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A. Repaso de Relatividad General y geometria diferencial

A.1. Principio de Relatividad e invariancia de las leyes de la fisica

Un principio clave en el desarrollo de la Relatividad General es el Principio de la Relatividad,
formulado varios siglos antes por Galileo Galilei (1564-1642), diciendo que es imposible distinguir
por medio de experimentos mecanicos si un sistema estd en reposo o en movimiento rectilineo
uniforme. De este modo queda establecido un conjunto de observadores o sistemas de referencia
que llamamos sistemas inerciales, que son todos aquellos en reposo o movimiento rectilineo
uniforme respecto a un sistema previamente elegido como inercial y que, como dice el Principio

de Relatividad, ven todos la misma fisica.

Ya en el siglo XX, Albert Einstein (1879-1955) razond que si todos los observadores inerciales
velan la misma fisica, entonces todos ellos deberian llegar a las mismas leyes fisicas. Ademas
pensé que este principio no tenia por qué limitarse a la mecanica, sino que podia ser aplicado
a toda la fisica. Esta invariancia de la leyes fisicas impone que las transformaciones (cambios
de coordenadas) entre observadores inerciales tengan una forma determinada, y el conjunto de
estas transformaciones tiene la estructura matematica de un grupo. Puede enunciarse entonces

el Principio de Relatividad en formulacién covariante como:

Las leyes de la fisica transforman bien bajo las transformaciones del grupo de simetria
que relacionan a los distintos observadores.

Pronto se encontré un problema tedrico importante a esta afirmacién. En mecénica clasica,
dos observadores en movimiento relativo con velocidad constante ¥ (por simplicidad, ¥ = v&)
que observan el mismo suceso pueden relacionar sus mediciones de posicién y tiempo mediante

las transformaciones de Galileo:
¥=x—vt, Y=y, =z =t (A.1)

Las transformaciones de Galileo, junto con las rotaciones y las traslaciones espaciales y tem-
porales, forman el grupo de Galileo, bajo el cual la mecanica newtoniana transforma de forma
covariante. Sin embargo, puede demostrarse que la leyes de Maxwell no transforman bien bajo

las transformaciones de Galileo, sino bajo transformaciones de la forma'

— ot t— 2
O ek S SR S el (A.2)

V1—=02/c V1—0v2/c
conocidas como transformaciones de Lorentz, que tienden a las de Galileo cuando v < ¢, y que

puede demostrarse que también constituyen un grupo (grupo de Lorentz).

Tenemos entonces dos grupos de simetria distintos para la mecanica newtoniana y el elec-
tromagnetismo. Para solucionar este problema teérico, Einstein propuso que lo que habia que

modificar era la mecdanica, de forma que transforme bien bajo las transformaciones de Lorentz

1Se muestran aqui solo las transformaciones de las coordenadas espaciales y temporales. Pueden encontrarse en
la bibliografia relacionada las expresiones correspondientes para transformaciones de cargas, corrientes y campos.



en lugar de las de Galileo. El resultado de esto es lo que conocemos como teoria de la Relatividad
Especial, lo que llevd a una forma completamente nueva de entender el espacio y el tiempo, y la

relacion entre ellos.

A.2. El espacio de Minkowski

En su formulacion de la relatividad espacial, Albert Einstein concluyé que el espacio y
el tiempo dependen del observador, y que ambas magnitudes estdn intimamente relacionadas.

Fenémenos como la contraccion de Lorentz y la dilatacion temporal son buena muestra de ello.

En relatividad especial las distancias y los intervalos de tiempo no son iguales para todos los

observadores. Sin embargo, si existen cantidades invariantes, como

§2 = =t +2? + oyt + 22 (A.3)

En 1907, Hermann Minkowski (1864-1909) se dio cuenta de que la relatividad especial podia
entenderse a partir de una geometria cuatridimensional, y define un espacio vectorial que lla-
mamos espacio de Minkowski, donde la cantidad (A.3) puede asociarse al cuadrado de la (pseu-
do)norma de un vector y donde la distancia al cuadrado entre dos puntos o sucesos (ct1, x1,y1, 21)

y (cta, x2,y2, 22) es el intervalo
As? = =Pty —t1)? + (22 — 21)* + (y2 — y1)* + (22 — 21)%, (A4)

que es también invariante Lorentz. Hay que destacar que, al tener el tiempo el signo cambiado,
los intervalos no son definidos positivos y se clasifican segin su signo. Si As? < 0, los sucesos
estdn separados por un intervalo temporal, si As?> = 0, por un intervalo nulo o tipo nulo y si
As? > 0, por un intervalo espacial. Solo puede existir relacién causal entre dos sucesos si estdn
separados por intervalos temporales o nulos.

De aqui en adelante emplearemos las unidades naturales, donde ¢ = 1. Tenemos entonces
que cada suceso estd caracterizado por un cuadrivector z# = (2%, 2!, 2%, 23) = (¢, 2,v, 2), y que

su norma en el espacio de Minkowski es
lz#(* = —(2°)% + (@1)? + (2%)* + (2°)? = nuata”, (A.5)

donde en la dltima igualdad hemos usado el convenio de sumacién de Einstein® y donde Nuv €S

la métrica de Minkowski, que en forma matricial es

-1.0 0 0
0 10
= = diag(—1,1,1,1). A6
Myaw 0 010 iag( ) (A.6)
0 00 1

La métrica nos dice cémo calcular distancias en nuestro espaciotiempo y en funcién de ella

podemos escribir un elemento de linea como

ds® = nydrtds” = —(dz®)? + (dz')? + (do?)? + (dz?)?. (A.7)

2La repeticién de indices arriba y abajo en una expresién representa un sumatorio sobre todos los valores
posibles de ese indice. En este caso, los indices 1y v van de 0 a 3.



El signo negativo en la dimension temporal es lo que distingue al espacio de Minkowski del
espacio euclideo al que estamos mas acostumbrados, en el que las distancias vienen dadas por
la generalizacién del teorema de Pitagoras al nimero de dimensiones del espacio, y por tanto la
métrica del espacio euclideo es la identidad.

Otra cantidad invariante de gran importancia es el tiempo propio 7 de una particula. El
tiempo propio es el tiempo medido por un observador O que se mueve junto a la particula, y la
relacién entre d7 y el tiempo dt medido por cualquier otro observador O’ es

dr = V1 —v2dt, (A.8)

donde v es la velocidad de la particula con respecto al observador O en el intervalo dr.

Esta formulacién de la relatividad especial en términos geométricos fue de vital importancia
en el desarrollo de una teoria relativista que incluyera efectos gravitatorios, la teoria de la

relatividad general.

A.3. La necesidad de la relatividad general

A la hora de tratar con la interaccién gravitatoria, habia incompatibilidades importantes
entre la gravedad newtoniana y la relatividad especial. Matematicamente, tenemos que la gra-
vedad newtoniana no es invariante bajo el grupo de Lorentz. Ademas, la gravedad newtoniana
implica variaciones instantaneas en el potencial gravitatorio ante variaciones de la distribucién
de materia en el universo, lo que implica que la fuerza gravitatoria se propaga con velocidad
infinita, lo cual es incompatible con la velocidad méxima ¢ de la relatividad especial.

El principal problema al intentar incorporar la gravedad es que tenemos que considerar
observadores no inerciales, que la relatividad especial no considera. Einstein se dio cuenta de
que un observador en caida libre es equivalente (localmente) a un observador inercial, para el
que las particulas en caida libre estan en reposo y podria considerar la fuerza gravitatoria como
una fuerza ficticia. Esto se conoce como Principio de Equivalencia y es posible gracias a la
equivalencia entre masa inercial y masa gravitatoria y al hecho de que todos los objetos caen

con la misma aceleracién, independientemente de su masa.

Un aspecto clave del principio de equivalencia es que solo es vélido localmente. Un observador
en caida libre dejara de percibir la gravedad en un entorno muy cercano, pero a una distancia
lo bastante grande notara las inhomogeneidades del campo gravitatorio. Como ejemplo, dos
observadores en caida libre en dos puntos alejados de un campo con simetria esférica podrian
considerarse a si mismos como inerciales si realizan observaciones en una regién muy pequena en
torno a ellos, pero se veran mutuamente acelerados sin que pueda eliminarse la fuerza gravitatoria

completamente en ningin sistema de referencia.

Esto tiene una consecuencia muy importante: podemos considerar el espaciotiempo como un
conjunto de trozos infinitesimales de espaciotiempo plano (de Minkowski). Tendriamos asi un
espaciotiempo que localmente es plano pero globalmente tiene curvatura. Los espacios que tienen
esta propiedad se conocen en matematicas como variedades y la disciplina que los estudia es la
geometria diferencial. Veremos que esto serd clave en el desarrollo de la Relatividad General.



A.4. Tensores y cambios generales de coordenadas

Antes de empezar con los conceptos propios de la geometria diferencial, vamos a definir
los objetos con los que vamos a trabajar y cuyas propiedades seran de especial interés en el
desarrollo de la teoria de la relatividad general.

Los objetos més sencillos son los escalares, que son invariantes bajo cambios de coordenadas

y que representamos sin indices:

¢ = o. (A.9)

Tenemos también los vectores, elementos de un espacio vectorial RV que podemos describir
por sus componentes V# en una determinada base. Los vectores transforman bajo un cambio
general de coordenadas segin

ox'M
Vit = —— V", (A.10)
oxV
y por esta forma de transformar los llamaremos vectores contravariantes. Si consideramos ahora
el espacio dual *RY, sus elementos W,, también son vectores al ser *RN un espacio vectorial,
pero transforman de distinto modo, segin
W = 9

T

A los vectores que transforman segun esta relacién los llamamos vectores covariantes. Notese que

(A.11)

distinguimos entre vectores contravariantes y covariantes escribiendo el indice arriba o abajo.

Podemos construir también objetos a partir del producto tensorial de vectores covariantes
y contravariantes, a los que llamaremos tensores. La forma mas general seria la construccion
a partir de m vectores contravariantes y m vectores covariantes, o tensor de rango (m,n). Los
tensores transforman bajo cambios generales de coordenadas del siguiente modo:

B Ox'M xltm 9P Hybn

/L] . x1...00m,
T e By Ty 7 T By fn (A.12)
La gran ventaja de usar tensores es que si una relacién del tipo
i1 _ piteim iedim Ty,
A Jiedn = B J1--Jn + C ' D.]l“'.?” (A13)

es vélida en un sistema de coordenadas, lo serd también en cualquier otro sistema de coorde-
nadas, por la forma en que transforman los tensores. Como hemos visto en el apartado A.1, el
Principio de la Relatividad nos dice que las leyes de la fisica deben ser las mismas para cualquier
observador. Esto implica que las leyes de la fisica deben escribirse en funcién de objetos que
transformen bien bajo cambios de coordenadas (escalares, vectores y tensores), lo que se conoce
también como Principio de Covariancia General.

A.5. Conceptos de geometria diferencial
A.5.1. Variedades diferenciales y la métrica en una variedad

A grandes rasgos, podemos decir que una variedad diferenciable N-dimensional MY es un
espacio que localmente tiene el aspecto de RY. Esto implica que en cada punto p de la variedad



se puede definir un espacio tangente Tp(MN ), isomorfo a RV, y que para una regién lo bastante

pequenia es una buena aproximacién a la variedad.

Hemos visto anteriormente que la métrica euclidea y la de Minkowski nos dicen cémo calcular
distancias en el espacio euclideo y en el de Minkowski. En una variedad curva arbitraria, la
métrica g, ya no tomara una forma tan sencilla, pero igualmente nos permitird medir distancias

en la variedad segin
ds* = g, datda”. (A.14)

Podemos clasificar las variedades segtin la signatura de su métrica. Si la métrica es definida
positiva tenemos una wvariedad riemanniana, mientras que si la métrica tiene una signatura
(—=++...+) se dice que es una variedad lorentziana. Estos dos casos son generalizaciones curvas de
los espacios euclideo y de Minkowski, respectivamente. En relativiadad general, el espaciotiempo
estard representado por una variedad lorentziana.

La métrica g, y su inversa g"” son ejemplos de tensores de rango 2. Ademéds de permitirnos
calcular distancias, puede demostrarse que la métrica tiene otra propiedad muy importante:
establece una relacién uno a uno entre los vectores de un espacio vectorial y su dual (vectores

contravariantes y covariantes) a través de las expresiones
Vi=9uV", VE = g"V,. (A.15)

Operar con la métrica de esta forma se conoce comtinmente como “subir y bajar indices” .

A.5.2. Transporte paralelo y derivada covariante

Veamos cémo transforma la derivada parcial de un vector bajo cambios generales de coor-
denadas. Aplicando la regla de la cadena y usando que V* transforma con un vector:

/ v __
oV

ox® ox'" ox® 0z ox® Foatvid
T yBY — tadi B B
Oa (axﬁ v ) ox't QP OuV" ox't " Jx*dxB’

Es decir, que la derivada parcial de un vector (o tensor) no transforma bien bajo cambios
generales de coordenadas.

Es importante tener en cuenta que un vector localizado en el punto p de una variedad es
un objeto que no vive en la variedad, sino en el espacio tangente a la variedad en p (fig. A.1,

izquierda). Esto significa que expresiones como la derivada ordinaria de un campo vectorial V#,

Blg) — VK
OV" = lim VH(q) = V*(p)

dz¥—0 ox? ’ (A17)

matematicamente no tengan sentido, ya que estamos restando vectores de espacios distintos,
Ty(M) y T,(M). Para poder compararlos necesitamos un vector Vi'(¢) que vive en T, (M) y
tiene toda la informacién de V#(p), al que llamaremos transportado paralelo de V*(p).



R Tq (M)

Figura A.1l: Izquierda: Variedad y espacios tangentes. Derecha: comparacién de vectores en
distintos puntos de la variedad: transporte paralelo.[1]

Conocido Vj'(q), el objeto

V= 1m ) Ve (@) Vi'(9)

A.18
dx¥ —0 oxv ( )

quedaria bien definido y se le llama derivada covariante del vector V#. Pero atin no hemos dicho
como obtener el vector Vji'(¢q). Podemos obtener dicho vector como el vector original V#(p) més
un término de correccién, proporcional tanto al desplazamiento dz* entre las coordenadas de p
y g como al vector original:

Vi(q) = VP(p) — TL 52" V? (), (A.19)

donde los coeficientes de proporcionalidad I'},, que no son tensores, representan el cambio de la
componente u del vector en la direccion p bajo el desplazamiento en la direccién v y constituyen
lo que llamamos conexion. Finalmente, podemos escribir la derivada covariante de un vector
como

V,VH = 8,VH 4 TH VP, (A.20)

Su generalizacién a tensores de rango (m,n) es

1o _ 1 fom, H1 A2 fhm Hom ol e — 1A
VPT Vi..Un — a,OT Vi...Un + Fp,\T Vi...Un + ...+ Fp)\ T Vi...Un (A 21)
_ I‘\)\ Tﬂlmﬂm _ _ FA T,U«I-nll«m ’
pr1 AV2...Un PVn ViolUp—1\"

Puede comprobarse que la derivada covariante de un vector o tensor si transforma bien bajo

cambios generales de coordenadas.

A.5.3. El tensor de Riemann

En una variedad hay muchas conexiones posibles, por lo que la eleccién de las funciones I'),
es arbitraria. Notese que hay tantas formas de hacer el transporte paralelo como trayectorias
posibles entre p y ¢, y que el vector resultante V})'(q) dependerd de la curva elegida para el
transporte. Esta propiedad es una manifestacién de la curvatura de la variedad.
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Figura A.2: Izquierda: Transporte paralelo de un vector por dos caminos distintos: uno direc-
tamente desde un punto del ecuador hasta el polo, el otro primero se transporta a lo largo del
ecuador y después al polo. El vector resultante es distinto en cada caso. Derecha: El tensor de
Riemann mide la diferencia entre transportes paralelos por distintas trayectorias de un paralelo-
gramo infinitesimal, y es una medida de la curvatura en la regiéon encerrada. El tensor de torsiéon

mide el cudnto cierra el paralelogramo.[1]

Diremos que una variedad es curva si el transporte paralelo a lo largo de una curva cerrada da
como resultado un vector diferente al llegar al punto inicial. Para definir esto cuantitativamente
consideramos el transporte paralelo de un vector a lo largo de un paralelogramo infinitesimal
cuyos lados son los vectores dz* y dz”. Queremos calcular la diferencia entre trasladar un vector
V# primero a lo largo de dx* y después de dz” y trasladarlo en el orden opuesto. Para ello
tenemos que calcular el conmutador de las derivadas covariantes [V, V,] actuando sobre el
vector V*. Operando llegamos a

Vs VI VA = (8,13, = 1%, + ThoTs, = T3,T5, ) V2 = (T, = T%,) ¥,V

pooR T rem R (A.22)

_ A A
=R,, V/=T,»>V,V",
donde tenemos una parte proporcional a V* y otra proporcional a VPV)‘, y cuyos factores de

proporcionalidad son lo que definimos como tensor de Riemann R, > v tensor de torsion T, .
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El tensor de Riemann mide la diferencia entre el transporte paralglg en una u otra trayectoria,
y es por lo tanto una medida de la curvatura del espacio encerrado en el paralelogramo. El
transporte paralelo no tiene por qué acabar en el mismo punto en ambas trayectorias, y el
tensor de torsién mide el grado en que cierra el paralelogramo (fig. A.2). Es importante senalar
que si lep’\ es idénticamente cero, el transporte paralelo no depende del camino y significa
que la variedad es plana; esto es lo que sucede en el espacio plano RY y en el espaciotiempo de

Minkowski.

Contrayendo los indices segundo y cuarto del tensor de Riemann se obtiene el tensor de Ricci
R =R,,", (A.23)
y contrayendo los dos indices del tensor de Ricci con la métrica, tenemos el escalar de Ricci

R=g" Ry, (A.24)

Estos dos objetos son importantes porque apareceran en las ecuaciones del campo de Einstein.



A.5.4. La conexién de Levi-Civita

Como ya hemos comentado, en una variedad tenemos infinidad de conexiones posibles. Sin
embargo, cuando definimos una métrica en nuestra variedad, hay una conexién llamada conezxion
de Levi-Chivita que tiene una serie de propiedades que la hacen tnica por su relacién con la

métrica. Dicha conexién cumple dos condiciones:

1. Es simétrica en los dos indices inferiores: I', =T,

2. La derivada covariante de la métrica se anula: V,g,, = 0

La primera condicién implica que el tensor de torsién es cero. La segunda se llama compatibili-
dad con la métrica, y simplifica mucho algunas propiedades geométricas de la variedad. Dadas
estas condiciones, se puede demostrar que la conexién queda completamente determinada por
la métrica mediante la expresién

1 ag
597 Ougr + Ougux = Orguw) - (A.25)

o _

I

Esto significa que en una variedad equipada con la conexién de Levi-Civita todas las propiedades
geométricas estan determinadas unicamente por la métrica. La métrica permite determinar
distancias y angulos en nuestra variedad, pero al introducir la conexion de Levi-Civita también
determina el transporte paralelo y la curvatura (tensor de Riemann). La conexién de Levi-Civita

serd la empleada siempre en Relatividad General, salvo que se indique de otro modo.

A.5.5. Geodésicas

Las rectas en el espacio plano tienen dos propiedades que las hacen especiales. Una es que
una recta es la curva mas corta entre dos puntos del espacio. La otra es que es la Uinica curva en
la que el vector tangente estd transportado paralelamente a si mismo a lo largo de la curva. En
una variedad arbitraria con conexion, podemos definir curvas con cada una de estas propiedades:
la geodésica métrica y la geodésica afin, respectivamente.

Si la conexion elegida es la de Levi-Civita, puede demostrarse que geodésicas métricas y
afines coinciden, y las llamamos simplemente geodésicas y vienen dadas por la ecuacion

P+ T8, 45" = 0 (A.26)

La importancia de las geodésicas reside en que son las curvas que describen la trayectoria de
una particula libre en un espacio curvo o, en el marco de la Relatividad General, la trayectoria

en el espaciotiempo de una particula afectada solo por efectos gravitatorios.

A.6. Las ecuaciones de Einstein

El Principio de Equivalencia nos sugiere que podemos describir el espaciotiempo como una

variedad cuatridimensional y el campo gravitatorio como la curvatura del espaciotiempo.



Por la gravedad newtoniana sabemos que la fuente de fuerza gravitatoria es la masa de los
cuerpos. Pero esta no es la tnica fuente de curvatura. La gravedad se acopla a cualquier tipo
de energia y momento del espaciotiempo. Resulta conveniente describir esto como un fluido,
caracterizado por funciones continuas en el espaciotiempo que son magnitudes macroscopicas
(velocidad del fluido, densidad, presién, etc). La energia y el momento de este fluido viene
descrito por el tensor de energia-momento T}, .

Pero nos falta todavia saber cémo interacciona la materia con el espaciotiempo. La expre-
sién que describe esa interaccién se conoce como ecuaciones de Finstein. Por el principio de
covariancia, la ecuacién que describa dicha interaccién deberd ser valida en todos los sistemas

de referencia, y por lo tanto debe tener una forma tensorial tal que
G = —KT, (A.27)

donde G, es el tensor de Einstein, que describe la curvatura del espaciotiempo, y x una cons-

tante de proporcionalidad.

Nos falta describir el tensor G, en funcién de los términos geométricos conocidos. Sa-
bemos que es un objeto puramente geométrico, por lo que solo puede depender de la matri-
ca y sus derivadas. Ademds, el tensor de energifa-impulso es simétrico, asi que el tensor G,
también debe serlo. Imponiendo algunas condiciones méas como la conservacién de la energia
(VT =0=V,G,, =0) y la recuperacién de la ecuacién de Poisson para el caso estatico,
Einstein lleg6 a que

1
Guw = Ry — §g,wR. (A.28)
Ademids, por comparacién con las férmulas newtonianas, llega a que la constante de proporcio-

nalidad es kK = 87Gy, donde G es la constante de gravitacién universal de Newton.

Tenemos, por tanto, que las ecuaciones de Einstein toman la forma

1
Ry = 59 R = —87CN T (A.29)

Estas ecuaciones forman un sistema de 10 ecuaciones en derivadas parciales no lineales acopladas
de segundo orden. Sin embargo, la condicién VG, = 0 impone cuatro ligaduras, asi que solo
6 ecuaciones son independientes y las otras 4 componentes estan relacionadas con la libertad de
eleccién del sistema de coordenadas.

En la préctica, salvo en casos de mucha simetria, la resolucién de las ecuaciones de Einstein
no puede realizarse de forma analitica, siendo imprescindible la utilizaciéon de métodos numéricos

y la potencia de célculo que proporcionan los ordenadores.

Bibliografia
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B. C(Cdbdigo empleado para la simulacién de un agujero negro de
Schwarzschild

En este anexo se muestra el cédigo (en lenguaje de programacién C) empleado en las simu-
laciones del agujero negro de Schwarzschild.

-Cabecera:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define dr 0.01 //Tamafio del intervalo radial

#define Nr 1000 //Nimero de intervalos radiales para simular
#define dt 0.005 //Tamafio del intervalo temporal

#define Nt 2000 //Nimero de intervalos de tiempo para simular

#define M 1 //Masa del agujero negro

//IMPORTANTE: DEFINIR SOLO UNO (Eleccién de foliacién)
#define MAX //Foliacién maximal
//#define LOG //Foliacién 1+log

-Programa principal:

int main()
{

int j, t; //j=indice discret. espacio; t=indice discret. tiempo.

/*Las variables A,B,Da,Db,Ka,Kb definidas aqui son las reescaladas con el
factor conforme psi”4 (las variables con tilde)*/
double A[Nr], B[Nrl], Da[Nr], Db[Nr], Ka[Nr], Kb[Nr], alphal[Nr];

char dir[256] = "/directorio"; //Carpeta en la que guardar los ficheros

printf("Simulacion agujero negro de Schwarzschild.\n");

//Calculo de los datos iniciales

valores_iniciales(A, B, Da, Db, Ka, Kb, alpha);

#ifdef MAX //Resolvemos la ecuacién de la foliacién maximal en su caso.
alpha_max_slicing(A, Da, Db, Ka, Kb, alpha);

#endif // MAX

//Comienzo de la simulacién
for(t = 0; t < Nt; t++)
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//Escritura de los datos en ficheros

if (£%(Nt/10)==0)

{
escribe_fich_out(dir, t/(Nt/10), alpha, A, B, Da, Db, Ka, Kb);
printf ("Escrito file_%02d.txt\n", t/(Nt/10));

//Evolucién de las variables en un paso de tiempo
evolucion(A, B, Da, Db, Ka, Kb, alpha);

#ifdef MAX //Resolvemos la ecuacién de la foliacién maximal en su caso.

alpha_max_slicing(A, Da, Db, Ka, Kb, alpha);
#endif // MAX

}
escribe_fich_out(dir, t/(Nt/10), alpha, A, B, Da, Db, Ka, Kb);

//Fin de la simulacién

return O;

-Funciones empleadas:

//Funcién que escribe todas las variables en un fichero.

void escribe_fich_out(char *dir, int n_file, double #*alpha, double *A, double

*B, double *Da, double *Db, double *Ka, double *Kb)

int j;
char fich_out[256];
sprintf (fich_out, "%s/file_%02d.txt", dir, n_file);

f_out = fopen(fich_out, "wt");

if (f_out == NULL)

{
printf ("Error al crear fichero.\n");
exit(-1);

for(j = 0; j < Nr; j++)
fprintf(f_out, "¥1f %1f %1f %1f %1f %1f %1f %1f\n", j*dr, alphalj],
A[j1, B[jl, Daljl, Db[jl, Kaljl, Kb[jl);

fclose(f_out);
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//Funcién que inicializa las variables con sus valores iniciales

void valores_iniciales(double *A, double *B, double *Da, double *Db,

double *Ka, double *Kb, double *alpha)

int j;

for(j = 0; j < Nr; j++)
{
A[j1 = 1; B[j1 = 1;
Da[j] = 0; Db[j]
Ka[j]l = 0; Kb[j]

0;
0;

#ifdef LOG
alphalj]l = 1;
#endif //LOG

//Célculo de la variable auxiliar D_alpha
void calcula_Dalpha(double *alpha, double *Dalpha)

{

int j;

Dalphal0] = O;
for(j = 1; j < Nr-1; j++)

Dalphalj] = (alphalj+1]-alphal[j-1])/(2*dr*alphaljl);
Dalpha[Nr-1] = (1-alpha[Nr-1])/((Nr-1)*dr*alpha[Nr-1]);

//Célculo de la derivada parcial respecto de r de D_alpha.
void calcula_d_Dalpha(double *alpha, double *Dalpha, double *d_Dalpha)

{

int j;

d_Dalpha[0] = 2*(alphal[1]-alphal[0])/(dr*dr*alphal[0]) - Dalpha[0]*Dalphal[0];
for(j = 1; j < Nr-1; j++)
d_Dalphal[j] = (alphal[j+1]-2*alphaljl+alphalj-1]1)/(dr*dr * alphalj])
-Dalphal[j]*Dalphalj];
d_Dalpha[Nr-1] = (2./(Nr-1)*(1-alpha[Nr-1])-2*alpha[Nr-1]
+2%alpha[Nr-2])/(dr*dr * alpha[Nr-1])
-Dalpha[Nr-1]*Dalpha[Nr-1];
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//Célculo de las derivadas parciales respecto de r de K_a y K_b
void calcula_d_Ka_d_Kb(double *Ka, double *Kb, double *d_Ka, double *d_Kb)
{

int j;
d_Kal[0] = 0;
d_Kb[0] = 0;
for(j = 1; j < Nr-1; j++)
{
d_Kaljl = (Xa[j+1]-Kal[j-11)/(2*dr);
d_Kb[j] = (Kb[j+11-Kb[j-11)/(2%dr);
}
d_Ka[Nr-1] = -Ka[Nr-1]/((Nr-1)*dr);
d_Kb[Nr-1] = -Kb[Nr-1]/((Nr-1)*dr);

//Célculo de la derivada parcial respecto de r de D_b
void calcula_d_Db(double *B, double *Db, double *d_Db)

{
int j;
d_Db[0] = 2x(B[1]1-B[0])/(dr*dr * B[0]) - Db[0]*Db[0];
for(j = 1; j < Nr-1; j++)
d_Db[j]l = (B[j+11-2*B[j1+B[j-11)/(dr*dr * B[j]) - Db[jl*Db[j];
d_Db[Nr-1] = (2./(Nr-1)*(1-B[Nr-1])-2*B[Nr-1]+2*B[Nr-2])/(dr*dr * B[Nr-1])
-Db [Nr-1]*Db [Nr-1];
}

//Calcula el lado derecho (espacial) de las ecuaciones de evolucion

void Sources(double *A, double *B, double *Da, double *Db, double *d_Db,
double *Ka, double *d_Ka, double *Kb, double *d_Kb,
double *alpha, double *Dalpha, double *d_Dalpha, double *S_A,
double *S_B, double *S_Da, double *S_Db, double *S_Ka,
double *S_Kb, double *S_alpha)

int j;
for(j = 0; j < Nr; j++)

S_A[j3]
S_B[j]

-2xalphal[jl*A[jI*Ka[j];
-2*xalpha[j1*B[j1*Kb[j];
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S_Dal[j] = -2*alphal[j] * (Kal[jl*Dalphalj] + d_Kal[jl);
S_Db[j] = -2*alphal[j] * (Kb[jl*Dalphalj]l + d_Kb[jl);
S_Ka[j] = -alphal[jl/A[j] *(pow(2*j*dr/(2*j*dr+M),4)*(d_Dalphalj]

+d_Db[j] +Dalphal[jl*Dalphalj] -Dalphaljl+*Da[j]l/2
+Db[jl1*Db[j1/2 -Dal[jl*Db[j1/2) +16*j*dr*j*dr/pow(2*j*dr+M,6)
* (8xMx j*dr +2%Mxjrdr* (2+j*dr+M)*(Da[j]l-Db[j] +Dalphalj])
= j*dr* (2% j*xdr+M) * (2% j*dr+M) * (Da[j]-2*Db[j1)))
+alphal[jl*Ka[jl*(Ka[jl+2*Kb[j]);

S_Kb[j] —alphaljl/(2*xA[j]) *(pow(2*j*dr/(2*j*dr+M),4)*(d_Db[j]
+(Dalpha[j]1+Db[j1)*Db[jl1-Daljl1*Db[j1/2) +16*j*dr
*j*xdr/pow (2% j*dr+M, 6) * (—8*M* j*dr +2*Mxj*dr* (2% j*dr+M)
*(Da[j]-3*Db[j]-2#Dalphalj]) -j*dr* (2% j*dr+M) * (2% j*dr+M)
*(Da[j]-4*Db[j]-2#Dalphal[j]) -2* (2% j*dr+M) * (2 j*dr+M)

*(A[j1/B[j] -1)))+alphal[jl*Kb[jl*(Kal[jl+2*Kb[]j]);

#ifdef LOG
S_alphal[j] = -2*alphaljl*(Ka[jl+2*Kb[j1);
#endif // LOG

/*Realiza 1 paso de tiempo en la evolucion de las varianbles, con algoritmo

Crank-Nicholon de 3 iteraciones*/

void evolucion(double *A, double *B, double *Da, double *Db, double *Ka,
double *Kb, double *alpha)

int j;
double Dalpha[Nr], d_Ka[Nr], d_Kb[Nr], d_Dalpha[Nr], d_Db[Nr];

//variables auxiliares para los pasos intermedios del algoritmo ICN

double Dalphal [Nr], Dalpha2[Nr], d_Dalphal[Nr], d_Dalpha2[Nr];

double d_Dbi1[Nr], d_Db2[Nr], d_Kal[Nr], d_Ka2[Nr], d_Kbi[Nr], d_Kb2[Nr];

double A1[Nr], A2[Nr], S_A[Nr], S_A1[Nr], S_A2[Nr], B1[Nr], B2[Nr],
S_BINrl, S_B1i[Nr], S_B2[Nr];

double Dal[Nr], Da2[Nr], S_Da[Nr], S_Dail[Nr], S_Da2[Nr], Dbil[Nr], Db2[Nr],
S_Db[Nr], S_Dbi[Nr], S_Db2[Nr];

double Kal[Nr], Ka2[Nr], S_KalNr], S_Kal[Nr]l, S_Ka2[Nr], Kbl[Nr], Kb2[Nr],
S_Kb[Nr], S_Kbi[Nrl, S_Kb2[Nrl;

double alphal[Nr], alpha2[Nr], S_alpha[Nr], S_alphal[Nr], S_alpha2[Nr];
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//Céalculo de

algunas variables y derivadas necesarias para calcular fuentes

calcula_Dalpha(alpha, Dalpha);

calcula_d_Da
calcula_d_Db
calcula_d_Ka

//Calculamos
Sources(A, B
S_A,
//Realizamos
for(j = 0; j
{
A1[j] =
B1[j] =
Dal[j] =
Db1[j]
Kall[j]
Kb1[j]
#ifdef L
alphal[j
#endif /

lpha(alpha, Dalpha, d_Dalpha);
(B, Db, d_Db);
_d_Kb(Ka, Kb, d_Ka, d_Kb);

las fuentes (parte derecha de las ecuaciones de evolucion)
, Da, Db, d_Db, Ka, d_Ka, Kb, d_Kb, alpha, Dalpha, d_Dalpha,
S_B, S_Da, S_Db, S_Ka, S_Kb, S_alpha);

el primer paso del algoritmo de ICN

< Nr; j++)

A[j] + dtxS_A[j];

B[j] + dt*S_B[j];

Da[j] + dt*S_Dal[jl;

Db[j] + dt*S_Db[j]l;

Ka[j]l + dt*S_Kal[jl;

Kb[j] + dt*S_Kb[j]l;

0G

1 = alphalj] + dt*S_alphalj];
/ LOG

//Recalculamos las variables y fuentes auxiliares

#ifdef MAX

alpha_max_sl

icing(Al, Dal, Dbl, Kal, Kbl, alphal);

#endif // MAX

calcula_Dalp

ha(alphal, Dalphal);

calcula_d_Dalpha(alphal, Dalphal, d_Dalphal);

calcula_d_Db

(B1, Dbl, d_Dbl);

calcula_d_Ka_d_Kb(Kal, Kbl, d_Kal, d_Kbil);

Sources (A1,

B1, Dal, Dbl, d_Dbl, Kal, d_Kal, Kbl, d_Kbl, alphal, Dalphal,

d_Dalphal, S_A1, S_B1, S_Dal, S_Dbl, S_Kal, S_Kbl, S_alphal);

//Segundo paso de ICN

for(j = 0; j
{

A2[;]
B2[j]

< Nr; j++)

A[j] + 0.5%dt*(S_A[j1+S_A1[j1);
B[j] + 0.5*%dt*(S_B[j]1+S_B1[jl1);

Da2[j] = Da[j] + 0.5%dt*(S_Da[jl+S_Dal[jl);
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Db2[j] = Db[j] + 0.5%dt*(S_Db[j]+S_Db1[j]);
Ka2[j] = Ka[j]l + 0.5xdt*(S_Ka[jl+S_Kal[jl);
Kb2[j] = Kb[j] + 0.5%dt*(S_Kb[jl+S_Kb1[j]l);
#ifdef LOG

alpha2[j] = alphal[j] + 0.5*dt*(S_alphal[j]+S_alphal[j]);
#endif // LOG

//Recalculamos las variables y fuentes auxiliares
#ifdef MAX

alpha_max_slicing(A2, Da2, Db2, Ka2, Kb2, alpha2);
#endif // MAX

calcula_Dalpha(alpha2, Dalpha2);
calcula_d_Dalpha(alpha2, Dalpha2, d_Dalpha2);
calcula_d_Db(B2, Db2, d_Db2);
calcula_d_Ka_d_Kb(Ka2, Kb2, d_Ka2, d_Kb2);

Sources (A2, B2, Da2, Db2, d_Db2, Ka2, d_Ka2, Kb2, d_Kb2, alpha2, Dalpha2,
d_Dalpha2, S_A2, S_B2, S_Da2, S_Db2, S_Ka2, S_Kb2, S_alpha2);

//Tercer paso de ICN
for(j = 0; j < Nr; j++)

{
A[j] = A[j] + 0.5%dt*(S_A[j1+S_A2[j1);
B[j] = B[j] + 0.5%dt*(S_B[j]+S_B2[j1);
Da[j] = Da[j] + 0.5%dt*(S_Da[jl+S_Da2[jl);
Db[j] = Db[j] + 0.5*dt*(S_Db[j]1+S_Db2[j1);
Kal[j]l = Kal[j]l + 0.5xdt*(S_Kal[jl+S_Ka2[jl);
Kb[j] = Kb[j] + 0.5xdt*(S_Kb[jI1+S_Kb2[j1);
#ifdef LOG
alphal[j] = alphal[j] + 0.5%dt*(S_alphal[jl+S_alpha2[j]);
#endif // LOG

}

//Resuelve M*x = d, donde M es una matriz tridiagonal (algoritmo de Thomas.
void tridiagonal_solver(int N, double *a, double *b, double *c, double *d,
double *x)

int j;

double c_aux[Nr], d_aux[Nr];

/*
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Algoritmo de Thomas

Resuelve M*x = d, donde M es una matriz tridiagonal

Definimos:
x[] - solucién [0, ..., N - 1]
Nr - nimero de ecuaciones

al[l] - subdiagonal (la diagonal debajo de la diagonal principal)

-- indexada segin [1, ..., Nr-1]

b[] - diagonal principal, indexada segin [0, ..., Nr-1i]

c[] - superdiagonal (la diagonal encima de la diagonal principal)
-- indexada segun [0, ..., Nr-2]

*/

c_aux[0] = c[0]/b[0];

d_aux[0] = d[0]1/b[0];

for(j = 1; j < Nr; j++)

{
if(j < Nr-1)
c_aux[jl = c[j1/(b[j]l - aljl*c_aux[j-11);
d_aux[j]l = (d[j] - aljl*d_aux[j-11) / (b[j]l - aljl*c_aux[j-11);
}

x[Nr-1] = d_aux[Nr-1];
for(j = Nr-2; j >= 0; j—-)
x[j] = d_aux[j] - c_aux[jl*x[j+1];

/*Resuelve la ecuacién de la foliacién maximal empleando el algoritmo de Thomas
(funcién ’tridiagonal_solver’)
void alpha_max_slicing(double *A, double #*Da, double *Db, double *Ka,

double *Kb, double *alpha)

int j;

double inv_APsi4[Nr], C[Nr], d[Nr]l, a[Nr], b[Nr], c[Nr];

/*Discretizando la ec. de maximal slicing obtenemos un sistema M*alpha=d,
con M matriz [Nr*Nr] tridiagonal y d vector [Nr]. Resolver para alpha.

(Los C(j) son valores de los que dependen los elementos de la matriz M)=*/

//LLamo inv_APsi4(r) al factor 1/(A*Psi”4), con Psi=1+M/(2x*r)
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inv_APsi4[0] = pow(2*0.5%dr/(2*0.5*dr+M), 4)/A[0];
for(j = 1; j < Nr; j++)
inv_APsi4[j] = pow(2*j*dr/(2xj*dr+M), 4)/A[j];

//Llamo C(r) al factor que multiplica a d_alpha en la ec. 10.3.48
cfo] = 0;
for(j = 1; j < Nr; j++)

CLjl = 2./(j*dr) +Db[j] -0.5*%Dalj]l -2.*M/(j*dr*(2xj*dr+M));

/*all, b[]l, c[] son las diagonales de la matriz, definidas en la
funcion ’tridiagonal_solver’x*/

al[0] = 0; //Elemento fuera de la matriz

b[0] = -2*inv_APsi4[0] -(Ka[O]l*Ka[O] +2*Kb[0]*Kb[0])*dr*dr;

c[0] = 2xinv_APsi4[0];

dfo] = 0;
for(j = 1; j < Nr-1; j++)
{
aljl = (1-C[jl*dr/2)*inv_APsi4[j];
b[j] = -2%inv_APsi4[j] -(Ka[jl*Ka[j] +2*Kb[j1*Kb[j])*dr*dr;
c[jl = (1+C[jl*dr/2)*inv_APsi4[j];
d[j]l = 0;
}
a[Nr-1] = 2*xinv_APsi4[Nr-1];
b[Nr-1] = -2*inv_APsi4[Nr-1] -(Ka[Nr-1]*Ka[Nr-1]+2*Kb[Nr-1]*Kb[Nr-1])

*drxdr -2*inv_APsi4[Nr-1]/(Nr-1)*(1+C[Nr-1]*dr/2);
c[Nr-1] = 0; //Elemento fuera de la matriz

d[Nr-1] = -2%inv_APsi4[Nr-1]/(Nr-1)*(1+C[Nr-1]*dr/2);

tridiagonal_solver(Nr, a, b, c, d, alpha);
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