
Anexos

Apéndice A

LLVM Intermediate
Representation

En este anexo se habla del código intermedio LLVM Intermediate Representation
(IR) que es lenguaje que se ha analizado a lo largo del proyecto. Poniendo especial
énfasis en las instrucciones analizadas para los objetivos del mismo.

Primeramente se comenta una visión general del juego de instrucciones y de
los tipos que se definen en el lenguaje. Luego se expone claramente una parte
fundamental del control de flujo del lenguaje, la forma Static Single Assignment
(SSA) y la función Φ, parte fundamental para calcular el número de vueltas de los
bucles y las variables de iteración. A continuación se explican las instrucciones más
analizadas en las bibliotecas ya que gracias a ellas se pueden observar los reúsos: las
instrucciones load, store y getelementptr. Finalmente se muestra un sencillo ejemplo
de código LLVM IR comentado de un bloque que pertenece a un bucle y donde se
realizan dos stores, explicando lo que realiza cada instrucción.

A.1. Visión general del juego de instrucciones

El juego de instruciones de LLVM está diseñado como una representación de
bajo nivel pero con información de tipos de alto nivel. Provee información de todos
los valores del programa y posiciones de memoria. LLVM IR consta de veintiocho
instrucciones, numerosos tipos primarios y cuatro tipos derivados.

Aritmética add, sub, mul, div, rem
Lógica and, or, xor, shl, shr
Comparación seteq, setne, setlt, setgt, setle, setge
Control de flujo ret, br, mbr, invoke, unwind
Memoria load, store, getelementpt
Otros cast, call, phi

El sistema de tipos consiste en tipos primarios con tamaño predefinido (ubyte, uint,
float, double, etc...) y cuatro tipos derivados (pointer, array, structure, function).

A.2 Tipos primarios y derivados 27

A.2. Tipos primarios y derivados

LLVM es una representación estrictamente tipada, en el que cada valor SSA y
cada ubicación de memoria tiene una tipo asociado. Todas las operaciones obedecen
a reglas estrictas de tipo.

El sistema de tipos LLVM incluye tipos primitivos (void, booleanos, enteros con
y sin signo de 8 a 64 bits, valores de coma flotante de simple y doble precisión) y
derivados (punteros, arrays, estructuras y funciones). Estos tipos son independientes
del lenguaje de representación de datos que se asignan desde los tipos de lenguaje
de alto nivel.

Se va a explicar cada uno de los tipos derivados más en detalle para su mejor
comprensión:

Tipo Puntero

Sintaxis:

<tipo> *

Nota: No están permitidos punteros a void.

Ejemplos:

[4 x i32]* Puntero a un array de 4 enteros

i32 (i32*)* Puntero a una función que toma un puntero a un entero

y devuelve un entero

Tipo Array

Sintaxis:

[<# elementos> x <tipoelemento>]

Ejemplos:

[40 x i32] Array de 40 enteros de 32 bits.

[4 x i8] Array de 4 enteros de 8 bits.

[3 x [4 x i32]] Array de 3x4 de enteros de 32 bits.

Tipo Estructura

Sintaxis:

%T1 = type { <lista de tipos> }

Ejemplos:

{ i32, i32, i32 } 3 enteros de 32 bits

{ int, [10 x [20 x int]], int} 1 entero, 1 array de 10x20 enteros, 1 entero

A.3 SSA form (PHINODE) 28

Tipo Función

Sintaxis:

<tipo de retorno> (<lista de parametros>)

Ejemplos:

i32 (i32) Función que coge un entero y retorna un entero

float(i16,i32*) Función que toma un entero de 16 bits y un puntero a un entero

y devuelve un float

A.3. SSA form (PHINODE)

LLVM usa Static Single Assignment (SSA) form, forma de asignación estática
individual. La forma SSA se basa en la premisa de que cada variable es asignada
únicamente en una parte del programa, y si se producen otras asignaciones a la
misma variable, se crean nuevas versiones de ésta.

A veces no es posible determinar cuál es la última asignación realizada, como
resultado de ramificaciones y bucles. Para solventarlo, la forma SSA introduce un
nuevo tipo de operación llamada función Φ, que une varias versiones de una variable
y genera una variable nueva.

En esencia, lo que permite la forma SSA es unir cada uso de una variable en el
programa a su correspondiente y única definición, lo que permite implementaciones
muy eficientes de análisis y transformaciones de optimización, porque simplifica
enormemente las cadenas de uso-definición de variables, y en consecuencia el flujo
de datos.

En LLVM la función Φ está definida en la instrucción phi.

Phinode

Sintaxis:

result = phi <type> [<val0>, <label0>], ... , [<valN>, <labelN>]

A result se le asigna el valor val0 si el control llega a esta instrucción desde
el bloque básico de la etiqueta label0, val1 si estamos aqúı desde el bloque básico
label1, y aśı sucesivamente.

Ejemplos:

Loop: ; Bucle infinito de 0 hacia arriba

%indvar = phi i32 [0, %LoopHeader], [%nextindvar, %Loop]

%nextindvar = add i32 %indvar, 1

br label %Loop

; %indvar valdrá %nextindvar en cada vuelta ya que proviene del bloque %Loop

A.4 Acceso a direcciones de memoria 29

bb3: ; Bucle de 0 a 1000

%indvar46 = phi i32 [%indvar.next47, %bb3], [0, %bb]

%indvar.next47 = add i32 %indvar46, 1

%exitcond48 = icmp eq i32 %indvar.next47, 1000

br i1 %exitcond48, label %bb8.preheader, label %bb3

; %indvar46 valdrá %indvar.next47 en cada vuelta ya que proviene del bloque %bb3

A.4. Acceso a direcciones de memoria

Para obtener la dirección de un subelemento de una estructura de datos se usa la
instrucción getelementptr. Sirve para conocer la dirección de memoria de una posi-
ción especifica de arrays y estructuras. Esta instrucción sólo realiza el cálculo de la
dirección única pero no accede a la memoria.

Podemos encontrarnos con dos casos:

Dado un puntero a una estructura y un número de campo, la instrucción
getelementptr obtiene un puntero al campo.

Dado un puntero a una matriz y un número de elemento, la instrucción
devuelve un puntero al elemento especificado.

Se pueden especificar varios ı́ndices en la misma instrucción, por ejemplo, se
puede acceder a la posición A[i][j].

El primer argumento siempre es un puntero, el resto de argumentos son los ı́ndices
del elemento que queremos acceder.

Getelementptr

Sintaxis:

<resultado> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*

Ejemplos:

%scevgep = getelementptr [100 x [100 x i32]]* @A, i32 0, i32 %i.119, i32 %k.016

; Accedemos a %A[%i][%k]

%scevgep53 = getelementptr [5000 x i32]* %Vector1, i32 0, i32 %varBucle.034

; Accedemos a %Vector1[%varBucle]

%scevgep = getelementptr [5000 x [5000 x i32]]* %A, i32 0, i32 0, i32 %i.17

; Accedemos a %A[0][%i]

%scevgep12 = getelementptr [5000 x %struct..0structura]* %estructuras,

i32 0, i32 %i.08, i32 1

; Accedemos a %estructuras[%i].campo1

A.5 Lectura y escritura en memoria 30

A.5. Lectura y escritura en memoria

Para acceder a la memoria en LLVM se usan las instrucciones load y store. Load
para leer de una posición de memoria y store para escribir en una posición.

Load

La instrucción load sirve para devolver el valor que reside en una posición de
memoria. El primer argumento siempre es una dirección de memoria mediante
un puntero a dicha dirección. Ese puntero se obtiene mediante la instrucción
getelementptr. El parámetro opcional align especifica la alineación de la operación,
es decir, la alineación de la memoria.

Sintaxis:

<resultado> = load <ty>* <pointer>[, align <alignment>]

Ejemplos:

%tmp5 = load i32* %scevgep, align 4

; Cargamos en %tmp5 el valor que se encuentra en la dirección de puntero %scevgep

%tmp13 = load i32* %tmp12, align 4

; Cargamos en %tmp13 el valor que se encuentra en la dirección de puntero %tmp12

Store

La instrucción store sirve para escribir un valor en una posición de memoria.
La instrucción tiene dos argumentos, el primero es el valor que queremos escribir
y el segundo es una dirección de memoria mediante un puntero a dicha dirección.
Ese puntero se obtiene mediante la instrucción getelementptr. El parametro opcional
align especifica la alineación de la operación, es decir, la alineación de la memoria.

Sintaxis:

store <ty> <value>, <ty>* <pointer>[, align <alignment>]

Ejemplos:

store i32 %tmp3, i32* %scevgep33, align 4

; Escribimos el valor de %tmp3 en la dirección de memoria del puntero %scevgep33

store i32 0, i32* %scevgep35, align 4

; Escribimos el valor 0 en la dirección de memoria del puntero %scevgep35

A.6 Ejemplo completo comentado 31

A.6. Ejemplo completo comentado

for (varBucle=0;varBucle<Tam;varBucle++)

{

Vector1[varBucle]=varBucle*5;

Vector2[varBucle]=varBucle*5;

}

Figura A.1: Código ejemplo en C

bb: ; preds = %bb, %bb.nph35

%varBucle.034 = phi i32 [0, %bb.nph35], [%tmp, %bb]

; SSA form phinode %varBucle con variable de iteración interna %tmp

%scevgep53 = getelementptr [5000 x i32]* %Vector1, i32 0, i32 %varBucle.034

; Puntero a la posición de memoria de %Vector1[%varBucle]

%scevgep54 = getelementptr [5000 x i32]* %Vector2, i32 0, i32 %varBucle.034

; Puntero a la posición de memoria de %Vector2[%varBucle]

%tmp55 = mul i32 %varBucle.034, 5

; %varBucle*5

store i32 %tmp55, i32* %scevgep53, align 4

; Escritura en la dirección %Vector1[%varBucle] el valor de %varBucle*5

store i32 %tmp55, i32* %scevgep54, align 4

; Escritura en la dirección %Vector2[%varBucle] el valor de %varBucle*5

%tmp = add nsw i32 %varBucle.034, 1

; Incremento de la variable de iteracion del phinode en 1

%exitcond52 = icmp eq i32 %tmp, 5000

; Comparación si la variable de iteración %tmp es 5000

br i1 %exitcond52, label %bb3, label %bb

; Salto hacia fuera del bloque si se cumple la condición

Figura A.2: Código ejemplo comentado en LLVM IR

Apéndice B

Gúıa de comandos LLVM

A continuación se indican las herramientas de ĺıneas de comandos de LLVM que
se han utilizado, explicando su función y un pequeño esquema de opciones.

llvm-gcc:

Es un frontend para el compilador LLVM basado en GCC. Compila archivos
fuentes en lenguaje C y Objetive C en objetos nativos, LLVM bitcode o LLVM IR,
dependiendo de las opciones. Por defecto compila a objetos nativos.

Con las opciones -emit-llvm -c genera código LLVM bitcode y con las opciones
-emit-llvm -S genera código LLVM IR.

Al ser derivado de gcc tiene muchas de sus caracteŕısticas y acepta la mayoŕıa
de sus opciones, como los niveles de optimización (O0...O3).

Sintaxis:

llvm-gcc [opciones] nombrefichero

Opciones:

-o nombreFichero: Especifica el archivo de salida.

-emit-llvm: Genera la salida a LLVM bitcode (con -c) o a LLVM IR (con -S).

lli:

Ejecuta un programa compilado en bitcode. Toma el archivo en código bitcode
y lo ejecuta en una máquina virtual o lo interpreta.

Sintaxis:

lli [opciones][nombreFichero][argumentos del programa]

33

llvm-dis:

Es el desamblador de LLVM. Convierte código LLVM bitcode en LLVM IR.

Sintaxis:

llvm-dis [opciones] [nombrefichero]

Opciones:

-o nombreFichero: Especifica el archivo de salida. Si se omite el código
será mostrado en la salida estandar.

llc:

Compilador estático. Genera código nativo de la máquina a partir de LLVM
bitcode o de LLVM IR. Compila el código fuente para una arquitectura espećıfica.
Con la opción -march podemos elegir dicha arquitectura.

Sintaxis:

llc [opciones][nombrefichero]

Opciones:

-march=arch: Especifica la arquitectura para generar el código. Por ejemplo
-march=arm genera código ARM.

-O=numero: Genera código con determinado nivel de optimización. Correspon-
de con las opciones (O0...O3) de llvm-gcc o de gcc.

opt:

Es el optimizador y analizador de LLVM. Toma archivos con código LLVM IR
o LLVM bitcode y realiza los análisis y las optimizaciones indicadas, generando
el archivo optimizado o los resultados de los análisis. Es lo que se conoce como
pasadas de optimización. Las optimizaciones o análisis disponibles dependen de las
bibliotecas vinculadas a ella, aśı como cualquier biblioteca cargada mediante la op-
ción -load. Esto permite crear pasadas de optimización y análisis propias mediante
bibliotecas externas.

Sintaxis:

opt [opciones][nombreFichero]

34

Opciones:

-o nombreFichero: Especifica el archivo de salida.

-S : Escribe la salida como LLVM IR.

-nombrePase: Proporciona la capacidad de ejecutar cualquier pasada de
optimización o análisis en el orden indicado. Existen numerosas pasadas
disponibles como indvars, loops, loop-reduce, etc. También se puede ejecutar
cualquier pasada creada, registrada y cargada de una biblioteca mediante la
opción -load.

-load=biblioteca: Carga la biblioteca seleccionada. Esta biblioteca debe
registrar las nuevas pasadas de optimización o análisis implementados en ella.
Una vez cargada agrega nuevas opciones de ĺınea a la ĺınea de comandos opt
para permitir las pasadas registradas en la biblioteca.

Ejemplo:

opt -indvars -load ../buclesReusos/libbuclesReusos.so -cuenta ejemplo.ll

Esta secuencia realizaŕıa la pasada de optimización indvars, cargaŕıa la biblioteca
libbuclesReusos y realizaŕıa la pasada cuenta que ha sido implementada y registrada
en la biblioteca cargada.

Apéndice C

Pruebas

En este anexo se van a exponer algunas de las pruebas que se utilizaron para la
verificación del buen funcionamiento de las bibliotecas creadas.

Se creó una gran cantidad de programas, en lenguaje C, con distintas
funcionalidades, según el caso a evaluar, para pasárselos a las bibliotecas. Al ser
muy extensa la bateŕıa de pruebas, se va a mostrar sólo alguno de estos programas,
ya que sino se extendeŕıa mucho.

En cada ejemplo se ofrece el código en C, parte del código LLVM IR que se crea
y el código en lenguaje ARM que se genera al final. Para cada una de las pruebas,
se explican los resultados obtenidos para que se pueda comprender lo mejor posible.

Este apéndice, se divide en tres partes:

Cuenta de iteraciones

Marcación de loads y stores

Localización de reúsos temporales y espaciales

C.1. Cuenta de iteraciones

Como lo primero que se creó fue la biblioteca para contar el número de veces
que pasaba por un bucle, fue lo primero que se probó. En este caso lo primero que
se verificó fueron los casos más t́ıpicos de bucles, es decir los for y while de C.

Uno de los ejemplos que mejor ratifica el correcto comportamiento de la biblioteca
ante este tipo de iteraciones, es el fichero bucle.c de la pila de pruebas. El código es
el siguiente:

C.1 Cuenta de iteraciones 36

#include <stdio.h>

int main()

{

int i=0, j=0, z=0;

for (i=0;i<5000;i++)

{

for(j=0;j<3000;j++)

{

printf("%i", j);

}

}

for (i=0;i<5000;i++)

{

printf("%i", i);

}

for (j=1;j<5000;j=j*2)

{

printf("%i", j);

}

for (z=100;z<5000;z+=50)

{

printf("%i", z);

}

for (z=5000;z>1500;z--)

{

printf("%i", z);

}

z=5000;

while (z>0)

{

z-=100;

printf("%i", z);

}

}

Figura C.1: Código del fichero bucle.c

En esta prueba, se contemplan bucles anidados (Figura C.2), con incremento
constante de uno en uno y de cincuenta en cincuenta (Figura C.3), con incremento
variable (Figura C.4), y con decremento (Figura C.6).

C.1 Cuenta de iteraciones 37

for (i=0;i<5000;i++)

{

for(j=0;j<3000;j++)

{

printf("%i", j);

}

}

Figura C.2: Bucle anidado

for (i=0;i<5000;i++)

{

printf("%i", i);

}

for (z=100;z<5000;z+=50)

{

printf("%i", z);

}

Figura C.3: Bucles con incremento constante

for (j=1;j<5000;j=j*2)

{

printf("%i", j);

}

Figura C.4: Bucle con incremento variable

for (z=5000;z>1500;z--)

{

printf("%i", z);

}

z=5000;

while (z>0)

{

z-=100;

printf("%i", z);

}

Figura C.5: Bucles con decremento constante

Al compilarlo y analizarlo pasándole la biblioteca libcuentaBucles.so (primera
biblioteca que se creó como se explica en el Caṕıtulo 4), se creaba el fichero con el
código LLVM IR siguiente:

C.1 Cuenta de iteraciones 38

Figura C.6: Fichero bucle.ll

Además de darnos el fichero ARM con el número de iteraciones de cada bucle,
daba una salida por pantalla con información de cada bucle, como se puede ver a
continuación:

C.1 Cuenta de iteraciones 39

printDSpLoc: analizando <main>...

Tiene bucles

BUCLE 1

PHI NODE:

%i.033 = phi i32 [0, %bb.nph34], [%3, %bb3]

INSTRUCCIONES:

%3 = add nsw i32 %i.033, 1

%exitcond11 = icmp eq i32 %3, 5000

br i1 %exitcond11, label %bb6.preheader, label %bb2.preheader

ITERACIONES: 5000

PHI NODE:

%0 = phi i32 [%2, %bb1], [0, %bb2.preheader]

INSTRUCCIONES:

%0 = phi i32 [%2, %bb1], [0, %bb2.preheader]

%1 = tail call i32 (i8*, ...)* @printf(i8* noalias getelementptr

inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %0) nounwind

%2 = add nsw i32 %0, 1

%exitcond10 = icmp eq i32 %2, 3000

br i1 %exitcond10, label %bb3, label %bb1

ITERACIONES SUBBUCLE NIVEL 2: PARCIALES 3000

ITERACIONES TOTALES BUCLE 15000000

BUCLE 3

PHI NODE:

%4 = phi i32 [%6, %bb6], [0, %bb6.preheader]

INSTRUCCIONES:

%4 = phi i32 [%6, %bb6], [0, %bb6.preheader]

%5 = tail call i32 (i8*, ...)* @printf(i8* noalias getelementptr

inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %4) nounwind

%6 = add nsw i32 %4, 1

%exitcond9 = icmp eq i32 %6, 5000

br i1 %exitcond9, label %bb9.preheader, label %bb6

ITERACIONES: 5000

C.1 Cuenta de iteraciones 40

BUCLE 4

PHI NODE:

%indvar46 = phi i32 [%indvar.next47, %bb9], [0, %bb9.preheader]

INSTRUCCIONES:

%indvar46 = phi i32 [%indvar.next47, %bb9], [0, %bb9.preheader]

%j.127 = phi i32 [%8, %bb9], [1, %bb9.preheader]

%7 = tail call i32 (i8*, ...)* @printf(i8* noalias getelementptr

inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %j.127) nounwind

%8 = shl i32 %j.127, 1

%indvar.next47 = add i32 %indvar46, 1

%exitcond8 = icmp eq i32 %indvar.next47, 13

br i1 %exitcond8, label %bb12.preheader, label %bb9

ITERACIONES: 13

BUCLE 5

PHI NODE:

%indvar41 = phi i32 [%indvar.next42, %bb12], [0, %bb12.preheader]

INSTRUCCIONES:

%indvar41 = phi i32 [%indvar.next42, %bb12], [0, %bb12.preheader]

%tmp6 = mul i32 %indvar41, 50

%z.025 = add i32 %tmp6, 100

%9 = tail call i32 (i8*, ...)* @printf(i8* noalias getelementptr

inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %z.025) nounwind

%indvar.next42 = add i32 %indvar41, 1

%exitcond5 = icmp eq i32 %indvar.next42, 98

br i1 %exitcond5, label %bb15.preheader, label %bb12

ITERACIONES: 98

BUCLE 6

PHI NODE:

%indvar36 = phi i32 [%indvar.next37, %bb15], [0, %bb15.preheader]

INSTRUCCIONES:

%indvar36 = phi i32 [%indvar.next37, %bb15], [0, %bb15.preheader]

%tmp = mul i32 %indvar36, -1

%z.123 = add i32 %tmp, 5000

%10 = tail call i32 (i8*, ...)* @printf(i8* noalias getelementptr

inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %z.123) nounwind

%indvar.next37 = add i32 %indvar36, 1

%exitcond = icmp eq i32 %indvar.next37, 3500

br i1 %exitcond, label %bb18.preheader, label %bb15

C.1 Cuenta de iteraciones 41

ITERACIONES: 3500

BUCLE 7

PHI NODE:

%indvar = phi i32 [%indvar.next, %bb18], [0, %bb18.preheader]

INSTRUCCIONES:

%indvar = phi i32 [%indvar.next, %bb18], [0, %bb18.preheader]

%tmp2 = mul i32 %indvar, -100

%tmp35 = add i32 %tmp2, 4900

%11 = tail call i32 (i8*, ...)* @printf(i8* noalias getelementptr

inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %tmp35) nounwind

%indvar.next = add i32 %indvar, 1

%exitcond1 = icmp eq i32 %indvar.next, 50

br i1 %exitcond1, label %return, label %bb18

ITERACIONES: 50

--------------------------------RESUMEN---------------------------------------

BUCLE 1 ETIQUETA bb2.preheader VUELTAS 5000

BUCLE 2 ETIQUETA bb1 VUELTAS 3000

BUCLE 3 ETIQUETA bb6 VUELTAS 5000

BUCLE 4 ETIQUETA bb9 VUELTAS 13

BUCLE 5 ETIQUETA bb12 VUELTAS 98

BUCLE 6 ETIQUETA bb15 VUELTAS 3500

BUCLE 7 ETIQUETA bb18 VUELTAS 50

Figura C.7: Salida por pantalla al compilar bucle.c

Aśı pod́ıamos saber :

El número de veces que pasaba por cada bucle

Las instrucciones de cada bloque de repetición

El phinode de cada uno

La etiqueta en la que está el bucle (tanto en código LLVM como en código
ensamblador ARM)

Gracias a la información anterior y al fichero con el código ensamblador ARM
se pudo asegurar que la biblioteca cumpĺıa sus funciones, por lo menos, para los
casos más usuales de bucles. En la siguientes figuras podemos ver parte del código
ensamblador ARM que nos daba.

C.1 Cuenta de iteraciones 42

.LBB0_1: @ %bb2.preheader

@ Numero de vueltas=5000

@ =>This Loop Header: Depth=1

@ Child Loop BB0_2 Depth 2

mov r7, #0

.LBB0_2: @ %bb1

@ Numero de vueltas=3000

@ Parent Loop BB0_1 Depth=1

@ => This Inner Loop Header: Depth=2

mov r1, r7

mov r0, r5

add r7, r7, #1

bl printf

cmp r7, r6

bne .LBB0_2

Figura C.8: Parte del fichero bucle.arm.opt.s que nos muestra la salida
para los bucles anidados

Tanto en la figura anterior como en la siguiente, se puede ver la salida en códi-
go ensamblador ARM que resulta de compilar el fichero bucle.c con la biblioteca
libcuentaBucles.so. En la anterior, se ve como quedaŕıa comentado en este código,
cuando se introduce un bucle anidado. En la posterior, se ve el resultado de otro
tipo de bucles para que se pueda ratificar que es correcto.

C.1 Cuenta de iteraciones 43

.LBB0_7: @ %bb9

@ Numero de vueltas=13

@ =>This Inner Loop Header: Depth=1

mov r1, r6

mov r0, r4

lsl r6, r6, #1

bl printf

subs r8, r8, #1

bne .LBB0_7

@ BB#8:

mov r6, #107, 30

mov r8, #86

ldr r4, .LCPI0_0

orr r6, r6, #3, 22

orr r8, r8, #19, 24

.LBB0_9: @ %bb12

@ Numero de vueltas=98

@ =>This Inner Loop Header: Depth=1

mov r0, r4

mov r1, r7

bl printf

add r0, r7, #50

cmp r7, r8

mov r7, r0

bne .LBB0_9

@ BB#10:

mov r7, #201, 30

ldr r4, .LCPI0_0

orr r7, r7, #1, 20

.LBB0_11: @ %bb15

@ Numero de vueltas=3500

@ =>This Inner Loop Header: Depth=1

mov r1, r5

mov r0, r4

sub r5, r5, #1

bl printf

subs r6, r6, #1

bne .LBB0_11

Figura C.9: Parte del fichero bucle.arm.opt.s que nos muestra la salida
para distintos bucles

A partir de ahora, se pod́ıa comprobar con bucles más inusuales, pero también
posibles, y más complicados. Estas pruebas están en los ficheros bucle2.c y bucle3.c.
A continuación se van a poner algunos pequeños ejemplos de distintos tipos de bucles:

C.1 Cuenta de iteraciones 44

for (j=0;j<10;j++)

{

for (m=0;m<20;m++)

{

for (k=0;k<20;k++)

{

printf("\t%i\n", k);

}

}

}

Figura C.10: Parte del fichero bucle2.c

A continuación se indica el código resultante para el código C anterior.

.LBB0_1: @ %bb2

@ Numero de vueltas=20

@ Parent Loop BB0_5 Depth=1

@ => This Inner Loop Header: Depth=2

mov r1, r6

mov r0, r5

add r6, r6, #1

bl printf

cmp r6, #20

bne .LBB0_1

@ BB#2: @ %bb4

@ in Loop: Header=BB0_1 Depth=2

subs r7, r7, #1

beq .LBB0_4

@ BB#3: @ %bb3.preheader

@ Numero de vueltas=20

@ in Loop: Header=BB0_1 Depth=2

mov r6, #0

b .LBB0_1

.LBB0_4: @ %bb6

@ in Loop: Header=BB0_5 Depth=1

subs r4, r4, #1

moveq r0, #0

ldmiaeq sp!, {r4, r5, r6, r7, pc} @ Load de pila. Desplazamiento 0

.LBB0_5: @ %bb5.preheader

@ Numero de vueltas=10

@ =>This Loop Header: Depth=1

@ Child Loop BB0_1 Depth 2

mov r7, #20

mov r6, #0

b .LBB0_1

Figura C.11: Parte del fichero bucle2.arm.opt.s

C.1 Cuenta de iteraciones 45

Otro ejemplo seŕıa el siguiente:

int l=0;

while (l<30)

{

if(l==10) break;

printf("%i\n", l);

l++;

}

Figura C.12: Parte del fichero bucle3.c

Cuya compilación da:

@ BB#0: @ %bb.nph

stmdb sp!, {r4, r5, lr}

mov r4, #0

ldr r5, .LCPI0_0

.LBB0_1: @ %bb1

@ Numero de vueltas=10

@ =>This Inner Loop Header: Depth=1

mov r1, r4

mov r0, r5

add r4, r4, #1

bl printf

cmp r4, #10

bne .LBB0_1

Figura C.13: Parte del fichero bucle3.arm.opt.s

Para acabar esta parte, se deja el ejemplo de un bucle con la instrucción do en
código C.

int m=0;

do

{

printf("%i\n", m);

m=m+3;

}

while (m<100);

Figura C.14: Ejemplo de bucle con instrucción do

C.1 Cuenta de iteraciones 46

@ BB#0: @ %entry

stmdb sp!, {r4, r5, lr}

mov r4, #0

ldr r5, .LCPI0_0

.LBB0_1: @ %bb

@ Numero de vueltas=34

@ =>This Inner Loop Header: Depth=1

mov r1, r4

mov r0, r5

add r4, r4, #3

bl printf

cmp r4, #102

bne .LBB0_1

Figura C.15: Tranformación de bucle con instrucción do en lenguaje ARM

A parte de estos ejemplos, y de otros muchos más, también se utilizaron otros
códigos no diseñados espećıficamente para probar la biblioteca, sino que exist́ıan
anteriormente, y todo resultó bien.

C.2 Marcación de loads y stores 47

C.2. Marcación de loads y stores

Al llegar a esta parte, se empezaron a crear pruebas para la marcación de loads
y stores en los ficheros con el código LLVM IR. En este punto también hab́ıa que
mirar si hab́ıa reúsos temporales y espaciales. Uno de los ejemplos que enseña las
primeras pruebas que se hicieron es:

#include <stdio.h>

#define Tam 5000

int main()

{

int i=0;

int A[Tam];

int B[Tam];

for (i=0;i<Tam;i++)

{

A[i]=i*5;

printf("%i", A[i]);

B[i]=0;

}

for (i=0;i<Tam;i++)

{

printf("%i", A[i]);

printf("%i", B[i]);

}

}

Figura C.16: Ejemplo de prueba para marcación de loads y stores

Este programa da como resultado el fichero stores.ll, el cual se puede ver en la
Figura C.19.

Además del fichero ARM, al principió se sacaban por pantalla algunos datos para
confirmar que iba bien.

C.2 Marcación de loads y stores 48

STORE : store i32 0, i32* %scevgep20, align 4

OPERANDO 0: i32 0

OPERANDO 1: %scevgep20 = getelementptr [5000 x i32]* %A, i32 0, i32 %i.013

DIRECCION MEMORIA 0x8b4ac3c

STORE : store i32 %tmp, i32* %scevgep17, align 4

OPERANDO 0: %tmp = mul i32 %i.111, 5

OPERANDO 1: %scevgep17 = getelementptr [5000 x i32]* %A, i32 0, i32 %i.111

DIRECCION MEMORIA 0x8b4aa84

STORE : store i32 0, i32* %scevgep18, align 4

OPERANDO 0: i32 0

OPERANDO 1: %scevgep18 = getelementptr [5000 x i32]* %B, i32 0, i32 %i.111

DIRECCION MEMORIA 0x8b4a67c

LOAD : %4 = load i32* %scevgep, align 4

OPERANDO 0: %scevgep = getelementptr [5000 x i32]* %A, i32 0, i32 %i.210

DIRECCION MEMORIA 0x8b4a1fc

LOAD : %6 = load i32* %scevgep15, align 4

OPERANDO 0: %scevgep15 = getelementptr [5000 x i32]* %B, i32 0, i32 %i.210

DIRECCION MEMORIA 0x8b4a134

Figura C.17: Salida por pantalla al compilar el fichero stores.c

La biblioteca libMarcarLoadsStores.so al pasársela en compilación a cualquier
fichero de código C, genera un fichero llamado <nombreFichero >Marcado.ll.

Es aqúı donde se escriben todos metadatas necesarios. Uno en cada load y store
que exista en el fichero. Además se añaden al final del archivo otros metadatas
indicando lo que se tiene que escribir en cada uno en el código ensamblador ARM.
Para el caso anterior se generó el fichero storesMarcado.ll, de donde se va a sacar
una parte:

C.2 Marcación de loads y stores 49

bb: ; preds = %bb, %bb.nph9

%i.08 = phi i32 [0, %bb.nph9], [%tmp2, %bb]

%scevgep12 = getelementptr [5000 x i32]* %A, i32 0, i32 %i.08

%scevgep13 = getelementptr [5000 x i32]* %B, i32 0, i32 %i.08

%tmp = mul i32 %i.08, 5

store i32 %tmp, i32* %scevgep12, align 4, !dbg !5

%tmp1 = call i32 (i8*, ...)* @printf(i8* noalias getelementptr

inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %tmp) nounwind

store i32 0, i32* %scevgep13, align 4, !dbg !6

%tmp2 = add nsw i32 %i.08, 1

%exitcond11 = icmp eq i32 %tmp2, 5000

br i1 %exitcond11, label %bb3, label %bb

bb3: ; preds = %bb3, %bb

%i.17 = phi i32 [%tmp7, %bb3], [0, %bb]

%scevgep = getelementptr [5000 x i32]* %A, i32 0, i32 %i.17

%scevgep10 = getelementptr [5000 x i32]* %B, i32 0, i32 %i.17

%tmp3 = load i32* %scevgep, align 4, !dbg !7

%tmp4 = call i32 (i8*, ...)* @printf(i8* noalias getelementptr

inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %tmp3) nounwind

%tmp5 = load i32* %scevgep10, align 4, !dbg !8

%tmp6 = call i32 (i8*, ...)* @printf(i8* noalias getelementptr

inbounds ([3 x i8]* @.str, i32 0, i32 0), i32 %tmp5) nounwind

%tmp7 = add nsw i32 %i.17, 1

%exitcond = icmp eq i32 %tmp7, 5000

br i1 %exitcond, label %return, label %bb3

return: ; preds = %bb3

ret i32 undef

Figura C.18: Fichero storesMarcado.ll

En este apartado se muestra un simple ejemplo, ya que todos los resultados son
muy parecidos, por lo que no se pueden sacar grandes diferencias, como ocurŕıa en
el apartado anterior.

C.2 Marcación de loads y stores 50

Figura C.19: Fichero stores.ll

C.3 Localización de reúsos temporales y espaciales 51

C.3. Localización de reúsos temporales y espaciales

Aqúı también se hizo una gran cantidad de pruebas. Se van a destacar algunas,
aunque es muy dif́ıcil enseñar todos ejemplos posibles.

Para estas pruebas, además de crear nuevos programas, se reutilizaron los creados
para marcación de loads y stores. En la Figura C.20 podemos apreciar una muestra
del resultado del fichero stores.c después de realizar la localización.

.LBB0_1: @ %bb

@ Numero de vueltas=5000

@ =>This Inner Loop Header: Depth=1

mov r0, r7

mov r1, r9

str r9, [r6], #4 @ Store var "A". Reuso espacial. Var iteracion "i".

@ Desplazamiento con "stride" 1

add r9, r9, #5

bl printf

str r4, [r5], #4 @ Store var "B". Reuso espacial. Var iteracion "i".

@ Desplazamiento con "stride" 1

cmp r9, r8

bne .LBB0_1

@ BB#2: @ %bb.bb3_crit_edge

add lr, sp, #1, 18

mov r4, #226, 30

orr r4, r4, #1, 20

ldr r7, .LCPI0_0 @ Load Constante .LCPI0_0

mov r5, sp

add r6, lr, #226, 28

.LBB0_3: @ %bb3

@ Numero de vueltas=5000

@ =>This Inner Loop Header: Depth=1

ldr r1, [r6], #4 @ Load var "A". Reuso espacial. Var iteracion "i".

@ Desplazamiento con "stride" 1

mov r0, r7

bl printf

ldr r1, [r5], #4 @ Load var "B". Reuso espacial. Var iteracion "i".

@ Desplazamiento con "stride" 1

mov r0, r7

bl printf

subs r4, r4, #1

bne .LBB0_3

@ BB#4: @ %return

add sp, sp, #113, 26 @ 7232

add sp, sp, #2, 18 @ 32768

ldmia sp!, {r4, r5, r6, r7, r8, r9, r10, pc} @ Load de pila. Desplazamiento 0

Figura C.20: Parte del fichero stores.arm.opt.s

En la figura anterior, se puede comprobar que se indica el reúso espacial que
existe en los vectores A y B, y un load de pila (ldmia sp). Igualmente, se constata
que la variable de iteración es i en los dos bucles, y que el “stride”de ambos es uno.

C.3 Localización de reúsos temporales y espaciales 52

Un ejemplo más completo se puede ver a continuación. En la Figura C.21 se ve
el código del fichero pruebaStores.c.

#include <stdio.h>

#define Tam 5000

int main()

{

int varBucle=0;

int varBucle2=0;

int i=0;

int Vector1[Tam];

int Vector2[Tam];

int Vector3[Tam][Tam];

int mivar=0;

int mivar2=0;

for (varBucle=0;varBucle<Tam;varBucle++)

{

Vector1[varBucle]=varBucle*5;

Vector2[varBucle]=varBucle*5;

}

for (varBucle2=0;varBucle2<Tam;varBucle2+=5)

{

printf("%i", Vector1[varBucle2]);

printf("%i", Vector2[varBucle2]);

}

for (varBucle=0;varBucle<Tam;varBucle++)

{

for (varBucle2=0;varBucle2<Tam;varBucle2++)

{

Vector3[varBucle][varBucle2]=varBucle*varBucle2;

}

}

for (varBucle=0;varBucle<Tam;varBucle++)

{

for (varBucle2=0;varBucle2<Tam;varBucle2++)

{

printf("%i", Vector3[varBucle][varBucle2]);

}

}

int j=Tam;

for (i=1;i<Tam;i=i*5)

{

j--;

printf("%i", Vector1[i]);

printf("%i", Vector2[j]);

}

}

Figura C.21: Fichero pruebaStores.c

En la Figura C.22 se puede cotejar el funcionamiento de la biblioteca con distintos

C.3 Localización de reúsos temporales y espaciales 53

tipos de reúso espacial, entre los que están los de “stride” uno, de “stride” cinco, de
“stride” negativo y de “stride” no constante. Igualmente, se ven reúsos espaciales
sobre múltiples variables y reúsos temporales de constantes.

.LBB0_1: @ %bb

@ Numero de vueltas=5000

@ =>This Inner Loop Header: Depth=1

str r0, [r2], #4 @ Store var "Vector1". Reuso espacial.

@ Var iteracion "varBucle".

@ Desplazamiento con "stride" 1

str r0, [r1], #4 @ Store var "Vector2". Reuso espacial.

@ Var iteracion "varBucle".

@ Desplazamiento con "stride" 1

add r0, r0, #5

cmp r0, r3

bne .LBB0_1

@ BB#2: @ %bb.bb3_crit_edge

add lr, sp, #245, 16 @ 16056320

mov r4, #250, 30 @ 1000

ldr r7, .LCPI0_0 @ Load Constante .LCPI0_0

add lr, lr, #5, 8 @ 83886080

add r5, lr, #225, 24 @ 57600

add lr, sp, #98, 20 @ 401408

add lr, lr, #95, 12 @ 99614720

add r6, lr, #242, 28 @ 3872

.LBB0_3: @ %bb3

@ Numero de vueltas=1000

@ =>This Inner Loop Header: Depth=1

ldr r1, [r6], #20 @ Load var "Vector1". Reuso espacial.

@ Var calculada basada en var iteracion "indvar46".

@ Desplazamiento con "stride" 5

mov r0, r7

bl printf

ldr r1, [r5], #20 @ Load var "Vector2". Reuso espacial.

@ Var calculada basada en var iteracion "indvar46".

@ Desplazamiento con "stride" 5

mov r0, r7

bl printf

subs r4, r4, #1

bne .LBB0_3

@ BB#4: @ %bb3.bb8.preheader_crit_edge

mov r0, sp

mov r1, #226, 30 @ 904

orr r1, r1, #1, 20 @ 4096

mov r2, #0

.LBB0_5: @ %bb8.preheader

@ Numero de vueltas=5000

@ =>This Loop Header: Depth=1

@ Child Loop BB0_6 Depth 2

mov r3, r0

mov r12, #0

mov lr, r1

C.3 Localización de reúsos temporales y espaciales 54

.LBB0_6: @ %bb7

@ Numero de vueltas=5000

@ Parent Loop BB0_5 Depth=1

@ => This Inner Loop Header: Depth=2

str r12, [r3], #4 @ Store var "Vector3". Reuso espacial.

@ Multiples variables "tmp37" "varBucle2"

add r12, r12, r2

subs lr, lr, #1

bne .LBB0_6

@ BB#7: @ %bb9

@ in Loop: Header=BB0_5 Depth=1

add r0, r0, #226, 28 @ 3616

add r2, r2, #1

cmp r2, r1

add r0, r0, #1, 18 @ 16384

bne .LBB0_5

@ BB#8: @ %bb9.bb14.preheader_crit_edge

mov r5, #226, 30 @ 904

orr r5, r5, #1, 20 @ 4096

mov r4, sp

ldr r6, .LCPI0_0 @ Load Constante .LCPI0_0

mov r7, r5

.LBB0_9: @ %bb14.preheader

@ Numero de vueltas=5000

@ =>This Loop Header: Depth=1

@ Child Loop BB0_10 Depth 2

mov r8, r4

mov r9, r5

.LBB0_10: @ %bb13

@ Numero de vueltas=5000

@ Parent Loop BB0_9 Depth=1

@ => This Inner Loop Header: Depth=2

ldr r1, [r8], #4 @ Load var "Vector3". Reuso espacial.

@ Multiples variables "varBucle" "varBucle2"

mov r0, r6

bl printf

subs r9, r9, #1

bne .LBB0_10

@ BB#11: @ %bb15

@ in Loop: Header=BB0_9 Depth=1

add r4, r4, #226, 28 @ 3616

subs r7, r7, #1

add r4, r4, #1, 18 @ 16384

bne .LBB0_9

@ BB#12: @ %bb18.preheader

add lr, sp, #245, 16 @ 16056320

mov r5, #1

mov r6, #0

ldr r8, .LCPI0_0 @ Load Constante .LCPI0_0

add lr, lr, #5, 8 @ 83886080

add r4, lr, #225, 24 @ 57600

add r4, r4, #135, 30 @ 540

add lr, sp, #98, 20 @ 401408

add lr, lr, #95, 12 @ 99614720

add r4, r4, #19, 22 @ 19456

add r7, lr, #242, 28 @ 3872

C.3 Localización de reúsos temporales y espaciales 55

.LBB0_13: @ %bb18

@ Numero de vueltas=6

@ =>This Inner Loop Header: Depth=1

ldr r1, [r7, r5, lsl #2] @ Load var "Vector1". Reuso espacial.

@ Var iteracion "i".

@ Desplazamiento con "stride" no constante

mov r0, r8

add r5, r5, r5, lsl #2

bl printf

ldr r1, [r4, -r6, lsl #2] @ Load var "Vector2". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" -1

mov r0, r8

add r6, r6, #1

bl printf

cmp r6, #6

bne .LBB0_13

Figura C.22: Fichero pruebaStores.arm.opt.s

Para terminar, se va a dejar constancia de una prueba con un fichero ya existente,
para demostrar que no son pruebas realizadas vagamente. En la siguiente figura se
presenta el código del fichero jfdctint.c.

C.3 Localización de reúsos temporales y espaciales 56

/***/

/* */

/* SNU-RT Benchmark Suite for Worst Case Timing Analysis */

/* === */

/* Collected and Modified by S.-S. Lim */

/* sslim@archi.snu.ac.kr */

/* Real-Time Research Group */

/* Seoul National University */

/* */

/* */

/* < Features > - restrictions for our experimental environment */

/* */

/* 1. Completely structured. */

/* - There are no unconditional jumps. */

/* - There are no exit from loop bodies. */

/* (There are no ’break’ or ’return’ in loop bodies) */

/* 2. No ’switch’ statements. */

/* 3. No ’do..while’ statements. */

/* 4. Expressions are restricted. */

/* - There are no multiple expressions joined by ’or’, */

/* ’and’ operations. */

/* 5. No library calls. */

/* - All the functions needed are implemented in the */

/* source file. */

/* */

/* */

/***/

/* */

/* FILE: jfdctint.c */

/* SOURCE : Thomas G. Lane, Public domain JPEG source code. */

/* Modified by Steven Li at Princeton University. */

/* */

/* DESCRIPTION : */

/* */

/* JPEG slow-but-accurate integer implementation of the forward */

/* DCT (Discrete Cosine Transform). */

/* */

/* REMARK : */

/* */

/* EXECUTION TIME : */

/* */

/* */

/***/

/**

Functions to be timed

***/

/* This definitions are added by Steven Li so as to bypass the header

files.

*/

#define DCT_ISLOW_SUPPORTED

#define DCTSIZE 8

#define BITS_IN_JSAMPLE 8

C.3 Localización de reúsos temporales y espaciales 57

#define MULTIPLY16C16(var,const) ((var) * (const))

#define DCTELEM int

#define INT32 int

#define GLOBAL

#define RIGHT_SHIFT(x,shft) ((x) >> (shft))

#define ONE ((INT32) 1)

#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)

#define SHIFT_TEMPS

/*

* jfdctint.c

*

* Copyright (C) 1991-1994, Thomas G. Lane.

* This file is part of the Independent JPEG Group’s software.

* For conditions of distribution and use, see the accompanying README file.

*

* This file contains a slow-but-accurate integer implementation of the

* forward DCT (Discrete Cosine Transform).

*

* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT

* on each column. Direct algorithms are also available, but they are

* much more complex and seem not to be any faster when reduced to code.

*

* This implementation is based on an algorithm described in

* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT

* Algorithms with 11 Multiplications", Proc. Int’l. Conf. on Acoustics,

* Speech, and Signal Processing 1989 (ICASSP ’89), pp. 988-991.

* The primary algorithm described there uses 11 multiplies and 29 adds.

* We use their alternate method with 12 multiplies and 32 adds.

* The advantage of this method is that no data path contains more than one

* multiplication; this allows a very simple and accurate implementation in

* scaled fixed-point arithmetic, with a minimal number of shifts.

*/

#define JPEG_INTERNALS

#if DCTSIZE != 8

Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */

#endif

#if BITS_IN_JSAMPLE == 8

#define CONST_BITS 13

#define PASS1_BITS 2

#else

#define CONST_BITS 13

#define PASS1_BITS 1 /* lose a little precision to avoid overflow */

#endif

C.3 Localización de reúsos temporales y espaciales 58

#if CONST_BITS == 13

#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */

#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */

#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */

#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */

#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */

#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */

#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */

#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */

#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */

#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */

#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */

#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */

#else

#define FIX_0_298631336 FIX(0.298631336)

#define FIX_0_390180644 FIX(0.390180644)

#define FIX_0_541196100 FIX(0.541196100)

#define FIX_0_765366865 FIX(0.765366865)

#define FIX_0_899976223 FIX(0.899976223)

#define FIX_1_175875602 FIX(1.175875602)

#define FIX_1_501321110 FIX(1.501321110)

#define FIX_1_847759065 FIX(1.847759065)

#define FIX_1_961570560 FIX(1.961570560)

#define FIX_2_053119869 FIX(2.053119869)

#define FIX_2_562915447 FIX(2.562915447)

#define FIX_3_072711026 FIX(3.072711026)

#endif

#if BITS_IN_JSAMPLE == 8

#define MULTIPLY(var,const) MULTIPLY16C16(var,const)

#else

#define MULTIPLY(var,const) ((var) * (const))

#endif

DCTELEM data[64] = {81, 10854, 1893, 55245, 7746, 47274, 61698, 14040,

32421, 52299, 9138, 35805, 43626, 35259, 36543, 10710,

48276, 63894, 43968, 15210, 56961, 39369, 58893, 34185,

24771, 17874, 18063, 43200, 44136, 37554, 14103, 40800,

52611, 50634, 49833, 8835, 61041, 57729, 10443, 12765,

59451, 42864, 64983, 57735, 11241, 53364, 19713, 510,

2376, 53949, 31983, 59580, 60021, 53139, 55323, 18120,

50781, 3849, 53253, 4950, 3081, 16644, 51078, 43350};

GLOBAL void

jpeg_fdct_islow ();

int main(int argc, char *argv[])

{

jpeg_fdct_islow();

return ;

}

C.3 Localización de reúsos temporales y espaciales 59

GLOBAL void

jpeg_fdct_islow ()

{

INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;

INT32 tmp10, tmp11, tmp12, tmp13;

INT32 z1, z2, z3, z4, z5;

DCTELEM *dataptr;

int ctr;

SHIFT_TEMPS

dataptr = data;

for (ctr = DCTSIZE-1; ctr >= 0; ctr--)

{

tmp0 = dataptr[0] + dataptr[7];

tmp7 = dataptr[0] - dataptr[7];

tmp1 = dataptr[1] + dataptr[6];

tmp6 = dataptr[1] - dataptr[6];

tmp2 = dataptr[2] + dataptr[5];

tmp5 = dataptr[2] - dataptr[5];

tmp3 = dataptr[3] + dataptr[4];

tmp4 = dataptr[3] - dataptr[4];

tmp10 = tmp0 + tmp3;

tmp13 = tmp0 - tmp3;

tmp11 = tmp1 + tmp2;

tmp12 = tmp1 - tmp2;

dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);

dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);

z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);

dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),

CONST_BITS-PASS1_BITS);

dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),

CONST_BITS-PASS1_BITS);

z1 = tmp4 + tmp7;

z2 = tmp5 + tmp6;

z3 = tmp4 + tmp6;

z4 = tmp5 + tmp7;

z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */

tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * (c1+c3-c5+c7) */

tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * (c1+c3+c5-c7) */

tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * (c1+c3-c5-c7) */

z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */

z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */

z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */

z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */

z3 += z5;

z4 += z5;

C.3 Localización de reúsos temporales y espaciales 60

dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);

dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);

dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);

dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);

dataptr += DCTSIZE; /* advance pointer to next row */

}

dataptr = data;

for (ctr = DCTSIZE-1; ctr >= 0; ctr--)

{

tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];

tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];

tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];

tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];

tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];

tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];

tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];

tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];

tmp10 = tmp0 + tmp3;

tmp13 = tmp0 - tmp3;

tmp11 = tmp1 + tmp2;

tmp12 = tmp1 - tmp2;

dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);

dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);

z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);

dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),

CONST_BITS+PASS1_BITS);

dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),

CONST_BITS+PASS1_BITS);

z1 = tmp4 + tmp7;

z2 = tmp5 + tmp6;

z3 = tmp4 + tmp6;

z4 = tmp5 + tmp7;

z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */

tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * (c1+c3-c5+c7) */

tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * (c1+c3+c5-c7) */

tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * (c1+c3-c5-c7) */

z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */

z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */

z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */

z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */

z3 += z5;

z4 += z5;

C.3 Localización de reúsos temporales y espaciales 61

dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,

CONST_BITS+PASS1_BITS);

dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,

CONST_BITS+PASS1_BITS);

dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,

CONST_BITS+PASS1_BITS);

dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,

CONST_BITS+PASS1_BITS);

dataptr++; /* advance pointer to next column */

}

}

Figura C.23: Fichero jfdctint.c

Y en la Figura C.24 está el fichero ARM que genera. Se muestra entero para tener
una visión en conjunto de como queda. Espero que con esto quede suficientemente
claro como funcionan las bibliotecas y se entiendan los resultados obtenidos.

.syntax unified

.eabi_attribute 6, 2

.eabi_attribute 8, 1

.eabi_attribute 9, 1

.eabi_attribute 20, 1

.eabi_attribute 21, 1

.eabi_attribute 23, 3

.eabi_attribute 24, 1

.eabi_attribute 25, 1

.file "jfdctintMarcado.ll"

.text

.globl main

.align 2

.type main,%function

main: @ @main

@ BB#0: @ %entry

push {r4, r5, r6, r7, r8, r9, r10, r11, lr}

sub sp, sp, #12

mov r0, #0

.LBB0_1: @ %bb.i

@ Numero de vueltas=8

@ =>This Inner Loop Header: Depth=1

ldr r1, .LCPI0_0 @ Load Constante .LCPI0_0

ldr r2, [r1, r0]! @ Load var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

add r7, r1, #16

C.3 Localización de reúsos temporales y espaciales 62

ldr r3, [r1, #4] @ Load var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

ldr lr, [r1, #12] @ Load var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

str r2, [sp] @ Store de pila. Desplazamiento 0

str r3, [sp, #8] @ Store de pila. Desplazamiento 8 bytes

ldr r12, [r1, #8] @ Load var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

str lr, [sp, #4] @ Store de pila. Desplazamiento 4 bytes

add r0, r0, #32

cmp r0, #1, 24 @ 256

ldmia r7, {r4, r5, r6, r7} @ Load var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

add r9, r5, r12

add r8, r6, r3

add r10, r9, r8

add r11, r7, r2

add r2, r4, lr

add r3, r2, r11

add lr, r3, r10

sub r3, r3, r10

lsl lr, lr, #2

str lr, [r1] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

sub r2, r11, r2

lsl r3, r3, #2

str r3, [r1, #16] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

sub r3, r8, r9

mov r9, #81

orr r8, r9, #17, 24 @ 4352

add lr, r2, r3

mul r9, lr, r8

mov r8, #126

orr lr, r8, #6, 22 @ 6144

mla r8, r2, lr, r9

add r2, r8, #1, 22 @ 1024

asr r2, r2, #11

str r2, [r1, #8] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

ldr r2, .LCPI0_1 @ Load Constante .LCPI0_1

mla lr, r3, r2, r9

C.3 Localización de reúsos temporales y espaciales 63

sub r3, r12, r5

ldr r5, [sp, #4] @ Load de pila. Desplazamiento 4 bytes

sub r4, r5, r4

add r2, lr, #1, 22 @ 1024

ldr lr, [sp, #8] @ Load de pila. Desplazamiento 8 bytes

asr r2, r2, #11

str r2, [r1, #24] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

sub lr, lr, r6

add r5, r4, lr

ldr r2, [sp] @ Load de pila. Desplazamiento 0

sub r2, r2, r7

ldr r7, .LCPI0_2 @ Load Constante .LCPI0_2

mul r8, r5, r7

add r12, r3, r2

add r6, r5, r12

ldr r9, .LCPI0_3 @ Load Constante .LCPI0_3

add r11, r4, r2

mul r10, r11, r9

mov r7, #161

orr r5, r7, #37, 24 @ 9472

mla r7, r6, r5, r8

mov r8, #142

orr r8, r8, #9, 24 @ 2304

mla r9, r4, r8, r10

add r4, r9, r7

add r4, r4, #1, 22 @ 1024

asr r4, r4, #11

str r4, [r1, #28] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

ldr r4, .LCPI0_4 @ Load Constante .LCPI0_4

mul r8, r12, r4

mla r12, r6, r5, r8

ldr r5, .LCPI0_5 @ Load Constante .LCPI0_5

add r4, r3, lr

mul r6, r4, r5

mov r4, #179

orr r4, r4, #65, 24 @ 16640

mla r5, r3, r4, r6

add r3, r5, r12

add r3, r3, #1, 22 @ 1024

asr r3, r3, #11

str r3, [r1, #20] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

mov r3, #149, 30 @ 596

orr r3, r3, #6, 20 @ 24576

mla r4, lr, r3, r6

add r3, r4, r7

add r3, r3, #1, 22 @ 1024

asr r3, r3, #11

str r3, [r1, #12] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

C.3 Localización de reúsos temporales y espaciales 64

mov r3, #11

orr r3, r3, #3, 20 @ 12288

mla lr, r2, r3, r10

add r2, lr, r12

add r2, r2, #1, 22 @ 1024

asr r2, r2, #11

str r2, [r1, #4] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar24".

@ Desplazamiento con "stride" 8

mvn r1, #31

bne .LBB0_1

.LBB0_2: @ %bb3.i

@ Numero de vueltas=8

@ =>This Inner Loop Header: Depth=1

ldr r0, .LCPI0_0 @ Load Constante .LCPI0_0

add r0, r0, r1

ldr r2, [r0, #32] @ Load var "data". Reuso espacial. Var iteracion "indvar".

@ Desplazamiento con "stride" 1

ldr r3, [r0, #64] @ Load var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

ldr lr, [r0, #128] @ Load var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

ldr r4, [r0, #256] @ Load var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

ldr r9, [r0, #224] @ Load var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

str r2, [sp] @ Store de pila. Desplazamiento 0

str r3, [sp, #8] @ Store de pila. Desplazamiento 8 bytes

ldr r12, [r0, #96] @ Load var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

add r5, r4, r2

ldr r11, [r0, #192] @ Load var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

add r10, r9, r3

ldr r6, [r0, #160] @ Load var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

add r7, r6, lr

str lr, [sp, #4] @ Store de pila. Desplazamiento 4 bytes

add r8, r7, r5

adds r1, r1, #4

add r2, r11, r12

add r3, r2, r10

add lr, r3, r8

rsb r3, r3, #2

add lr, lr, #2

sub r2, r10, r2

add r3, r3, r8

asr lr, lr, #2

C.3 Localización de reúsos temporales y espaciales 65

str lr, [r0, #32] @ Store var "data". Reuso espacial.

@ Var iteracion "indvar". Desplazamiento con "stride" 1

asr r3, r3, #2

str r3, [r0, #160] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

sub r3, r5, r7

mov r7, #81

orr r5, r7, #17, 24 @ 4352

add lr, r3, r2

mul r7, lr, r5

mov r5, #126

orr lr, r5, #6, 22 @ 6144

mla r5, r3, lr, r7

add r3, r5, #1, 18 @ 16384

asr r3, r3, #15

str r3, [r0, #96] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

ldr r3, .LCPI0_1 @ Load Constante .LCPI0_1

mla lr, r2, r3, r7

add r2, lr, #1, 18 @ 16384

ldr r5, [sp, #4] @ Load de pila. Desplazamiento 4 bytes

asr r2, r2, #15

ldr lr, [sp, #8] @ Load de pila. Desplazamiento 8 bytes

str r2, [r0, #224] @ Store var "data". Reuso espacial. V

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

sub r3, r12, r11

ldr r2, [sp] @ Load de pila. Desplazamiento 0

sub lr, lr, r9

ldr r7, .LCPI0_2 @ Load Constante .LCPI0_2

ldr r9, .LCPI0_3 @ Load Constante .LCPI0_3

sub r2, r2, r4

sub r4, r5, r6

add r5, r4, lr

add r12, r3, r2

add r6, r5, r12

mul r8, r5, r7

add r11, r4, r2

mul r10, r11, r9

mov r5, #161

orr r5, r5, #37, 24 @ 9472

mla r7, r6, r5, r8

mov r8, #142

orr r8, r8, #9, 24 @ 2304

mla r9, r4, r8, r10

add r4, r9, r7

add r4, r4, #1, 18 @ 16384

asr r4, r4, #15

str r4, [r0, #256] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

ldr r4, .LCPI0_4 @ Load Constante .LCPI0_4

mul r8, r12, r4

mla r12, r6, r5, r8

C.3 Localización de reúsos temporales y espaciales 66

ldr r5, .LCPI0_5 @ Load Constante .LCPI0_5

add r4, r3, lr

mul r6, r4, r5

mov r4, #179

orr r4, r4, #65, 24 @ 16640

mla r5, r3, r4, r6

add r3, r5, r12

add r3, r3, #1, 18 @ 16384

asr r3, r3, #15

str r3, [r0, #192] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

mov r3, #149, 30 @ 596

orr r3, r3, #6, 20 @ 24576

mla r4, lr, r3, r6

add r3, r4, r7

add r3, r3, #1, 18 @ 16384

asr r3, r3, #15

str r3, [r0, #128] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

mov r3, #11

orr r3, r3, #3, 20 @ 12288

mla lr, r2, r3, r10

add r2, lr, r12

add r2, r2, #1, 18 @ 16384

asr r2, r2, #15

str r2, [r0, #64] @ Store var "data". Reuso espacial.

@ Var calculada basada en var iteracion "indvar".

@ Desplazamiento con "stride" 1

bne .LBB0_2

@ BB#3: @ %jpeg_fdct_islow.exit

add sp, sp, #12

pop {r4, r5, r6, r7, r8, r9, r10, r11, lr}

bx lr

@ BB#4:

.align 2

.LCPI0_0:

.long data

.align 2

.LCPI0_1:

.long 4294952159 @ 0xffffc4df

.align 2

.LCPI0_2:

.long 4294951227 @ 0xffffc13b

.align 2

.LCPI0_3:

.long 4294959923 @ 0xffffe333

.align 2

.LCPI0_4:

.long 4294964100 @ 0xfffff384

.align 2

.LCPI0_5:

.long 4294946301 @ 0xffffadfd

.Ltmp0:

.size main, .Ltmp0-main

C.3 Localización de reúsos temporales y espaciales 67

.type data,%object @ @data

.data

.align 5

data:

.long 81 @ 0x51

.long 10854 @ 0x2a66

.long 1893 @ 0x765

.long 55245 @ 0xd7cd

.long 7746 @ 0x1e42

.long 47274 @ 0xb8aa

.long 61698 @ 0xf102

.long 14040 @ 0x36d8

.long 32421 @ 0x7ea5

.long 52299 @ 0xcc4b

.long 9138 @ 0x23b2

.long 35805 @ 0x8bdd

.long 43626 @ 0xaa6a

.long 35259 @ 0x89bb

.long 36543 @ 0x8ebf

.long 10710 @ 0x29d6

.long 48276 @ 0xbc94

.long 63894 @ 0xf996

.long 43968 @ 0xabc0

.long 15210 @ 0x3b6a

.long 56961 @ 0xde81

.long 39369 @ 0x99c9

.long 58893 @ 0xe60d

.long 34185 @ 0x8589

.long 24771 @ 0x60c3

.long 17874 @ 0x45d2

.long 18063 @ 0x468f

.long 43200 @ 0xa8c0

.long 44136 @ 0xac68

.long 37554 @ 0x92b2

.long 14103 @ 0x3717

.long 40800 @ 0x9f60

.long 52611 @ 0xcd83

.long 50634 @ 0xc5ca

.long 49833 @ 0xc2a9

.long 8835 @ 0x2283

.long 61041 @ 0xee71

.long 57729 @ 0xe181

.long 10443 @ 0x28cb

.long 12765 @ 0x31dd

.long 59451 @ 0xe83b

.long 42864 @ 0xa770

.long 64983 @ 0xfdd7

.long 57735 @ 0xe187

.long 11241 @ 0x2be9

.long 53364 @ 0xd074

.long 19713 @ 0x4d01

.long 510 @ 0x1fe

.long 2376 @ 0x948

.long 53949 @ 0xd2bd

.long 31983 @ 0x7cef

.long 59580 @ 0xe8bc

C.3 Localización de reúsos temporales y espaciales 68

.long 60021 @ 0xea75

.long 53139 @ 0xcf93

.long 55323 @ 0xd81b

.long 18120 @ 0x46c8

.long 50781 @ 0xc65d

.long 3849 @ 0xf09

.long 53253 @ 0xd005

.long 4950 @ 0x1356

.long 3081 @ 0xc09

.long 16644 @ 0x4104

.long 51078 @ 0xc786

.long 43350 @ 0xa956

.size data, 256

Figura C.24: Fichero jfdctint.arm.opt.s

Apéndice D

Manual de Uso

D.1. Introducción

En muchas ocasiones, cuando se decide realizar una nueva versión de otro
proyecto desarrollado hace un tiempo, se encuentran problemas a la hora de probarlo
y compilarlo.

Esto es aśı porque lo que para el desarrollador inicial es algo obvio, dado que ha
estado trabajando en ello durante varios meses, para la persona que continúa no es
tan fácil. Puede haber problemas de incompatibilidad con el software, problemas de
configuración y otros muchos, por los que se pierde bastante tiempo hasta que se
llegan a resolver.

Es por ello que se ha escrito este manual, para hacer de gúıa y facilitar el
trabajo a futuros desarrolladores que decidan continuar con el trabajo descrito en
este proyecto.

En este manual se describirán los requisitos de software que se tienen que instalar,
los pasos que hay que seguir para compilar las bibliotecas y para compilar los códigos
fuente que se quieran analizar. Además, se enumerarán los archivos que da como
resultado.

D.2. Requerimientos Software

Para poder usar las bibliotecas administradas, es necesario tener instaladas en
su ordenador las siguientes herramientas:

Sistema operativo: Cualquier sistema operativo basado en UNIX o similar, como
GNU/Linux o Mac OS.

GCC 4.5 o superior : Se ha probado en esta versión y el alguna superior, por lo
cual no se puede asegurar su correcto funcionamiento en versiones anteriores.

LLVM 2.7 o superior : Es a partir de esta versión de LLVM la que se añade LLVM
metadata, necesario para la correcta compilación.

D.3 Compilación de las bibliotecas 70

D.3. Compilación de las bibliotecas

Las dos bibliotecas, como se ha mencionado anteriormente, han sido creadas en
GNU/Linux. El código fuente de estas bibliotecas y un script llamado “Makefile”
que compila los dos ficheros fuente y crea las bibliotecas, se encuentran dentro del
directorio “buclesReusos”. Si desea ejecutar el script, siga los siguientes pasos:

1. Abra un terminal.

2. Muévase a través de los directorios hasta donde se encuentre la carpeta llamada
“buclesReusos”.

3. En la ĺınea de comandos del terminal, escriba la palabra make y pulse intro.

Figura D.1: Ejemplo de compilación de bibliotecas

Si, por el contrario, prefiere crearlas manualmente:

1. Abra un terminal.

2. Muévase a través de los directorios hasta donde se encuentre la carpeta llamada
“buclesReusos”

3. Escriba los siguientes comandos dentro de este directorio:

gcc -D_GNU_SOURCE -D__STDC_LIMIT_MACROS -D__STDC_CONSTANT_MACROS

-c buclesReusos.cpp

gcc -fPIC -shared -Wl,-soname,libbuclesReusos.so

-o libbuclesReusos.so buclesReusos.o

gcc -D_GNU_SOURCE -D__STDC_LIMIT_MACROS -D__STDC_CONSTANT_MACROS

-c marcarLoadsStores.cpp

gcc -fPIC -shared -Wl,-soname,libmarcarLoadsStores.so

-o libmarcarLoadsStores.so marcarLoadsStores.o

Figura D.2: Comandos para compilar las bibliotecas

D.4 Compilación de los ficheros a analizar 71

D.4. Compilación de los ficheros a analizar

Como se ha indicado a lo largo de la memoria del proyecto, el código fuente de
los ficheros a analizar es C. Cada uno de los ejemplos, que se han incluido en el
proyecto, está en una carpeta con el mismo nombre del fichero. En cada carpeta hay
(como muestra la Figura D.3), además del código fuente, un script con todos pasos
necesarios , el cual se puede ejecutar siguiendo unos pasos parecidos a la compilación
de bibliotecas.

1. Abra un terminal.

2. Muévase por los directorios hasta que se situe dentro de la carpeta del ejemplo
que desea analizar.

3. En la ĺınea de comandos del terminal, puede escribir distintos comandos, según
sea su intención:

Compilar el código fuente: make

Pasar las bibliotecas libmarcarLoadsStores y libbuclesReusos: make opt

Compilar y pasar las bibliotecas: make all opt

Figura D.3: Contenido de la carpeta

D.4 Compilación de los ficheros a analizar 72

Si lo que desea es probar algún código que no se encuentra entre los
administrados, la manera más simple para hacerlo, seŕıa la siguiente:

1. Cree una carpeta con el nombre que usted elija.

2. Copie el fichero con el código que desea analizar dentro de la carpeta creada
anteriormente.

3. Cree un fichero nuevo dentro de la carpeta con el nombre “Makefile”.

4. Copie el código escrito en la siguiente página, el mostrado en la Figura D.4 .

5. Cambie <nombreFich>por el nombre del fichero que contiene su código (sin
extensión) en todos sitios en los que aparece.

6. Cambie <rutaHastaLibreria>por la ruta que necesite hasta llegar al directorio
donde se encuentran las dos bibliotecas.

7. Guarde el fichero.

8. Abra un terminal.

9. Muévase por los directorios hasta que se sitúe dentro de la carpeta del ejemplo
que desea analizar.

10. En la ĺınea de comandos del terminal, puede escribir distintos comandos, según
sea su intención:

Compilar el código fuente: make

Pasar las bibliotecas libmarcarLoadsStores y libbuclesReusos: make opt

Compilar y pasar las bibliotecas: make all opt

D.4 Compilación de los ficheros a analizar 73

compi l e r
CC = llvm−gcc
CFLAGS = −stat ic −O3 −emit−l lvm

l i n k e r
LD = llvm−ld
LDFLAGS =

nat ive machine code genera to r
NATIVE= l l c
ARCH = arm
NATIVEFLAGS = −march=$ (ARCH)

d i sa s s emb l e r . bc −> . l l
DIS = llvm−d i s
DISFLAGS =

a l l : arch bytecode
arch : <nombreFich>.$ (ARCH) . s
bytecode : <nombreFich>. l l

<nombreFich>.o :
<nombreFich>.bc : <nombreFich>.o

$ (LD) $ (LDFLAGS) <nombreFich>.o −o <nombreFich>
%.$ (ARCH) . s : %.bc

$ (NATIVE) $ (NATIVEFLAGS) −o $@ $<
%. l l : %.bc

$ (DIS) $ (DISFLAGS) −o $@ $<
opt :
opt −instnamer <nombreFich>. l l −S −o <nombreFich>. l l
opt −load <rutaHastaL ibre r ia>/l ibmarcarLoadsStores . so

−marcar − l l−input <nombreFich>. l l − l l−output
<nombreFich>Marcado . l l <nombreFich>. l l > /dev/ nu l l

l l c $ (NATIVEFLAGS) <nombreFich>Marcado . l l
−o <nombreFich>.$ (ARCH) . s

opt −l oops −loop−r o t a t e −mem2reg −instcombine −s imp l i f y c f g
−i ndvars −instnamer −load
<rutaHastaL ibre r ia>/l i bbuc l e sReuso s . so −cuenta
−arm−input <nombreFich>.$ (ARCH) . s −arm−output
<nombreFich>.$ (ARCH) . opt . s < <nombreFich>Marcado . l l
> /dev/ nu l l

c l ean :
rm −f ∗ . o ∗ . bc ∗ . s ∗ . l l <nombreFich>

Figura D.4: Código ejemplo de Makefile

D.4 Compilación de los ficheros a analizar 74

En la siguiente imagen se muestra cómo quedaŕıa el código del fichero “Makefile”
después de hacer los cambios para un fichero llamado “prueba1”.

compi l e r
CC = llvm−gcc
CFLAGS = −stat ic −O3 −emit−l lvm

l i n k e r
LD = llvm−ld
LDFLAGS =

nat ive machine code genera to r
NATIVE= l l c
ARCH = arm
NATIVEFLAGS = −march=$ (ARCH)

d i sa s s emb l e r . bc −> . l l
DIS = llvm−d i s
DISFLAGS =

a l l : arch bytecode
arch : prueba1 . $ (ARCH) . s
bytecode : prueba1 . l l

prueba1 . o :
prueba1 . bc : prueba1 . o

$ (LD) $ (LDFLAGS) prueba1 . o −o prueba1
%.$ (ARCH) . s : %.bc

$ (NATIVE) $ (NATIVEFLAGS) −o $@ $<
%. l l : %.bc

$ (DIS) $ (DISFLAGS) −o $@ $<
opt : opt −instnamer prueba1 . l l −S −o prueba1 . l l
opt −load <rutaHastaL ibre r ia>/l ibmarcarLoadsStores . so

−marcar − l l−input prueba1 . l l − l l−output
prueba1Marcado . l l prueba1 . l l > /dev/ nu l l

l l c $ (NATIVEFLAGS) prueba1Marcado . l l −o prueba1 . $ (ARCH) . s
opt −l oops −loop−r o t a t e −mem2reg −instcombine −s imp l i f y c f g

−i ndvars −instnamer −load <rutaHastaL ibre r ia>/
l i bbuc l e sReuso s . so −cuenta −arm−input prueba1 . $ (ARCH) . s
−arm−output prueba1 . $ (ARCH) . opt . s < prueba1Marcado . l l
> /dev/ nu l l

c l ean :
rm −f ∗ . o ∗ . bc ∗ . s ∗ . l l prueba1

Figura D.5: Makefile de ”Prueba1”

D.5 Ficheros Resultado 75

D.5. Ficheros Resultado

Como consecuencia de los pasos dados hasta el momento, se habrán creado en el
directorio de código fuente los siguientes ficheros:

<nombreFichero>.ll : Fichero con el código intermedio de LLVM.

<nombreFichero>marcado.ll : Fichero que añade al anterior los metadatas de las
instrucciones loads y stores.

<nombreFichero>.bc: Fichero con el código en binario.

<nombreFichero>.o: Fichero objeto.

<nombreFichero>.arm.s : Fichero con el código intermedio con las instrucciones de
ensamblador ARM.

<nombreFichero>.arm.opt.s : Fichero que contiene, además del código anterior, la
cuenta de iteracciones, y los reusos temporales y espaciales.

<nombreFichero>: Ejecutable.

Si desea borrar estos ficheros:

1. Vuelva abrir el terminal.

2. Muévase por los directorios hasta que se sitúe dentro de la carpeta del ejemplo
que desea eliminar.

3. En la ĺınea de comandos del terminal escriba: make clean

Aśı ya habrá borrado todos los ficheros nuevos.

Bibliograf́ıa

[1] The LLVM Compiler Infrastructure Project. http://www.llvm.org

[2] Gedit text editor. http://projects.gnome.org/gedit/

[3] GCC, the GNU Compiler Collection. http://gcc.gnu.org/

[4] TEX Live. http://www.tug.org/texlive/

[5] Kile - an Integrated LATEX Environment. http://kile.sourceforge.net/

[6] Gantt Project. http://www.ganttproject.biz/

[7] ARM, The Architecture for the Digital World. http://infocenter.arm.com/

[8] LLVM API Documentation. http://llvm.org/doxygen/

[9] A Low-level Virtual Instruction Set Architecture MICRO-36. San Diego: CA.
December 2003. http://llvm.org/pubs/2003-10-01-LLVA.pdf

[10] An Infrastructure for Multi-Stage Optimization Masters Thesis, Computer
Science Dept., University of Illinois at Urbana-Champaign, Dec. 2002. http:
//llvm.org/pubs/2002-12-LattnerMSThesis.pdf

[11] Edición de documentos en LATEX. Universidad de Zaragoza, 1990.

[12] Aburruzaga, Gerardo. Manual libre de Make en PDF. http://www.uca.es/
softwarelibre/publicaciones/make.pdf

[13] Savitch, Walter. Resolución de problemas con C++. Prentice Hall .2006.

