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A. Repaso de Relatividad General y geometŕıa diferencial

A.1. Principio de Relatividad e invariancia de las leyes de la f́ısica

Un principio clave en el desarrollo de la Relatividad General es el Principio de la Relatividad,

formulado varios siglos antes por Galileo Galilei (1564-1642), diciendo que es imposible distinguir

por medio de experimentos mecánicos si un sistema está en reposo o en movimiento rectiĺıneo

uniforme. De este modo queda establecido un conjunto de observadores o sistemas de referencia

que llamamos sistemas inerciales, que son todos aquellos en reposo o movimiento rectiĺıneo

uniforme respecto a un sistema previamente elegido como inercial y que, como dice el Principio

de Relatividad, ven todos la misma f́ısica.

Ya en el siglo XX, Albert Einstein (1879-1955) razonó que si todos los observadores inerciales

véıan la misma f́ısica, entonces todos ellos debeŕıan llegar a las mismas leyes f́ısicas. Además

pensó que este principio no teńıa por qué limitarse a la mecánica, sino que pod́ıa ser aplicado

a toda la f́ısica. Esta invariancia de la leyes f́ısicas impone que las transformaciones (cambios

de coordenadas) entre observadores inerciales tengan una forma determinada, y el conjunto de

estas transformaciones tiene la estructura matemática de un grupo. Puede enunciarse entonces

el Principio de Relatividad en formulación covariante como:

Las leyes de la f́ısica transforman bien bajo las transformaciones del grupo de simetŕıa

que relacionan a los distintos observadores.

Pronto se encontró un problema teórico importante a esta afirmación. En mecánica clásica,

dos observadores en movimiento relativo con velocidad constante ~v (por simplicidad, ~v = vx̂)

que observan el mismo suceso pueden relacionar sus mediciones de posición y tiempo mediante

las transformaciones de Galileo:

x′ = x− vt, y′ = y, z′ = z, t′ = t. (A.1)

Las transformaciones de Galileo, junto con las rotaciones y las traslaciones espaciales y tem-

porales, forman el grupo de Galileo, bajo el cual la mecánica newtoniana transforma de forma

covariante. Sin embargo, puede demostrarse que la leyes de Maxwell no transforman bien bajo

las transformaciones de Galileo, sino bajo transformaciones de la forma1

x′ =
x− vt√
1− v2/c2

, y′ = y, z′ = z, t′ =
t− vx/c2√
1− v2/c2

, (A.2)

conocidas como transformaciones de Lorentz, que tienden a las de Galileo cuando v � c, y que

puede demostrarse que también constituyen un grupo (grupo de Lorentz ).

Tenemos entonces dos grupos de simetŕıa distintos para la mecánica newtoniana y el elec-

tromagnetismo. Para solucionar este problema teórico, Einstein propuso que lo que hab́ıa que

modificar era la mecánica, de forma que transforme bien bajo las transformaciones de Lorentz

1Se muestran aqúı solo las transformaciones de las coordenadas espaciales y temporales. Pueden encontrarse en

la bibliograf́ıa relacionada las expresiones correspondientes para transformaciones de cargas, corrientes y campos.
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en lugar de las de Galileo. El resultado de esto es lo que conocemos como teoŕıa de la Relatividad

Especial, lo que llevó a una forma completamente nueva de entender el espacio y el tiempo, y la

relación entre ellos.

A.2. El espacio de Minkowski

En su formulación de la relatividad espacial, Albert Einstein concluyó que el espacio y

el tiempo dependen del observador, y que ambas magnitudes están ı́ntimamente relacionadas.

Fenómenos como la contracción de Lorentz y la dilatación temporal son buena muestra de ello.

En relatividad especial las distancias y los intervalos de tiempo no son iguales para todos los

observadores. Sin embargo, śı existen cantidades invariantes, como

s2 = −c2t2 + x2 + y2 + z2. (A.3)

En 1907, Hermann Minkowski (1864-1909) se dio cuenta de que la relatividad especial pod́ıa

entenderse a partir de una geometŕıa cuatridimensional, y define un espacio vectorial que lla-

mamos espacio de Minkowski, donde la cantidad (A.3) puede asociarse al cuadrado de la (pseu-

do)norma de un vector y donde la distancia al cuadrado entre dos puntos o sucesos (ct1, x1, y1, z1)

y (ct2, x2, y2, z2) es el intervalo

∆s2 = −c2(t2 − t1)2 + (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2, (A.4)

que es también invariante Lorentz. Hay que destacar que, al tener el tiempo el signo cambiado,

los intervalos no son definidos positivos y se clasifican según su signo. Si ∆s2 < 0, los sucesos

están separados por un intervalo temporal, si ∆s2 = 0, por un intervalo nulo o tipo nulo y si

∆s2 > 0, por un intervalo espacial. Solo puede existir relación causal entre dos sucesos si están

separados por intervalos temporales o nulos.

De aqúı en adelante emplearemos las unidades naturales, donde c = 1. Tenemos entonces

que cada suceso está caracterizado por un cuadrivector xµ = (x0, x1, x2, x3) = (t, x, y, z), y que

su norma en el espacio de Minkowski es

‖xµ‖2 = −(x0)2 + (x1)2 + (x2)2 + (x3)2 = ηµνx
µxν , (A.5)

donde en la última igualdad hemos usado el convenio de sumación de Einstein2 y donde ηµν es

la métrica de Minkowski, que en forma matricial es

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 = diag(−1, 1, 1, 1). (A.6)

La métrica nos dice cómo calcular distancias en nuestro espaciotiempo y en función de ella

podemos escribir un elemento de ĺınea como

ds2 = ηµνdxµdxν = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. (A.7)

2La repetición de ı́ndices arriba y abajo en una expresión representa un sumatorio sobre todos los valores

posibles de ese ı́ndice. En este caso, los ı́ndices µ y ν van de 0 a 3.
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El signo negativo en la dimensión temporal es lo que distingue al espacio de Minkowski del

espacio eucĺıdeo al que estamos más acostumbrados, en el que las distancias vienen dadas por

la generalización del teorema de Pitágoras al número de dimensiones del espacio, y por tanto la

métrica del espacio eucĺıdeo es la identidad.

Otra cantidad invariante de gran importancia es el tiempo propio τ de una part́ıcula. El

tiempo propio es el tiempo medido por un observador O que se mueve junto a la part́ıcula, y la

relación entre dτ y el tiempo dt medido por cualquier otro observador O′ es

dτ =
√

1− v2 dt, (A.8)

donde v es la velocidad de la part́ıcula con respecto al observador O′ en el intervalo dτ .

Esta formulación de la relatividad especial en términos geométricos fue de vital importancia

en el desarrollo de una teoŕıa relativista que incluyera efectos gravitatorios, la teoŕıa de la

relatividad general.

A.3. La necesidad de la relatividad general

A la hora de tratar con la interacción gravitatoria, hab́ıa incompatibilidades importantes

entre la gravedad newtoniana y la relatividad especial. Matemáticamente, tenemos que la gra-

vedad newtoniana no es invariante bajo el grupo de Lorentz. Además, la gravedad newtoniana

implica variaciones instantáneas en el potencial gravitatorio ante variaciones de la distribución

de materia en el universo, lo que implica que la fuerza gravitatoria se propaga con velocidad

infinita, lo cual es incompatible con la velocidad máxima c de la relatividad especial.

El principal problema al intentar incorporar la gravedad es que tenemos que considerar

observadores no inerciales, que la relatividad especial no considera. Einstein se dio cuenta de

que un observador en cáıda libre es equivalente (localmente) a un observador inercial, para el

que las part́ıculas en cáıda libre están en reposo y podŕıa considerar la fuerza gravitatoria como

una fuerza ficticia. Esto se conoce como Principio de Equivalencia y es posible gracias a la

equivalencia entre masa inercial y masa gravitatoria y al hecho de que todos los objetos caen

con la misma aceleración, independientemente de su masa.

Un aspecto clave del principio de equivalencia es que solo es válido localmente. Un observador

en cáıda libre dejará de percibir la gravedad en un entorno muy cercano, pero a una distancia

lo bastante grande notará las inhomogeneidades del campo gravitatorio. Como ejemplo, dos

observadores en cáıda libre en dos puntos alejados de un campo con simetŕıa esférica podŕıan

considerarse a si mismos como inerciales si realizan observaciones en una región muy pequeña en

torno a ellos, pero se verán mutuamente acelerados sin que pueda eliminarse la fuerza gravitatoria

completamente en ningún sistema de referencia.

Esto tiene una consecuencia muy importante: podemos considerar el espaciotiempo como un

conjunto de trozos infinitesimales de espaciotiempo plano (de Minkowski). Tendŕıamos aśı un

espaciotiempo que localmente es plano pero globalmente tiene curvatura. Los espacios que tienen

esta propiedad se conocen en matemáticas como variedades y la disciplina que los estudia es la

geometŕıa diferencial. Veremos que esto será clave en el desarrollo de la Relatividad General.
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A.4. Tensores y cambios generales de coordenadas

Antes de empezar con los conceptos propios de la geometŕıa diferencial, vamos a definir

los objetos con los que vamos a trabajar y cuyas propiedades serán de especial interés en el

desarrollo de la teoŕıa de la relatividad general.

Los objetos más sencillos son los escalares, que son invariantes bajo cambios de coordenadas

y que representamos sin ı́ndices:

φ′ = φ. (A.9)

Tenemos también los vectores, elementos de un espacio vectorial RN que podemos describir

por sus componentes V µ en una determinada base. Los vectores transforman bajo un cambio

general de coordenadas según

V ′µ =
∂x′µ

∂xν
V ν , (A.10)

y por esta forma de transformar los llamaremos vectores contravariantes. Si consideramos ahora

el espacio dual *RN , sus elementos Wµ también son vectores al ser *RN un espacio vectorial,

pero transforman de distinto modo, según

W ′
µ =

∂xµ

∂x′ν
Wν . (A.11)

A los vectores que transforman según esta relación los llamamos vectores covariantes. Nótese que

distinguimos entre vectores contravariantes y covariantes escribiendo el ı́ndice arriba o abajo.

Podemos construir también objetos a partir del producto tensorial de vectores covariantes

y contravariantes, a los que llamaremos tensores. La forma más general seŕıa la construcción

a partir de m vectores contravariantes y n vectores covariantes, o tensor de rango (m,n). Los

tensores transforman bajo cambios generales de coordenadas del siguiente modo:

T ′µ1...µm
ν1...νn =

∂x′µ1

∂xα1
...
∂x′µm

∂xαm
∂xβ1

∂x′ν1
...
∂xβn

∂x′νn
Tα1...αm

β1...βn
(A.12)

La gran ventaja de usar tensores es que si una relación del tipo

Ai1...imj1...jn = Bi1...im
j1...jn

+ Ci1...imDj1...jn (A.13)

es válida en un sistema de coordenadas, lo será también en cualquier otro sistema de coorde-

nadas, por la forma en que transforman los tensores. Como hemos visto en el apartado A.1, el

Principio de la Relatividad nos dice que las leyes de la f́ısica deben ser las mismas para cualquier

observador. Esto implica que las leyes de la f́ısica deben escribirse en función de objetos que

transformen bien bajo cambios de coordenadas (escalares, vectores y tensores), lo que se conoce

también como Principio de Covariancia General.

A.5. Conceptos de geometria diferencial

A.5.1. Variedades diferenciales y la métrica en una variedad

A grandes rasgos, podemos decir que una variedad diferenciable N -dimensional MN es un

espacio que localmente tiene el aspecto de RN . Esto implica que en cada punto p de la variedad
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se puede definir un espacio tangente Tp(MN ), isomorfo a RN , y que para una región lo bastante

pequeña es una buena aproximación a la variedad.

Hemos visto anteriormente que la métrica eucĺıdea y la de Minkowski nos dicen cómo calcular

distancias en el espacio eucĺıdeo y en el de Minkowski. En una variedad curva arbitraria, la

métrica gµν ya no tomará una forma tan sencilla, pero igualmente nos permitirá medir distancias

en la variedad según

ds2 = gµν dxµdxν . (A.14)

Podemos clasificar las variedades según la signatura de su métrica. Si la métrica es definida

positiva tenemos una variedad riemanniana, mientras que si la métrica tiene una signatura

(−++...+) se dice que es una variedad lorentziana. Estos dos casos son generalizaciones curvas de

los espacios eucĺıdeo y de Minkowski, respectivamente. En relativiadad general, el espaciotiempo

estará representado por una variedad lorentziana.

La métrica gµν y su inversa gµν son ejemplos de tensores de rango 2. Además de permitirnos

calcular distancias, puede demostrarse que la métrica tiene otra propiedad muy importante:

establece una relación uno a uno entre los vectores de un espacio vectorial y su dual (vectores

contravariantes y covariantes) a través de las expresiones

Vµ = gµνV
ν , V µ = gµνVν . (A.15)

Operar con la métrica de esta forma se conoce comúnmente como “subir y bajar ı́ndices”.

A.5.2. Transporte paralelo y derivada covariante

Veamos cómo transforma la derivada parcial de un vector bajo cambios generales de coor-

denadas. Aplicando la regla de la cadena y usando que V µ transforma con un vector:

∂′µV
′ν =

∂xα

∂x′µ
∂α

(
∂x′ν

∂xβ
V β

)
=
∂xα

∂x′µ
∂x′ν

∂xβ
∂αV

β +
∂xα

∂x′µ
V β ∂2x′ν

∂xα∂xβ
. (A.16)

Es decir, que la derivada parcial de un vector (o tensor) no transforma bien bajo cambios

generales de coordenadas.

Es importante tener en cuenta que un vector localizado en el punto p de una variedad es

un objeto que no vive en la variedad, sino en el espacio tangente a la variedad en p (fig. A.1,

izquierda). Esto significa que expresiones como la derivada ordinaria de un campo vectorial V µ,

∂νV
µ = ĺım

δxν→0

V µ(q)− V µ(p)

δxν
, (A.17)

matemáticamente no tengan sentido, ya que estamos restando vectores de espacios distintos,

Tp(M) y Tq(M). Para poder compararlos necesitamos un vector V µ
p (q) que vive en Tq(M) y

tiene toda la información de V µ(p), al que llamaremos transportado paralelo de V µ(p).
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Figura A.1: Izquierda: Variedad y espacios tangentes. Derecha: comparación de vectores en

distintos puntos de la variedad: transporte paralelo.[1]

Conocido V µ
p (q), el objeto

∇νV µ = ĺım
δxν→0

V µ(q)− V µ
p (q)

δxν
(A.18)

quedaŕıa bien definido y se le llama derivada covariante del vector V µ. Pero aún no hemos dicho

como obtener el vector V µ
p (q). Podemos obtener dicho vector como el vector original V µ(p) más

un término de corrección, proporcional tanto al desplazamiento δxµ entre las coordenadas de p

y q como al vector original:

V µ
p (q) = V µ(p)− Γµνρδx

νV ρ(p), (A.19)

donde los coeficientes de proporcionalidad Γµνρ, que no son tensores, representan el cambio de la

componente µ del vector en la dirección ρ bajo el desplazamiento en la dirección ν y constituyen

lo que llamamos conexión. Finalmente, podemos escribir la derivada covariante de un vector

como

∇νV µ = ∂νV
µ + ΓµνρV

ρ. (A.20)

Su generalización a tensores de rango (m,n) es

∇ρTµ1...µmν1...νn = ∂ρT
µ1...µm

ν1...νn + Γµ1ρλ T
λµ2...µm

ν1...νn + ...+ Γµmρλ T
µ1...µm−1λ

ν1...νn

− Γλρν1 T
µ1...µm

λν2...νn
− ...− Γλρνn T

µ1...µm
ν1...νn−1λ

.
(A.21)

Puede comprobarse que la derivada covariante de un vector o tensor śı transforma bien bajo

cambios generales de coordenadas.

A.5.3. El tensor de Riemann

En una variedad hay muchas conexiones posibles, por lo que la elección de las funciones Γµνρ

es arbitraria. Nótese que hay tantas formas de hacer el transporte paralelo como trayectorias

posibles entre p y q, y que el vector resultante V µ
p (q) dependerá de la curva elegida para el

transporte. Esta propiedad es una manifestación de la curvatura de la variedad.
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Figura A.2: Izquierda: Transporte paralelo de un vector por dos caminos distintos: uno direc-

tamente desde un punto del ecuador hasta el polo, el otro primero se transporta a lo largo del

ecuador y después al polo. El vector resultante es distinto en cada caso. Derecha: El tensor de

Riemann mide la diferencia entre transportes paralelos por distintas trayectorias de un paralelo-

gramo infinitesimal, y es una medida de la curvatura en la región encerrada. El tensor de torsión

mide el cuánto cierra el paralelogramo.[1]

Diremos que una variedad es curva si el transporte paralelo a lo largo de una curva cerrada da

como resultado un vector diferente al llegar al punto inicial. Para definir esto cuantitativamente

consideramos el transporte paralelo de un vector a lo largo de un paralelogramo infinitesimal

cuyos lados son los vectores dxµ y dxν . Queremos calcular la diferencia entre trasladar un vector

V µ primero a lo largo de dxµ y después de dxν y trasladarlo en el orden opuesto. Para ello

tenemos que calcular el conmutador de las derivadas covariantes [∇µ,∇ν ] actuando sobre el

vector V λ. Operando llegamos a

[∇µ,∇ν ]V λ =
(
∂µΓλνρ − ∂νΓλµρ + ΓλµσΓσνρ − ΓλνσΓσµρ

)
V ρ −

(
Γρµν − Γρνµ

)
∇ρV λ

= R λ
µνρ V ρ − T ρ

µν ∇ρV λ,
(A.22)

donde tenemos una parte proporcional a V ρ y otra proporcional a ∇ρV λ, y cuyos factores de

proporcionalidad son lo que definimos como tensor de Riemann R λ
µνρ y tensor de torsión T ρ

µν .

El tensor de Riemann mide la diferencia entre el transporte paralelo en una u otra trayectoria,

y es por lo tanto una medida de la curvatura del espacio encerrado en el paralelogramo. El

transporte paralelo no tiene por qué acabar en el mismo punto en ambas trayectorias, y el

tensor de torsión mide el grado en que cierra el paralelogramo (fig. A.2). Es importante señalar

que si R λ
µνρ es idénticamente cero, el transporte paralelo no depende del camino y significa

que la variedad es plana; esto es lo que sucede en el espacio plano RN y en el espaciotiempo de

Minkowski.

Contrayendo los ı́ndices segundo y cuarto del tensor de Riemann se obtiene el tensor de Ricci

Rµν = R ρ
µρν , (A.23)

y contrayendo los dos ı́ndices del tensor de Ricci con la métrica, tenemos el escalar de Ricci

R = gµνRµν . (A.24)

Estos dos objetos son importantes porque aparecerán en las ecuaciones del campo de Einstein.
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A.5.4. La conexión de Levi-Civita

Como ya hemos comentado, en una variedad tenemos infinidad de conexiones posibles. Sin

embargo, cuando definimos una métrica en nuestra variedad, hay una conexión llamada conexión

de Levi-Civita que tiene una serie de propiedades que la hacen única por su relación con la

métrica. Dicha conexión cumple dos condiciones:

1. Es simétrica en los dos ı́ndices inferiores: Γρµν = Γρνµ

2. La derivada covariante de la métrica se anula: ∇µgνρ = 0

La primera condición implica que el tensor de torsión es cero. La segunda se llama compatibili-

dad con la métrica, y simplifica mucho algunas propiedades geométricas de la variedad. Dadas

estas condiciones, se puede demostrar que la conexión queda completamente determinada por

la métrica mediante la expresión

Γσµν =
1

2
gσλ (∂µgλν + ∂νgµλ − ∂λgµν) . (A.25)

Esto significa que en una variedad equipada con la conexión de Levi-Civita todas las propiedades

geométricas están determinadas únicamente por la métrica. La métrica permite determinar

distancias y ángulos en nuestra variedad, pero al introducir la conexión de Levi-Civita también

determina el transporte paralelo y la curvatura (tensor de Riemann). La conexión de Levi-Civita

será la empleada siempre en Relatividad General, salvo que se indique de otro modo.

A.5.5. Geodésicas

Las rectas en el espacio plano tienen dos propiedades que las hacen especiales. Una es que

una recta es la curva más corta entre dos puntos del espacio. La otra es que es la única curva en

la que el vector tangente está transportado paralelamente a si mismo a lo largo de la curva. En

una variedad arbitraria con conexión, podemos definir curvas con cada una de estas propiedades:

la geodésica métrica y la geodésica af́ın, respectivamente.

Si la conexión elegida es la de Levi-Civita, puede demostrarse que geodésicas métricas y

afines coinciden, y las llamamos simplemente geodésicas y vienen dadas por la ecuación

ẍρ + Γρµν ẋ
µẋν = 0 (A.26)

La importancia de las geodésicas reside en que son las curvas que describen la trayectoria de

una part́ıcula libre en un espacio curvo o, en el marco de la Relatividad General, la trayectoria

en el espaciotiempo de una part́ıcula afectada solo por efectos gravitatorios.

A.6. Las ecuaciones de Einstein

El Principio de Equivalencia nos sugiere que podemos describir el espaciotiempo como una

variedad cuatridimensional y el campo gravitatorio como la curvatura del espaciotiempo.
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Por la gravedad newtoniana sabemos que la fuente de fuerza gravitatoria es la masa de los

cuerpos. Pero esta no es la única fuente de curvatura. La gravedad se acopla a cualquier tipo

de enerǵıa y momento del espaciotiempo. Resulta conveniente describir esto como un fluido,

caracterizado por funciones continuas en el espaciotiempo que son magnitudes macroscópicas

(velocidad del fluido, densidad, presión, etc). La enerǵıa y el momento de este fluido viene

descrito por el tensor de enerǵıa-momento Tµν .

Pero nos falta todav́ıa saber cómo interacciona la materia con el espaciotiempo. La expre-

sión que describe esa interacción se conoce como ecuaciones de Einstein. Por el principio de

covariancia, la ecuación que describa dicha interacción deberá ser válida en todos los sistemas

de referencia, y por lo tanto debe tener una forma tensorial tal que

Gµν = −κTµν , (A.27)

donde Gµν es el tensor de Einstein, que describe la curvatura del espaciotiempo, y κ una cons-

tante de proporcionalidad.

Nos falta describir el tensor Gµν en función de los términos geométricos conocidos. Sa-

bemos que es un objeto puramente geométrico, por lo que solo puede depender de la mátri-

ca y sus derivadas. Además, el tensor de enerǵıa-impulso es simétrico, aśı que el tensor Gµν

también debe serlo. Imponiendo algunas condiciones más como la conservación de la enerǵıa

(∇µTµν = 0⇒ ∇µGµν = 0) y la recuperación de la ecuación de Poisson para el caso estático,

Einstein llegó a que

Gµν = Rµν −
1

2
gµνR. (A.28)

Además, por comparación con las fórmulas newtonianas, llega a que la constante de proporcio-

nalidad es κ = 8πGN , donde GN es la constante de gravitación universal de Newton.

Tenemos, por tanto, que las ecuaciones de Einstein toman la forma

Rµν −
1

2
gµνR = −8πGNTµν . (A.29)

Estas ecuaciones forman un sistema de 10 ecuaciones en derivadas parciales no lineales acopladas

de segundo orden. Sin embargo, la condición ∇µGµν = 0 impone cuatro ligaduras, aśı que solo

6 ecuaciones son independientes y las otras 4 componentes están relacionadas con la libertad de

elección del sistema de coordenadas.

En la práctica, salvo en casos de mucha simetŕıa, la resolución de las ecuaciones de Einstein

no puede realizarse de forma anaĺıtica, siendo imprescindible la utilización de métodos numéricos

y la potencia de cálculo que proporcionan los ordenadores.

Bibliograf́ıa

[1] B. Janssen, Teoŕıa de la Relatividad General, Apuntes de la Universidad de Granada (2013).
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B. Código empleado para la simulación de un agujero negro de

Schwarzschild

En este anexo se muestra el código (en lenguaje de programación C) empleado en las simu-

laciones del agujero negro de Schwarzschild.

-Cabecera:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#define dr 0.01 //Tama~no del intervalo radial

#define Nr 1000 //Número de intervalos radiales para simular

#define dt 0.005 //Tama~no del intervalo temporal

#define Nt 2000 //Número de intervalos de tiempo para simular

#define M 1 //Masa del agujero negro

//IMPORTANTE: DEFINIR SOLO UNO (Elección de foliación)

#define MAX //Foliación maximal

//#define LOG //Foliación 1+log

-Programa principal:

int main()

{

int j, t; //j=ı́ndice discret. espacio; t=ı́ndice discret. tiempo.

/*Las variables A,B,Da,Db,Ka,Kb definidas aquı́ son las reescaladas con el

factor conforme psi^4 (las variables con tilde)*/

double A[Nr], B[Nr], Da[Nr], Db[Nr], Ka[Nr], Kb[Nr], alpha[Nr];

char dir[256] = "/directorio"; //Carpeta en la que guardar los ficheros

printf("Simulacion agujero negro de Schwarzschild.\n");

//Cálculo de los datos iniciales

valores_iniciales(A, B, Da, Db, Ka, Kb, alpha);

#ifdef MAX //Resolvemos la ecuación de la foliación maximal en su caso.

alpha_max_slicing(A, Da, Db, Ka, Kb, alpha);

#endif // MAX

//Comienzo de la simulación

for(t = 0; t < Nt; t++)
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{

//Escritura de los datos en ficheros

if(t%(Nt/10)==0)

{

escribe_fich_out(dir, t/(Nt/10), alpha, A, B, Da, Db, Ka, Kb);

printf("Escrito file_%02d.txt\n", t/(Nt/10));

}

//Evolución de las variables en un paso de tiempo

evolucion(A, B, Da, Db, Ka, Kb, alpha);

#ifdef MAX //Resolvemos la ecuación de la foliación maximal en su caso.

alpha_max_slicing(A, Da, Db, Ka, Kb, alpha);

#endif // MAX

}

escribe_fich_out(dir, t/(Nt/10), alpha, A, B, Da, Db, Ka, Kb);

//Fin de la simulación

return 0;

}

-Funciones empleadas:

//Función que escribe todas las variables en un fichero.

void escribe_fich_out(char *dir, int n_file, double *alpha, double *A, double

*B, double *Da, double *Db, double *Ka, double *Kb)

{

int j;

char fich_out[256];

sprintf(fich_out, "%s/file_%02d.txt", dir, n_file);

f_out = fopen(fich_out, "wt");

if(f_out == NULL)

{

printf("Error al crear fichero.\n");

exit(-1);

}

for(j = 0; j < Nr; j++)

fprintf(f_out, "%lf %lf %lf %lf %lf %lf %lf %lf\n", j*dr, alpha[j],

A[j], B[j], Da[j], Db[j], Ka[j], Kb[j]);

fclose(f_out);
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}

//Función que inicializa las variables con sus valores iniciales

void valores_iniciales(double *A, double *B, double *Da, double *Db,

double *Ka, double *Kb, double *alpha)

{

int j;

for(j = 0; j < Nr; j++)

{

A[j] = 1; B[j] = 1;

Da[j] = 0; Db[j] = 0;

Ka[j] = 0; Kb[j] = 0;

#ifdef LOG

alpha[j] = 1;

#endif //LOG

}

}

//Cálculo de la variable auxiliar D_alpha

void calcula_Dalpha(double *alpha, double *Dalpha)

{

int j;

Dalpha[0] = 0;

for(j = 1; j < Nr-1; j++)

Dalpha[j] = (alpha[j+1]-alpha[j-1])/(2*dr*alpha[j]);

Dalpha[Nr-1] = (1-alpha[Nr-1])/((Nr-1)*dr*alpha[Nr-1]);

}

//Cálculo de la derivada parcial respecto de r de D_alpha.

void calcula_d_Dalpha(double *alpha, double *Dalpha, double *d_Dalpha)

{

int j;

d_Dalpha[0] = 2*(alpha[1]-alpha[0])/(dr*dr*alpha[0]) - Dalpha[0]*Dalpha[0];

for(j = 1; j < Nr-1; j++)

d_Dalpha[j] = (alpha[j+1]-2*alpha[j]+alpha[j-1])/(dr*dr * alpha[j])

-Dalpha[j]*Dalpha[j];

d_Dalpha[Nr-1] = (2./(Nr-1)*(1-alpha[Nr-1])-2*alpha[Nr-1]

+2*alpha[Nr-2])/(dr*dr * alpha[Nr-1])

-Dalpha[Nr-1]*Dalpha[Nr-1];

12



}

//Cálculo de las derivadas parciales respecto de r de K_a y K_b

void calcula_d_Ka_d_Kb(double *Ka, double *Kb, double *d_Ka, double *d_Kb)

{

int j;

d_Ka[0] = 0;

d_Kb[0] = 0;

for(j = 1; j < Nr-1; j++)

{

d_Ka[j] = (Ka[j+1]-Ka[j-1])/(2*dr);

d_Kb[j] = (Kb[j+1]-Kb[j-1])/(2*dr);

}

d_Ka[Nr-1] = -Ka[Nr-1]/((Nr-1)*dr);

d_Kb[Nr-1] = -Kb[Nr-1]/((Nr-1)*dr);

}

//Cálculo de la derivada parcial respecto de r de D_b

void calcula_d_Db(double *B, double *Db, double *d_Db)

{

int j;

d_Db[0] = 2*(B[1]-B[0])/(dr*dr * B[0]) - Db[0]*Db[0];

for(j = 1; j < Nr-1; j++)

d_Db[j] = (B[j+1]-2*B[j]+B[j-1])/(dr*dr * B[j]) - Db[j]*Db[j];

d_Db[Nr-1] = (2./(Nr-1)*(1-B[Nr-1])-2*B[Nr-1]+2*B[Nr-2])/(dr*dr * B[Nr-1])

-Db[Nr-1]*Db[Nr-1];

}

//Calcula el lado derecho (espacial) de las ecuaciones de evolucion

void Sources(double *A, double *B, double *Da, double *Db, double *d_Db,

double *Ka, double *d_Ka, double *Kb, double *d_Kb,

double *alpha, double *Dalpha, double *d_Dalpha, double *S_A,

double *S_B, double *S_Da, double *S_Db, double *S_Ka,

double *S_Kb, double *S_alpha)

{

int j;

for(j = 0; j < Nr; j++)

{

S_A[j] = -2*alpha[j]*A[j]*Ka[j];

S_B[j] = -2*alpha[j]*B[j]*Kb[j];
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S_Da[j] = -2*alpha[j] * (Ka[j]*Dalpha[j] + d_Ka[j]);

S_Db[j] = -2*alpha[j] * (Kb[j]*Dalpha[j] + d_Kb[j]);

S_Ka[j] = -alpha[j]/A[j] *(pow(2*j*dr/(2*j*dr+M),4)*(d_Dalpha[j]

+d_Db[j] +Dalpha[j]*Dalpha[j] -Dalpha[j]*Da[j]/2

+Db[j]*Db[j]/2 -Da[j]*Db[j]/2) +16*j*dr*j*dr/pow(2*j*dr+M,6)

*(8*M*j*dr +2*M*j*dr*(2*j*dr+M)*(Da[j]-Db[j] +Dalpha[j])

-j*dr*(2*j*dr+M)*(2*j*dr+M)*(Da[j]-2*Db[j])))

+alpha[j]*Ka[j]*(Ka[j]+2*Kb[j]);

S_Kb[j] = -alpha[j]/(2*A[j]) *(pow(2*j*dr/(2*j*dr+M),4)*(d_Db[j]

+(Dalpha[j]+Db[j])*Db[j]-Da[j]*Db[j]/2) +16*j*dr

*j*dr/pow(2*j*dr+M,6)*(-8*M*j*dr +2*M*j*dr*(2*j*dr+M)

*(Da[j]-3*Db[j]-2*Dalpha[j])-j*dr*(2*j*dr+M)*(2*j*dr+M)

*(Da[j]-4*Db[j]-2*Dalpha[j])-2*(2*j*dr+M)*(2*j*dr+M)

*(A[j]/B[j] -1)))+alpha[j]*Kb[j]*(Ka[j]+2*Kb[j]);

#ifdef LOG

S_alpha[j] = -2*alpha[j]*(Ka[j]+2*Kb[j]);

#endif // LOG

}

}

/*Realiza 1 paso de tiempo en la evolucion de las varianbles, con algoritmo

Crank-Nicholon de 3 iteraciones*/

void evolucion(double *A, double *B, double *Da, double *Db, double *Ka,

double *Kb, double *alpha)

{

int j;

double Dalpha[Nr], d_Ka[Nr], d_Kb[Nr], d_Dalpha[Nr], d_Db[Nr];

//variables auxiliares para los pasos intermedios del algoritmo ICN

double Dalpha1[Nr], Dalpha2[Nr], d_Dalpha1[Nr], d_Dalpha2[Nr];

double d_Db1[Nr], d_Db2[Nr], d_Ka1[Nr], d_Ka2[Nr], d_Kb1[Nr], d_Kb2[Nr];

double A1[Nr], A2[Nr], S_A[Nr], S_A1[Nr], S_A2[Nr], B1[Nr], B2[Nr],

S_B[Nr], S_B1[Nr], S_B2[Nr];

double Da1[Nr], Da2[Nr], S_Da[Nr], S_Da1[Nr], S_Da2[Nr], Db1[Nr], Db2[Nr],

S_Db[Nr], S_Db1[Nr], S_Db2[Nr];

double Ka1[Nr], Ka2[Nr], S_Ka[Nr], S_Ka1[Nr], S_Ka2[Nr], Kb1[Nr], Kb2[Nr],

S_Kb[Nr], S_Kb1[Nr], S_Kb2[Nr];

double alpha1[Nr], alpha2[Nr], S_alpha[Nr], S_alpha1[Nr], S_alpha2[Nr];
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//Cálculo de algunas variables y derivadas necesarias para calcular fuentes

calcula_Dalpha(alpha, Dalpha);

calcula_d_Dalpha(alpha, Dalpha, d_Dalpha);

calcula_d_Db(B, Db, d_Db);

calcula_d_Ka_d_Kb(Ka, Kb, d_Ka, d_Kb);

//Calculamos las fuentes (parte derecha de las ecuaciones de evolucion)

Sources(A, B, Da, Db, d_Db, Ka, d_Ka, Kb, d_Kb, alpha, Dalpha, d_Dalpha,

S_A, S_B, S_Da, S_Db, S_Ka, S_Kb, S_alpha);

//Realizamos el primer paso del algoritmo de ICN

for(j = 0; j < Nr; j++)

{

A1[j] = A[j] + dt*S_A[j];

B1[j] = B[j] + dt*S_B[j];

Da1[j] = Da[j] + dt*S_Da[j];

Db1[j] = Db[j] + dt*S_Db[j];

Ka1[j] = Ka[j] + dt*S_Ka[j];

Kb1[j] = Kb[j] + dt*S_Kb[j];

#ifdef LOG

alpha1[j] = alpha[j] + dt*S_alpha[j];

#endif // LOG

}

//Recalculamos las variables y fuentes auxiliares

#ifdef MAX

alpha_max_slicing(A1, Da1, Db1, Ka1, Kb1, alpha1);

#endif // MAX

calcula_Dalpha(alpha1, Dalpha1);

calcula_d_Dalpha(alpha1, Dalpha1, d_Dalpha1);

calcula_d_Db(B1, Db1, d_Db1);

calcula_d_Ka_d_Kb(Ka1, Kb1, d_Ka1, d_Kb1);

Sources(A1, B1, Da1, Db1, d_Db1, Ka1, d_Ka1, Kb1, d_Kb1, alpha1, Dalpha1,

d_Dalpha1, S_A1, S_B1, S_Da1, S_Db1, S_Ka1, S_Kb1, S_alpha1);

//Segundo paso de ICN

for(j = 0; j < Nr; j++)

{

A2[j] = A[j] + 0.5*dt*(S_A[j]+S_A1[j]);

B2[j] = B[j] + 0.5*dt*(S_B[j]+S_B1[j]);

Da2[j] = Da[j] + 0.5*dt*(S_Da[j]+S_Da1[j]);
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Db2[j] = Db[j] + 0.5*dt*(S_Db[j]+S_Db1[j]);

Ka2[j] = Ka[j] + 0.5*dt*(S_Ka[j]+S_Ka1[j]);

Kb2[j] = Kb[j] + 0.5*dt*(S_Kb[j]+S_Kb1[j]);

#ifdef LOG

alpha2[j] = alpha[j] + 0.5*dt*(S_alpha[j]+S_alpha1[j]);

#endif // LOG

}

//Recalculamos las variables y fuentes auxiliares

#ifdef MAX

alpha_max_slicing(A2, Da2, Db2, Ka2, Kb2, alpha2);

#endif // MAX

calcula_Dalpha(alpha2, Dalpha2);

calcula_d_Dalpha(alpha2, Dalpha2, d_Dalpha2);

calcula_d_Db(B2, Db2, d_Db2);

calcula_d_Ka_d_Kb(Ka2, Kb2, d_Ka2, d_Kb2);

Sources(A2, B2, Da2, Db2, d_Db2, Ka2, d_Ka2, Kb2, d_Kb2, alpha2, Dalpha2,

d_Dalpha2, S_A2, S_B2, S_Da2, S_Db2, S_Ka2, S_Kb2, S_alpha2);

//Tercer paso de ICN

for(j = 0; j < Nr; j++)

{

A[j] = A[j] + 0.5*dt*(S_A[j]+S_A2[j]);

B[j] = B[j] + 0.5*dt*(S_B[j]+S_B2[j]);

Da[j] = Da[j] + 0.5*dt*(S_Da[j]+S_Da2[j]);

Db[j] = Db[j] + 0.5*dt*(S_Db[j]+S_Db2[j]);

Ka[j] = Ka[j] + 0.5*dt*(S_Ka[j]+S_Ka2[j]);

Kb[j] = Kb[j] + 0.5*dt*(S_Kb[j]+S_Kb2[j]);

#ifdef LOG

alpha[j] = alpha[j] + 0.5*dt*(S_alpha[j]+S_alpha2[j]);

#endif // LOG

}

}

//Resuelve M*x = d, donde M es una matriz tridiagonal (algoritmo de Thomas.

void tridiagonal_solver(int N, double *a, double *b, double *c, double *d,

double *x)

{

int j;

double c_aux[Nr], d_aux[Nr];

/*

16



Algoritmo de Thomas

Resuelve M*x = d, donde M es una matriz tridiagonal

Definimos:

x[] - solución [0, ..., N - 1]

Nr - número de ecuaciones

a[] - subdiagonal (la diagonal debajo de la diagonal principal)

-- indexada según [1, ..., Nr-1]

b[] - diagonal principal, indexada según [0, ..., Nr-1]

c[] - superdiagonal (la diagonal encima de la diagonal principal)

-- indexada según [0, ..., Nr-2]

*/

c_aux[0] = c[0]/b[0];

d_aux[0] = d[0]/b[0];

for(j = 1; j < Nr; j++)

{

if(j < Nr-1)

c_aux[j] = c[j]/(b[j] - a[j]*c_aux[j-1]);

d_aux[j] = (d[j] - a[j]*d_aux[j-1]) / (b[j] - a[j]*c_aux[j-1]);

}

x[Nr-1] = d_aux[Nr-1];

for(j = Nr-2; j >= 0; j--)

x[j] = d_aux[j] - c_aux[j]*x[j+1];

}

/*Resuelve la ecuación de la foliación maximal empleando el algoritmo de Thomas

(función ’tridiagonal_solver’)

void alpha_max_slicing(double *A, double *Da, double *Db, double *Ka,

double *Kb, double *alpha)

{

int j;

double inv_APsi4[Nr], C[Nr], d[Nr], a[Nr], b[Nr], c[Nr];

/*Discretizando la ec. de maximal slicing obtenemos un sistema M*alpha=d,

con M matriz [Nr*Nr] tridiagonal y d vector [Nr]. Resolver para alpha.

(Los C(j) son valores de los que dependen los elementos de la matriz M)*/

//LLamo inv_APsi4(r) al factor 1/(A*Psi^4), con Psi=1+M/(2*r)
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inv_APsi4[0] = pow(2*0.5*dr/(2*0.5*dr+M), 4)/A[0];

for(j = 1; j < Nr; j++)

inv_APsi4[j] = pow(2*j*dr/(2*j*dr+M), 4)/A[j];

//Llamo C(r) al factor que multiplica a d_alpha en la ec. 10.3.48

C[0] = 0;

for(j = 1; j < Nr; j++)

C[j] = 2./(j*dr) +Db[j] -0.5*Da[j] -2.*M/(j*dr*(2*j*dr+M));

/*a[], b[], c[] son las diagonales de la matriz, definidas en la

funcion ’tridiagonal_solver’*/

a[0] = 0; //Elemento fuera de la matriz

b[0] = -2*inv_APsi4[0] -(Ka[0]*Ka[0] +2*Kb[0]*Kb[0])*dr*dr;

c[0] = 2*inv_APsi4[0];

d[0] = 0;

for(j = 1; j < Nr-1; j++)

{

a[j] = (1-C[j]*dr/2)*inv_APsi4[j];

b[j] = -2*inv_APsi4[j] -(Ka[j]*Ka[j] +2*Kb[j]*Kb[j])*dr*dr;

c[j] = (1+C[j]*dr/2)*inv_APsi4[j];

d[j] = 0;

}

a[Nr-1] = 2*inv_APsi4[Nr-1];

b[Nr-1] = -2*inv_APsi4[Nr-1] -(Ka[Nr-1]*Ka[Nr-1]+2*Kb[Nr-1]*Kb[Nr-1])

*dr*dr -2*inv_APsi4[Nr-1]/(Nr-1)*(1+C[Nr-1]*dr/2);

c[Nr-1] = 0; //Elemento fuera de la matriz

d[Nr-1] = -2*inv_APsi4[Nr-1]/(Nr-1)*(1+C[Nr-1]*dr/2);

tridiagonal_solver(Nr, a, b, c, d, alpha);

}
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