

Trabajo Fin de Grado

Navegación autónoma de un multi-rotor: control
automático de la altura mediante sensor láser

Autonomous navigation of a multi-rotor: automatic

altitude control with laser sensor

Autor

David Pont Esteban

Directores

Luis Montano Gella

José Luis Villarroel Salcedo

Escuela de Ingeniería y Arquitectura
Zaragoza, Septiembre de 2017

2

3

RESUMEN

Navegación autónoma de un multi-rotor:

control automático de altura mediante

sensor láser

Se ha desarrollado el control de altura de un quadcopter mediante el uso del escáner láser

Hokuyo URG-04LX, para medir la altura del drone respecto al suelo. El usuario será capaz de

fijar la consigna de altura del drone desde un ordenador, de manera que el drone se adapte a

dicha altura y consiga estabilizarse una vez alcanzada. Los demás grados de libertad del drone

pueden manipularse mediante el mando de control.

Para implementar dicho control ha sido fundamental todo el trabajo de puesta a punto del drone,

dejándolo en las condiciones más óptimas posibles para facilitar la labor del controlador en un

sistema con gran tendencia a desestabilizarse.

La implementación de la aplicación se ha realizado en el microcontrolador TMS320F28377S de

Texas Instruments y se ha construido sobre el sistema de tiempo real SYSBIOS facilitado por el

entorno de programación Code Composer Studio. Se ha trabajado con las últimas versiones de

todos estos paquetes.

Finalmente se ha procedido a la implementación del control en el drone real, realizando varios

ensayos para ajustar correctamente los parámetros del controlador y se han obtenido resultados

satisfactorios.

4

ÍNDICE

Capítulo 1: Introducción... 6

1.1. Contexto y estado del arte .. 6

1.2. Objetivo y alcance .. 7

1.3. Organización de la memoria .. 8

Capítulo 2: Hardware y software ... 9

2.1. Hardware .. 9

2.1.1. Drone utilizado .. 9

2.1.2. Microcontrolador ... 12

2.1.3. Sistema de medida de altura .. 12

2.1.4. Unidad de medida inercial (IMU) ... 14

2.1.5. Comunicaciones .. 15

2.1.6. Regulador de tensión de 5V .. 15

2.1.7. Placa de conexionado .. 16

2.1.8. Multiplexor de modo de vuelo .. 17

2.2. Software ... 17

2.2.1. Programación del microcontrolador .. 17

2.2.2. DIGI XCTU... 18

2.2.3. URG BENRI Standard .. 18

2.2.4. DJI NAZAM Lite Assistant 1.00 .. 18

2.2.5. Matlab ... 18

Capítulo 3: Arquitectura del sistema .. 19

3.1. Alimentación .. 20

3.2. Conexión de los dispositivos .. 20

3.2.1. Láser, IMU y XBee ... 20

3.2.2. Autopiloto.. 21

Capítulo 4: Ley de control ... 22

4.1. Simulación .. 22

4.2. Implementación de los controladores ... 25

4.2.1. Control PD... 26

4.2.2. Controlador PID .. 27

4.2.3. Saturación .. 28

Capítulo 5: Implementación .. 30

5.1. Diseño software de la aplicación .. 30

5

5.1.1. Configuración del microcontrolador ... 31

5.2. Diseño del software .. 33

5.2.1. Tareas .. 33

5.2.2. Servidores .. 44

5.2. Montaje físico ... 44

5.2.1. Soporte para el láser .. 45

5.2.2. Placa de conexionado .. 50

5.2.3. Montaje del drone .. 51

Capítulo 6: Pruebas de la aplicación .. 57

Capítulo 7: Conclusiones ... 60

Anexo I: Proceso experimental ... 62

Anexo II: Comandos de comunicación ... 66

Anexo III: Parámetros obtenidos ... 67

Anexo IV: Análisis de tiempo real .. 68

Bibliografía ... 70

Capítulo 1. Introducción

6

Capítulo 1

Introducción

1.1. Contexto y estado del arte

Los UAVs [14] (del inglés Unmanned Aerial Vehicle), también conocidos UAS (Unmanned

Aerial System) como drones o VANT (Vehículo Aéreo No Tripulado), son aeronaves capaces de

volar sin tripulación a bordo. Los UAS constan de dos partes bien diferenciadas: el dispositivo

aéreo (la aeronave) y la estación terrestre de control (Ground Control Station). Estos sistemas

pueden ser controlados remotamente de forma manual o pueden estar programados para realizar

rutas de vuelo de forma totalmente automática mediante la secuenciación de waypoints sin

necesidad de pilotarlos.

Al igual que gran parte de los avances tecnológicos de la sociedad, el desarrollo de los drones

tiene su origen en el campo militar. El primer vuelo de un drone data del año 1917, el cual tuvo

una duración de más de 50 millas. El rudimentario UAV era un modelo derivado del avión de

combate U.S Navy Curtis N-9 trainer. En la actualidad, y como ya viene siendo desde hace unos

8 años, los drones han dado el salto del campo militar al campo civil, generándose un gran

abanico de nuevas aplicaciones para ellos, como por ejemplo la cartografía aérea, vigilancia,

mantenimiento y revisión de infraestructuras, control medioambiental entre muchas otras.

Una de las líneas de investigación en cuanto a drones que está actualmente en mayor auge es el

vuelo en interiores. En interiores no se dispone de sistema GPS, que es el medio de localización

que utilizan los drones convencionales, por lo que es necesario utilizar otros sistemas que

permitan la localización, como por ejemplo sistemas de visión por computador, sensores

inerciales o escáneres láser para evitar las colisiones con objetos incluso en entornos

desconocidos.

El proyecto se va a realizar en esta línea de investigación. Para poder volar en interiores

desconocidos es vital poder mantener una altura fija respecto al suelo que permita al drone

desplazarse por el espacio de forma segura y estable.

Este proyecto se lleva a cabo dentro del grupo de Robótica, Percepción y Tiempo Real de la

Universidad de Zaragoza. Éste es uno de los grupos de investigación del Instituto Universitario

Capítulo 1. Introducción

7

de Investigación en Ingeniería de Aragón (I3A) y es considerado Grupo de Investigación por el

Gobierno de Aragón. Dicho grupo tiene las siguientes líneas de trabajo:

 Localización y Mapeado Simultáneo.

 Visión por Computador y Percepción.

 Comunicaciones y redes ad-hoc.

 Exoesqueletos y procesamiento de bioseñales.

 Aprendizaje: en robótica, optimización Bayesiana, interfaces cerebro-ordenador...

 Robótica Móvil. Planificación y navegación.

El proyecto desarrollado se enmarca en ésta última línea de trabajo.

1.2. Objetivo y alcance

El objetivo del proyecto es el diseño de una aplicación capaz de controlar la altura de vuelo del

quadcopter F450 FlameWheel de la marca DJI. El control a implementar se realizará un nivel

por encima el autopiloto NAZA M Lite, que será el encargado de estabilizar el drone

respondiendo a las consignas de los cuatro grados de libertad que se suelen poder manipular en

un drone comercial: el nivel del acelerador (throttle) y los tres ángulos de orientación. El

controlador diseñado en el proyecto dará al autopiloto la consigna de throttle adecuada en cada

momento para que la altura sea la deseada.

Para poder implementar el control de altura se hará uso de dos sensores: un escáner láser

Hokuyo URG-04LX que será el encargado de proporcionar al sistema una medida precisa de la

distancia el drone respecto al suelo y el IMU Razor 9dof, del cual se obtendrán las medidas de

los ángulos roll y pitch que permitirán corregir la medida de distancia obtenida por el láser de

tal manera que se podrá obtener una estimación de la distancia perpendicular del drone al suelo.

Se deberá diseñar el driver para el láser de la forma más modular posible dado que habrá que

experimentar con distintas formas de realizar la medida de altura puesto que a priori no se

conoce la forma más adecuada.

El drone será dotado de un sistema de comunicaciones con el ordenador que se implementará

mediante un módulo XBee. De esta manera se le darán al drone las consignas de altura y

también se podrán realizar ajustes en los parámetros de control. Por otro lado el drone enviará

periódicamente la altura actual al ordenador.

Capítulo 1. Introducción

8

Finalmente se pretenden realizar ensayos con el drone para analizar las prestaciones del

esquema de control planteado y observar qué resultados es capaz de ofrecer después de ajustar

los parámetros de control.

El sistema de control será implementado en el microcontrolador TMS320F8377S y será

programado sobre el sistema de tiempo real SYSBIOS mediante el entorno Code Composer

Studio.

Se cuenta con la información realizada en otros trabajos de fin de carrera anteriores [3] en la

misma línea como base.

1.3. Organización de la memoria

La memoria se divide en 6 capítulos:

 Hardware y software: en este capítulo se describe el hardware utilizado en el proyecto,

así como los distintos programas que se han utilizado.

 Arquitectura del sistema: en este capítulo se muestra el diagrama de bloques del sistema

implementado y se explica la interconexión entre los distintos dispositivos.

 Ley de control: en este capítulo se exponen los distintos controladores diseñados, las

simulaciones realizadas y los controladores implementados finalmente.

 Implementación: en este capítulo se describen las soluciones adoptadas para poder

hacer posible el control, tanto a nivel software como hardware.

 Pruebas de la aplicación: en este capítulo se muestra la prueba más destacada realizada

con el drone junto con sus resultados.

 Conclusiones: en este capítulo se extraen las conclusiones del proyecto realizado.

Capítulo 2. Hardware y software

9

Capítulo 2

Hardware y software

En este capítulo se describen en detalle el hardware y el software empleados en la realización

del proyecto.

2.1. Hardware

2.1.1. Drone utilizado

El drone del que se dispone es un quadcopter Flame Wheel F450 de DJI (Figura 2.1). Al drone

se le han añadido varios elementos, con lo que el resultado final varía sustancialmente respecto

a lo que se puede apreciar en la figura 2.1.

Figura 2.1

2.1.1.1. Estructura

El quadrotor está formado por 4 brazos de plástico resistente pero lo suficientemente flexible

como para que no se rompa ante impactos de baja o media envergadura. Dos de los brazos están

pintados de color rojo y los otros dos de color blanco, siendo así distinguible a simple vista la

parte frontal de la aeronave, la roja, facilitando así el pilotaje. Los cuatro brazos se unen

mediante dos tornillos cada uno a las dos placas centrales del drone, de tal manera que a la vez

Capítulo 2. Hardware y software

10

que se aporta rigidez a la estructura por la presión de las placas centrales sobre los 4 brazos,

también queda espacio libre entre ambas para albergar el hardware necesario. La placa inferior

tiene preparados puntos de soldadura para facilitar la distribución de la alimentación principal

del drone a los diversos dispositivos que lo requieran.

Tal y como se puede observar en la figura 1.1 el chasis del drone cuenta en el extremo de cada

uno de los brazos con un pie de apoyo para el aterrizaje. No obstante, dado el hardware que va a

ser necesario embarcar en el drone y que se desea aumentar la resistencia a los impactos, se ha

optado por añadir un tren de aterrizaje comercial. Dada la complejidad del montaje de los

distintos elementos a embarcar al drone y su influencia sobre el resultado final, se profundizará

más en la estructuración del mismo en el apartado

Figura 5.18

5.2.3. Montaje del drone.

2.1.1.2. Autopiloto

El autopiloto utilizado es el NAZA M Lite (Figura 2.2). Tiene cuatro entradas para el control del

drone: las de los tres ángulos de orientación y la del acelerador. Las consignas para cada uno de

los canales mencionados se transmiten mediante una señal PWM. El algoritmo de control

implementado en el autopiloto se encarga de la estabilización del drone mediante las medidas

obtenidas por su giróscopo, acelerómetro y barómetro internos.

Figura 2.2

2.1.1.3 Batería

La batería utilizada para la aplicación es la Trunigy 5.0 4S 30C (Figura 2.3). Tiene una tensión a

plena carga de 16.8V y un peso de 631g. La batería constituye la fuente de alimentación

principal, a partir de la cual se extraerán los niveles de tensión necesarios para alimentar los

diversos componentes. Para alimentar el autopiloto se ha utilizado el ·3DR Power Module, que

a partir de la entrada de la batería pone a su salida una tensión de 5.3V.

Capítulo 2. Hardware y software

11

Figura 2.3

2.1.1.4. Motores

El drone está equipado con cuatro motores DJI 2212/920Kv (Figura 2.4). Cada motor ofrece un

empuje máximo de 1.2kg [10]. Para la batería utilizada (4 celdas), las hélices adecuadas para el

motor recomendadas por el fabricante, y que por tanto las que se han montado, son de 10

pulgadas.

Figura 2.4

2.1.1.5. Equipo de radiocontrol

La mando de radiocontrol utilizado para pilotar el drone es la Futaba 6J [13]. Dicha radio tiene

6 canales y trabaja a una frecuencia de 2.4GHz. El mando emisor se comunica con el receptor

R2006GS de doble antena embarcado en el drone. En la aplicación en cuestión se van a utilizar

únicamente 5 canales, de los cuales 4 se utilizan para dar manualmente las consignas de roll,

pitch, yaw y throttle, y el quinto canal se utiliza para la selección del modo de vuelo, así como

para conectar el mando o la salida pwm del microcontrolador a la entrada de throttle del

autopiloto. En el capítulo 19, se detalla este tema.

Capítulo 2. Hardware y software

12

2.1.2. Microcontrolador

El microcontrolador utilizado es el TMS320F28377S, diseñado por Texas Instruments. Se hace

uso de la placa de desarrollo LAUNCHXL-F28377S (Figura 2.5), que básicamente embarca el

microcontrolador sacando sus puertos a conectores externos para que sea posible el acceso a

ellos. Además la placa incorpora el módulo de debugging XDS100v2 para testear la aplicación

desde el entorno de programación.

Figura 2.5

El microcontrolador tiene una tensión nominal de alimentación de 3.3V, una CPU de 32 bits y

una frecuencia máxima de reloj de 200MHz. Tiene una memoria RAM de 164KB y una FLASH

de 1MB. Entre sus periféricos destacan dos conversores AD de hasta 16 bits con hasta 14

entradas, 15 canales PWM, 2 módulos I
2
C y 3 módulos SCI.

El F28377S tiene capacidad para ejecutar aplicaciones basadas en el sistema operativo de

tiempo real SYS/BIOS. El microcontrolador se programa con el entorno de programación Code

Composer Studio.

2.1.3. Sistema de medida de altura

Para la medida de la altura se utiliza el escáner láser URG-04LX de la marca Hokuyo. El láser

es uno de los elementos centrales del proyecto. Debido a que el sensor utilizado no es

unidireccional sino que es un escáner y va ubicarse solidario al drone y orientado

horizontalmente, es necesario diseñar un elemento mecánico para redirigir los rayos emitidos

por el sensor hacia el suelo. El sistema de medida láser se basa, por tanto, en los elementos que

aparecen a continuación.

Capítulo 2. Hardware y software

13

2.1.3.1. Escáner láser Hokuyo URG-04LX

El escáner láser URG-04LX (Figura 2.6) se basa en un emisor láser de longitud de onda de

785nm. El cálculo de la medida se fundamenta en la medida de la diferencia de fase entre el

rayo emitido y el recibido. El rango máximo de escaneo del laser es de 240º, realizando una

nueva medida cada 0.36º. La resolución del sensor es de 1mm y las distancias medibles se

comprenden en el rango de 20mm a 4m. Es posible comunicarse con el sensor mediante

comunicación USB o RS232 a velocidad configurable entre un amplio rango de valores. Su

peso es de 160g las dimensiones son de 50x50x70mm. La tensión de alimentación es de 5V y el

consumo de corriente puede llegar hasta los 800mA.

Figura 2.6

2.1.3.2. Adaptador RS232

Puesto que el microcontrolador se alimenta con una tensión de 3.3V y el láser con una de 5V es

necesario introducir un módulo que adapte los niveles de tensión entre ambos elementos con el

fin de que la comunicación sea factible. Para ello se dispone de una placa (Figura 2.7) fabricada

con anterioridad que está basada en el circuito integrado MAX3222. Dicho circuito consta de

dos canales de comunicación, aunque únicamente se utiliza uno de ellos. El MAX3222

transforma la tensión proveniente del microcontrolador del rango 0V a 3.3V al rango -5V a 5V

para que llegue al láser con los niveles de tensión que éste requiere. Análogamente reduce la

tensión proveniente del láser del rango -5V a 5V al rango 0V a 3.3V en el que trabaja el

microcontrolador. La tensión a la que se alimenta el circuito es de 3.3V y la velocidad máxima

de comunicación es 250kbps.

Capítulo 2. Hardware y software

14

Figura 2.7

2.1.3.3. Estructura del láser

Se ha diseñado y fabricado una estructura (Figura 2.8) que permita acoplar el láser al drone y

que a la vez permita redirigir hacia el suelo los rayos emitidos por el sensor. La estructura

consta de una plancha que se atornilla al drone por la parte superior y se la atornilla el láser por

la parte inferior. De la plancha salen 3 brazos con espejos en sus extremos que redirigen los

rayos al suelo. En el apartado 5.2.1. Soporte para el láser se explica el papel que juega la

estructura en detalle.

Figura 2.8

2.1.4. Unidad de medida inercial (IMU)

Se utiliza el IMU 9DOF Razor (Figura 2.9) que consta de un giróscopo de 3 ejes, un

acelerómetro de 3 ejes y un magnetómetro de tres ejes. Un microcontrolador gestiona la medida

de todas esas variables y las transmite por comunicación SCI a una velocidad 57600bps con un

periodo de 25ms. En el proyecto únicamente se utilizan las medidas de los ángulos roll y pitch

para corregir la medida de la altura.

Capítulo 2. Hardware y software

15

Figura 2.9

2.1.5. Comunicaciones

Se dispone de dos XBee (Figura 2.10). Uno de ellos va embarcado en el drone y el otro

conectado al ordenador para implementar las comunicaciones entre ambos. El XBee [12] se

conecta al microcontrolador mediante uno de los módulos SCI de los que éste dispone. La

velocidad de comunicación que se ha elegido es de 9600bps, la tensión de alimentación

nominal es de 3.3V y la frecuencia de radio es de 2.4GHz.

Las comunicaciones implementadas son bidireccionales, de tal forma que se le pueden enviar

paquetes de datos al drone, como por ejemplo la consigna de altura, así como recibir

información del mismo, como la altura actual.

Figura 2.10

2.1.6. Regulador de tensión de 5V

Con el fin de alimentar los distintos elementos electrónicos que van a bordo del drone, se debe

reducir la tensión de salida de la batería a 5V y 3.3V. Se ha conectado a la batería un conversor

Capítulo 2. Hardware y software

16

reductor de tensión. Este tipo de elemento es comúnmente conocido en el mundo del

radiocontrol como BEC (Battery Eliminator Circuit) ya que evita la necesidad de añadir una

batería adicional, en este caso de 5V. El conversor (Figura 2.11) reduce la tensión de la batería a

5V para alimentar el láser, dando la corriente suficiente a tensión constante para que éste

funcione correctamente.

Figura 2.11

2.1.7. Placa de conexionado

En el drone se han embarcado varios dispositivos que deben alimentarse a distintos niveles de

tensión y conectarse entre sí mismos, y de cara a facilitar esa tarea se ha diseñado una placa de

conexionado (Figura 2.12). La placa se alimenta con la tensión de 5V proveniente de la salida

del BEC. La placa a partir de ese nivel de tensión genera otro nivel de 3.3V para alimentar el

modulo XBee, el MAX3222 y el IMU. Además de los pines de la alimentación también se han

colocado los pines necesarios para el conexionado de los distintos puertos de los citados

dispositivos.

Figura 2.12

Capítulo 2. Hardware y software

17

2.1.8. Multiplexor de modo de vuelo

El drone debe poder ser capaz de volar tanto totalmente radiocontrolado desde el mando de

control como de volar con el control de altura activado, controlándose el resto de grados de

libertad desde el mando. Para ello se utiliza el Pololu 4-Channel RC Servo Multiplexer [8]

(Figura 2.13). A dicho multiplexor se conectan la entrada de throttle del autopiloto, el canal de

throttle del receptor radio y la acción de control de throttle del microcontrolador. La selección

de la entrada de throttle que se conecta al autopiloto se realiza mediante la entrada SEL del

multiplexor. A dicha entrada se conecta el quinto canal del receptor radio, de tal manera que se

puede controlar la señal multiplexada desde un interruptor del mando de control.

Figura 2.13

Además, el quinto canal de la radio también está conectado a la entrada de modo de control del

autopiloto. De esta forma, cuando la consigna de throttle que llega al drone es la del propio

mando, el autopiloto está en modo Manual, controlándose en velocidad los ángulos de

orientación del drone. En cambio, cuando la consigna que llega al drone es la proveniente del

control de altura del microcontrolador, el modo de vuelo cambia a Attitude Mode, modo en el

que se controlan los ángulos de la orientación en posición.

2.2. Software

En esta sección se explica el software utilizado en el desarrollo del proyecto.

2.2.1. Programación del microcontrolador

Para programar el microcontrolador se ha hecho uso del entorno de programación de Texas

Instruments así como de su sistema operativo de tiempo real. Se ha utilizado la última versión

que había disponible en la fecha de comienzo del proyecto de ambos productos.

Capítulo 2. Hardware y software

18

2.2.1.1. Code Composer Studio (CCS)

Es el entorno de programación que se ha utilizado para programar el microcontrolador. El

programa consta de dos modos principales: el modo edición de código y el modo debugging

para depurar el programa realizado. Es un entorno de programación realmente potente. La

versión utilizada es la v7.1.

2.2.1.2. SYS/BIOS

SYS/BIOS [4] es el sistema operativo de tiempo real, diseñado por Texas Instruments, sobre el

que se ha implementado el programa realizado en el proyecto. Ofrece una serie de primitivas ya

programadas que permiten al usuario trabajar de forma más sencilla con una aplicación de

tiempo real. El protocolo de acceso implementado por SYS/BIOS es el de herencia de prioridad.

La versión que se ha utilizado es la v6.46.

2.2.2. DIGI XCTU

El XCTU de la empresa DIGI es el programa utilizado para la comunicación entre los módulos

XBee. Además de permitir configurar los XBee, el programa tiene una consola serie desde la

que se pueden enviar y recibir mensajes. Dicho registro de mensajes se puede posteriormente

almacenar para el procesamiento de los datos obtenidos. También existe la posibilidad de crear

un conjunto de mensajes y guardarlos con formato xml para cargarlos en otra sesión y no tener

que crearlos cada vez que se vaya a ejecutar la aplicación.

2.2.3. URG BENRI Standard

Este programa permite conectar el escáner láser al ordenador y visualizar de forma tanto gráfica

como numérica las medidas que el escáner está tomando. Además permite abrir un terminal

serie entre el ordenador y el láser para poder configurarlo.

2.2.4. DJI NAZAM Lite Assistant 1.00

Permite conectar el autopiloto al ordenador para ver el estado en el que se encuentra el equipo y

comprobar que todo funciona correctamente. Además, desde el programa [7] se pueden

configurar diversos parámetros del drone.

2.2.5. Matlab

Es un programa matemático que ofrece un entorno de desarrollo integrado. Se ha hecho uso de

su herramienta Simulink para simular los comportamientos de los distintos reguladores.

Capítulo 3. Arquitectura del sistema

19

Capítulo 3

Arquitectura del sistema

En el presente capítulo se explica la interacción y el conexionado entre los distintos elementos

que constituyen la aplicación. En la Figura 3.1 se muestra un diagrama de bloques del sistema.

Figura 3.1

Capítulo 3. Arquitectura del sistema

20

3.1. Alimentación

La fuente de alimentación principal del drone es una batería LiPo de 4 celdas, que a plena carga

se traduce en una tensión de 16.8V. Según los fabricantes de los motores y los ESCs

(controladores de velocidad) tanto unos como otros pueden trabajar perfectamente a esa tensión.

Sin embargo, es necesario obtener tensiones de alimentación de 5V y de 3.3V para alimentar los

diversos dispositivos electrónicos.

Conectando el BEC a la batería se obtiene una tensión fija de 5V. La salida del BEC y el

terminal neutro de la batería se llevan a la placa de conexionado. Estos dos terminales están

conectados con los pines de alimentación del láser y con los terminales de 5V y GND del

regulador de tensión de 3.3V que se ha soldado a la placa. Finalmente, los terminales neutro y

de salida del regulador de tensión se llevan a los distintos pines de alimentación que se han

distribuido por la placa para alimentar el microcontrolador, el módulo XBee y el módulo del

MAX3222. El IMU, que también se alimenta a 3.3V, se conecta directamente a dos de los

terminales de 3.3V y GND de la placa del microcontrolador ya que la corriente que consume es

baja.

3.2. Conexión de los dispositivos

En este apartado se dividen los distintos elementos que forman el sistema según el módulo del

microcontrolador con el que interactúan. Se entrará en detalle en la programación y los aspectos

más relevantes de cada módulo en el 30.

3.2.1. Láser, IMU y XBee

Estos tres elementos se comunican con el microcontrolador por SCI. El microcontrolador

dispone de 3 canales SCI distintos, por lo que ha habido que utilizarlos todos. La velocidad de

comunicación en cada canal es configurable por separado, sin embargo la frecuencia de reloj (la

señal de reloj de baja frecuencia del microcontrolador) que llega a los tres canales es la misma,

por lo que se debe fijar una frecuencia de reloj que permita establecer simultáneamente las

velocidades de comunicación de los tres periféricos.

El escáner láser está conectado (mediante el adaptador de tensiones para comunicación RS232)

al módulo SCIa con una velocidad inicial de 115.2kbps por defecto, que una vez establecida la

comunicación entre el microcontrolador y el láser se incrementará hasta los 250kbps. El IMU

está conectado al módulo SCIb con una velocidad 57600bps, recibiéndose una trama que

Capítulo 3. Arquitectura del sistema

21

contiene las aceleraciones en los tres ejes y los ángulos girados también respecto a los tres ejes.

El IMU está programado para enviar una medida de las 6 magnitudes cada 25ms. Por último, el

XBee está conectado al módulo SCIc con una velocidad de 9600bps.

3.2.2. Autopiloto

El microcontrolador da la consigna de throttle al autopiloto a través del canal EPWM2 del

bloque PWM. La señal debe tener un ancho de pulso limitado entre 1ms y 2ms, con un periodo

de 13.60ms para de esta manera emular un canal del receptor de radiofrecuencia. Esta consigna

es llevada al canal 2 del lado de los esclavos del multiplexor Pololu y de allí al autopiloto

cuando la entrada SEL lo determina. Además de la señal PWM, es necesario llevar al

multiplexor (y por ende al autopiloto) el nivel de alimentación y la masa del canal PWM, por lo

que también se han llevado al multiplexor dos cables adicionales: uno proveniente de uno de los

pines de 3.3V de la placa del microcontrolador y otro de uno de los pines de GND.

Capítulo 4. Ley de control

22

Capítulo 4

Ley de control

En este capítulo se expone el proceso seguido a la hora de diseñar e implementar los

controladores de altura que se han probado. Se expondrán las conclusiones extraídas de las

simulaciones previas y los esquemas de control que se han implementado.

4.1. Simulación

Se parte de un simulador de control para drone [1]. Aunque el simulador no se va a utilizar

para obtener los valores numéricos de los parámetros de control dado que los propios módulos

implicados en la cadena de control tienen sus propias ganancias (por ejemplo la conversión de la

acción de control a una señal PWM), se van a realizar ciertas simulaciones para ver cómo

influye la variación de las distintas ganancias.

En un principio se ha planteado el uso de un controlador proporcional derivativo (PD) con

prealimentación de la perturbación gravitatoria ya que éste es uno de los controladores más

utilizados para este tipo de aplicación, y una muestra de ello es que es el regulador

implementado en el simulador del que se dispone. La parte proporcional acercará al drone a la

altura de consigna y la parte derivativa debe oponerse a las variaciones de altura para que el

drone se mantenga estable en régimen permanente. Se realimenta la altura a la que se encuentra

el drone. En la Figura 4.1se muestra el modelo en Simulink del controlador. Además del control

de altura hay otros controladores implementados en el simulador para los demás grados de

libertad del drone. Los parámetros de esos controladores se dejan fijos y únicamente se cambian

los parámetros del controlador de altura (líneas rojas).

Capítulo 4. Ley de control

23

Figura 4.1

A continuación se exponen los resultados de algunas de las simulaciones realizadas con los

parámetros y seleccionados en cada una de ellas. En las simulaciones se le ha dado al

sistema una consigna de altura de 1m.

Inicialmente se ha anulado la ganancia derivativa para estudiar el comportamiento de la

ganancia proporcional. Como se observa en la Figura 4.2 para un valor de (que

produce un tiempo de respuesta relativamente rápido), el drone no alcanza un régimen

permanente y oscila continuamente.

Figura 4.2

Capítulo 4. Ley de control

24

Al añadir una , del orden de magnitud de la , se consigue alcanzar el régimen

permanente aunque hay oscilaciones, tal y como se muestra en la Figura 4.3, con lo que se

constata la necesidad de aplicar una acción derivativa.

Figura 4.3

Se han ajustado ambos parámetros a través de distintas simulaciones (y)

hasta obtener una respuesta sin sobrepasamiento y con error de posición nulo (Figura 4.4).

Figura 4.4

Las conclusiones extraídas de las distintas simulaciones sobre el efecto de cambiar los valores

de y se basan en que para eliminar las oscilaciones, los valores de ambas ganancias deben

ser parecidos, una demasiado grande aumenta considerablemente el tiempo de respuesta y

una demasiado baja hace que el sistema oscile. Cuanto más se aumenta la , menor es el

tiempo de respuesta.

Capítulo 4. Ley de control

25

4.2. Implementación de los controladores

Se ha medido con el osciloscopio que la consigna de throttle que el microcontrolador da al

drone es un pulso de una anchura entre 1ms y 2ms y con un periodo de 13.60ms, y hay que

diseñar el algoritmo que traduzca la consigna generada por el propio controlador en una señal de

ese tipo.

El controlador que se ha diseñado trabaja con la magnitud de la fuerza, aunque en el mundo de

los drones, y concretamente de los motores para drone, se suele denominar empuje. La consigna

enviada al drone es una imagen de la fuerza que se le está demandando a los motores que

produzcan. Siendo el coeficiente de sustentación de las hélices, la densidad del aire y el

radio de cada hélice, el empuje () y la velocidad angular del motor están relacionados a través

de la siguiente ecuación [2]:

(1)

A continuación se establece una relación aproximada entre el empuje y el valor del registro de

comparación del módulo PWM que determina la anchura del pulso generado. Conocer esta

relación es fundamental para tener una idea de en qué rango se van a mover los valores de los

distintos parámetros de control.

Los motores montados en el drone tienen una relación velocidad/tensión de

. Partiendo

de la base de que la batería tiene 4 celdas con una carga máxima de 4.2V cada una, la tensión de

la batería cargada es:

 (2)

Por tanto, la máxima velocidad a la que puede girar un motor es:

 (3)

Si se tuviese conocimiento del coeficiente de sustentación de la hélice, sabiendo que el radio es

de 12.7cm se podría calcular el empuje máximo que puede generar cada motor. Este dato se

desconoce, sin embargo, en la hoja de características del motor aparece el dato del empuje

máximo de cada motor, que es de 1.2kgf, equivalente a 11.76N por motor. Teniendo en cuenta

que ese es el empuje máximo, conociendo los valores a escribir en el registro de comparación

del módulo PWM para obtener pulsos de y (calculados en el apartado

5.1.1.1. Configuración hardware) y sabiendo, porque se ha medido con el osciloscopio, que a

Capítulo 4. Ley de control

26

menor anchura de pulso más tensión se le aplica al motor, se plantea el siguiente sistema de

ecuaciones:

(4)

Resolviendo el sistema de ecuaciones se halla el valor a escribir en el registro de comparación

del bloque PWM en función del empuje deseado:

 (5)

4.2.1. Control PD

El diagrama de bloques del controlador PD con prealimentación de consigna y saturación

implementado sobre el drone se muestra en la Figura 4.5.

Figura 4.5

El empuje o fuerza ascensional (en Newtons), de acuerdo a este controlador, se calcula de la

siguiente manera:

(6)

La prealimentación gravitatoria se divide entre 4 ya que el empuje calculado es el de un motor

por separado, que es el que debe generar cada uno.

Los parámetros de control que hay que fijar son , , y la prealimentación de la gravedad.

Dado que no se conoce la función de transferencia del sistema, no se puede calcular un

regulador estableciendo requisitos de tiempo de respuesta y sobreoscilación por los métodos

clásicos, por lo que se han realizado unas estimaciones numéricas para obtener unos valores

Capítulo 4. Ley de control

27

orientativos de los distintos parámetros de control y posteriormente se han ajustado

experimentalmente de acuerdo con el comportamiento observado en las simulaciones.

La prealimentación gravitatoria se podría haber calculado pesando el drone, sin embargo se ha

realizado un experimento más exacto en el que se ha ido aplicando como acción un pulso PWM

cada vez menor (se recuerda que a menor anchura de pulso mayor es el empuje solicitado) hasta

que el drone ha estado a punto de elevarse, y ese valor PWM se ha traducido a empuje

sustituyendo en la ecuación (5) y así se obtiene el valor en Newtons de la prealimentación

gravitatoria. Se ha buscado que la prealimentación gravitatoria no sea suficiente para elevar el

drone, simplemente la necesaria como para que un poco más de acción ya haga ascender al

drone.

En cuanto a los parámetros y , la estimación se ha basado en buscar que se produzca una

acción de control razonable ante determinados valores de error. Por ejemplo, es razonable

pensar que el máximo error diferencial (teniendo en cuenta que se obtiene una medida de altura

cada poco más de 100ms) que se puede tener es de 5cm. Por otro lado y bajo esa premisa,

también es razonable imponer que para un error de 1m la acción sature. El valor de la

prealimentación gravitatoria, es de unos 6.6N. Unificando todas estas condiciones y

sustituyendo en la ecuación (6) se pueden obtener unos valores base de las ganancias:

 (7)

Buscando darle más peso a la parte proporcional que a la derivativa se impone

 para

que tan sólo aporte 0.5N y toma por tanto un valor de

. Estos valores se tomarán

como punto de parida para las pruebas con el drone.

4.2.2. Controlador PID

Como se expone en el Anexo I: Proceso experimental, el control PD no ha funcionado como se

esperaba. Las oscilaciones eran muy exageradas pero el mayor problema se encontraba a la hora

de llegar al régimen permanente. Por estos motivos se ha diseñado un controlador PID, que

debería facilitar alcanzar el régimen permanente. En la Figura 4.6 se muestra el esquema de

dicho controlador.

Capítulo 4. Ley de control

28

Figura 4.6

Todo lo expuesto en relación al controlador PD es igualmente válido, sin más que la adición de

la ganancia integral, con lo que ahora la acción de control se calcula:

(8)

Como parámetros iniciales se han tomado los mismos que en el control PD, y para la ganancia

proporcional se ha tomado un valor bajo en relación a las otras ganancias para comenzar con

el ajuste experimental, de tal manera que esta ganancia no haga que el sistema se inestabilice.

Se ha implementado un sistema de saturación anti-windup para que el regulador no siga

integrando el error una vez la acción está saturada tanto superior como inferiormente. Si la

acción está saturada se deshabilita la integración, manteniéndose la última acción integral

aplicada antes de que se diese la saturación. Añadir un sistema de saturación integral es

imprescindible. Si no se añadiese, el error integral se seguiría acumulando y se generarían unas

oscilaciones cada vez de mayor amplitud que harían que el sistema se descontrolase.

4.2.3. Saturación

En ambos reguladores se ha incluido un bloque de saturación como se muestra en sus

correspondientes diagramas de bloques. En este sistema el bloque de saturación es de vital

importancia. La acción que se puede aplicar al drone es un pulso entre 1ms y 2ms, pero

experimentalmente se ha comprobado que es necesario saturar mucho la acción porque si no el

drone se vuelve inestable aunque las ganancias sean bajas. En realidad este comportamiento es

normal, porque es como si se intentase estabilizar manualmente el drone a una altura concreta

Capítulo 4. Ley de control

29

moviendo el stick del acelerador a lo largo de todo el recorrido que permite el mando, cuando

realmente lo que se hace es mover el stick ligeramente en torno a un punto de equilibrio.

El sistema de saturación que se ha propuesto pretende emular ese comportamiento y es relativo

a la magnitud de la prealimentación de consigna. Los valores de saturación superior e inferior de

la acción de control vienen dados por:

(9)

(10)

Estos márgenes se han estimado experimentalmente y los valores que toman son

 y , es decir, la acción nunca puede ser menor

que la prealimentación gravitatoria. Se recuerda que la prealimentación gravitatoria es la justa

para que el drone casi empiece a sustentarse, pero sin llegar a hacerlo. De esta forma el

comportamiento del drone es mucho más suave. Los resultados han mejorado mucho con este

esquema de saturación obteniéndose respuestas con muchas menos oscilaciones.

Capítulo 5. Implementación

30

Capítulo 5

Implementación

En este capítulo se presentan las soluciones implementadas para la superación de los distintos

frentes que se han ido presentando a lo largo de la elaboración del proyecto. La implementación

del control de altura del quadrotor tiene una carga elevada a nivel software como cabría esperar.

Sin embargo el trabajo a realizar a nivel hardware y de ajustes del drone ha sido también muy

tedioso e igual de importante.

5.1. Diseño software de la aplicación

El control de altura del drone conlleva la utilización de varios elementos hardware distintos, los

cuales se han presentado de forma breve anteriormente. El programa debe acceder a todos esos

elementos tanto para leer la información recibida como para darles órdenes. Además, la

información de los distintos periféricos debe combinarse en el propio programa con distintos

fines como se explicará a continuación. Adicionalmente, se requiere un control riguroso del

tiempo en el que se ejecutan ciertas secciones del código así como la periodicidad con la que se

ejecutan, como es el caso del claro ejemplo del bucle de control. Por estos motivos se ha

implementado el programa sobre un sistema operativo de tiempo real para microcontroladores,

SYS/BIOS.

El programa, por tanto, se ha estructurado en una serie de tareas que ejecutan funciones aisladas

y que se comunican entre ellas mediante los diversos servidores que se han diseñado, los cuales

permiten el acceso seguro a los distintos recursos compartidos, como por ejemplo los datos

obtenidos por los sensores.

A continuación se van a analizar los distintos aspectos de la implementación del programa,

comenzando por la configuración hardware y software del microcontrolador, continuando con

las funciones implementadas en las distintas tareas y con los servidores programados.

Capítulo 5. Implementación

31

5.1.1. Configuración del microcontrolador

5.1.1.1. Configuración hardware

En primer lugar se han configurado los distintos puertos del microcontrolador de acuerdo con el

hardware que debe conectarse al mismo.

La frecuencia principal de reloj del microcontrolador se ha configurado en 200MHz, que es la

máxima alcanzable. Se ha elegido esta frecuencia porque existirán porciones de código

importantes que deberán procesarse lo más rápido posible y el consumo del microcontrolador no

es un problema en la aplicación, ya que comparado con el de los motores es prácticamente

inexistente. La fuente de reloj elegida ha sido la del oscilador de la placa en la que va

embarcado el microcontrolador y el reloj interno del microcontrolador ya que la fuente externa

tiene una precisión superior (de 30 ppm).

El bloque PWM debe generar una señal de frecuencia , lo cual equivale a

un periodo de 13.60ms, con un tiempo en alto variable entre 1ms y 2 ms. Arbitrariamente se

elige una precisión temporal muy elevada en el PWM, de 0.5µs (equivalente a una frecuencia de

), para poder dar una consigna de calidad al autopiloto. Las distintas ecuaciones

aplicadas respecto a la configuración de los módulos del microcontrolador se han extraído del

manual de usuario [5]. En dicho manual también se puede ver el uso de cada registro utilizado

en las fórmulas. El valor real de la frecuencia de tick se calcula de acuerdo a:

(11)

De tal forma que siendo la frecuencia de tick del PWM de :

(12)

Se toman HSPCLKDIV = 6 y CLKDIV = 8, obteniendo un producto de 48 y por tanto una

frecuencia real de tick de:

(13)

Finalmente, los valores del registro de periodo y de los valores máximo y mínimo del registro

de comparación se calculan de la siguiente manera:

Capítulo 5. Implementación

32

 (14)

 (15)

 (16)

En el módulo SCI, además de los temas de paridad, start bit y número de stop bits que se fijan

para que se ajusten a lo que aparece en la hoja de características de cada dispositivo, es

necesario configurar 5 parámetros: la frecuencia de la señal de reloj que llega al bloque SCI, las

velocidades de comunicación del IMU y el XBee y las dos velocidades de comunicación del

escáner láser (la de arranque y la de funcionamiento). La velocidad de comunicación se fija

mediante el registro BRR de cada canal de acuerdo a la siguiente fórmula:

(17)

Interesa que el valor del BRR sea lo más elevado posible para que la velocidad de comunicación

se ajuste lo máximo posible a la teórica después de redondear el resultado de la igualdad

anterior al entero más cercano. También de acuerdo con la fórmula anterior, a mayor valor de

bitrate la frecuencia del reloj de baja velocidad, LSPCLK, debe ser mayor. Esta frecuencia se

obtiene dividiendo con un prescaler la frecuencia fCPU, y su máximo valor es de 100MHz según

la hoja de características del microcontrolador. Dado que la velocidad máxima de comunicación

que se va a establecer es de 250kbps, la frecuencia elegida para la señal de reloj que llega al

módulo SCI es LSPCLK = 100MHz. Los valores a escribir en los registros BRR son:

(18)

(19)

(20)

(21)

5.1.1.2. Configuración software

Desde el entorno CCS, una vez generado el proyecto [9] con SYS/BIOS, es necesario

configurarlo incluyendo los módulos que se vayan a utilizar. En el proyecto se han incluido

Capítulo 5. Implementación

33

varios módulos, entre los que destacan Clock (para contabilizar tiempos y poder implementar

tareas periódicas), Semaphore (para bloquear y desbloquear las tareas tanto de forma periódica

como esporádica), SWI (para lanzar interrupciones software ante ciertos eventos que determinen

la necesidad de ejecutar cierto código de elevada prioridad), HWI (para configurar de forma

sencilla las distintas fuentes de interrupción hardware), GateMutexPri (para implementar

servidores que trabajen con bloqueo por herencia de prioridad) y Boot (para configurar el reloj

de sistema).

Además de incluir y configurar los módulos anteriormente mencionados también se han fijado

el tamaño de la pila del sistema, el tamaño de la pila de cada tarea y la Heap del sistema, donde

se alojan los elementos de SYS/BIOS creados dinámicamente, como las distintas tareas e

interrupciones hardware y software.

5.2. Diseño del software

En esta sección se va a explicar la forma en que se ha implementado el programa. A

continuación se exponen las tareas implementadas junto con la descripción general de los

drivers implementados para los distintos periféricos a los que accede cada una de ellas y

finalmente los servidores propuestos para el acceso seguro a los recursos compartidos.

5.2.1. Tareas

Las tareas programadas, más allá de su contenido, se pueden diferenciar en dos grupos según el

tipo de activación asociado a cada una de ellas.

 Tareas periódicas: estas tareas son activadas periódicamente por un objeto Clock que al

alcanzar el número de conteos establecidos en su creación ejecuta una función que

desbloquea el semáforo de la tarea en cuestión, dejándola activa para que el sistema

operativo la ejecute cuando sea necesario.

 Tareas esporádicas: estas tareas se activan cuando se produce cierto evento externo que

las desbloquea. El motivo de haber elegido esta implementación es que de esta forma se

tiene acceso mucho más rápidamente a la información captada que con una

implementación periódica ya que el sincronismo es prácticamente perfecto más allá de

la posible latencia asociada a que deban ejecutarse tareas de mayor prioridad antes de

las esporádicas que nos ocupan. Las tareas que se han implementado como esporádicas

son las asociadas a la recepción de información por parte del IMU, el escáner láser y el

XBee. Los tres dispositivos coinciden en que se conectan al microcontrolador por

Capítulo 5. Implementación

34

comunicación SCI, y el mecanismo de desbloqueo de la tarea de recepción de datos de

cada uno de los tres elementos es el siguiente. Las tramas de caracteres que se reciben

de cada dispositivo tienen unas características concretas, pero en los tres casos, a

grandes rasgos, hay un carácter esperado de inicio de trama y uno de fin de trama. Cada

vez que los sensores envían un carácter al microcontrolador, se activa una interrupción

hardware que almacena en un buffer dicho carácter si es el carácter que se espera de

inicio de trama o si, sin haberse superado la longitud esperada del mensaje, ya se ha

recibido anteriormente el carácter de inicio de trama. En el momento en que se recibe el

carácter de fin de trama se genera una interrupción software que por un lado almacena

una copia del mensaje recibido en la variable en cuestión que esté dentro del alcance de

la tarea que la va a leer y por otro lado desbloquea el semáforo asociado a la tarea que

va a procesar la información recibida.

La planificación de tareas implementada se basa en el criterio Rate Monotonic, que da mayor

prioridad a las tareas más frecuentes, es decir, a las que tienen menor periodo. El análisis de

tiempo real del sistema de tareas se encuentra en el Anexo IV: Análisis de tiempo real. En la

Figura 5.1 se muestra el esquema de tareas y servidores y posteriormente se explica la función

que tiene cada tarea.

Figura 5.1

Capítulo 5. Implementación

35

5.2.1.1. Lectura del IMU

La tarea esporádica TaskIMU se activa cuando se ha recibido correctamente un mensaje del

IMU y se encarga de extraer la información de los ángulos roll, pitch y yaw del mensaje en

cuestión. El ángulo yaw no se utiliza en la aplicación, pero se ha creído conveniente

almacenarlo por si en un futuro pudiese ser de utilidad.

El mensaje está estructurado de tal manera que primero se envían las aceleraciones y

posteriormente los ángulos. Puesto que no es necesario tener medida de las aceleraciones, el

mensaje se empieza a almacenar a partir de la llegada del carácter ‘Y’ (de yaw), y la recepción

sigue hasta la llegada del carácter ‘\n’ (retorno de carro), que indica que la trama ha concluido.

Los ángulos vienen dados en grados, pero de cara a los cálculos que hay que hacer con ellos, la

propia función de decodificación del mensaje los devuelve en radianes.

La tarea, a partir de las medidas obtenidas en las primeras 20 ejecuciones, calcula el offset

medio de cada ángulo y lo almacena. Una vez superadas esas primeras ejecuciones, la tarea lee

el mensaje, extrae los valores de los tres ángulos, les resta el correspondiente offset, aplica un

filtro de mediana móvil a las últimas 5 medidas tomadas y posteriormente almacena dichos

valores en el servidor IMU_server. El filtro es de mediana para eliminar los valores espurios que

de vez en cuando da el sensor y se ha realizado con 5 medidas porque el bucle de control se

ejecuta cada 108ms.

5.2.1.2. Tarea de control

La tarea TaskControl se encarga del control de altura del drone. El periodo de control es de

108ms ya que por motivos inherentes al escáner láser no se ha podido reducir más, como se

explica en la siguiente tarea. La tarea lee la altura a la que se encuentra el drone del servidor

Altitude_server y la consigna de altura a alcanzar del servidor Reference_server. A partir de

esas variables aplica la ley de control, que calcula y escribe el valor necesario en el registro de

comparación del módulo PWM.

Los parámetros de control (ganancias, prealimentación y saturaciones) se pueden modificar

desde el ordenador enviando comandos al microcontrolador mediante el XBee.

5.2.1.3 Envío al láser

La tarea TaskSendLaser se encarga de enviar al láser los comandos necesarios para configurarlo

al inicio de la aplicación y el comando que ordena al láser realizar una medida. En las siguientes

Capítulo 5. Implementación

36

líneas y junto con la próxima tarea, TaskReceiveLaser, se va a explicar la gestión software del

escáner láser que se ha implementado.

El diseño del driver que se ha hecho desde cero para el láser ha sido realmente complejo dado,

entre muchas otras cosas, que se pueden enviar varios tipos de mensajes diferentes de longitudes

distintas entre sí. La estructura comentada anteriormente para la recepción de caracteres en las

interrupciones hardware de los dispositivos conectados a los canales SCI del microcontrolador,

en este caso es más compleja dado que tanto el carácter de inicio de trama como la longitud

esperada de la respuesta son variables. Para superar esta dificultad se ha creado una estructura

de datos en la que se almacenan el tipo de comando, la cabecera, el carácter de inicio esperado,

la longitud de la respuesta esperada y la longitud de la cabecera del último mensaje que se ha

enviado al láser. Asimismo, se han creado funciones específicas de envío de cada tipo de

mensaje que, además de enviar el mensaje en cuestión, cargan en la estructura de datos

comentada anteriormente todos los parámetros propios del mensaje recientemente enviado. De

esta forma queda encapsulado el problema de la variabilidad de las características estructurales

y de contenido de los distintos mensajes a enviar al láser.

Los mensajes que en la aplicación se envían al láser son los siguientes: parada del láser en

protocolo SCIP1.1, cambio de protocolo a SCIP2.0, cambio de bitrate, parada del láser en

protocolo SCIP2.0 y solicitud de obtener medidas continuamente. Existe la posibilidad de

solicitar medidas individuales, pero se ha decidido que las medidas lleguen continuamente ya

que de esta forma el tiempo de transmisión es menor y por tanto se obtienen las medidas más

rápidamente puesto que el láser trabaja de forma que cada vez que éste recibe un mensaje, envía

una respuesta de conformidad o disconformidad al maestro.

En la Figura 5.2 se muestra la máquina de estados que controla el láser. El láser al encenderse se

encuentra en el protocolo de comunicación SCIP1.1 el cual ofrece poca flexibilidad de manejo,

por lo que se ha decidido cambiar el láser al modo SCIP2.0, protocolo que lanzó posteriormente

Hokuyo y que ofrece muchas opciones de configuración. La velocidad de comunicación por

defecto del láser es de 115200bps y se va aumentar en tiempo de ejecución hasta los 250000bps

para obtener más rápidamente las medidas. En primer lugar es necesario destacar que se ha

observado experimentalmente que el sistema del láser junto con el adaptador RS232 necesita un

tiempo de espera desde la conexión de la batería hasta que se pueda establecer la comunicación,

por lo que antes de comenzar la ejecución de las tareas el programa tiene un tiempo de espera de

10 segundos. Una vez transcurrido ese tiempo y ya iniciado el sistema operativo, la máquina de

estados configura el láser secuencialmente y finalmente le envía el comando de solicitud de

medida continua. Esta tarea está ligada muy estrechamente con la tarea TaskReceiveLaser,

Capítulo 5. Implementación

37

puesto que para determinar si se envía el siguiente mensaje es necesario tener la certeza de

haber recibido la respuesta esperada del láser, de tal forma que se le envía el mismo comando

hasta que se recibe por parte del láser la confirmación de que el mensaje lo ha recibido bien. Se

ha creado un tipo de dato, LASER_STATUS, que tiene la doble misión de guiar la configuración

del escáner en la secuencia de arranque y de determinar si el mensaje enviado por el láser se ha

recibido correctamente o no.

Figura 5.2

En la datasheet del protocolo del láser [6] no se explica la secuencia de inicialización, por lo

que más allá de leer los tipos de comandos que hay y cómo trabajar con ellos se han realizado

varias pruebas hasta llegar a la secuencia que configura el láser correctamente.

En la Figura 5.3 se muestra el esquema de medidas del láser. El escáner tiene un máximo ángulo

de barrido de 240º y toma una medida cada 0.36º, lo que hace un total de 682 medidas. A cada

medida del láser se le denomina step, y cuando se envía al láser el comando de solicitud de

medidas, entre otros parámetros se le indica el intervalo de steps que se desea recibir, fijando el

step inicial y el final.

Capítulo 5. Implementación

38

Figura 5.3

En la Figura 5.3 se pueden apreciar las referencias de 0° y 240° que se han colocado

arbitrariamente en esas posiciones para referenciar los ángulos en el proyecto. Dado que al Step

A le corresponde según la hoja de características del sensor un valor de 44, la ecuación para

hallar la relación ángulo – step, redondeando siempre al entero más cercano es:

(22)

Para medir la altura no es necesario utilizar todas las medidas que puede captar el sensor, sino

sólo algunas de ellas. Sin embargo, se ha diseñado un driver flexible y modular que permite

variar el rango medido simplemente cambiando una línea de código. Inicialmente se había

propuesto un rango de medida de 90º (y tanto el programa como el hardware están diseñados

están preparados para ello) con su bisectriz alineada con la línea frontal del láser (Step B) para

poder obtener dos grupos de medidas determinados por dos haces de rayos de rango angular de

10º cada uno, tal y como se observa en la Figura 5.4.

Figura 5.4

10° 10°

Capítulo 5. Implementación

39

Sin embargo existe un problema que impide obtener esos dos haces de medidas, y no es otro

que el tiempo de medida del láser. El escáner tarda 100ms en realizar un barrido de medidas,

independientemente de si se le solicita todo el rango de medidas o sólo un único rayo. Se ha

intentado reducir este tiempo de medida aumentando la velocidad del motor del láser pero esto

no ha tenido ningún efecto beneficioso. Se ha contactado con Hokuyo preguntando si existe

alguna posibilidad de reducir ese tiempo y no la hay. A parte de esos 100ms que cuesta realizar

una medida hay que sumar el tiempo que cuesta transmitir los datos obtenidos por RS232. Es

necesario tener disponible la medida de la altura del drone en el menor tiempo posible para

poder implementar el bucle de control con un periodo lo suficientemente bajo, por lo que se han

tomado dos medidas correctoras para disminuir el tiempo de transmisión, que es el único que se

puede variar. En primer lugar se ha reducido el ángulo de barrido de los 90º propuestos

inicialmente a aproximadamente 12º (Figura 5.5) y por otro lado se ha aumentado la velocidad

de comunicación de 115.2kbps a 250kbps (y no se ha aumentado más porque el MAX3222 no

permite trabajar a mayores velocidades). Implementadas las dos mejoras, el tiempo que

transcurre entre la llegada de dos medidas al láser es mucho menor.

Figura 5.5

A continuación se calcula el tiempo que tarda en transmitirse el mensaje que contiene las

distancias medidas por los distintos rayos del láser con y sin las reducciones de tiempo

implementadas. Para ello, en primer lugar se calcula la longitud en caracteres del mensaje

esperado, posteriormente se traduce a número de bits y finalmente se divide entre la frecuencia

con la que llegan los bits.

La longitud en bytes del mensaje tiene la siguiente fórmula:

(23)

12°

Capítulo 5. Implementación

40

El número de medidas se calcula como la diferencia entre el step final y el inicial:

 (24)

Dado que el protocolo de comunicación con el láser tiene un stopbit, un startbit y no tiene bit de

paridad, el número de bits de un mensaje es:

 (25)

El tiempo que transcurre durante la transmisión del mensaje es:

(26)

Por tanto, el tiempo de transmisión de que se planteó en un principio de un barrido de 90° a

115.2kbps es:

(27)

Sin embargo, obteniendo medidas de un barrido de 12° a 250kbps el tiempo de transmisión se

reduce a:

(28)

En la Figura 5.6 se muestra un cronograma en el que se representan el tiempo que le cuesta al

láser tomar la medida (los 100ms que no se pueden variar), el tiempo de transmisión con las

características que determinan y el tiempo de transmisión con las características que

determinan .

Figura 5.6

Capítulo 5. Implementación

41

Se observa que se obtiene una medida cada 100ms pero el retraso con el que se obtiene con

 es mucho menor que con . Se ha elegido un periodo de control de 108ms,

ligeramente superior al tiempo total de obtención de medida de altura, para que en cada

ejecución el bucle de control se valga de la nueva medida tomada por el láser.

5.2.1.4. Recepción del láser

La tarea TaskReceiveLaser se activa cuando se ha recibido un mensaje completo del escáner

láser. La tarea lee el mensaje y lo decodifica, obteniendo el valor de la distancia medida por el

sensor así como el estado en el que se encuentra el láser. El estado del láser, como se ha dicho

anteriormente, es indicativo de si el mensaje se ha recibido correctamente o no. También se lee

el valor de los ángulos roll y pitch. Con estas tres medidas se calcula la altura perpendicular al

suelo del drone. Esta altura corregida es la que se almacena en el servidor Altitude_server. El

estado del láser se escribe en el servidor LaserStatus_server.

La función que decodifica los mensajes recibidos también se vale de la estructura de datos

comentada anteriormente que almacena la información relevante del último mensaje enviado.

La función en primer lugar distingue el tipo de comando enviado y actúa de una forma u otra

según el comando que sea. En las recepciones de mensajes de configuración lo que se hace es

comparar lo recibido con lo esperado, y si concuerdan ambas cadenas de caracteres entonces la

función devuelve el LASER_STATUS adecuado para que se pueda enviar el siguiente mensaje

de configuración desde la tarea TaskSendLaser. En el caso de la medida de altura, además de

comprobar si el mensaje recibido es correcto se debe calcular la altura a partir de todos los

caracteres recibidos. Para ello, y en busca de un diseño flexible, se van traduciendo los datos

recibidos al step correspondiente del láser. Si ese dato se encuentra en uno de los grupos de

steps de los que se quiere obtener medida, éste se almacena en el buffer correspondiente a ese

grupo y si no se desecha. De esta forma se puede modificar radicalmente el rango que se desea

medir del láser simplemente ajustando los steps inicial y final de los diferentes grupos en el

código fuente. Una vez se llega al final del mensaje se calcula la media de las medidas asociadas

a los rayos comprendidos en cada sección de steps. La medida implementada finalmente (Figura

5.5) consta de un único grupo de steps con un total de 35 medidas.

Una vez obtenida la medida en crudo del láser es necesario corregirla con la orientación para

obtener la distancia perpendicular desde el tren de aterrizaje hasta el suelo. Si no, la inclinación

del drone falsearía la altura real y el control se haría imposible. La corrección de altura ha sido

implementada para la medición del conjunto frontal de 12° de la Figura 5.5. Para ello se

analizan por separado el caso de giro respecto al eje x y giro respecto al eje y, representando de

Capítulo 5. Implementación

42

forma esquemática el drone, y posteriormente se combinan ambos efectos. El espejo frontal está

situado a lo largo de uno de los ejes de simetría del drone.

En la Figura 5.7 se analiza el efecto que tiene el ángulo roll en la medida. Las líneas negras

representan el cuerpo del drone y el tren de aterrizaje en la posición de equilibrio, las líneas

rojas representan el drone con un cierto ángulo roll no nulo y la línea verde representa el suelo.

El espejo está representado en naranja junto al trapecio gris que representa el láser.

Figura 5.7

Sea la distancia medida por el láser, la distancia perpendicular al suelo entre el punto en el

que se reflejan los rayos y la parte más baja del tren de aterrizaje, la distancia del centro del

drone al punto donde se reflejan los rayos, la distancia del origen del láser al espejo y el

ángulo roll, la altura a la que se encuentra el drone se calcula de la siguiente forma:

 (29)

En la Figura 5.8 se analiza el efecto que tiene el ángulo pitch en la medida. El código de colores

es el mismo que en la anterior. El hecho de que el láser esté situado en el centro en esta

proyección simplifica la corrección a realizar.

Capítulo 5. Implementación

43

Figura 5.8

En este caso, la altura se calcula de la forma:

 (30)

Si se combinan los efectos de ambos ángulos, el valor de la altura corregido es:

 (31)

5.2.1.5. Envío de datos al ordenador

La tarea periódica SendComm se encarga de enviar los datos deseados del drone al ordenador.

La información más relevante a enviar es la altura a la que se encuentra el drone, pero también

se envían otros datos auxiliares para comprobar que el láser ha iniciado la comunicación con el

microcontrolador correctamente. La información es escrita en el XBee y éste se encarga de

enviarla secuencialmente.

5.2.1.6. Recepción de datos del ordenador

La tarea ReceiveComm se encarga de recibir la información enviada desde el ordenador al drone

a través del XBee. Los mensajes que se pueden enviar al drone son la consigna de altura y los

valores de los parámetros de control. La estructura de los comandos consta de un carácter de

inicio de trama (‘#’), el contenido del mensaje (que tiene una estructura del tipo descriptor del

mensaje y a continuación valor numérico) y por último el carácter de fin de trama (‘\n’). Una

máquina de estados es la encargada de distinguir entre los distintos mensajes recibidos y

posteriormente decodificarlos para almacenar el valor recibido en el servidor que corresponda.

En el Anexo II: Comandos de comunicación se muestra el listado de comandos que se pueden

enviar al drone.

Capítulo 5. Implementación

44

5.2.2. Servidores

Se han implementado una serie de servidores para almacenar los recursos compartidos entre las

distintas tareas.

 Altitude_server: almacena la altura a la que se encuentra el drone.

 Laser_status_server: almacena el estado del láser.

 Reference_server: almacena la consigna de altura que se le ha dado al drone a través de

las comunicaciones inalámbricas.

 IMU_server: almacena la orientación medida por el IMU.

 Kp_server: almacena la ganancia proporcional, modificable a través del XBee.

 Kd_server: almacena la ganancia derivativa, modificable a través del XBee.

 Ki_server: almacena la ganancia integral, modificable a través del XBee.

 Ascension_sat_server: almacena el margen de acción que se le permite dar al control

para que el drone ascienda, modificable a través del XBee.

 Descension_sat_server: almacena el margen de acción que se le permite dar al control

para que el drone descienda, modificable a través del XBee.

 Gravity_compensation_server: almacena la prealimentación que compensa la

prealimentación gravitatoria, modificable a través del XBee.

5.2. Montaje físico

Una parte fundamental del proyecto ha sido el montaje de todos los componentes en el drone.

Esta tarea ha sido realmente complicada dados todos los problemas que han surgido no sólo

propios del propio proyecto, sino del drone del que se partía como base.

En primer lugar se va explicar el hardware diseñado propiamente para el proyecto y

posteriormente se expondrá la fase de ensamblaje y montaje de los distintos elementos en el

drone junto con los problemas que han ido surgiendo y las soluciones que se han adoptado.

Capítulo 5. Implementación

45

5.2.1. Soporte para el láser

El láser se ha decidido colocar de tal forma que los rayos vayan paralelos al suelo para,

mediante su reflexión al suelo, poder obtener varios grupos de medidas distintas. Si se hubiese

colocado con los rayos apuntando al suelo directamente, se podría haber obtenido una única

medida perpendicular al suelo, suficiente para la aplicación y más visto lo que sucede con el

tiempo de medida del sensor, pero aun así mucho menos flexible de cara futuras mejoras.

Como se muestra en la Figura 5.9, el tren de aterrizaje que se ha montado en el drone tiene las

barras superiores más largas de lo que en principio podría necesitar el cuerpo del mismo. Se ha

aprovechado esta longitud adicional para colocar el láser. La localización es buena ya que es

una zona despejada que permite la ubicación de los espejos.

Figura 5.9

El láser tiene una serie de tornillos en la base que ensamblan la carcasa. Dos de esos tornillos

han sido extraídos y se han utilizado para atornillar el láser al soporte. Junto con el tren de

aterrizaje comprado venían dos placas perforadas con diferentes formas de cara a poder colgar

del tren de aterrizaje los elementos que se puedan necesitar. En un principio se planteó utilizar

una de esas placas (la otra directamente se vio que no sería útil) como soporte para el láser. Sin

embargo dada la geometría de los agujeros de dicha placa (Figura 5.10) no era posible atornillar

el láser.

Capítulo 5. Implementación

46

Figura 5.10

Se pueden apreciar 8 agujeros situados en la periferia de la placa. Esos agujeros permiten

atornillar la placa a las barras del tren de aterrizaje mediante unos elementos de sujeción que

forman parte del kit del tren de aterrizaje. Lo que se ha hecho ha sido utilizar dicha placa como

plantilla para fabricar un soporte en chapa de aluminio. Se han realizado los 8 agujeros para

atornillar el soporte al tren de aterrizaje y además los dos agujeros necesarios para atornillar el

láser (se han hecho 4 para elegir el sentido de orientación del láser). Tal y como se muestra en la

Figura 5.11, se han añadido 3 capas de cinta de doble cara en la cara del soporte que contacta

con la base del láser con una doble misión: dar altura a esa cara del soporte para que el láser

tenga más superficie de contacto que los tornillos de sujeción al tren de aterrizaje y reducir

ligeramente las posibles vibraciones que se puedan generar.

Figura 5.11

Una vez decidida la posición en la que se iba a montar el láser y construido el soporte había que

encontrar la forma de reflejar los rayos al suelo. Según la ley de la reflexión [11], un rayo

incidente en una superficie reflectante, será reflejado con un ángulo igual al ángulo de

incidencia, ambos ángulos medidos con respecto a la normal a la superficie (Figura 5.12).

Capítulo 5. Implementación

47

Figura 5.12

Al ser los rayos del láser paralelos al suelo y querer redireccionarlos de tal forma que sean

perpendiculares al mismo (cuando el drone está posado en el suelo), es necesario colocar el

elemento reflectante con un ángulo de 45° respecto al rayo, tal y como se muestra en la Figura

5.13. Como elemento reflectante se ha comprobado que los espejos estándar (Figura 5.14)

funcionan correctamente, por lo que no ha sido necesario recurrir a material óptico mucho más

caro.

Figura 5.13

Capítulo 5. Implementación

48

Figura 5.14

La siguiente fase requería de la colocación de los espejos. En principio se iba a realizar el

montaje de la Figura 5.4 (la de los 2 espejos). Para ello se pensó en orientar el láser apuntando

hacia el centro del drone y situar de alguna forma los espejos en el tren de aterrizaje. En primer

lugar hubo que recortar los espejos con un cortavidrios hasta un tamaño más adecuado. Una vez

se tuvieron los cristales más pequeños, se sujetaron al tren de aterrizaje mediante cable atado a

la estructura tensando hacia lados opuestos para mantener el ángulo firme. Se pegaron con cinta

de doble cara a las patas del tren de aterrizaje con una capa de espuma para orientar

correctamente los espejos y reducir las vibraciones en la medida de lo posible. El resultado es el

montaje de la Figura 5.15.

Figura 5.15

Sin embargo, después de algunas pruebas de vuelo se observó que los espejos se desorientaban

ligeramente ante las turbulencias e impactos de aterrizaje y había que reajustarlos. Por ello se

ideó un sistema más robusto (Figura 5.16). Se buscó también una mayor modularidad del

bloque láser de forma que se pudiese montar y quitar del drone como un único bloque. Para ello

se han atornillado tres brazos de plancha de aluminio al soporte del láser y en cada uno de esos

Capítulo 5. Implementación

49

brazos, que tienen una inclinación de 45°, se ha colocado un espejo. Los espejos (cortados con

el cortavidrios) se han pegado a los brazos mediante cinta de doble cara. Entre los brazos y el

soporte del láser, además de los tornillos también se ha colocado cinta de doble cara, todo ello

para intentar reducir las posibles vibraciones. En este caso se han colocado tres espejos porque

en la fase en la que el proyecto se encontraba en ese momento ya se vio que podría haber

problemas con la lentitud de medida del láser. La idea inicial fue utilizar los espejos de los

extremos pero se colocó un tercer espejo en la parte frontal del láser por si únicamente se podía

utilizar uno de ellos y, en cualquier caso, para aportar mayor flexibilidad al sistema. Este

soporte se ha comprobado que es resistente a vibraciones y no sufre alteraciones en los impactos

por aterrizaje.

Figura 5.16

Aunque los brazos se han diseñado para estar centrados en los ángulos de 30°, 120° y 210° que

corresponden respectivamente a los steps de 127, 377 y 627, ha sido necesario un ajuste

experimental para comprobar qué rango abarca cada espejo. Para ello se ha utilizado el

programa URG BENRI Standard. Se han observado todas las medidas tomadas por el láser

dejándolo a una altura conocida y se han podido observar los steps que comprende cada espejo.

Para cada espejo se ha dejado un margen de seguridad de unos 5 steps por cada lado para que

ante movimientos bruscos en vuelo no pueda haber lecturas anómalas. El recorrido que realizan

los rayos del láser con el soporte montado es el de la Figura 5.17. Se ha representado

únicamente el brazo frontal visto desde uno de los perfiles.

Capítulo 5. Implementación

50

Figura 5.17

5.2.2. Placa de conexionado

La placa de conexionado (Figura 5.18) se ha diseñado para facilitar la conexión de los

periféricos al microcontrolador así como para alimentarlos. Se ha utilizado placa de baquelita

perforada para poder soldar los distintos componentes. La placa se alimenta desde el BEC de 5V

a la salida del cual se ha soldado un conector DC circular macho. A la placa de conexionado se

ha soldado un cable DC hembra para posibilitar la conexión con el BEC. A la placa se ha

soldado el regulador de tensión LD33V. Los 5V son llevados al regulador de tensión que

produce a su salida una tensión de 3.3V para alimentar el microcontrolador, el módulo RS232 y

el XBee. El IMU, dada su colocación en el drone, se conecta directamente al microcontrolador,

aunque su fuente de alimentación indirectamente también es el regulador de 3.3V. Se han

colocado conectores macho para el microcontrolador y conectores hembra para el resto de

periféricos.

Figura 5.18

Capítulo 5. Implementación

51

5.2.3. Montaje del drone

Una vez establecidas las conexiones que debe haber entre los distintos periféricos y construido

el hardware comentado anteriormente es necesario encontrar la forma más adecuada de

embarcar todos los elementos en el drone. Además de colocar los distintos elementos ha sido

necesario realizar varios cambios en el drone del que se partía ya que había ciertos aspectos que

debían mejorarse.

En primer lugar se ha montado un tren de aterrizaje nuevo puesto que el que había era poco

robusto y no ofrecía muchas opciones a la hora de colocar la batería y el láser. El nuevo tren es

más grande y amortigua mucho mejor los impactos. El tren de aterrizaje va atornillado a la

plancha inferior del cuerpo del drone. En la Figura 5.19 se muestra el drone con el tren de

aterrizaje antiguo y en la Figura 5.20 con el tren nuevo sin más componentes montados que el

autopiloto y la batería.

Figura 5.19

Figura 5.20

Como se puede observa en la Figura 5.20, la plancha superior del drone estaba de inicio

totalmente despejada. Se ha decidido ubicar sobre esa superficie la placa del microcontrolador

Capítulo 5. Implementación

52

sujetada con una brida. A su lado se ha colocado el módulo RS232 pegado con cinta de doble

cara. La ubicación de estos elementos se muestra en la Figura 5.21.

Figura 5.21

El IMU se ha situado sobre la placa inferior (Figura 5.22), paralelo al autopiloto y, por tanto,

alineado con el sistema de coordenadas del drone. Debajo del IMU se ha pegado una esponja

con cinta de doble cara para amortiguar las vibraciones que el chasis le pueda transmitir. A

través de las aperturas existentes en la placa superior del cuerpo del drone se han pasado los

cables del IMU (transmisión, recepción y alimentación) y se han conectado directamente al

microcontrolador.

Figura 5.22

La placa de conexionado se ha situado en uno de los salientes de la placa inferior del cuerpo del

drone para que se puedan conectar y desconectar de forma sencilla los cables. El XBee se ha

Capítulo 5. Implementación

53

pegado con cinta de doble cara al tren de aterrizaje (Figura 5.23), bien cerca de la placa de

conexionado ya que los cables de los que dispone el XBee son de longitud reducida.

Figura 5.23

El láser con su soporte se ha colocado en el saliente de las barras del tren de aterrizaje (Figura

5.24), en el lado derecho del drone. El cable de comunicación RS232 era de una longitud

considerable (entorno a 1m) y se ha enrollado entre las barras del tren de aterrizaje, de tal

manera que no se ve ni estorba a los demás elementos.

Figura 5.24

En cuanto a la batería, ésta se ha colocado debajo del tren, centrada pero un poco movida hacia

el lado izquierdo para compensar el peso del láser, colocado en el lado opuesto, y así equilibrar

el peso del drone, haciendo que el centro de gravedad se encuentre lo más cerca posible del

autopiloto. Cada vez que se realiza un cambio de batería, la ubicación de la misma se ajusta para

que el drone esté lo más equilibrado posible. La batería se acopla al drone con dos bridas que la

sujetan a las barras del tren de aterrizaje (Figura 5.25).

Capítulo 5. Implementación

54

.

Figura 5.25

A la propia batería se le ha colocado en la parte baja el BEC mediante otro par de bridas. La

batería tiene un único terminal de salida que en principio debe ir conectado al drone. Sin

embargo el BEC también debe alimentarse directamente desde la batería, por lo que ha habido

que añadir un elemento que bifurque la salida de la batería y así se pueda conectar a ambos

conectores (Figura 5.26).

Figura 5.26

Los ajustes que ha habido que realizar a la base de la que se partía han sido imprescindibles para

mejorar el vuelo del drone. Cuando el drone se voló por primera vez haciendo uso del mando

radiocontrol se observó que “bailaba” mucho. Había que hacer muchas correcciones con el

mando y era prácticamente imposible que se quedase más o menos estable en una posición fija.

Para intentar solucionar estos problemas se utilizó el programa DJI NAZAM Lite Assitant 1.00

para ver si el IMU interno del autopiloto estaba mal calibrado. El diagnóstico del programa fue

que el IMU no necesitaba calibrarse de nuevo, lo que indicaba que la calibración era correcta.

Sin embargo se observó que el autopiloto no estaba situado en el centro del drone, sino que

estaba considerablemente desplazado hacia uno de los lados. Se decidió colocarlo justo en el

centro y el vuelo del drone mejoró sustancialmente ya que de esta forma el autopiloto estaba

colocado donde su programa interno contaba con estar colocado.

Capítulo 5. Implementación

55

Otro de los problemas que se encontró tuvo que ver con el receptor de radio. En algunas

ocasiones mientras se estaba volando, se perdía el control del drone desde el mando y el LED

conectado al autopiloto se ponía a parpadear en rojo. Se investigó hasta descubrir que ese

parpadeo podía indicar, entre otras cosas, algún problema con la radio. Se observó que cuando

el drone estaba alimentado, si se tocaba con la mano los cables de los distintos canales del

receptor de la radio, el LED se ponía a parpadear en rojo. Se conectó el autopiloto al ordenador

y efectivamente aparecía un mensaje de que había algún tipo de problema con la radio. Además,

desde el propio programa se puede ver el estado de los canales de la radio (Figura 5.27) y se

observó que las señales de los canales pasaban de un canal a otro.

Figura 5.27

Se desmontó prácticamente todo el drone para comprobar que el cableado estaba bien hecho y

libre de cortocircuitos. Se distribuyeron mejor los cables pero el problema seguía sucediendo de

vez en cuando. Finalmente se ha llegado a una solución que, si bien no ha hecho que el

problema no haya vuelto a repetirse, sí que ha conseguido que surja realmente muy pocas veces.

Los cables del receptor de radio, al igual que el resto de cables conectados al autopiloto, son los

típicos cables de tres conductores que llevan alimentación, masa y la señal en cuestión. Lo que

se ha hecho ha sido enrollar entre sí los tres conductores en cada cable procedente del receptor

Capítulo 5. Implementación

56

de la radio dejando a su vez los cables lo más separados posibles entre sí. De esta manera se han

reducido drásticamente las interferencias entre canales.

Por último se quiere destacar el hecho de que muy a menudo ha habido que realizar ajustes y

reparaciones en el montaje de los distintos componentes debido a las distintas pruebas de vuelo

que se han realizado. Desde reubicar componentes que se habían movido hasta reparar

soldaduras. A base de las distintas pruebas de vuelo y el comportamiento observado se ha

llegado a la distribución final de las siguientes figuras.

Figura 5.28

Figura 5.29

Capítulo 6. Pruebas de la aplicación

57

Capítulo 6

Pruebas de la aplicación

Las pruebas que se han realizado han seguido una gran evolución a medida que se ha ido

consiguiendo un sistema de mejores prestaciones. En este capítulo se exponen las pruebas que

se realizaron finalmente, que son las de mayor complejidad pero a la vez las que mejores

resultados han dado. La parte del proceso experimental (junto con algunas gráficas relevantes

obtenidas en algunas pruebas) que ha llevado a la superación de las pruebas finales se expone en

el Anexo I: Proceso experimental.

El objetivo de esta prueba ha sido conseguir que el drone vuele a una altura fija de 60cm

haciéndolo avanzar en línea recta. Se ha colocado una rampa apoyada en el suelo que conduce a

una plataforma. El drone debe incrementar su altura al encontrar los obstáculos y disminuirla

una vez éstos han sido superados. En definitiva, se busca ver que el control de altura

implementado se adapta al perfil del terreno. La Figura 6.1 muestra un esquema del montaje de

la prueba.

Figura 6.1

La prueba se ha efectuado con el control PID con prealimentación de perturbación gravitatoria y

saturación anti_windup. Los valores de los parámetros de control han sido:

Al drone se le ha enviado mediante el XBee la consigna de altura. Éste ha despegado y mediante

los controles de pitch, roll y yaw se ha controlado el drone tanto como para avanzar como para

realizar las correcciones direccionales necesarias. Es necesario destacar que esta prueba se ha

realizado con el drone volando de forma libre, si ningún tipo de atadura con cuerdas, lo cual ya

Capítulo 6. Pruebas de la aplicación

58

de por sí es muy significativo. Además la prueba no ha funcionado una única vez, sino que se ha

realizado con éxito varias veces.

Los resultados que se han obtenido son satisfactorios. El drone ha sido capaz de alcanzar la

altura de consigna, mantenerla durante el movimiento en línea recta, subir de altura al

encontrarse con la plataforma y volver a bajar una vez superada la plataforma. Es cierto que

existen oscilaciones en la altura (sobre todo cuando se producen cambios en el nivel del suelo)

y que el régimen permanente no se alcanza con una precisión centimétrica, pero se ha

demostrado que el drone es capaz de volar a la altura de consigna y adaptarse a la geometría del

terreno. La Figura 6.2 contiene el muestreo de la altura realizado en la prueba.

Figura 6.2

El pico descendiente que se produce en torno a los 7.5 segundos se corresponde con la llegada

del drone al obstáculo. La siguiente sobreoscilación se debe a la acción generada para alcanzar

la altura de 60cm de nuevo. El pico de altura entorno a los 11 segundos corresponde a la

superación de la plataforma y la detección de nuevo del suelo. El drone desciende

sobreoscilando para volver finalmente a la consigna de altura.

Las Figura 6.3 es representativa de la prueba realizada.

Capítulo 6. Pruebas de la aplicación

59

Figura 6.3

Capítulo 7. Conclusiones

60

Capítulo 7

Conclusiones

Se ha realizado el control de la altura de un drone sobre el terreno capaz de adaptarse a los

cambios de consigna de altura y de la altura sobre un terreno irregular, no exclusivamente plano.

Se han ajustado los controladores para conseguir un control preciso de altura, sin o con poca

sobreoscilación. El control final obtenido presenta algunas oscilaciones entorno a la consigna,

que son debidas a diferentes motivos acumulados, principalmente: retardo en las medidas del

sensor láser, errores de reflexión del láser sobre las superficies no perpendiculares a él, diseño

de los dispositivos mecánicos realizados, control imperfecto del autopiloto de las otras

variables, perturbaciones en el vuelo, y perturbaciones introducidas por el propio control manual

de las otras variables. Las fuentes de error son múltiples, aunque a pesar de ello se ha

conseguido realizar un control satisfactorio y estable de la altura del drone. Queda para trabajo

futuro el abordar todos estos problemas en la medida de lo posible para mejorar el resultado

final.

La realización del control de altura ha sido posible gracias a la precisión con que se han

diseñado todos los módulos tanto hardware (incluyendo las modificaciones realizadas en el

drone, como el equilibrado de pesos o el cambio de posición del autopiloto) como software del

sistema. Un drone es un aparato muy poco estable por naturaleza, por lo que ha habido que ser

todo lo riguroso y preciso posible en todas las facetas del proyecto para no aumentar esa

inestabilidad con errores propios.

El diseño del driver del láser ha sido realmente complicado puesto que es un sensor que maneja

gran cantidad de información, tiene un protocolo de comunicación potente pero complejo y se

ha querido sacar de él todo el potencial que ofrece. El driver se ha diseñado de forma muy

flexible y entendible para que se pueda hacer uso de él en futuros proyectos que requieran del

uso de este sensor.

Considero que el proyecto ha sido muy completo. No sólo ha habido que abordar la

programación de un microcontrolador, sino que también se ha diseñado la arquitectura de un

sistema formado por varios dispositivos que se deben conectar y coordinar entre sí, se ha

diseñado un dispositivo electrónico encargado de la distribución de alimentación y conexiones a

los distintos dispositivos y además se ha realizado el diseño y montaje de un dispositivo

mecánico para adaptar la medida del sensor láser al objetivo deseado del control de altura.

Capítulo 7. Conclusiones

61

A nivel personal estoy muy contento con el trabajo realizado, con el cumplimiento de los

objetivos y con todo lo aprendido. Creo que ha sido una experiencia muy enriquecedora, ya que

ante la gran cantidad de problemas que han ido surgiendo a lo largo del proyecto he tenido que

ir encontrando soluciones, que en el fondo es para lo que estamos los ingenieros.

Anexo I. Proceso experimental

62

Anexo I: Proceso experimental

En este anexo se van a explicar las distintas pruebas que se han realizado para hallar los

parámetros óptimos de control. Al final se va a mostrar la gráfica obtenida en una de las pruebas

finales de vuelo estático previas a la prueba de vuelo en movimiento expuesta en el Pruebas de

la aplicación.

Una vez escrito el programa y realizado el montaje de todos los elementos en el drone llegó el

momento de comenzar a realizar las pruebas de vuelo. En primer lugar se ató el drone mediante

unas cuerdas a las patas de unas mesas de uno de los laboratorios de pruebas para impedir que el

drone se pudiese descontrolar ante mi inexperiencia en el vuelo de drones. Inicialmente se ató el

drone muy en corto para evitar la posibilidad de que pudiese volcar. Las primeras pruebas

consistieron en una primera toma de contacto controlando el drone mediante el mando de

radiocontrol. El drone era muy inestable, se movía continuamente de lado a lado y no impactaba

con nada porque las cuerdas lo impedían. A pesar de esta inestabilidad se decidió probar el

control de altura pero el drone ni siquiera se levantó. El motivo fue que no se había

implementado la prealimentación de perturbación gravitatoria en el regulador, y la ganancia

proporcional no era ni mucho menos lo suficientemente grande como para que el drone se

elevase.

Para obtener el valor PWM de la prealimentación gravitatoria a aplicar se hizo un programa que

reducía en 30 el registro de comparación del módulo PWM cada 5 segundos. Se dejó correr el

programa hasta que se observó que el drone estaba a punto de levantarse, momento en el que se

tomó nota del valor del PWM y se abortó la ejecución. Es necesario destacar que el valor de la

prealimentación gravitatoria depende del estado de carga de la batería, y se ha observado que

puede tomar valores entre y , por lo que en las distintas pruebas, a medida que se veía

que el drone tenía más dificultades para despegar se iba aumentando la prealimentación

gravitatoria en este rango.

Una vez aplicada en el control la prealimentación gravitatoria se volvió a probar el controlador

y funcionaba realmente mal. El drone se movía mucho de lado a lado cuando teóricamente debía

únicamente elevarse. Se descubrió que el autopiloto estaba mal situado y se colocó en el centro.

Con esta medida que se tomó el drone era mucho más estable cuando se volaba con el mando.

Posteriormente apareció el problema de las interferencias entre los distintos canales de la radio

que hacían que el drone en pleno vuelo se descontrolase y se estrellase. Por este motivo el drone

sufrió varios golpes, pero gracias a las cuerdas no sufrió daños mayores ni causó daños a otros

Anexo I. Proceso experimental

63

objetos o personas. Como se ha comentado en el apartado 5.2.3. Montaje del drone, este

problema se redujo enrollando los conductores de cada cable entre sí.

Una vez solventados estos problemas se pudieron por fin centrar los esfuerzos en el ajuste de los

parámetros de control mediante multitud de pruebas. La consigna de altura de dichas pruebas

osciló entre los 20cm y los 40cm. Inicialmente se empezó a trabajar con el controlador PD. El

valor de la prealimentación gravitatoria ya se había obtenido y faltaba por determinar los valores

de las ganancias proporcional y derivativa. Dado que en el programa las alturas se trabajan en

unidades de mm, las ganancias en vez de tener unidades de

 tienen unidades de

. Por tanto,

las ganancias iniciales propuestas en el apartado 25 se dividieron entre mil.

En primer lugar se probó a utilizar únicamente la ganancia proporcional para ajustar el

permanente dejando nula la ganancia derivativa. El resultado fue malo per coherente con las

simulaciones ya que el drone no paraba de oscilar, llegando a rebotar en el suelo, sin

equilibrarse en ningún momento. Entonces se decidió aplicar también una ganancia derivativa

para que se opusiera a esas oscilaciones. A partir de esos parámetros iniciales se fue

aumentando y disminuyendo el valor de esas ganancias en relación a lo que se iba observando

en las pruebas. Si se aumentaba la ganancia proporcional el resultado eran grandes oscilaciones

y si se reducía no se alcanzaba la altura de consigna. Si la derivativa era demasiado pequeña

había oscilaciones, si se aumentaba disminuían y si era demasiado grande las oscilaciones

inestabilizaban el sistema. Los mejores resultados se obtuvieron con y

 , aunque no eran buenos ya que las oscilaciones eran exageradas y no se alcanzaba de

forma correcta la altura de referencia. Después de muchas pruebas con este controlador se llegó

a dos conclusiones: era necesario saturar la acción para reducir las oscilaciones para así no tener

que reducir la ganancia proporcional tanto como para que el drone no tuviese suficiente fuerza

como para ascender hasta la altura de consigna y que se iba a añadir una parte integral al

regulador para que ayudase alcanzar el régimen permanente.

En primer lugar se trataron de ajustar los márgenes de acción tanto de ascensión como de

descenso. Se comenzó por valores elevados, pero finalmente se comprobó que para reducir las

oscilaciones lo suficiente había que establecer unos márgenes bajos, que finalmente fueron

 y . Las oscilaciones no se reducen únicamente de este

modo, el ajuste que se ha hecho de las ganancias también es crucial. Con la saturación, los

resultados obtenidos con el control PD mejoraron, pero se seguía teniendo mucha dificultad

para alcanzar la referencia y las oscilaciones seguían siendo excesivas. La Figura A1.1 muestra

una prueba de vuelo con una consigna de altura de 35cm implementando control PD con

Anexo I. Proceso experimental

64

prealimentación gravitatoria y saturación. Los valores de los parámetros de control en esta

prueba fueron

,

, y .

Figura A1.1

Con la implementación del controlador PID con saturación anti-windup los resultados fueron

mucho mejores. Dentro de que siguió habiendo oscilaciones, éstas eran menores y se alcanzaba

mucho mejor la altura de consigna. Se empezó a ajustar el regulador con los valores de y

que mejor habían funcionado en el regulador PD y con un valor de . Se fueron

modificando los distintos parámetros hasta obtener los que han dado mejores resultados y que se

han utilizado también en la prueba de avance con obstáculos del drone, que son:

,

,

, y .

Todas estas pruebas se realizaron también con el drone atado con cuerdas por las patas, pero a

medida que iba funcionando mejor el sistema, se le fue dando más margen de cuerda al drone ya

que las propias cuerdas cuando el drone se mueve le dan tirones y los desestabilizan.

Se probó otro montaje, el de la Figura A1.2, en el que se pretendía atar el drone mediante una

única cuerda a una barra saliente de la pared del laboratorio. Se colocaron unas bridas en el

drone de tal manera que guiasen el descenso de la cuerda a medida que el drone ascendía, pero

cuando el drone se movía un poco lateralmente, la cuerda ya no descendía por la guía que se le

había hecho y chocaba con las hélices, por lo que rápidamente se descartó este montaje y se

volvió el de las cuerdas atadas al tren de aterrizaje.

Anexo I. Proceso experimental

65

Figura A1.2

A continuación se muestra el resultado de una prueba (Figura A1.3) que se realizó con los

parámetros que se han indicado anteriormente. La consigna de altura que se estableció fue de

40cm.

Figura A1.3

Se observa que aunque de vez en cuando se produce una perturbación, que pudo ser entre otros

factores por el tirón de alguna de las cuerdas de sujeción, se alcanzó la altura de consigna tanto

inicialmente como después de esas perturbaciones.

Los últimos resultados conseguidos son los mostrados en el 57.

Anexo II. Comandos de comunicación

66

Anexo II: Comandos de comunicación

En el presente anexo se muestra el listado de comandos que se pueden enviar al drone desde el

programa DIGI XCTU junto con la estructura de cada uno de ellos para que el usuario pueda

utilizar el sistema diseñado. Todos los comandos tienen un carácter de inicio de trama (‘#’) y un

carácter de fin de trama (‘\n’). Es imprescindible añadir dicho carácter al final de cada mensaje

para que éste pueda ser procesado correctamente.

 Consigna de altura: este comando fija la consigna de referencia con la altura en metros.

Ejemplo: #SETR 0.5

 Ganancia proporcional: este comando modifica la ganancia proporcional del regulador

en unidades de

. Ejemplo: #KP 0.015

 Ganancia derivativa: este comando modifica la ganancia derivativa del regulador en

unidades de

. Ejemplo: #KD 0.008

 Ganancia integral: este comando modifica la ganancia integral del regulador en

unidades de

. Ejemplo: #KI 0.00

 Margen de saturación de ascensión: este comando modifica el margen de saturación

superior de la acción de control en newtons. Ejemplo: #USAT 1

 Margen de saturación de descenso: este comando modifica el margen de saturación

inferior de la acción de control en newtons. Ejemplo: #DSAT 0

 Prealimentación gravitatoria: este comando modifica el valor de la prealimentación de

compensación de la fuerza gravitatoria en newtons. Ejemplo: #GRAV 7

Anexo III. Parámetros obtenidos

67

Anexo III: Parámetros obtenidos

En el presente anexo se concentran los parámetros que se han obtenido de forma experimental

durante el desarrollo del proyecto de cara a facilitar la realización de futuras ampliaciones.

 Ganancia proporcional óptima

.

 Ganancia derivativa óptima

.

 Ganancia integral óptima

 Margen de saturación de ascensión óptimo .

 Margen de saturación de descenso óptimo .

 Prealimentación gravitatoria óptima , según carga de la batería.

 Distancia del láser al espejo frontal

 Distancia del espejo frontal al suelo

 Distancia del láser al espejo 1 al

 Distancia del espejo 1 al suelo

 Distancia del láser al espejo 2

 Distancia del espejo 2 al suelo

 Distancia paralela al suelo del centro del láser al centro del drone

Anexo IV. Análisis de tiempo real

68

Anexo IV: Análisis de tiempo real

En el presente anexo se analiza el cumplimiento de los requisitos de tiempo real del sistema de

tareas implementadas. Se ha diseñado una estructura de tareas basada en el criterio Rate

Monotonic por lo que se ha elegido para todas las tareas que el plazo de respuesta sea igual al

periodo. Este criterio da mayor prioridad a las tareas de menor periodo. Para gestionar el acceso

a los recursos compartidos se utiliza el protocolo de bloqueo por herencia de prioridad. La

Figura A4.1 muestra el listado de las distintas tareas e interrupciones hardware y software del

programa junto con su periodo (P), plazo de respuesta (D), tiempo de cómputo (C), tiempo de

bloqueo (Bhp) y número de bloqueos que se han calculado. El tiempo de acceso a un servidor se

ha medido en 9.3µs y el tiempo de dos cambios de contexto es de 57µs.

Figura A4.1

Aplicando el Teorema 5 de Sha, Rajkumar y Lehoczky, el cual establece que en un sistema de n

tareas periódicas con prioridades asignadas en orden de frecuencia, que se comunican mediante

servidores, se cumplen todos los plazos de respuesta, para cualquier desfase inicial de las tareas,

si:

(32)

Anexo IV. Análisis de tiempo real

69

Para comprobar que se cumple esta condición suficiente, se calcula el tiempo de respuesta en el

plazo de cada tarea para el nivel de prioridad de cada tarea:

Figura A4.2

Con esto queda demostrado que la estructura de tareas creada cumple los plazos previstos.

Bibliografía

70

Bibliografía

[1] Corke, P.: Robotics, Vision and Control. Fundamental Algorithms in MATLAB®.

Second, Completely Revised, Extended and Updated Edition. Springer Trackts in

Advanced Roboitcs, vol. 118 (2017)

[2] Beatriz Frisón. Modelado y control de un helicóptero de cuatro motores. Proyecto Final

de Carrera. Universidad de Zaragoza, CPS, 2008/2009.

[3]

Kilian Nicolás Pascual. Planificación de misiones y navegación autónoma de un

quadcopter. Trabajo de Fin Grado. Universidad de Zaragoza, CPS, 2015/2016

[4]

Texas Instruments, SYS/BIOS (TI-RTOS Kernel) v6.46 User’s guide (2016)

[5]

Texas Instruments, TMS320F2837xS Delfino Microcontrollers Technical Reference

Manual (2014, revised in 2016)

[6]

Hokuyo, Communication Protocol Specification For SCIP2.0 Standard (2006)

[7]

DJI, NAZA-M Lite User Manual v2.00 2014.04.21 Revision

[8]

Pololu RC Switch User’s Guide, © 2001–2015 Pololu Corporation

[9]

Texas Instruments, F2837xS Firmware Development Package User’s Guide (2016)

[10]

Robomart, Especificaciones motor DJI 2212/920Kv URL:

https://www.robomart.com/dji-2212-920kv-brushless-motor-for-multicopter

[11]

Hyperphysics, Principio de Fermat URL: http://hyperphysics.phy-

astr.gsu.edu/hbasees/phyopt/Fermat.html

[12]

DIGI International Inc., XBee®/XBee-PRO® RF Modules Product manual (2009)

[13]

Futaba Corporation, INSTRUCTION MANUAL for Futaba 6J-2.4GHz (2011)

[14]

David Pont Esteban, Los UAVs y sus aplicaciones civiles, Zaragoza, 2012

https://www.robomart.com/dji-2212-920kv-brushless-motor-for-multicopter
http://hyperphysics.phy-astr.gsu.edu/hbasees/phyopt/Fermat.html
http://hyperphysics.phy-astr.gsu.edu/hbasees/phyopt/Fermat.html

