_O
add 1r, lr, #5, 8 @ 83886080
add r5, 1lr, #225, 24 @ 57600
add 1r, sp, #98, 20 @ 401408
add 1lr, lr, #95, 12 @ 99614720
add r6, lr, #242, 28 @ 3872
.LBBO_3: @ %bb3
@ Numero de vueltas=1000
@ =>This Inner Loop Header: Depth=1
Load var "Vectorl". Reuso espacial.
Var calculada basada en var iteracion "indvar46".
@ Desplazamiento con "stride" 5

ldr r1, [r6], #20

e ©

mov rO, r7

bl printf

ldr r1, [r5], #20 @ Load var "Vector2". Reuso espacial.

Var calculada basada en var iteracion "indvar46".
@ Desplazamiento con "stride" 5

@

mov r0, r7

bl printf

subs r4, r4, #1

bne .LBB0O_3

© BB#4: @ %bb3.bb8.preheader_crit_edge
mov r0, sp

mov rl, #226, 30 @ 904
orr rl, rl, #1, 20 @ 4096
mov r2, #0

.LBBO_5: @ %Dbb8.preheader

@ Numero de vueltas=5000

@ =>This Loop Header: Depth=1
@ Child Loop BBO_6 Depth 2
mov r3, r0

mov rl12, #0

mov 1lr, ril

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES

o4

.LBBO_6:

str ri12,

[r3], #4

add ri12, r12, r2

subs 1r,

bne

add
add
cmp
add
bne

mov
orr
mov
ldr
mov

.LBB0O_9:

1r,

.LBBO_6
@ BB#7:

r0,
r2,
r2,
r0,

r0,
r2,
rl

r0,

.LBBO_5
@ BB#8:

r5,
r5,
r4d,
r6,
r7,

#1

#226, 28 @ 3616
#1

#1, 18 @ 16384

#226, 30 @ 904

r5,
sp

#1, 20 @ 4096

.LCPIO_0

rb

mov r8, r4
mov r9, r5
.LBBO_10:

ldr

ril,

[r8]

mov r0O, r6
bl printf
subs r9, r9, #1

bne

.LBBO_10
@ BB#11:

, #4

add r4, r4, #226, 28 @ 3616
subs r7, r7, #1

add r4, r4, #1,

bne

@ BB#12:

add
mov
mov
1dr
add
add
add
add
add
add
add

.LBBO_9

1r,
r5,
r6,
r8,
1r,
r4,
r4,
1r,
1r,
r4,
r7,

18 @ 16384

Q@ %b

b7

@ Numero de vueltas=5000

Q

Qe =>
"Vec
vari

@ Store var
@ Multiples

@ %b
Q

@ %b

@ Load Constante
%b

=>

@ © 0 ©

%b

@ © ©

Q@ =>
@ Load var "Vect
@ Multiples vari

Q@ %b
¢

Q@ %b

sp, #245, 16 @ 16056320

#1

#0

.LCPIO_O

1r, #5, 8 @ 83886080
1r, #225, 24 @ 57600
r4, #135, 30 @ 540
sp, #98, 20 @ 401408
1r, #95, 12 @ 996147
rd, #19, 22 0@ 19456
1r, #242, 28 @ 3872

@ Load Constante

20

Parent Loop BBO_5 Depth=1

This Inner Loop Header: Depth=2
tor3". Reuso espacial.
ables "tmp37" "varBucle2"

b9
in Loop: Header=BB0O_5 Depth=1

b9.bbl4.preheader_crit_edge

.LCPIO_0

bl4.preheader

Numero de vueltas=5000

This Loop Header: Depth=1
Child Loop BBO_10 Depth 2

b13

Numero de vueltas=5000

Parent Loop BBO_9 Depth=1

This Inner Loop Header: Depth=2
or3". Reuso espacial.
ables "varBucle" "varBucle2"

b15
in Loop: Header=BBO_9 Depth=1

b18.preheader

.LCPIO_0

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES 55

.LBBO_13:

ldr r1, [r7, r5, 1sl #2]

mov r0, r8

add r5, rb5, rb, 1lsl #2
bl printf

1dr r1, [r4, -r6, 1lsl #2]

mov r0O, r8
add r6, r6, #1
bl printf

cmp r6, #6
bne .LBBO_13

@ ©

@

Q@ %bb18

@ Numero de vueltas=6

@ =>This Inner Loop Header: Depth=1
Load var "Vectorl". Reuso espacial.
Var iteracion "i".
Desplazamiento con "stride" no constante

Load var "Vector2". Reuso espacial.
Var calculada basada en var iteracion "indvar".
Desplazamiento con "stride" -1

Figura C.22: Fichero pruebaStores.arm.opt.s

Para terminar, se va a dejar constancia de una prueba con un fichero ya existente,
para demostrar que no son pruebas realizadas vagamente. En la siguiente figura se
presenta el codigo del fichero jfdctint.c.

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES

o6

/***/

/%
/* SNU-RT Ben
/*

chmark Suite for Worst Case Timing Analysis

/%

/%

/*

/%

/%

/%

/% < Fea
/%

/* 1.
/%

/%

/%

/* 2.
/*
/% 4.
/*

/*

/* 5.
/%

/%

/%

/%

w

Collected and Modified by S.-S. Lim
sslim@archi.snu.ac.kr

Real-Time Research Group

Seoul National University

tures > - restrictions for our experimental environment

Completely structured.
- There are no unconditional jumps.
- There are no exit from loop bodies.
(There are no ’break’ or ’return’ in loop bodies)
No ’switch’ statements.

. No ’do..while’ statements.

Expressions are restricted.
- There are no multiple expressions joined by ’or’,
’and’ operationmns.
No library calls.
- All the functions needed are implemented in the
source file.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

/%
/* FILE: jfdct
/* SOURCE : Th
/* Mo
/%

int.c
omas G. Lane, Public domain JPEG source code.
dified by Steven Li at Princeton University.

/* DESCRIPTION :

/%

/* JPEG slo
/% DCT (Dis
/%

/* REMARK :

/%

/* EXECUTION T
/*

/%

w-but-accurate integer implementation of the forward
crete Cosine Transform).

IME :

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

/**

Functions t

***/

/* This definit
files.
*/
#define DCT_ISL
#define DCTSIZE
#define BITS_IN

o be timed

ions are added by Steven Li so as to bypass the header

OW_SUPPORTED
8
_JSAMPLE 8

C

.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES

57

#d
#d
#d
#d
#d
#d
#d
#d

~
LR T R I R R R R U R R R S T T R R

*

~

efine MULTIPLY16C16(var,const) ((var) * (const))

efine DCTELEM int

efine INT32 int

efine GLOBAL

efine RIGHT_SHIFT(x,shft) ((x) >> (shft))

efine ONE ((INT32) 1)

efine DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
efine SHIFT_TEMPS

jfdctint.c

Copyright (C) 1991-1994, Thomas G. Lane.
This file is part of the Independent JPEG Group’s software.

For conditions of distribution and use, see the accompanying README file.

This file contains a slow-but-accurate integer implementation of the
forward DCT (Discrete Cosine Transform).

A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
on each column. Direct algorithms are also available, but they are
much more complex and seem not to be any faster when reduced to code.

This implementation is based on an algorithm described in
C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
Algorithms with 11 Multiplications", Proc. Int’l. Conf. on Acoustics,
Speech, and Signal Processing 1989 (ICASSP ’89), pp. 988-991.

The primary algorithm described there uses 11 multiplies and 29 adds.

We use their alternate method with 12 multiplies and 32 adds.

The advantage of this method is that no data path contains more than one

multiplication; this allows a very simple and accurate implementation in

scaled fixed-point arithmetic, with a minimal number of shifts.

#define JPEG_INTERNALS

#i

#e

#i

f DCTSIZE != 8
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
ndif

f BITS_IN_JSAMPLE ==

#define CONST_BITS 13
#define PASS1_BITS 2

#e

1se

#define CONST_BITS 13
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */

#e

ndif

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES

#if CONST_BITS == 13

#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) =/
#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
#define FIX_1_501321110 ((INT32) 12299) /% FIX(1.501321110) */
#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) x*/
#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
#else

#define FIX_0_298631336 FIX(0.298631336)

#define FIX_0_390180644 FIX(0.390180644)

#define FIX_0_541196100 FIX(0.541196100)

#define FIX_0_765366865 FIX(0.765366865)

#define FIX_0_899976223 FIX(0.899976223)

#define FIX_1_175875602 FIX(1.175875602)

#define FIX_1_501321110 FIX(1.501321110)

#define FIX_1_847759065 FIX(1.847759065)

#define FIX_1_961570560 FIX(1.961570560)

#define FIX_2_053119869 FIX(2.053119869)

#define FIX_2_562915447 FIX(2.562915447)

#define FIX_3_072711026 FIX(3.072711026)

#endif

#if BITS_IN_JSAMPLE ==

#define MULTIPLY(var,const) MULTIPLY16C16(var,const)
#else

#define MULTIPLY(var,const) ((var) * (const))

#endif

DCTELEM datal[64] = {81, 10854, 1893, 55245, 7746, 47274, 61698, 14040,
32421, 52299, 9138, 35805, 43626, 35259, 36543, 10710,

48276, 63894, 43968, 15210, 56961, 39369, 58893, 34185,

24771, 17874, 18063, 43200, 44136, 37554, 14103, 40800,

52611, 50634, 49833, 8835, 61041, 57729, 10443, 12765,

59451, 42864, 64983, 57735, 11241, 53364, 19713, 510,

2376, 53949, 31983, 59580, 60021, 53139, 55323, 18120,

50781, 3849, 53253, 4950, 3081, 16644, 51078, 43350};

GLOBAL void
jpeg_fdct_islow ();

int main(int argc, char *argv[])
{

jpeg_fdct_islow();

return ;

}

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES

99

GLOBAL void
jpeg_fdct_islow ()
{
INT32 tmpO, tmpl, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
INT32 tmpl0, tmpll, tmpl2, tmpl3;
INT32 z1, z2, z3, z4, z5;
DCTELEM *dataptr;
int ctr;
SHIFT_TEMPS

dataptr = data;

for (ctr = DCTSIZE-1; ctr >= 0; ctr--)

{
tmp0 = dataptr[0] + dataptr[7];
tmp7 = dataptr[0] - dataptr[7];
tmpl = dataptr[1] + dataptr[6];
tmp6 = dataptr[1] - dataptr[6];
tmp2 = dataptr[2] + dataptr[5];
tmp5 = dataptr[2] - dataptr([5];
tmp3 = dataptr[3] + dataptr[4];
tmp4 = dataptr[3] - dataptr[4];

tmpl0 = tmpO + tmp3;

tmpl3 = tmpO - tmp3;
tmpll = tmpl + tmp2;
tmpl2 = tmpl - tmp2;

dataptr[0] = (DCTELEM) ((tmp10 + tmpl1) << PASS1_BITS);
dataptr([4] = (DCTELEM) ((tmpl0 - tmpll) << PASS1_BITS);

z1 = MULTIPLY(tmpl2 + tmpl3, FIX_0_541196100);

dataptr[2] = (DCTELEM) DESCALE(zl1 + MULTIPLY(tmpl13, FIX_0_765366865),
CONST_BITS-PASS1_BITS);

dataptr[6] = (DCTELEM) DESCALE(zl1 + MULTIPLY(tmpl2, - FIX_1_847759065),
CONST_BITS-PASS1_BITS);

z1l = tmp4 + tmp7;
z2 = tmp5 + tmp6;
z3 = tmp4 + tmp6;

z4 = tmpb5 + tmp7;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2)
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2)
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) (cl+c3+ch-c7) =/
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * (cl+c3-c5-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-cb) */
z4 = MULTIPLY(z4, - FIX_0.390180644); /* sqrt(2) * (c5-c3) */

(-cl+c3+c5-c7) =/
(c1+c3-cb+c7) */

*
*
*
*

z3 += zb;
z4 += zb;

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES 60

dataptr[7] = (DCTELEM) DESCALE(tmp4 + zl + z3, CONST_BITS-PASS1_BITS);
dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
dataptr[1] = (DCTELEM) DESCALE(tmp7 + zl + z4, CONST_BITS-PASS1_BITS);

dataptr += DCTSIZE; /* advance pointer to next row */

dataptr = data;

for (ctr = DCTSIZE-1; ctr >= 0; ctr--)

{
tmp0O = dataptr [DCTSIZEx0] + dataptr [DCTSIZEx7];
tmp7 = dataptr[DCTSIZE*0] - dataptr [DCTSIZEx7];
tmpl = dataptr [DCTSIZEx1] + dataptr [DCTSIZEx6];
tmp6 = dataptr [DCTSIZEx1] - dataptr [DCTSIZEx6];
tmp2 = dataptr[DCTSIZE*2] + dataptr [DCTSIZEx5];
tmp5 = dataptr[DCTSIZE*2] - dataptr [DCTSIZEx5];
tmp3 = dataptr [DCTSIZEx3] + dataptr [DCTSIZEx*4];
tmp4 = dataptr [DCTSIZE*3] - dataptr [DCTSIZEx4];

tmpl0 = tmpO + tmp3;

tmpl3 = tmpO - tmp3;
tmpll = tmpl + tmp2;
tmpl2 = tmpl - tmp2;
dataptr [DCTSIZE*0] = (DCTELEM) DESCALE(tmpl0 + tmpl1l, PASS1_BITS);
dataptr [DCTSIZE*4] = (DCTELEM) DESCALE(tmpl0 - tmpll, PASS1_BITS);

z1 = MULTIPLY (tmp12 + tmp13, FIX_0_541196100);

dataptr [DCTSIZE#2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
CONST_BITS+PASS1_BITS);

dataptr [DCTSIZE#6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
CONST_BITS+PASS1_BITS);

z1l = tmp4 + tmp7;
z2 = tmp5 + tmp6;
z3 = tmp4 + tmp6;

z4 = tmpb5 + tmp7;
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

(-cl+c3+c5-c7) */
(c1+c3-cb+c7) */

tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2)
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2)
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) (cl+c3+chb-c7) =/
tmp7 = MULTIPLY (tmp7, FIX_1_501321110); /* sqrt(2) * (cl+c3-cb-c7) */
z1 = MULTIPLY(z1, - FIX_0_899976223); /#* sqrt(2) * (c7-c3) */
z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-cl-c3) */
z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-cb) */
z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */

*
*
*
*

z3 += zb5;
z4 += zb;

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES 61

dataptr [DCTSIZEx7]
CONST_BITS+PASS1_BITS);
dataptr [DCTSIZE*5] = (DCTELEM) DESCALE (tmp5
CONST_BITS+PASS1_BITS);
dataptr [DCTSIZE*3]
CONST_BITS+PASS1_BITS);
dataptr [DCTSIZE*1] = (DCTELEM) DESCALE (tmp7
CONST_BITS+PASS1_BITS);

(DCTELEM) DESCALE (tmp6

(DCTELEM) DESCALE(tmp4 + zl + z3,

+

z2 + z4,

+

z2 + z3,

+

zl + z4,

dataptr++; /* advance pointer to next column */

}
}

Figura C.23: Fichero jfdctint.c

Y en la Figura C.24 esta el fichero ARM que genera. Se muestra entero para tener
una vision en conjunto de como queda. Espero que con esto quede suficientemente
claro como funcionan las bibliotecas y se entiendan los resultados obtenidos.

.syntax unified
.eabi_attribute 6, 2
.eabi_attribute 8, 1
.eabi_attribute 9, 1
.eabi_attribute 20,
.eabi_attribute 21,
.eabi_attribute 23,
.eabi_attribute 24,
.eabi_attribute 25,

=W

1

.file "jfdctintMarcado.1ll"

.text

.globl main

.align 2

.type main,’%function
main:

@ BB#0:

@ @main
@ Y%entry

push {r4, r5, r6, r7, r8, r9, ri10, ril, 1r}

sub sp, sp, #12
mov r0O, #O
.LBBO_1:

1ldr r1, .LCPIO_O
ldr r2, [r1, r0]!

add r7, rl, #16

@ %bb.i
@ Numero de vueltas=8
@ =>This Inner Loop Header: Depth=1
@ Load Constante .LCPIO_O
@ Load var "data". Reuso espacial.
@ Var calculada basada en var iteracion "indvar24".
@ Desplazamiento con "stride" 8

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES 62
ldr r3, [r1, #4] @ Load var "data". Reuso espacial.
@ Var calculada basada en var iteracion "indvar24".
Q@ Desplazamiento con "stride" 8
ldr 1r, [r1, #12] @ Load var "data". Reuso espacial.
@ Var calculada basada en var iteracion "indvar24".
@ Desplazamiento con "stride" 8
str r2, [sp] @ Store de pila. Desplazamiento 0
str r3, [sp, #8] @ Store de pila. Desplazamiento 8 bytes
1dr ri12, [r1, #8] @ Load var "data". Reuso espacial.
@ Var calculada basada en var iteracion "indvar24".
@ Desplazamiento con "stride" 8
str 1lr, [sp, #4] @ Store de pila. Desplazamiento 4 bytes
add rO, r0O, #32
cmp r0O, #1, 24 @ 256
ldmia r7, {r4, r5, r6, r7} @ Load var "data". Reuso espacial.
@ Var calculada basada en var iteracion "indvar24".

add
add
add
add
add
add
add
sub
1s1
str

sub
1s1
str

sub
mov
orr
add
mul
mov
orr
mla
add
asr

str

ldr
mla

r9, rb5, ri2
r8, r6, r3
rl0, r9, r8
ril, r7, r2
r2, r4, 1r

r3, r2, ril
1r, r3, ri10
r3, r3, ri0
1lr, 1r, #2

1r, [ri]

r2, ril, r2
r3, r3, #2

r3, [r1, #16]
r3, r8, r9

r9, #81

r8, r9, #17, 24
1r, r2, r3

r9, 1lr, r8

r8, #126

1lr, r8, #6, 22
r8, r2, 1lr, r9
r2, r8, #1, 22
r2, r2, #11
r2, [r1, #8]
r2, .LCPIO_1
1lr, r3, r2, r9

@ ©

© ©

@ Desplazamiento con "stride" 8

Store var "data". Reuso espacial.
Var calculada basada en var iteracion
Desplazamiento con "stride" 8

Store var "data". Reuso espacial.
Var calculada basada en var iteracion
Desplazamiento con "stride" 8

4352

6144

1024

Store var "data". Reuso espacial.
Var calculada basada en var iteracion
Desplazamiento con "stride" 8

Load Constante .LCPIO_1

"indvar24".

"indvar24".

"indvar24".

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES

sub
ldr
sub
add
ldr
asr
str

sub
add
ldr
sub
1dr
mul
add
add
ldr
add
mul
mov
orr
mla
mov
orr
mla
add
add
asr
str

ldr
mul
mla
ldr
add
mul
mov
orr
mla
add
add
asr
str

mov
orr
mla
add
add
asr
str

r3,
r5,
r4,
r2,
1r,
r2,
r2,

1r,
r5,
r2,
r2,
r7,
r8,
ri2,
r6,
r9,
rii,
ri0,
r7,
r5,
r7,
r8,
r8,
r9,
r4,
r4,
r4d,
r4,

r4,
r8,
ri2,
r5,
r4,
r6,
r4d,
r4,
r5,
r3,
r3,
r3,
r3,

r3,
r3,
r4,
r3,
r3,
r3,
r3,

ri2, r5
[sp, #4]
rb5, r4d

1r, #1, 22
[sp, #8]
r2, #11
[r1, #24]

1r, r6

rd, 1r
[spl

r2, r7
.LCPIO_2
r5, r7

r3, r2
r5, ri12
.LCPIO_3
rd, r2
ril, r9
#161

r7, #37, 24
r6, r5, r8
#142

r8, #9, 24
r4, r8, ri10
r9, r7

rd, #1, 22
rd, #11
[r1, #28]

.LCPIO_4
ri2, r4d

r6, r5, r8
.LCPIO_5
r3, 1lr

r4, r5

#179

r4d, #65, 24
r3, r4d, r6
r5, ri12

r3, #1, 22
r3, #11
[r1, #20]

#149, 30
r3, #6, 20
1lr, r3, r6
rd, r7

r3, #1, 22
r3, #11
[r1, #12]

@

@

© 0 © O

© 0 © 0 ©

@

Load de pila. Desplazamiento 4 bytes

1024
Load de pila. Desplazamiento 8 bytes

Store var "data'". Reuso espacial.
Var calculada basada en var iteracion "indvar24".
Desplazamiento con "stride" 8

Load de pila. Desplazamiento O

Load Constante .LCPIO_2

Load Constante .LCPIO_3

9472

2304

1024

Store var "data". Reuso espacial.

Var calculada basada en var iteracion "indvar24".
Desplazamiento con "stride" 8

Load Constante .LCPIO_4

Load Constante .LCPIO_5

16640

1024

Store var "data". Reuso espacial.

Var calculada basada en var iteracion "indvar24".
Desplazamiento con "stride" 8

596

24576

1024

Store var "data". Reuso espacial.
Var calculada basada en var iteracion "indvar24".
Desplazamiento con "stride" 8

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES

64

mov r3, #11

orr r3, r3, #3, 20
mla 1lr, r2, r3, ri10
add r2, 1r, ri2

add r2, r2, #1, 22
asr r2, r2, #11

str r2, [r1, #4]

mvn ril, #31
bne .LBBO_1
.LBBO_2:

1ldr r0, .LCPIO_O
add r0, r0, r1
ldr r2, [rO, #32]

ldr r3, [r0, #64]

ldr 1r, [rO0, #128]

ldr r4, [r0, #256]

1ldr r9, [r0, #224]

str r2, [sp]
str r3, [sp, #8]
1dr r12, [r0, #96]

add rb5, r4, r2
1dr ri11, [r0, #192]

add r10, r9, r3
1dr r6, [rO, #160]

add r7, r6, 1lr
str 1lr, [sp, #4]
add r8, r7, rb
adds r1l, rl, #4
add r2, ri11, ri2
add r3, r2, ri10
add 1lr, r3, r8
rsb r3, r3, #2
add 1r, 1r, #2
sub r2, r10, r2
add r3, r3, r8
asr lr, 1lr, #2

@ ©

@ © 0 oo oOOo®Od®Oo®® B O @

e © ©

e ©

12288

1024

Store var "data". Reuso espacial.
Var calculada basada en var iteracion
Desplazamiento con "stride" 8

@ %bb3.i
@ Numero de vueltas=8

"indvar24".

@ =>This Inner Loop Header: Depth=1

Load Constante .LCPIO_O

Load var "data". Reuso espacial. Var iteracion "indvar".

Desplazamiento con "stride" 1

Load var "data". Reuso espacial.

Var calculada basada en var iteracion
Desplazamiento con "stride" 1

Load var "data". Reuso espacial.

Var calculada basada en var iteracion
Desplazamiento con "stride" 1

Load var "data". Reuso espacial.

Var calculada basada en var iteracion
Desplazamiento con "stride" 1

Load var "data". Reuso espacial.

Var calculada basada en var iteracion
Desplazamiento con "stride" 1

Store de pila. Desplazamiento O

Store de pila. Desplazamiento 8 bytes
Load var "data". Reuso espacial.

Var calculada basada en var iteracion
Desplazamiento con "stride" 1

Load var "data". Reuso espacial.
Var calculada basada en var iteracion
Desplazamiento con "stride" 1

Load var "data". Reuso espacial.
Var calculada basada en var iteracion

Desplazamiento con "stride" 1

Store de pila. Desplazamiento 4 bytes

"indvar".

"indvar".

"indvar".

"indvar".

"indvar".

"indvar".

"indvar".

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES 65

str

asr
str

sub
mov
orr
add
mul
mov
orr
mla
add
asr
str

ldr
mla
add
ldr
asr
1dr
str

sub
ldr
sub
1dr
ldr
sub
sub
add
add
add
mul
add
mul
mov
orr
mla
mov
orr
mla
add
add
asr
str

1ldr
mul
mla

1r,

r3,
r3,

r3,
r7,
r5,
1r,
r7,

1r,
r5,
r3,
r3,
r3,

r3,
1r,
r2,
r5,
r2,
1r,
r2,

r3,
r2,
1r,
r7,
r9,
r2,
r4,
r5,
ri2,
r6,
r8,
rii,
ri0,
r5,
r5,
r7,
r8,
r8,
r9,
r4,
r4,
r4d,
r4,

r4d,
r8,
rl2,

[rO0, #32]

r3, #2
[rO, #160]

rb5, r7

#381

r7, #17, 24
r3, r2

1lr, r5
#126

r5, #6, 22
r3, 1lr, r7
rb5, #1, 18
r3, #15
[rO, #96]

.LCPIO_1
r2, r3, r7
1r, #1, 18
[sp, #4]
r2, #15
[sp, #8]
[r0, #224]

ri2, ri1
[spl

1lr, r9
.LCPIO_2
.LCPIO_3
r2, r4d

r5, r6

r4d, 1lr

r3, r2
r5, ri2
r5, r7

rd, r2
ril, r9
#161

r5, #37, 24
r6, r5, r8
#142

r8, #9, 24
r4d, r8, ri10
r9, r7

r4, #1, 18
r4d, #15
[rO, #256]

.LCPIO_4
ri2, r4d
r6, r5, r8

@ ©

© 0 6

@ ©

© 0 0 O

@

© 0 6

Store var "data'". Reuso espacial.
Var iteracion "indvar". Desplazamiento con "stride" 1

Store var "data". Reuso espacial.
Var calculada basada en var iteracion "indvar".
Desplazamiento con "stride" 1

4352

6144

16384

Store var "data". Reuso espacial.

Var calculada basada en var iteracion "indvar".
Desplazamiento con "stride" 1

Load Constante .LCPIO_1

16384

Load de pila. Desplazamiento 4 bytes

Load de pila. Desplazamiento 8 bytes

Store var "data". Reuso espacial. V

Var calculada basada en var iteracion "indvar".
Desplazamiento con "stride" 1

Load de pila. Desplazamiento O

Load Constante .LCPIO_2
Load Constante .LCPIO_3

9472

2304

16384

Store var "data". Reuso espacial.

Var calculada basada en var iteracion "indvar".
Desplazamiento con "stride" 1

Load Constante .LCPIO_4

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES

66

1ldr
add
mul

r5,
r4d,
r6,
r4,
r4d,
r5,
r3,
r3,
r3,
r3,

mov
orr
mla
add
add
asr
str

mov
orr
mla
add
add
asr
str

r3,
r3,
r4d,
r3,
r3,
r3,
r3,

mov r3,
r3,
1r,
r2,
r2,
r2,
r2,

orr
mla
add
add
asr
str

bne .LBB
© BB#3:
add sp,

.LCPIO_5
r3, 1lr

r4, r5

#179

r4, #65, 24
r3, r4, r6
r5, ri12

r3, #1, 18
r3, #15
[r0, #192]

#149, 30
r3, #6, 20
1lr, r3, r6
r4d, r7

r3, #1, 18
r3, #15
[r0, #128]

#11

r3, #3, 20
r2, r3, ri0
1r, ri12

r2, #1, 18
r2, #15
[rO, #64]

0_2

sp, #12

(¢

©@ © © ©

@

Load Constante .LCPIO_5

16640

16384

Store var "data". Reuso espacial.

Var calculada basada en var iteracion
Desplazamiento con "stride" 1

596

24576

16384
Store var "data". Reuso espacial.
Var calculada basada en var iteracion

Desplazamiento con "stride" 1

12288

16384
Store var "data". Reuso espacial.
Var calculada basada en var iteracion

Desplazamiento con "stride" 1

@ %jpeg_fdct_islow.exit

pop {r4, r5, r6, r7, r8, r9, r10, ril, 1r}

bx 1r

@ BB#4:
.align 2
.LCPIO_O

.long data

.align 2
.LCPIO_1
.long 42
.align 2
.LCPIO_2
.long 42
.align 2
.LCPIO_3
.long 42
.align 2
.LCPIO_4
.long 42
.align 2
.LCPIO_5
.long 42
.LtmpO:

.size main,

94952159

94951227

94959923

94964100

94946301

.LtmpO-main

@ Oxffffc4df

@ Oxffffci3b

@ Oxffffe333

@ Oxfffff384

@ Oxffffadfd

"indvar".

"indvar".

"indvar".

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES

.type data,’%object @ @data
.data

.align 5

data:

.long 81 @ 0x51
.long 10854 @ 0x2a66
.long 1893 @ 0x765
.long 55245 @ 0xd7cd
.long 7746 Q@ Oxle4?2
.long 47274 © Oxb8aa
.long 61698 @ 0xf102
.long 14040 @ 0x36d8
.long 32421 © Ox7eab
.long 52299 @ Oxcc4db
.long 9138 @ 0x23b2
.long 35805 @ 0x8bdd
.long 43626 © Oxaaba
.long 35259 @ 0x89bb
.long 36543 @ O0x8ebf
.long 10710 © 0x29d6
.long 48276 @ Oxbc94
.long 63894 @ 0xf996
.long 43968 © OxabcO
.long 15210 @ 0x3b6a
.long 56961 @ Oxde81
.long 39369 @ 0x99c9
.long 58893 © 0xe60d
.long 34185 @ 0x8589
.long 24771 @ 0x60c3
.long 17874 © 0x45d2
.long 18063 © 0x468f
.long 43200 @ 0xa8c0
.long 44136 @ Oxac68
.long 37554 @ 0x92b2
.long 14103 @ 0x3717
.long 40800 © 0x9£60
.long 52611 © 0xcd83
.long 50634 @ Oxcbca
.long 49833 @ Oxc2a9
.long 8835 © 0x2283
.long 61041 Q@ Oxee71
.long 57729 @ Oxel81
.long 10443 @ 0x28cb
.long 12765 © 0x31dd
.long 59451 @ 0xe83b
.long 42864 © 0xa770
.long 64983 © 0xfdd7
.long 57735 @ 0xel87
.long 11241 @ 0x2be9
.long 53364 © 0xd074
.long 19713 @ 0x4do1
.long 510 @ Oxlfe
.long 2376 © 0x948
.long 53949 © 0xd2bd
.long 31983 @ OxT7cef
.long 59580 @ 0Oxe8bc

C.3 LOCALIZACION DE REUSOS TEMPORALES Y ESPACIALES

.long 60021 © OxeaT7b
.long 53139 © 0xcf93
.long 55323 @ 0xd81b
.long 18120 @ 0x46c8
.long 50781 © 0xc65d
.long 3849 @ 0xf09

.long 53253 @ 0xd005
.long 4950 @ 0x1356
.long 3081 @ 0xc09

.long 16644 @ 0x4104
.long 51078 @ 0xc786
.long 43350 © 0xa956

.size data, 256

Figura C.24: Fichero jfdctint.arm.opt.s

Apéndice D
Manual de Uso

D.1. Introducciéon

En muchas ocasiones, cuando se decide realizar una nueva versién de otro
proyecto desarrollado hace un tiempo, se encuentran problemas a la hora de probarlo
y compilarlo.

Esto es asi porque lo que para el desarrollador inicial es algo obvio, dado que ha
estado trabajando en ello durante varios meses, para la persona que contintia no es
tan facil. Puede haber problemas de incompatibilidad con el software, problemas de
configuracion y otros muchos, por los que se pierde bastante tiempo hasta que se
llegan a resolver.

Es por ello que se ha escrito este manual, para hacer de guia y facilitar el
trabajo a futuros desarrolladores que decidan continuar con el trabajo descrito en
este proyecto.

En este manual se describiran los requisitos de software que se tienen que instalar,
los pasos que hay que seguir para compilar las bibliotecas y para compilar los codigos
fuente que se quieran analizar. Ademas, se enumeraran los archivos que da como
resultado.

D.2. Requerimientos Software

Para poder usar las bibliotecas administradas, es necesario tener instaladas en
su ordenador las siguientes herramientas:

Sistema operativo: Cualquier sistema operativo basado en UNIX o similar, como

GNU/Linux o Mac OS.

GCC 4.5 o superior: Se ha probado en esta version y el alguna superior, por lo
cual no se puede asegurar su correcto funcionamiento en versiones anteriores.

LLVM 2.7 o superior: Es a partir de esta version de LLVM la que se anade LLVM
metadata, necesario para la correcta compilacion.

D.3 COMPILACION DE LAS BIBLIOTECAS 70

D.3. Compilaciéon de las bibliotecas

Las dos bibliotecas, como se ha mencionado anteriormente, han sido creadas en
GNU/Linux. El cédigo fuente de estas bibliotecas y un script llamado “Makefile”
que compila los dos ficheros fuente y crea las bibliotecas, se encuentran dentro del
directorio “buclesReusos”. Si desea ejecutar el script, siga los siguientes pasos:

1. Abra un terminal.

2. Muévase a través de los directorios hasta donde se encuentre la carpeta llamada
“buclesReusos”.

3. En la linea de comandos del terminal, escriba la palabra make y pulse intro.

- Terminal
Archive Editar Wer Buscar Terminal Ayuda
marta@marta ~/Escritorio $ cd PROYECTO
scritorio/PROYECTO & cd buclesReusos
-/Escritorio/PROYECTO/buclesReusos 5§ ls
usos.cpp Makefile marcarLoadsStores.cpp
dmarta -/Escritorio/PROYECTO/bucl 1505 5 make
-D_GNU SOURCE -D_ STDC LIMIT MACROS -D_ STDC CONSTANT MACROS -c¢ buclesReusos.cpp
-fPIC -shared -Wl,-soname,libbuclesReusos.so -0 libbuclesReusos.so buclesReusos.o
-D_GNU SOURCE -D_ STDC LIMIT MACROS -D_ STDC CONSTANT MACROS -¢ marcarLoadsStores.cpp
-fPIC -shared -Wl,-soname,libmarcarlLoadsStores.so -o libmarcarlLoadsStores.so marcarlLoadsStoref

marta@marta ~/Escritorio/PROYECTO/buclesReusos $ l

Figura D.1: Ejemplo de compilaciéon de bibliotecas

Si, por el contrario, prefiere crearlas manualmente:

1. Abra un terminal.

2. Muévase a través de los directorios hasta donde se encuentre la carpeta llamada
“buclesReusos”

3. Escriba los siguientes comandos dentro de este directorio:

gcc -D_GNU_SOURCE -D__STDC_LIMIT_MACROS -D__STDC_CONSTANT_MACROS
-c buclesReusos.cpp

gcc —fPIC -shared -Wl,-soname,libbuclesReusos.so
-o libbuclesReusos.so buclesReusos.o

gcc -D_GNU_SOURCE -D__STDC_LIMIT_MACROS -D__STDC_CONSTANT_MACROS
-c marcarLoadsStores.cpp

gcc —fPIC -shared -Wl,-soname,libmarcarlLoadsStores.so
-0 libmarcarLoadsStores.so marcarLoadsStores.o

Figura D.2: Comandos para compilar las bibliotecas

D.4 COMPILACION DE LOS FICHEROS A ANALIZAR 71

D.4. Compilacion de los ficheros a analizar

Como se ha indicado a lo largo de la memoria del proyecto, el cédigo fuente de
los ficheros a analizar es C. Cada uno de los ejemplos, que se han incluido en el
proyecto, estd en una carpeta con el mismo nombre del fichero. En cada carpeta hay
(como muestra la Figura D.3), ademés del c6digo fuente, un script con todos pasos
necesarios , el cual se puede ejecutar siguiendo unos pasos parecidos a la compilacién
de bibliotecas.

1. Abra un terminal.

2. Muévase por los directorios hasta que se situe dentro de la carpeta del ejemplo
que desea analizar.

3. En la linea de comandos del terminal, puede escribir distintos comandos, segiin
sea su intencién:
= Compilar el codigo fuente: make
» Pasar las bibliotecas libmarcarLoadsStores y libbuclesReusos: make opt

= Compilar y pasar las bibliotecas: make all opt

- matmult
Archive Editar VWer Ir Marcadores Ayuda
& Atras ¥ 4 N M M 2 100% & vistadeicono 4| Q
Lugares v % < 4 marta [T Escritorio PROYECTO matmult
marta Pl
il Escritorio FLtG H
= maaeachu. Makefile matmult.c
[Red
L.08
__ DATA
'| Papelera

[, | Documentos
|8 Msica

[/m Imagenes

[Videos

|1 Descargas

2 elementos, espacio libre: 18,8 GIiB

Figura D.3: Contenido de la carpeta

D.4 COMPILACION DE LOS FICHEROS A ANALIZAR 72

Si lo que desea es probar algin codigo que no se encuentra entre los
administrados, la manera mas simple para hacerlo, seria la siguiente:

1.

2.

10.

Cree una carpeta con el nombre que usted elija.

Copie el fichero con el codigo que desea analizar dentro de la carpeta creada
anteriormente.

Cree un fichero nuevo dentro de la carpeta con el nombre “Makefile”.
Copie el cédigo escrito en la siguiente pagina, el mostrado en la Figura D.4 .

Cambie <nombreFich>por el nombre del fichero que contiene su cdédigo (sin
extension) en todos sitios en los que aparece.

Cambie <rutaHastaLibreria>por la ruta que necesite hasta llegar al directorio
donde se encuentran las dos bibliotecas.

Guarde el fichero.
Abra un terminal.

Muévase por los directorios hasta que se sitiie dentro de la carpeta del ejemplo
que desea analizar.

En la linea de comandos del terminal, puede escribir distintos comandos, segin
sea su intencién:

= Compilar el cédigo fuente: make

= Pasar las bibliotecas libmarcarLoadsStores y libbuclesReusos: make opt

» Compilar y pasar las bibliotecas: make all opt

D.4 COMPILACION DE LOS FICHEROS A ANALIZAR

73

compiler
CC = llvm—gcc
CFLAGS = —static —03 —emit—Ilvm

linker
LD = Ilvm—1d
LDFLAGS =

native machine code generator
NATIVE= 1lc¢

ARCH = arm

NATIVEFLAGS = —march=$ (ARCH)

disassembler .bc —> .11
DIS = llvin—dis
DISFLAGS =

all: arch bytecode
arch: <nombreFich>.$(ARCH). s
bytecode: <nombreFich>.11

<nombreFich>.0:

<nombreFich>.bc: <nombreFich>.0
$(LD) $(LDFLAGS) <nombreFich>.0 —o <nombreFich>

%.$(ARCH) .s: %.bc
$ (NATIVE) $(NATIVEFLAGS) —o $Q@ $<

%.11: %.be
$(DIS) $(DISFLAGS) —o $@ $<

opt:

opt —instnamer <nombreFich>.11 —S —o <nombreFich>.11

opt —load <rutaHastaLibreria>/libmarcarLoadsStores.so
—marcar —ll—input <nombreFich>.11 —l1—output
<nombreFich>Marcado. 1l <nombreFich>.11 > /dev/null

11c $(NATIVEFLAGS) <nombreFich>Marcado. 11
—o <nombreFich >.$(ARCH). s

opt —loops —loop—rotate —mem2reg —instcombine —simplifycfg
—indvars —instnamer —load
<rutaHastaLibreria>/libbuclesReusos.so —cuenta
—arm—input <nombreFich>.$(ARCH).s —arm—output
<nombreFich >.$ (ARCH). opt.s < <nombreFich>Marcado. 11
> /dev/null

clean:
rm —f x.0 *.bc *.s *.ll <nombreFich>

Figura D.4: Cédigo ejemplo de Makefile

D.4 COMPILACION DE LOS FICHEROS A ANALIZAR 74

En la siguiente imagen se muestra cémo quedaria el codigo del fichero “Makefile”
después de hacer los cambios para un fichero llamado “pruebal”.

compiler
CC = llvm—gcc
CFLAGS = —static —03 —emit—Ilvm

linker
LD = llvm—1d
LDFLAGS =

native machine code generator
NATIVE= 1l¢

ARCH = arm

NATIVEFLAGS = —march=$ (ARCH)

disassembler .bc — .11
DIS = llvin—dis
DISFLAGS =

all: arch bytecode
arch: pruebal.$(ARCH).s
bytecode: pruebal.ll

pruebal .o:

pruebal .bc: pruebal.o
$(LD) $(LDFLAGS) pruebal.o —o pruebal

%.$(ARCH).s: %.bc
$ (NATIVE) $(NATIVEFLAGS) —o $Q@ $<

%.11: %.be
$(DIS) $(DISFLAGS) —o $@ $<

opt: opt —instnamer pruebal.ll —S —o pruebal.ll

opt —load <rutaHastaLibreria>/libmarcarLoadsStores.so
—marcar —ll—input pruebal.ll —Ill—output
pruebalMarcado. 1l pruebal.ll > /dev/null

1lc $(NATIVEFLAGS) pruebalMarcado.ll —o pruebal.$(ARCH).s

opt —loops —loop—rotate —mem2reg —instcombine —simplifycfg
—indvars —instnamer —load <rutaHastaLibreria>/
libbuclesReusos.so —cuenta —arm—input pruebal.$(ARCH).s
—arm—output pruebal.$(ARCH).opt.s < pruebalMarcado. 11
> /dev/null

clean:
rm —f x.0 x.bc *.s .1l pruebal

Figura D.5: Makefile de "Pruebal”

D.5 FICHEROS RESULTADO 75

D.5. Ficheros Resultado

Como consecuencia de los pasos dados hasta el momento, se habran creado en el
directorio de codigo fuente los siguientes ficheros:

<nombreFichero>.ll: Fichero con el cédigo intermedio de LLVM.

<nombreFichero>marcado.ll: Fichero que anade al anterior los metadatas de las
instrucciones loads y stores.

<nombreFichero>.bc: Fichero con el cédigo en binario.
<nombreFichero>.o: Fichero objeto.

<nombreFichero>.arm.s: Fichero con el cédigo intermedio con las instrucciones de

ensamblador ARM.

<nombreFichero>.arm.opt.s: Fichero que contiene, ademas del codigo anterior, la
cuenta de iteracciones, y los reusos temporales y espaciales.

<nombreFichero>: Ejecutable.
Si desea borrar estos ficheros:
1. Vuelva abrir el terminal.

2. Muévase por los directorios hasta que se sitiie dentro de la carpeta del ejemplo
que desea eliminar.

3. En la linea de comandos del terminal escriba: make clean

Asi ya habra borrado todos los ficheros nuevos.

Bibliografia

[10]

[11]
[12]

[13]

The LLVM Compiler Infrastructure Project. http://www.1llvm.org

Gedit text editor. http://projects.gnome.org/gedit/

GCC, the GNU Compiler Collection. http://gcc.gnu.org/

TEX Live. http://www.tug.org/texlive/

Kile - an Integrated KWTEX Environment. http://kile.sourceforge.net/
Gantt Project. http://www.ganttproject.biz/

ARM, The Architecture for the Digital World. http://infocenter.arm.com/
LLVM API Documentation. http://1lvm.org/doxygen/

A Low-level Virtual Instruction Set Architecture MICRO-36. San Diego: CA.
December 2003. http://11vm.org/pubs/2003-10-01-LLVA.pdf

An Infrastructure for Multi-Stage Optimization Masters Thesis, Computer
Science Dept., University of Illinois at Urbana-Champaign, Dec. 2002. http:
//11lvm.org/pubs/2002-12-LattnerMSThesis.pdf

Edicién de documentos en ETEX. Universidad de Zaragoza, 1990.

Aburruzaga, Gerardo. Manual libre de Make en PDF. http://www.uca.es/
softwarelibre/publicaciones/make.pdf

Savitch, Walter. Resolucién de problemas con C++. Prentice Hall .2006.

