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RESUMEN 

Navegación autónoma de un multi-rotor: 

control automático de altura mediante 

sensor láser 

 

Se ha desarrollado el control de altura de un quadcopter mediante el uso del escáner láser 

Hokuyo URG-04LX, para medir la altura del drone respecto al suelo. El usuario será capaz de 

fijar la consigna de altura del drone desde un ordenador, de manera que el drone se adapte a 

dicha altura y consiga estabilizarse una vez alcanzada. Los demás grados de libertad del drone 

pueden manipularse mediante el mando de control.  

Para implementar dicho control ha sido fundamental todo el trabajo de puesta a punto del drone, 

dejándolo en las condiciones más óptimas posibles para facilitar la labor del controlador en un 

sistema con gran tendencia a desestabilizarse. 

La implementación de la aplicación se ha realizado en el microcontrolador TMS320F28377S de 

Texas Instruments y se ha construido sobre el sistema de tiempo real SYSBIOS facilitado por el 

entorno de programación Code Composer Studio. Se ha trabajado con las últimas versiones de 

todos estos paquetes. 

Finalmente se ha procedido a la implementación del control en el drone real, realizando varios 

ensayos para ajustar correctamente los parámetros del controlador y se han obtenido resultados 

satisfactorios. 
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Capítulo 1  

Introducción 

1.1. Contexto y estado del arte 

Los UAVs [ 14 ] (del inglés Unmanned Aerial Vehicle), también conocidos UAS (Unmanned 

Aerial System) como drones o VANT (Vehículo Aéreo No Tripulado), son aeronaves capaces de 

volar sin tripulación a bordo. Los UAS constan de dos partes bien diferenciadas: el dispositivo 

aéreo (la aeronave) y la estación terrestre de control (Ground Control Station). Estos sistemas 

pueden ser controlados remotamente de forma manual o pueden estar programados para realizar 

rutas de vuelo de forma totalmente automática mediante la secuenciación de waypoints sin 

necesidad de pilotarlos. 

Al igual que gran parte de los avances tecnológicos de la sociedad, el desarrollo de los drones 

tiene su origen en el campo militar. El primer vuelo de un drone data del año 1917, el cual tuvo 

una duración de más de 50 millas. El rudimentario UAV era un modelo derivado del avión de 

combate U.S Navy Curtis N-9 trainer. En la actualidad, y como ya viene siendo desde hace unos 

8 años, los drones han dado el salto del campo militar al campo civil, generándose un gran 

abanico de nuevas aplicaciones para ellos, como por ejemplo la cartografía aérea, vigilancia, 

mantenimiento y revisión de infraestructuras, control medioambiental entre muchas otras.  

Una de las líneas de investigación en cuanto a drones que está actualmente en mayor auge es el 

vuelo en interiores. En interiores no se dispone de sistema GPS, que es el medio de localización 

que utilizan los drones convencionales, por lo que es necesario utilizar otros sistemas que 

permitan la localización, como por ejemplo sistemas de visión por computador, sensores 

inerciales o escáneres láser para evitar las colisiones con objetos incluso en entornos 

desconocidos. 

El proyecto se va a realizar en esta línea de investigación. Para poder volar en interiores 

desconocidos es vital poder mantener una altura fija respecto al suelo que permita al drone 

desplazarse por el espacio de forma segura y estable. 

Este proyecto se lleva a cabo dentro del grupo de Robótica, Percepción y Tiempo Real de la 

Universidad de Zaragoza. Éste es uno de los grupos de investigación del Instituto Universitario 
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de Investigación en Ingeniería de Aragón (I3A) y es considerado Grupo de Investigación por el 

Gobierno de Aragón. Dicho grupo tiene las siguientes líneas de trabajo: 

 Localización y Mapeado Simultáneo. 

 Visión por Computador y Percepción. 

 Comunicaciones y redes ad-hoc. 

 Exoesqueletos y procesamiento de bioseñales. 

 Aprendizaje: en robótica, optimización Bayesiana, interfaces cerebro-ordenador... 

 Robótica Móvil. Planificación y navegación. 

 

El proyecto desarrollado se enmarca en ésta última línea de trabajo. 

 

1.2. Objetivo y alcance 

El objetivo del proyecto es el diseño de una aplicación capaz de controlar la altura de vuelo del 

quadcopter F450 FlameWheel de la marca DJI. El control a implementar se realizará un nivel 

por encima el autopiloto NAZA M Lite, que será el encargado de estabilizar el drone 

respondiendo a las consignas de los cuatro grados de libertad que se suelen poder manipular en 

un drone comercial: el nivel del acelerador (throttle) y los tres ángulos de orientación. El 

controlador diseñado en el proyecto dará al autopiloto la consigna de throttle adecuada en cada 

momento para que la altura sea la deseada. 

Para poder implementar el control de altura se hará uso de dos sensores: un escáner láser 

Hokuyo URG-04LX que será el encargado de proporcionar al sistema una medida precisa de la 

distancia el drone respecto al suelo y el IMU Razor 9dof, del cual se obtendrán las medidas de 

los ángulos roll y pitch que permitirán corregir la medida de distancia obtenida por el láser de 

tal manera que se podrá obtener una estimación de la distancia perpendicular del drone al suelo. 

Se deberá diseñar el driver para el láser de la forma más modular posible dado que habrá que 

experimentar con distintas formas de realizar la medida de altura puesto que a priori no se 

conoce la forma más adecuada. 

El drone será dotado de un sistema de comunicaciones con el ordenador que se implementará 

mediante un módulo XBee. De esta manera se le darán al drone las consignas de altura y 

también se podrán realizar ajustes en los parámetros de control. Por otro lado el drone enviará 

periódicamente la altura actual al ordenador. 
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Finalmente se pretenden realizar ensayos con el drone para analizar las prestaciones del 

esquema de control planteado y observar qué resultados es capaz de ofrecer después de ajustar 

los parámetros de control. 

El sistema de control será implementado en el microcontrolador TMS320F8377S y será 

programado sobre el sistema de tiempo real SYSBIOS mediante el entorno Code Composer 

Studio. 

Se cuenta con la información realizada en otros trabajos de fin de carrera anteriores [ 3 ] en la 

misma línea como base. 

1.3. Organización de la memoria 

La memoria se divide en 6 capítulos: 

 Hardware y software: en este capítulo se describe el hardware utilizado en el proyecto, 

así como los distintos programas que se han utilizado. 

 

 Arquitectura del sistema: en este capítulo se muestra el diagrama de bloques del sistema 

implementado y se explica la interconexión entre los distintos dispositivos. 

 

 Ley de control: en este capítulo se exponen los distintos controladores diseñados, las 

simulaciones realizadas y los controladores implementados finalmente. 

 

 Implementación: en este capítulo se describen las soluciones adoptadas para poder 

hacer posible el control, tanto a nivel software como hardware. 

 

 Pruebas de la aplicación: en este capítulo se muestra la prueba más destacada realizada 

con el drone junto con sus resultados. 

 

 Conclusiones: en este capítulo se extraen las conclusiones del proyecto realizado. 
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Capítulo 2  

Hardware y software 

En este capítulo se describen en detalle el hardware y el software empleados en la realización 

del proyecto. 

2.1. Hardware 

2.1.1. Drone utilizado 

El drone del que se dispone es un quadcopter Flame Wheel F450 de DJI (Figura 2.1). Al drone 

se le han añadido varios elementos, con lo que el resultado final varía sustancialmente respecto 

a lo que se puede apreciar en la figura 2.1. 

 

Figura 2.1 

 

2.1.1.1. Estructura 

El quadrotor está formado por 4 brazos de plástico resistente pero lo suficientemente flexible 

como para que no se rompa ante impactos de baja o media envergadura. Dos de los brazos están 

pintados de color rojo y los otros dos de color blanco, siendo así distinguible a simple vista la 

parte frontal de la aeronave, la roja, facilitando así el pilotaje. Los cuatro brazos se unen 

mediante dos tornillos cada uno a las dos placas centrales del drone, de tal manera que a la vez 
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que se aporta rigidez a la estructura por la presión de las placas centrales sobre los 4 brazos, 

también queda espacio libre entre ambas para albergar el hardware necesario. La placa inferior 

tiene preparados puntos de soldadura para facilitar la distribución de la alimentación principal 

del drone a los diversos dispositivos que lo requieran. 

Tal y como se puede observar en la figura 1.1 el chasis del drone cuenta en el extremo de cada 

uno de los brazos con un pie de apoyo para el aterrizaje. No obstante, dado el hardware que va a 

ser necesario embarcar en el drone y que se desea aumentar la resistencia a los impactos, se ha 

optado por añadir un tren de aterrizaje comercial. Dada la complejidad del montaje de los 

distintos elementos a embarcar al drone y su influencia sobre el resultado final, se profundizará 

más en la estructuración del mismo en el apartado  

Figura 5.18 

5.2.3. Montaje del drone. 

2.1.1.2. Autopiloto 

El autopiloto utilizado es el NAZA M Lite (Figura 2.2). Tiene cuatro entradas para el control del 

drone: las de los tres ángulos de orientación y la del acelerador. Las consignas para cada uno de 

los canales mencionados se transmiten mediante una señal PWM. El algoritmo de control 

implementado en el autopiloto se encarga de la estabilización del drone mediante las medidas 

obtenidas por su giróscopo, acelerómetro y barómetro internos. 

 

Figura 2.2 

 

2.1.1.3 Batería 

La batería utilizada para la aplicación es la Trunigy 5.0 4S 30C (Figura 2.3). Tiene una tensión a 

plena carga de 16.8V y un peso de 631g. La batería constituye la fuente de alimentación 

principal, a partir de la cual se extraerán los niveles de tensión necesarios para alimentar los 

diversos componentes. Para alimentar el autopiloto se ha utilizado el ·3DR Power Module, que 

a partir de la entrada de la batería pone a su salida una tensión de 5.3V. 
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Figura 2.3 

2.1.1.4. Motores 

El drone está equipado con cuatro motores DJI 2212/920Kv (Figura 2.4). Cada motor ofrece un 

empuje máximo de 1.2kg [ 10 ]. Para la batería utilizada (4 celdas), las hélices adecuadas para el 

motor recomendadas por el fabricante, y que por tanto las que se han montado, son de 10 

pulgadas. 

 

Figura 2.4 

2.1.1.5. Equipo de radiocontrol 

La mando de radiocontrol utilizado para pilotar el drone es la Futaba 6J [ 13 ]. Dicha radio tiene 

6 canales y trabaja a una frecuencia de 2.4GHz. El mando emisor se comunica con el receptor 

R2006GS de doble antena embarcado en el drone. En la aplicación en cuestión se van a utilizar 

únicamente 5 canales, de los cuales 4 se utilizan para dar manualmente las consignas de roll, 

pitch, yaw y throttle, y el quinto canal se utiliza para la selección del modo de vuelo, así como 

para conectar el mando o la salida pwm del microcontrolador a la entrada de throttle del 

autopiloto. En el capítulo 19, se detalla este tema. 
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2.1.2. Microcontrolador 

El microcontrolador utilizado es el TMS320F28377S, diseñado por Texas Instruments. Se hace 

uso de la placa de desarrollo LAUNCHXL-F28377S (Figura 2.5), que básicamente embarca el 

microcontrolador sacando sus puertos a conectores externos para que sea posible el acceso a 

ellos. Además la placa incorpora el módulo de debugging XDS100v2 para testear la aplicación 

desde el entorno de programación. 

 

Figura 2.5 

 

El microcontrolador tiene una tensión nominal de alimentación de 3.3V, una CPU de 32 bits y 

una frecuencia máxima de reloj de 200MHz. Tiene una memoria RAM de 164KB y una FLASH 

de 1MB. Entre sus periféricos destacan dos conversores AD de hasta 16 bits con hasta 14 

entradas, 15 canales PWM, 2 módulos I
2
C y 3 módulos SCI. 

El F28377S tiene capacidad para ejecutar aplicaciones basadas en el sistema operativo de 

tiempo real SYS/BIOS. El microcontrolador se programa con el entorno de programación Code 

Composer Studio. 

2.1.3. Sistema de medida de altura  

Para la medida de la altura se utiliza el escáner láser URG-04LX de la marca Hokuyo. El láser 

es uno de los elementos centrales del proyecto. Debido a que el sensor utilizado no es 

unidireccional sino que es un escáner y va ubicarse solidario al drone y orientado 

horizontalmente, es necesario diseñar un elemento mecánico para redirigir los rayos emitidos 

por el sensor hacia el suelo. El sistema de medida láser se basa, por tanto, en los elementos que 

aparecen a continuación. 
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2.1.3.1. Escáner láser Hokuyo URG-04LX 

El escáner láser URG-04LX (Figura 2.6) se basa en un emisor láser de longitud de onda de 

785nm. El cálculo de la medida se fundamenta en la medida de la diferencia de fase entre el 

rayo emitido y el recibido. El rango máximo de escaneo del laser es de 240º, realizando una 

nueva medida cada 0.36º. La resolución del sensor es de 1mm y las distancias medibles se 

comprenden en el rango de 20mm a 4m. Es posible comunicarse con el sensor mediante 

comunicación USB o RS232 a velocidad configurable entre un amplio rango de valores. Su 

peso es de 160g las dimensiones son de 50x50x70mm. La tensión de alimentación es de 5V y el 

consumo de corriente puede llegar hasta los 800mA. 

 

Figura 2.6 

 

2.1.3.2. Adaptador RS232 

Puesto que el microcontrolador se alimenta con una tensión de 3.3V y el láser con una de 5V es 

necesario introducir un módulo que adapte los niveles de tensión entre ambos elementos con el 

fin de que la comunicación sea factible. Para ello se dispone de una placa (Figura 2.7) fabricada 

con anterioridad que está basada en el circuito integrado MAX3222. Dicho circuito consta de 

dos canales de comunicación, aunque únicamente se utiliza uno de ellos. El MAX3222 

transforma la tensión proveniente del microcontrolador del rango 0V a 3.3V al rango -5V a 5V 

para que llegue al láser con los niveles de tensión que éste requiere. Análogamente reduce la 

tensión proveniente del láser del rango -5V a 5V al rango 0V a 3.3V en el que trabaja el 

microcontrolador.  La tensión a la que se alimenta el circuito es de 3.3V y la velocidad máxima 

de comunicación es 250kbps. 
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Figura 2.7 

2.1.3.3. Estructura del láser 

Se ha diseñado y fabricado una estructura (Figura 2.8) que permita acoplar el láser al drone y 

que a la vez permita redirigir hacia el suelo los rayos emitidos por el sensor. La estructura 

consta de una plancha que se atornilla al drone por la parte superior y se la atornilla el láser por 

la parte inferior. De la plancha salen 3 brazos con espejos en sus extremos que redirigen los 

rayos al suelo. En el apartado 5.2.1. Soporte para el láser se explica el papel que juega la 

estructura en detalle. 

 

Figura 2.8 

2.1.4. Unidad de medida inercial (IMU) 

Se utiliza el IMU 9DOF Razor (Figura 2.9) que consta de un giróscopo de 3 ejes, un 

acelerómetro de 3 ejes y un magnetómetro de tres ejes. Un microcontrolador gestiona la medida 

de todas esas variables y las transmite por comunicación SCI  a una velocidad 57600bps con un 

periodo de 25ms. En el proyecto únicamente se utilizan las medidas de los ángulos roll y pitch 

para corregir la medida de la altura. 
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Figura 2.9 

2.1.5. Comunicaciones 

Se dispone de dos XBee (Figura 2.10). Uno de ellos va embarcado en el drone y el otro 

conectado al ordenador para implementar las comunicaciones entre ambos. El XBee [ 12 ] se 

conecta al microcontrolador mediante uno de los módulos SCI de los que éste dispone. La 

velocidad de comunicación que  se ha elegido es de 9600bps, la tensión de alimentación 

nominal es de 3.3V y la frecuencia de radio es de 2.4GHz. 

Las comunicaciones implementadas son bidireccionales, de tal forma que se le pueden enviar 

paquetes de datos al drone, como por ejemplo la consigna de altura, así como recibir 

información del mismo, como la altura actual. 

 

 

Figura 2.10 

 

2.1.6. Regulador de tensión de 5V 

Con el fin de alimentar los distintos elementos electrónicos que van a bordo del drone, se debe 

reducir la tensión de salida de la batería a 5V y 3.3V. Se ha conectado a la batería un conversor 
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reductor de tensión. Este tipo de elemento es comúnmente conocido en el mundo del 

radiocontrol como BEC (Battery Eliminator Circuit) ya que evita la necesidad de añadir una 

batería adicional, en este caso de 5V. El conversor (Figura 2.11) reduce la tensión de la batería a 

5V para alimentar el láser, dando la corriente suficiente a tensión constante para que éste 

funcione correctamente. 

 

Figura 2.11 

 

2.1.7. Placa de conexionado 

En el drone se han embarcado varios dispositivos que deben alimentarse a distintos niveles de 

tensión y conectarse entre sí mismos, y de cara a facilitar esa tarea se ha diseñado una placa de 

conexionado (Figura 2.12). La placa se alimenta con la tensión de 5V proveniente de la salida 

del BEC. La placa a partir de ese nivel de tensión genera otro nivel de 3.3V para alimentar el 

modulo XBee, el MAX3222 y el IMU. Además de los pines de la alimentación también se han 

colocado los pines necesarios para el conexionado de los distintos puertos de los citados 

dispositivos. 

 

Figura 2.12 
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2.1.8. Multiplexor de modo de vuelo 

El drone debe poder ser capaz de volar tanto totalmente radiocontrolado desde el mando de 

control como de volar con el control de altura activado, controlándose el resto de grados de 

libertad desde el mando. Para ello se utiliza el Pololu 4-Channel RC Servo Multiplexer [ 8 ] 

(Figura 2.13). A dicho multiplexor se conectan la entrada de throttle del autopiloto, el canal de 

throttle del receptor radio y la acción de control de throttle del microcontrolador. La selección 

de la entrada de throttle que se conecta al autopiloto se realiza mediante la entrada SEL del 

multiplexor. A dicha entrada se conecta el quinto canal del receptor radio, de tal manera que se 

puede controlar la señal multiplexada desde un interruptor del mando de control. 

 

Figura 2.13 

 

Además, el quinto canal de la radio también está conectado a la entrada de modo de control del 

autopiloto. De esta forma, cuando la consigna de throttle que llega al drone es la del propio 

mando, el autopiloto está en modo Manual, controlándose en velocidad los ángulos de 

orientación del drone. En cambio, cuando la consigna que llega al drone es la proveniente del 

control de altura del microcontrolador, el modo de vuelo cambia a Attitude Mode, modo en el 

que se controlan los ángulos de la orientación en posición. 

 

2.2. Software 

En esta sección se explica el software utilizado en el desarrollo del proyecto. 

2.2.1. Programación del microcontrolador 

Para programar el microcontrolador se ha hecho uso del entorno de programación de Texas 

Instruments así como de su sistema operativo de tiempo real. Se ha utilizado la última versión 

que había disponible en la fecha de comienzo del proyecto de ambos productos. 
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2.2.1.1. Code Composer Studio (CCS) 

Es el entorno de programación que se ha utilizado para programar el microcontrolador. El 

programa consta de dos modos principales: el modo edición de código y el modo debugging 

para depurar el programa realizado. Es un entorno de programación realmente potente. La 

versión utilizada es la v7.1. 

2.2.1.2. SYS/BIOS 

SYS/BIOS [ 4 ] es el sistema operativo de tiempo real, diseñado por Texas Instruments, sobre el 

que se ha implementado el programa realizado en el proyecto. Ofrece una serie de primitivas ya 

programadas que permiten al usuario trabajar de forma más sencilla con una aplicación de 

tiempo real. El protocolo de acceso implementado por SYS/BIOS es el de herencia de prioridad. 

La versión que se ha utilizado es la v6.46. 

2.2.2. DIGI XCTU 

El XCTU de la empresa DIGI es el programa utilizado para la comunicación entre los módulos 

XBee. Además de permitir configurar los XBee, el programa tiene una consola serie desde la 

que se pueden enviar y recibir mensajes. Dicho registro de mensajes se puede posteriormente 

almacenar para el procesamiento de los datos obtenidos. También existe la posibilidad de crear 

un conjunto de mensajes y guardarlos con formato xml para cargarlos en otra sesión y no tener 

que crearlos cada vez que se vaya a ejecutar la aplicación. 

2.2.3. URG BENRI Standard 

Este programa permite conectar el escáner láser al ordenador y visualizar de forma tanto gráfica 

como numérica las medidas que el escáner está tomando. Además permite abrir un terminal 

serie entre el ordenador y el láser para poder configurarlo. 

2.2.4. DJI NAZAM Lite Assistant 1.00 

Permite conectar el autopiloto al ordenador para ver el estado en el que se encuentra el equipo y 

comprobar que todo funciona correctamente. Además, desde el programa [ 7 ] se pueden 

configurar diversos parámetros del drone. 

2.2.5. Matlab 

Es un programa matemático que ofrece un entorno de desarrollo integrado. Se ha hecho uso de 

su herramienta Simulink para simular los comportamientos de los distintos reguladores.
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Capítulo 3  

Arquitectura del sistema 

En el presente capítulo se explica la interacción y el conexionado entre los distintos elementos 

que constituyen la aplicación. En la Figura 3.1 se muestra un diagrama de bloques del sistema. 

 

 

 

 

 

 

 

 

 

Figura 3.1 
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3.1. Alimentación 

La fuente de alimentación principal del drone es una batería LiPo de 4 celdas, que a plena carga 

se traduce en una tensión de 16.8V. Según los fabricantes de los motores y los ESCs 

(controladores de velocidad) tanto unos como otros pueden trabajar perfectamente a esa tensión. 

Sin embargo, es necesario obtener tensiones de alimentación de 5V y de 3.3V para alimentar los 

diversos dispositivos electrónicos. 

Conectando el BEC a la batería se obtiene una tensión fija de 5V. La salida del BEC y el 

terminal neutro de la batería se llevan a la placa de conexionado. Estos dos terminales están 

conectados con los pines de alimentación del láser y con los terminales de 5V y GND del 

regulador de tensión de 3.3V que se ha soldado a la placa. Finalmente, los terminales neutro y 

de salida del regulador de tensión se llevan a los distintos pines de alimentación que se han 

distribuido por la placa para alimentar el microcontrolador, el módulo XBee y el módulo del 

MAX3222. El IMU, que también se alimenta a 3.3V, se conecta directamente a dos de los 

terminales de 3.3V y GND de la placa del microcontrolador ya que la corriente que consume es 

baja. 

 

3.2. Conexión de los dispositivos 

En este apartado se dividen los distintos elementos que forman el sistema según el módulo del 

microcontrolador con el que interactúan. Se entrará en detalle en la programación y los aspectos 

más relevantes de cada módulo en el 30.  

3.2.1. Láser, IMU y XBee 

Estos tres elementos se comunican con el microcontrolador por SCI. El microcontrolador 

dispone de 3 canales SCI distintos, por lo que ha habido que utilizarlos todos. La velocidad de 

comunicación en cada canal es configurable por separado, sin embargo la frecuencia de reloj (la 

señal de reloj de baja frecuencia del microcontrolador) que llega a los tres canales es la misma, 

por lo que se debe fijar una frecuencia de reloj que permita establecer simultáneamente las 

velocidades de comunicación de los tres periféricos. 

El escáner láser está conectado (mediante el adaptador de tensiones para comunicación RS232) 

al módulo SCIa con una velocidad inicial de 115.2kbps por defecto, que una vez establecida la 

comunicación entre el microcontrolador y el láser se incrementará hasta los 250kbps. El IMU 

está conectado al módulo SCIb con una velocidad 57600bps, recibiéndose una trama que 
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contiene las aceleraciones en los tres ejes y los ángulos girados también respecto a los tres ejes. 

El IMU está programado para enviar una medida de las 6 magnitudes cada 25ms. Por último, el 

XBee está conectado al módulo SCIc con una velocidad de 9600bps. 

3.2.2. Autopiloto 

El microcontrolador da la consigna de throttle al autopiloto a través del canal EPWM2 del 

bloque PWM. La señal debe tener un ancho de pulso limitado entre 1ms y 2ms, con un periodo  

de 13.60ms para de esta manera emular un canal del receptor de radiofrecuencia. Esta consigna 

es llevada al canal 2 del lado de los esclavos del multiplexor Pololu y de allí al autopiloto 

cuando la entrada SEL lo determina. Además de la señal PWM, es necesario llevar al 

multiplexor (y por ende al autopiloto) el nivel de alimentación y la masa del canal PWM, por lo 

que también se han llevado al multiplexor dos cables adicionales: uno proveniente de uno de los 

pines de 3.3V de la placa del microcontrolador y otro de uno de los pines de GND. 
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Capítulo 4  

Ley de control 

En este capítulo se expone el proceso seguido a la hora de diseñar e implementar los 

controladores de altura que se han probado. Se expondrán las conclusiones extraídas de las 

simulaciones previas y los esquemas de control que se han implementado. 

4.1. Simulación 

Se parte de un simulador de control para drone [ 1 ]. Aunque el simulador no se va a utilizar 

para obtener los valores numéricos de los parámetros de control dado que los propios módulos  

implicados en la cadena de control tienen sus propias ganancias (por ejemplo la conversión de la 

acción de control a una señal PWM), se van a realizar ciertas simulaciones para ver cómo 

influye la variación de las distintas ganancias. 

En un principio se ha planteado el uso de un controlador proporcional derivativo (PD) con 

prealimentación de la perturbación gravitatoria ya que éste es uno de los controladores más 

utilizados para este tipo de aplicación, y una muestra de ello es que es el regulador 

implementado en el simulador del que se dispone. La parte proporcional acercará al drone a la 

altura de consigna y la parte derivativa debe oponerse a las variaciones de altura para que el 

drone se mantenga estable en régimen permanente. Se realimenta la altura a la que se encuentra 

el drone. En la Figura 4.1se muestra el modelo en Simulink del controlador. Además del control 

de altura hay otros controladores implementados en el simulador para los demás grados de 

libertad del drone. Los parámetros de esos controladores se dejan fijos y únicamente se cambian 

los parámetros del controlador de altura (líneas rojas). 
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Figura 4.1 

 

A continuación se exponen los resultados de algunas de las simulaciones realizadas con los 

parámetros    y     seleccionados en cada una de ellas. En las simulaciones se le ha dado al 

sistema una consigna de altura de 1m. 

Inicialmente se ha anulado la ganancia derivativa para estudiar el comportamiento de la 

ganancia proporcional. Como se observa en la Figura 4.2 para un valor de       (que 

produce un tiempo de respuesta relativamente rápido), el drone no alcanza un régimen 

permanente y oscila continuamente. 

 

Figura 4.2 
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Al añadir una      , del orden de magnitud de la   , se consigue alcanzar el régimen 

permanente aunque hay oscilaciones, tal y como se muestra en la Figura 4.3, con lo que se 

constata la necesidad de aplicar una acción derivativa. 

 

Figura 4.3 

 

Se han ajustado ambos parámetros a través de distintas simulaciones (       y       ) 

hasta obtener una respuesta sin sobrepasamiento y con error de posición nulo (Figura 4.4). 

 

Figura 4.4 

 

Las conclusiones extraídas de las distintas simulaciones sobre el efecto de cambiar los valores 

de    y    se basan en que para eliminar las oscilaciones, los valores de ambas ganancias deben 

ser parecidos, una    demasiado grande aumenta considerablemente el tiempo de respuesta y 

una demasiado baja hace que el sistema oscile. Cuanto más se aumenta la   , menor es el 

tiempo de respuesta. 
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4.2. Implementación de los controladores 

Se ha medido con el osciloscopio que la consigna de throttle que el microcontrolador da al 

drone es un pulso de una anchura entre 1ms y 2ms y con un periodo de 13.60ms, y hay que 

diseñar el algoritmo que traduzca la consigna generada por el propio controlador en una señal de 

ese tipo. 

El controlador que se ha diseñado trabaja con la magnitud de la fuerza, aunque en el mundo de 

los drones, y concretamente de los motores para drone, se suele denominar empuje. La consigna 

enviada al drone es una imagen de la fuerza que se le está demandando a los motores que 

produzcan. Siendo    el coeficiente de sustentación de las hélices,   la densidad del aire y   el 

radio de cada hélice, el empuje ( ) y la velocidad angular del motor están relacionados a través 

de la siguiente ecuación [ 2 ]: 

        
 

       
 

 

 

( 1 ) 

 

A continuación se establece una relación aproximada entre el empuje y el valor del registro de 

comparación del módulo PWM que determina la anchura del pulso generado. Conocer esta 

relación es fundamental para tener una idea de en qué rango se van a mover los valores de los 

distintos parámetros de control. 

Los motores montados en el drone tienen una relación velocidad/tensión de    
   

 
. Partiendo 

de la base de que la batería tiene 4 celdas con una carga máxima de 4.2V cada una, la tensión de 

la batería cargada es: 

                 ( 2 ) 

 

Por tanto, la máxima velocidad a la que puede girar un motor es: 

                       ( 3 ) 

 

Si se tuviese conocimiento del coeficiente de sustentación de la hélice, sabiendo que el radio es 

de 12.7cm se podría calcular el empuje máximo que puede generar cada motor. Este dato se 

desconoce, sin embargo, en la hoja de características del motor aparece el dato del empuje 

máximo de cada motor, que es de 1.2kgf, equivalente a 11.76N por motor. Teniendo en cuenta 

que ese es el empuje máximo, conociendo los valores a escribir en el registro de comparación 

del módulo PWM para obtener pulsos de          y          (calculados en el apartado 

5.1.1.1. Configuración hardware) y sabiendo, porque se ha medido con el osciloscopio, que a 
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menor anchura de pulso más tensión se le aplica al motor, se plantea el siguiente sistema de 

ecuaciones: 

 
               
               

              
          

              
  

( 4 ) 

 

 

Resolviendo el sistema de ecuaciones se halla el valor a escribir en el registro de comparación  

del bloque PWM en función del empuje   deseado: 

                   ( 5 ) 

 

4.2.1. Control PD 

El diagrama de bloques del controlador PD con prealimentación de consigna y saturación 

implementado sobre el drone se muestra en la Figura 4.5. 

 

Figura 4.5 

 

El empuje o fuerza ascensional   (en Newtons), de acuerdo a este controlador, se calcula de la 

siguiente manera: 

             
  

 
 

( 6 ) 

 

La prealimentación gravitatoria se divide entre 4 ya que el empuje calculado es el de un motor 

por separado, que es el que debe generar cada uno. 

Los parámetros de control que hay que fijar son   ,   , y la prealimentación de la gravedad. 

Dado que no se conoce la función de transferencia del sistema, no se puede calcular un 

regulador estableciendo requisitos de tiempo de respuesta y sobreoscilación por los métodos 

clásicos, por lo que se han realizado unas estimaciones numéricas para obtener unos valores 
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orientativos de los distintos parámetros de control y posteriormente se han ajustado 

experimentalmente de acuerdo con el comportamiento observado en las simulaciones.  

La prealimentación gravitatoria se podría haber calculado pesando el drone, sin embargo se ha 

realizado un experimento más exacto en el que se ha ido aplicando como acción un pulso PWM 

cada vez menor (se recuerda que a menor anchura de pulso mayor es el empuje solicitado) hasta 

que el drone ha estado a punto de elevarse, y ese valor PWM se ha traducido a empuje 

sustituyendo en la ecuación ( 5 ) y así se obtiene el valor en Newtons de la prealimentación 

gravitatoria. Se ha buscado que la prealimentación gravitatoria no sea suficiente para elevar el 

drone, simplemente la necesaria como para que un poco más de acción ya haga ascender al 

drone. 

En cuanto a los parámetros    y   , la estimación se ha basado en buscar que se produzca una 

acción de control razonable ante determinados valores de error. Por ejemplo, es razonable 

pensar que el máximo error diferencial (teniendo en cuenta que se obtiene una medida de altura 

cada poco más de 100ms) que se puede tener es de 5cm. Por otro lado y bajo esa premisa, 

también es razonable imponer que para un error de 1m la acción sature. El valor de la 

prealimentación gravitatoria, es de unos 6.6N. Unificando todas estas condiciones y 

sustituyendo en la ecuación ( 6 ) se pueden obtener unos valores base de las ganancias: 

                                              ( 7 ) 

 

Buscando darle más peso a la parte proporcional que a la derivativa se impone      
 

 
 para 

que tan sólo aporte 0.5N y   toma por tanto un valor de        
 

 
. Estos valores se tomarán 

como punto de parida para las pruebas con el drone. 

4.2.2. Controlador PID 

Como se expone en el Anexo I: Proceso experimental, el control PD no ha funcionado como se 

esperaba. Las oscilaciones eran muy exageradas pero el mayor problema se encontraba a la hora 

de llegar al régimen permanente. Por estos motivos se ha diseñado un controlador PID, que 

debería facilitar alcanzar el régimen permanente. En la Figura 4.6 se muestra el esquema de 

dicho controlador. 
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Figura 4.6 

Todo lo expuesto en relación al controlador PD es igualmente válido, sin más que la adición de 

la ganancia integral, con lo que ahora la acción de control se calcula: 

                   
  

 
 

( 8 ) 

 

Como parámetros iniciales se han tomado los mismos que en el control PD, y para la ganancia 

proporcional   se ha tomado un valor bajo en relación a las otras ganancias para comenzar con 

el ajuste experimental, de tal manera que esta ganancia no haga que el sistema se inestabilice. 

Se ha implementado un sistema de saturación anti-windup para que el regulador no siga 

integrando el error una vez la acción está saturada tanto superior como inferiormente. Si la 

acción está saturada se deshabilita la integración, manteniéndose la última acción integral 

aplicada antes de que se diese la saturación. Añadir un sistema de saturación integral es 

imprescindible. Si no se añadiese, el error integral se seguiría acumulando y se generarían unas 

oscilaciones cada vez de mayor amplitud que harían que el sistema se descontrolase. 

4.2.3. Saturación 

En ambos reguladores se ha incluido un bloque de saturación como se muestra en sus 

correspondientes diagramas de bloques. En este sistema el bloque de saturación es de vital 

importancia. La acción que se puede aplicar al drone es un pulso entre 1ms y 2ms, pero 

experimentalmente se ha comprobado que es necesario saturar  mucho la acción porque  si no el 

drone se vuelve inestable aunque las ganancias sean bajas. En realidad este comportamiento es 

normal, porque es como si se intentase estabilizar manualmente el drone a una altura concreta 
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moviendo el stick del acelerador a lo largo de todo el recorrido que permite el mando, cuando 

realmente lo que se hace es mover el stick ligeramente en torno a un punto de equilibrio. 

El sistema de saturación que se ha propuesto pretende emular ese comportamiento y es relativo 

a la magnitud de la prealimentación de consigna. Los valores de saturación superior e inferior de 

la acción de control vienen dados por: 

     
  

 
                 

 

( 9 ) 

 

 

     
  

 
                

( 10 ) 

 

 

Estos márgenes se han estimado experimentalmente y los valores que toman son 

                   y                  , es decir, la acción nunca puede ser menor 

que la prealimentación gravitatoria. Se recuerda que la prealimentación gravitatoria es la justa 

para que el drone casi empiece a sustentarse, pero sin llegar a hacerlo. De esta forma el 

comportamiento del drone es mucho más suave. Los resultados han mejorado mucho con este 

esquema de saturación obteniéndose respuestas con muchas menos oscilaciones. 
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Capítulo 5  

Implementación 

En este capítulo se presentan las soluciones implementadas para la superación de los distintos 

frentes que se han ido presentando a lo largo de la elaboración del proyecto. La implementación 

del control de altura del quadrotor tiene una carga elevada a nivel software como cabría esperar. 

Sin embargo el trabajo a realizar a nivel hardware y de ajustes del drone ha sido también muy 

tedioso e igual de importante. 

5.1. Diseño software de la aplicación 

El control de altura del drone conlleva la utilización de varios elementos hardware distintos, los 

cuales se han presentado de forma breve anteriormente. El programa debe acceder a todos esos 

elementos tanto para leer la información recibida como para darles órdenes. Además, la 

información de los distintos periféricos debe combinarse en el propio programa con distintos 

fines como se explicará a continuación. Adicionalmente, se requiere un control riguroso del 

tiempo en el que se ejecutan ciertas secciones del código así como la periodicidad con la que se 

ejecutan, como es el caso del claro ejemplo del bucle de control. Por estos motivos se ha 

implementado el programa sobre un sistema operativo de tiempo real para microcontroladores, 

SYS/BIOS. 

El programa, por tanto, se ha estructurado en una serie de tareas que ejecutan funciones aisladas 

y que se comunican entre ellas mediante los diversos servidores que se han diseñado, los cuales 

permiten el acceso seguro a los distintos recursos compartidos, como por ejemplo los datos 

obtenidos por los sensores. 

A continuación se van a analizar los distintos aspectos de la implementación del programa, 

comenzando por la configuración hardware y software del microcontrolador, continuando con 

las funciones implementadas en las distintas tareas y con los servidores programados. 
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5.1.1. Configuración del microcontrolador 

5.1.1.1. Configuración hardware 

En primer lugar se han configurado los distintos puertos del microcontrolador de acuerdo con el 

hardware que debe conectarse al mismo.  

La frecuencia principal de reloj del microcontrolador se ha configurado en 200MHz, que es la 

máxima alcanzable. Se ha elegido esta frecuencia porque existirán porciones de código 

importantes que deberán procesarse lo más rápido posible y el consumo del microcontrolador no 

es un problema en la aplicación, ya que comparado con el de los motores es prácticamente 

inexistente. La fuente de reloj elegida ha sido la del oscilador de la placa en la que va 

embarcado el microcontrolador y el reloj interno del microcontrolador ya que la fuente externa 

tiene una precisión superior (de 30 ppm). 

El bloque PWM debe generar una señal de frecuencia                  , lo cual equivale a 

un periodo de 13.60ms, con un tiempo en alto variable entre 1ms y 2 ms. Arbitrariamente se 

elige una precisión temporal muy elevada en el PWM, de 0.5µs (equivalente a una frecuencia de 

          ), para poder dar una consigna de calidad al autopiloto. Las distintas ecuaciones 

aplicadas respecto a la configuración de los módulos del microcontrolador se han extraído del 

manual de usuario [ 5 ]. En dicho manual también se puede ver el uso de cada registro utilizado 

en las fórmulas. El valor real de la frecuencia de tick se calcula de acuerdo a: 

      
       

                
 

    

 
                

 
      

                
 

( 11 ) 

 

 

De tal forma que siendo la frecuencia de tick del PWM de           : 

                 
   

 
       

( 12 ) 

 

 

Se toman HSPCLKDIV = 6 y CLKDIV = 8, obteniendo un producto de 48 y por tanto una 

frecuencia real de tick de: 

      
       

                
 

   

  
             

( 13 ) 

 

 

Finalmente, los valores del registro de periodo y de los valores máximo y mínimo del registro 

de comparación se calculan de la siguiente manera: 
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                                                   ( 14 ) 

 

                                                  ( 15 ) 

 

                                                  ( 16 ) 

 

 

En el módulo SCI, además de los temas de paridad, start bit y número de stop bits que se fijan 

para que se ajusten a lo que aparece en la hoja de características de cada dispositivo, es 

necesario configurar 5 parámetros: la frecuencia de la señal de reloj que llega al bloque SCI, las 

velocidades de comunicación del IMU y el XBee y las dos velocidades de comunicación del 

escáner láser (la de arranque y la de funcionamiento). La velocidad de comunicación se fija 

mediante el registro BRR de cada canal de acuerdo a la siguiente fórmula: 

    
      

         
   

( 17 ) 

 

 

Interesa que el valor del BRR sea lo más elevado posible para que la velocidad de comunicación 

se ajuste lo máximo posible a la teórica después de redondear el resultado de la igualdad 

anterior al entero más cercano. También de acuerdo con la fórmula anterior, a mayor valor de 

bitrate la frecuencia del reloj de baja velocidad, LSPCLK, debe ser mayor. Esta frecuencia se 

obtiene dividiendo con un prescaler la frecuencia fCPU, y su máximo valor es de 100MHz según 

la hoja de características del microcontrolador. Dado que la velocidad máxima de comunicación 

que se va a establecer es de 250kbps, la frecuencia elegida para la señal de reloj que llega al 

módulo SCI es LSPCLK = 100MHz. Los valores a escribir en los registros BRR son: 

               
       

        
       

( 18 ) 

 

             
       

        
      

( 19 ) 

 

       
       

       
       

( 20 ) 

 

        
       

      
        

( 21 ) 

 

 

5.1.1.2. Configuración software 

Desde el entorno CCS, una vez generado el proyecto [ 9 ] con SYS/BIOS, es necesario 

configurarlo incluyendo los módulos que se vayan a utilizar. En el proyecto se han incluido 
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varios módulos, entre los que destacan Clock (para contabilizar tiempos y poder implementar 

tareas periódicas), Semaphore (para bloquear y desbloquear las tareas tanto de forma periódica 

como esporádica), SWI (para lanzar interrupciones software ante ciertos eventos que determinen 

la necesidad de ejecutar cierto código de elevada prioridad), HWI (para configurar de forma 

sencilla las distintas fuentes de interrupción hardware), GateMutexPri (para implementar 

servidores que trabajen con bloqueo por herencia de prioridad) y Boot (para configurar el reloj 

de sistema). 

Además de incluir y configurar los módulos anteriormente mencionados también se han fijado 

el tamaño de la pila del sistema, el tamaño de la pila de cada tarea y la Heap del sistema, donde 

se alojan los elementos de SYS/BIOS creados dinámicamente, como las distintas tareas e 

interrupciones hardware y software. 

5.2. Diseño del software 

En esta sección se va a explicar la forma en que se ha implementado el programa. A 

continuación se exponen las tareas implementadas junto con la descripción general de los 

drivers implementados para los distintos periféricos a los que accede cada una de ellas y 

finalmente los servidores propuestos para el acceso seguro a los recursos compartidos. 

5.2.1. Tareas 

Las tareas programadas, más allá de su contenido, se pueden diferenciar en dos grupos según el 

tipo de activación asociado a cada una de ellas. 

 Tareas periódicas: estas tareas son activadas periódicamente por un objeto Clock que al 

alcanzar el número de conteos establecidos en su creación ejecuta una función que 

desbloquea el semáforo de la tarea en cuestión, dejándola activa para que el sistema 

operativo la ejecute cuando sea necesario. 

 

 Tareas esporádicas: estas tareas se activan cuando se produce cierto evento externo que 

las desbloquea. El motivo de haber elegido esta implementación es que de esta forma se 

tiene acceso mucho más rápidamente a la información captada que con una 

implementación periódica ya que el sincronismo es prácticamente perfecto más allá de 

la posible latencia asociada a que deban ejecutarse tareas de mayor prioridad antes de 

las esporádicas que nos ocupan. Las tareas que se han implementado como esporádicas 

son las asociadas a la recepción de información por parte del IMU, el escáner láser y el 

XBee. Los tres dispositivos coinciden en que se conectan al microcontrolador por 
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comunicación SCI, y el mecanismo de desbloqueo de la tarea de recepción de datos de 

cada uno de los tres elementos es el siguiente. Las tramas de caracteres que se reciben 

de cada dispositivo tienen unas características concretas, pero en los tres casos, a 

grandes rasgos, hay un carácter esperado de inicio de trama y uno de fin de trama. Cada 

vez que los sensores envían un carácter al microcontrolador, se activa una interrupción 

hardware que almacena en un buffer dicho carácter si es el carácter que se espera de 

inicio de trama o si, sin haberse superado la longitud esperada del mensaje, ya se ha 

recibido anteriormente el carácter de inicio de trama. En el momento en que se recibe el 

carácter de fin de trama se genera una interrupción software que por un lado almacena 

una copia del mensaje recibido en la variable en cuestión que esté dentro del alcance de 

la tarea que la va a leer y por otro lado desbloquea el semáforo asociado a la tarea que 

va a procesar la información recibida. 

 

La planificación de tareas implementada se basa en el criterio Rate Monotonic, que da mayor 

prioridad a las tareas más frecuentes, es decir, a las que tienen menor periodo. El análisis de 

tiempo real del sistema de tareas se encuentra en el Anexo IV: Análisis de tiempo real.  En la 

Figura 5.1 se muestra el esquema de tareas y servidores y posteriormente se explica la función 

que tiene cada tarea. 

 

Figura 5.1 
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5.2.1.1. Lectura del IMU 

La tarea esporádica TaskIMU se activa cuando se ha recibido correctamente un mensaje del 

IMU y se encarga de extraer la información de los ángulos roll, pitch y yaw del mensaje en 

cuestión. El ángulo yaw no se utiliza en la aplicación, pero se ha creído conveniente 

almacenarlo por si en un futuro pudiese ser de utilidad. 

El mensaje está estructurado de tal manera que primero se envían las aceleraciones y 

posteriormente los ángulos. Puesto que no es necesario tener medida de las aceleraciones, el 

mensaje se empieza a almacenar a partir de la llegada del carácter ‘Y’ (de yaw), y la recepción 

sigue hasta la llegada del carácter ‘\n’ (retorno de carro), que indica que la trama ha concluido. 

Los ángulos vienen dados en grados, pero de cara a los cálculos que hay que hacer con ellos, la 

propia función de decodificación del mensaje los devuelve en radianes. 

 

La tarea, a partir de las medidas obtenidas en las primeras 20 ejecuciones, calcula el offset 

medio de cada ángulo y lo almacena. Una vez superadas esas primeras ejecuciones, la tarea lee 

el mensaje, extrae los valores de los tres ángulos, les resta el correspondiente offset, aplica un 

filtro de mediana móvil a las últimas 5 medidas tomadas y posteriormente almacena dichos 

valores en el servidor IMU_server. El filtro es de mediana para eliminar los valores espurios que 

de vez en cuando da el sensor y se ha realizado con 5 medidas porque el bucle de control se 

ejecuta cada 108ms. 

 

5.2.1.2. Tarea de control 

La tarea TaskControl se encarga del control de altura del drone. El periodo de control es de 

108ms ya que por motivos inherentes al escáner láser no se ha podido reducir más, como se 

explica en la siguiente tarea. La tarea lee la altura a la que se encuentra el drone del servidor 

Altitude_server y la consigna de altura a alcanzar del servidor Reference_server. A partir de 

esas variables aplica la ley de control, que calcula y escribe el valor necesario en el registro de 

comparación del módulo PWM. 

 

Los parámetros de control (ganancias, prealimentación y saturaciones) se pueden modificar 

desde el ordenador enviando comandos al microcontrolador mediante el XBee.  

 

5.2.1.3 Envío al láser 

La tarea TaskSendLaser se encarga de enviar al láser los comandos necesarios para configurarlo 

al inicio de la aplicación y el comando que ordena al láser realizar una medida. En las siguientes 
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líneas y junto con la próxima tarea, TaskReceiveLaser, se va a explicar la gestión software del 

escáner láser que se ha implementado. 

 

El diseño del driver que se ha hecho desde cero para el láser ha sido realmente complejo dado, 

entre muchas otras cosas, que se pueden enviar varios tipos de mensajes diferentes de longitudes 

distintas entre sí. La estructura comentada anteriormente para la recepción de caracteres en las 

interrupciones hardware de los dispositivos conectados a los canales SCI del microcontrolador, 

en este caso es más compleja dado que tanto el carácter de inicio de trama como la longitud 

esperada de la respuesta son variables. Para superar esta dificultad se ha creado una estructura 

de datos en la que se almacenan el tipo de comando, la cabecera, el carácter de inicio esperado, 

la longitud de la respuesta esperada y la longitud de la cabecera del último mensaje que se ha 

enviado al láser. Asimismo, se han creado funciones específicas de envío de cada tipo de 

mensaje que, además de enviar el mensaje en cuestión, cargan en la estructura de datos 

comentada anteriormente todos los parámetros propios del mensaje recientemente enviado. De 

esta forma queda encapsulado el problema de la variabilidad de las características estructurales 

y de contenido de los distintos mensajes a enviar al láser. 

 

Los mensajes que en la aplicación se envían al láser son los siguientes: parada del láser en 

protocolo SCIP1.1, cambio de protocolo a SCIP2.0, cambio de bitrate, parada del láser en 

protocolo SCIP2.0 y solicitud de obtener medidas continuamente. Existe la posibilidad de 

solicitar medidas individuales, pero se ha decidido que las medidas lleguen continuamente ya 

que de esta forma el tiempo de transmisión es menor y por tanto se obtienen las medidas más 

rápidamente puesto que el láser trabaja de forma que cada vez que éste recibe un mensaje, envía 

una respuesta de conformidad o disconformidad al maestro. 

 

En la Figura 5.2 se muestra la máquina de estados que controla el láser. El láser al encenderse se 

encuentra en el protocolo de comunicación SCIP1.1 el cual ofrece poca flexibilidad de manejo, 

por lo que se ha decidido cambiar el láser al modo SCIP2.0, protocolo que lanzó posteriormente 

Hokuyo y que ofrece muchas opciones de configuración. La velocidad de comunicación por 

defecto del láser es de 115200bps y se va aumentar en tiempo de ejecución hasta los 250000bps 

para obtener más rápidamente las medidas. En primer lugar es necesario destacar que se ha 

observado experimentalmente que el sistema del láser junto con el adaptador RS232 necesita un 

tiempo de espera desde la conexión de la batería hasta que se pueda establecer la comunicación, 

por lo que antes de comenzar la ejecución de las tareas el programa tiene un tiempo de espera de 

10 segundos. Una vez transcurrido ese tiempo y ya iniciado el sistema operativo, la máquina de 

estados configura el láser secuencialmente y finalmente le envía el comando de solicitud de 

medida continua. Esta tarea está ligada muy estrechamente con la tarea TaskReceiveLaser, 
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puesto que para determinar si se envía el siguiente mensaje es necesario tener la certeza de 

haber recibido la respuesta esperada del láser, de tal forma que se le envía el mismo comando 

hasta que se recibe por parte del láser la confirmación de que el mensaje lo ha recibido bien. Se 

ha creado un tipo de dato,  LASER_STATUS, que tiene la doble misión de guiar la configuración 

del escáner en la secuencia de arranque y de determinar si el mensaje enviado por el láser se ha 

recibido correctamente o no. 

 

Figura 5.2 

 

En la datasheet del protocolo del láser [ 6 ] no se explica la secuencia de inicialización, por lo 

que más allá de leer los tipos de comandos que hay y cómo trabajar con ellos se han realizado 

varias pruebas hasta llegar a la secuencia que configura el láser correctamente. 

 

En la Figura 5.3 se muestra el esquema de medidas del láser. El escáner tiene un máximo ángulo 

de barrido de 240º y toma una medida cada 0.36º, lo que hace un total de 682 medidas. A cada 

medida del láser se le denomina step, y cuando se envía al láser el comando de solicitud de 

medidas, entre otros parámetros se le indica el intervalo de steps que se desea recibir, fijando el 

step inicial y el final. 
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Figura 5.3 

 

En la Figura 5.3 se pueden apreciar las referencias de 0° y 240° que se han colocado 

arbitrariamente en esas posiciones para referenciar los ángulos en el proyecto. Dado que al Step 

A le corresponde según la hoja de características del sensor un valor de 44, la ecuación para 

hallar la relación ángulo – step, redondeando siempre al entero más cercano es: 

        
      

    
 

( 22 ) 

 

 

Para medir la altura no es necesario utilizar todas las medidas que puede captar el sensor, sino 

sólo algunas de ellas. Sin embargo, se ha diseñado un driver flexible y modular que permite 

variar el rango medido simplemente cambiando una línea de código. Inicialmente se había 

propuesto un rango de medida de 90º (y tanto el programa como el hardware están diseñados 

están preparados para ello) con su bisectriz alineada con la línea frontal del láser (Step B) para 

poder obtener dos grupos de medidas determinados por dos haces de rayos de rango angular de 

10º cada uno, tal y como se observa en la Figura 5.4.  

 

 

Figura 5.4 

 

10° 10° 
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Sin embargo existe un problema que impide obtener esos dos haces de medidas, y no es otro 

que el tiempo de medida del láser. El escáner tarda 100ms en realizar un barrido de medidas, 

independientemente de si se le solicita todo el rango de medidas o sólo un único rayo. Se ha 

intentado reducir este tiempo de medida aumentando la velocidad del motor del láser pero esto 

no ha tenido ningún efecto beneficioso. Se ha contactado con Hokuyo preguntando si existe 

alguna posibilidad de reducir ese tiempo y no la hay. A parte de esos 100ms que cuesta realizar 

una medida hay que sumar el tiempo que cuesta transmitir los datos obtenidos por RS232. Es 

necesario tener disponible la medida de la altura del drone en el menor tiempo posible para 

poder implementar el bucle de control con un periodo lo suficientemente bajo, por lo que se han 

tomado dos medidas correctoras para disminuir el tiempo de transmisión, que es el único que se 

puede variar. En primer lugar se ha reducido el ángulo de barrido de los 90º propuestos 

inicialmente a aproximadamente 12º (Figura 5.5) y por otro lado se ha aumentado la velocidad 

de comunicación de 115.2kbps a 250kbps (y no se ha aumentado más porque el MAX3222 no 

permite trabajar a mayores velocidades). Implementadas las dos mejoras, el tiempo que 

transcurre entre la llegada de dos medidas al láser es mucho menor.  

 

 

Figura 5.5 

 

A continuación se calcula el tiempo que tarda en transmitirse el mensaje que contiene las 

distancias medidas por los distintos rayos del láser con y sin las reducciones de tiempo 

implementadas. Para ello, en primer lugar se calcula la longitud en caracteres del mensaje 

esperado, posteriormente se traduce a número de bits y finalmente se divide entre la frecuencia 

con la que llegan los bits. 

 

La longitud en bytes del mensaje tiene la siguiente fórmula: 

                            
          

  
    

( 23 ) 

 

 

12° 
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El número de medidas se calcula como la diferencia entre el step final y el inicial: 

                             ( 24 ) 

 

Dado que el protocolo de comunicación con el láser tiene un stopbit, un startbit y no tiene bit de 

paridad, el número de bits de un mensaje es: 

                                   ( 25 ) 

 

 

El tiempo que transcurre durante la transmisión del mensaje es: 

  
     

       
 

( 26 ) 

 

 

Por tanto, el tiempo de transmisión de que se planteó en un principio de un barrido de 90° a 

115.2kbps es: 

   
                        

           
      

      
         

 

 

( 27 ) 

 

 

Sin embargo, obteniendo medidas de un barrido de 12° a 250kbps el tiempo de transmisión se 

reduce a: 

   
                        

           
      

      
        

 

 

( 28 ) 

 

 

En la Figura 5.6 se muestra un cronograma en el que se representan el tiempo que le cuesta al 

láser tomar la medida (los 100ms que no se pueden variar), el tiempo de transmisión con las 

características que determinan    y el tiempo de transmisión con las características que 

determinan   . 

 

Figura 5.6 
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Se observa que se obtiene una medida cada 100ms pero el retraso con el que se obtiene con 

     es mucho menor que con     . Se ha elegido un periodo de control de 108ms, 

ligeramente superior al tiempo total de obtención de medida de altura, para que en cada 

ejecución el bucle de control se valga de la nueva medida tomada por el láser. 

 

5.2.1.4. Recepción del láser 

La tarea TaskReceiveLaser se activa cuando se ha recibido un mensaje completo del escáner 

láser. La tarea lee el mensaje y lo decodifica, obteniendo el valor de la distancia medida por el 

sensor así como el estado en el que se encuentra el láser. El estado del láser, como se ha dicho 

anteriormente, es indicativo de si el mensaje se ha recibido correctamente o no. También se lee 

el valor de los ángulos roll y pitch. Con estas tres medidas se calcula la altura perpendicular al 

suelo del drone. Esta altura corregida es la que se almacena en el servidor Altitude_server. El 

estado del láser se escribe en el servidor LaserStatus_server. 

 

La función que decodifica los mensajes recibidos también se vale de la estructura de datos 

comentada anteriormente que almacena la información relevante del último mensaje enviado. 

La función en primer lugar distingue el tipo de comando enviado y actúa de una forma u otra 

según el comando que sea. En las recepciones de mensajes de configuración lo que se hace es 

comparar lo recibido con lo esperado, y si concuerdan ambas cadenas de caracteres entonces la 

función devuelve el LASER_STATUS adecuado para que se pueda enviar el siguiente mensaje 

de configuración desde la tarea TaskSendLaser. En el caso de la medida de altura, además de 

comprobar si el mensaje recibido es correcto se debe calcular la altura a partir de todos los 

caracteres recibidos. Para ello, y en busca de un diseño flexible, se van traduciendo los datos 

recibidos al step correspondiente del láser. Si ese dato se encuentra en uno de los grupos de 

steps de los que se quiere obtener medida, éste se almacena en el buffer correspondiente a ese 

grupo y si no se desecha. De esta forma se puede modificar radicalmente el rango que se desea  

medir del láser simplemente ajustando los steps inicial y final de los diferentes grupos en el 

código fuente. Una vez se llega al final del mensaje se calcula la media de las medidas asociadas 

a los rayos comprendidos en cada sección de steps. La medida implementada finalmente (Figura 

5.5) consta de un único grupo de steps con un total de 35 medidas. 

 

Una vez obtenida la medida en crudo del láser es necesario corregirla con la orientación para 

obtener la distancia perpendicular desde el tren de aterrizaje hasta el suelo. Si no, la inclinación 

del drone falsearía la altura real y el control se haría imposible. La corrección de altura ha sido 

implementada para la medición del conjunto frontal de 12° de la Figura 5.5. Para ello se 

analizan por separado el caso de giro respecto al eje x y giro respecto al eje y, representando de 
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forma esquemática el drone, y posteriormente se combinan ambos efectos. El espejo frontal está 

situado a lo largo de uno de los ejes de simetría del drone. 

En la Figura 5.7 se analiza el efecto que tiene el ángulo roll en la medida. Las líneas negras 

representan el cuerpo del drone y el tren de aterrizaje en la posición de equilibrio, las líneas 

rojas representan el drone con un cierto ángulo roll no nulo y la línea verde representa el suelo. 

El espejo está representado en naranja junto al trapecio gris que representa el láser. 

 

Figura 5.7 

 

Sea   la distancia medida por el láser,    la distancia perpendicular al suelo entre el punto en el 

que se reflejan los rayos y la parte más baja del tren de aterrizaje,   la distancia del centro del 

drone al punto donde se reflejan los rayos,    la distancia del origen del láser al espejo y   el 

ángulo roll, la altura   a la que se encuentra el drone se calcula de la siguiente forma: 

                           ( 29 ) 

 

 

En la Figura 5.8 se analiza el efecto que tiene el ángulo pitch en la medida. El código de colores 

es el mismo que en la anterior. El hecho de que el láser esté situado en el centro en esta 

proyección simplifica la corrección a realizar. 
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Figura 5.8 

En este caso, la altura   se calcula de la forma: 

                  ( 30 ) 

 

Si se combinan los efectos de ambos ángulos, el valor de la altura corregido es: 

                                  ( 31 ) 

 

 

5.2.1.5. Envío de datos al ordenador 

La tarea periódica SendComm se encarga de enviar los datos deseados del drone al ordenador. 

La información más relevante a enviar es la altura a la que se encuentra el drone, pero también 

se envían otros datos auxiliares para comprobar que el láser ha iniciado la comunicación con el 

microcontrolador correctamente. La información es escrita en el XBee y éste se encarga de 

enviarla secuencialmente.  

5.2.1.6. Recepción de datos del ordenador 

La tarea ReceiveComm se encarga de recibir la información enviada desde el ordenador al drone 

a través del XBee. Los mensajes que se pueden enviar al drone son la consigna de altura y los 

valores de los parámetros de control. La estructura de los comandos consta de un carácter de 

inicio de trama (‘#’), el contenido del mensaje (que tiene una estructura del tipo descriptor del 

mensaje y a continuación valor numérico) y por último el carácter de fin de trama (‘\n’). Una 

máquina de estados es la encargada de distinguir entre los distintos mensajes recibidos y 

posteriormente decodificarlos para almacenar el valor recibido en el servidor que corresponda. 

En el Anexo II: Comandos de comunicación se muestra el listado de comandos que se pueden 

enviar al drone. 
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5.2.2. Servidores 

Se han implementado una serie de servidores para almacenar los recursos compartidos entre las 

distintas tareas. 

 Altitude_server: almacena la altura a la que se encuentra el drone. 

 

 Laser_status_server: almacena el estado del láser. 

 

 Reference_server: almacena la consigna de altura que se le ha dado al drone a través de 

las comunicaciones inalámbricas. 

 

 IMU_server: almacena la orientación medida por el IMU. 

 

 Kp_server: almacena la ganancia proporcional, modificable a través del XBee. 

 

 Kd_server: almacena la ganancia derivativa, modificable a través del XBee. 

 

 Ki_server: almacena la ganancia integral, modificable a través del XBee. 

 

 Ascension_sat_server: almacena el margen de acción que se le permite dar al control 

para que el drone ascienda, modificable a través del XBee. 

 

 Descension_sat_server: almacena el margen de acción que se le permite dar al control 

para que el drone descienda, modificable a través del XBee. 

 

 Gravity_compensation_server: almacena la prealimentación que compensa la 

prealimentación gravitatoria, modificable a través del XBee. 

 

 

5.2. Montaje físico 

Una parte fundamental del proyecto ha sido el montaje de todos los componentes en el drone. 

Esta tarea ha sido realmente complicada dados todos los problemas que han surgido no sólo 

propios del propio proyecto, sino del drone del que se partía como base. 

En primer lugar se va explicar el hardware diseñado propiamente para el proyecto y 

posteriormente se expondrá la fase de ensamblaje y montaje de los distintos elementos en el 

drone junto con los problemas que han ido surgiendo y las soluciones que se han adoptado. 
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5.2.1. Soporte para el láser 

El láser se ha decidido colocar de tal forma que los rayos vayan paralelos al suelo para, 

mediante su reflexión al suelo, poder obtener varios grupos de medidas distintas. Si se hubiese 

colocado con los rayos apuntando al suelo directamente, se podría haber obtenido una única 

medida perpendicular al suelo, suficiente para la aplicación y más visto lo que sucede con el 

tiempo de medida del sensor, pero aun así mucho menos flexible de cara futuras mejoras. 

Como se muestra en la Figura 5.9, el tren de aterrizaje que se ha montado en el drone tiene las 

barras superiores más largas de lo que en principio podría necesitar el cuerpo del mismo. Se ha 

aprovechado esta longitud adicional para colocar el láser. La localización es buena ya que es 

una zona despejada que permite la ubicación de los espejos. 

 

Figura 5.9 

El láser tiene una serie de tornillos en la base que ensamblan la carcasa. Dos de esos tornillos 

han sido extraídos y se han utilizado para atornillar el láser al soporte. Junto con el tren de 

aterrizaje comprado venían dos placas perforadas con diferentes formas de cara a poder colgar 

del tren de aterrizaje los elementos que se puedan necesitar. En un principio se planteó utilizar 

una de esas placas (la otra directamente se vio que no sería útil) como soporte para el láser. Sin 

embargo dada la geometría de los agujeros de dicha placa (Figura 5.10) no era posible atornillar 

el láser. 
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Figura 5.10 

Se pueden apreciar 8 agujeros situados en la periferia de la placa. Esos agujeros permiten 

atornillar la placa a las barras del tren de aterrizaje mediante unos elementos de sujeción que 

forman parte del kit del tren de aterrizaje. Lo que se ha hecho ha sido utilizar dicha placa como 

plantilla para fabricar un soporte en chapa de aluminio. Se han realizado los 8 agujeros para 

atornillar el soporte al tren de aterrizaje y además los dos agujeros necesarios para atornillar el 

láser (se han hecho 4 para elegir el sentido de orientación del láser). Tal y como se muestra en la 

Figura 5.11, se han añadido 3 capas de cinta de doble cara en la cara del soporte que contacta 

con la base del láser con una doble misión: dar altura a esa cara del soporte para que el láser 

tenga más superficie de contacto que los tornillos de sujeción al tren de aterrizaje y reducir 

ligeramente las posibles vibraciones que se puedan generar. 

 

Figura 5.11 

Una vez decidida la posición en la que se iba a montar el láser y construido el soporte había que 

encontrar la forma de reflejar los rayos al suelo. Según la ley de la reflexión [ 11 ], un rayo 

incidente en una superficie reflectante, será reflejado con un ángulo igual al ángulo de 

incidencia, ambos ángulos medidos con respecto a la normal a la superficie (Figura 5.12). 
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Figura 5.12 

Al ser los rayos del láser paralelos al suelo y querer redireccionarlos de tal forma que sean 

perpendiculares al mismo (cuando el drone está posado en el suelo), es necesario colocar el 

elemento reflectante con un ángulo de 45° respecto al rayo, tal y como se muestra en la Figura 

5.13. Como elemento reflectante se ha comprobado que los espejos estándar (Figura 5.14) 

funcionan correctamente, por lo que no ha sido necesario recurrir a material óptico mucho más 

caro. 

 

Figura 5.13 
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Figura 5.14 

La siguiente fase requería de la colocación de los espejos. En principio se iba a realizar el 

montaje de la Figura 5.4 (la de los 2 espejos). Para ello se pensó en orientar el láser apuntando 

hacia el centro del drone y situar de alguna forma los espejos en el tren de aterrizaje. En primer 

lugar hubo que recortar los espejos con un cortavidrios hasta un tamaño más adecuado. Una vez 

se tuvieron los cristales más pequeños, se sujetaron al tren de aterrizaje mediante cable atado a 

la estructura tensando hacia lados opuestos para mantener el ángulo firme. Se pegaron con cinta 

de doble cara a las patas del tren de aterrizaje con una capa de espuma para orientar 

correctamente los espejos y reducir las vibraciones en la medida de lo posible. El resultado es el 

montaje de la Figura 5.15. 

 

Figura 5.15 

Sin embargo, después de algunas pruebas de vuelo se observó que los espejos se desorientaban 

ligeramente ante las turbulencias e impactos de aterrizaje y había que reajustarlos. Por ello se 

ideó un sistema más robusto (Figura 5.16). Se buscó también una mayor modularidad del 

bloque láser de forma que se pudiese montar y quitar del drone como un único bloque. Para ello 

se han atornillado tres brazos de plancha de aluminio al soporte del láser y en cada uno de esos 
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brazos, que tienen una inclinación de 45°, se ha colocado un espejo. Los espejos (cortados con 

el cortavidrios) se han pegado a los brazos mediante cinta de doble cara. Entre los brazos y el 

soporte del láser, además de los tornillos también se ha colocado cinta de doble cara, todo ello 

para intentar reducir las posibles vibraciones. En este caso se han colocado tres espejos porque 

en la fase en la que el proyecto se encontraba en ese momento ya se vio que podría haber 

problemas con la lentitud de medida del láser. La idea inicial fue utilizar los espejos de los 

extremos pero se colocó un tercer espejo en la parte frontal del láser por si únicamente se podía 

utilizar uno de ellos y, en cualquier caso, para aportar mayor flexibilidad al sistema. Este 

soporte se ha comprobado que es resistente a vibraciones y no sufre alteraciones en los impactos 

por aterrizaje. 

 

Figura 5.16 

Aunque los brazos se han diseñado para estar centrados en los ángulos de 30°, 120° y 210° que 

corresponden respectivamente a los steps de 127, 377 y 627, ha sido necesario un ajuste 

experimental para comprobar qué rango abarca cada espejo. Para ello se ha utilizado el 

programa URG BENRI Standard. Se han observado todas las medidas tomadas por el láser 

dejándolo a una altura conocida y se han podido observar los steps que comprende cada espejo. 

Para cada espejo se ha dejado un margen de seguridad de unos 5 steps por cada lado para que 

ante movimientos bruscos en vuelo no pueda haber lecturas anómalas. El recorrido que realizan 

los rayos del láser con el soporte montado es el de la Figura 5.17. Se ha representado 

únicamente el brazo frontal visto desde uno de los perfiles. 
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Figura 5.17 

5.2.2. Placa de conexionado 

La placa de conexionado (Figura 5.18) se ha diseñado para facilitar la conexión de los 

periféricos al microcontrolador así como para alimentarlos. Se ha utilizado placa de baquelita 

perforada para poder soldar los distintos componentes. La placa se alimenta desde el BEC de 5V 

a la salida del cual se ha soldado un conector DC circular macho. A la placa de conexionado se 

ha soldado un cable DC hembra para posibilitar la conexión con el BEC. A la placa se ha 

soldado el regulador de tensión LD33V. Los 5V son llevados al regulador de tensión que 

produce a su salida una tensión de 3.3V para alimentar el microcontrolador, el módulo RS232 y 

el XBee. El IMU, dada su colocación en el drone, se conecta directamente al microcontrolador, 

aunque su fuente de alimentación indirectamente también es el regulador de 3.3V. Se han 

colocado conectores macho para el microcontrolador y conectores hembra para el resto de 

periféricos.  

 

Figura 5.18 
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5.2.3. Montaje del drone 

Una vez establecidas las conexiones que debe haber entre los distintos periféricos y construido 

el hardware comentado anteriormente es necesario encontrar la forma más adecuada de 

embarcar todos los elementos en el drone. Además de colocar los distintos elementos ha sido 

necesario realizar varios cambios en el drone del que se partía ya que había ciertos aspectos que 

debían mejorarse. 

En primer lugar se ha montado un tren de aterrizaje nuevo puesto que el que había era poco 

robusto y no ofrecía muchas opciones a la hora de colocar la batería y el láser. El nuevo tren es 

más grande y amortigua mucho mejor los impactos. El tren de aterrizaje va atornillado a la 

plancha inferior del cuerpo del drone. En la Figura 5.19 se muestra el drone con el tren de 

aterrizaje antiguo y en la Figura 5.20 con el tren nuevo sin más componentes montados que el 

autopiloto y la batería. 

 

Figura 5.19 

 

 

Figura 5.20 

Como se puede observa en la Figura 5.20, la plancha superior del drone estaba de inicio 

totalmente despejada. Se ha decidido ubicar sobre esa superficie  la placa del microcontrolador 
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sujetada con una brida. A su lado se ha colocado el módulo RS232 pegado con cinta de doble 

cara. La ubicación de estos elementos se muestra en la Figura 5.21. 

 

Figura 5.21 

El IMU se ha situado sobre la placa inferior (Figura 5.22), paralelo al autopiloto y, por tanto, 

alineado con el sistema de coordenadas del drone. Debajo del IMU se ha pegado una esponja 

con cinta de doble cara para amortiguar las vibraciones que el chasis le pueda transmitir. A 

través de las aperturas existentes en la placa superior del cuerpo del drone se han pasado los 

cables del IMU (transmisión, recepción y alimentación) y se han conectado directamente al 

microcontrolador. 

 

Figura 5.22 

La placa de conexionado se ha situado en uno de los salientes de la placa inferior del cuerpo del 

drone para que se puedan conectar y desconectar de forma sencilla los cables. El XBee se ha 
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pegado con cinta de doble cara al tren de aterrizaje (Figura 5.23), bien cerca de la placa de 

conexionado ya que los cables de los que dispone el XBee son de longitud reducida. 

 

Figura 5.23 

El láser con su soporte se ha colocado en el saliente de las barras del tren de aterrizaje (Figura 

5.24), en el lado derecho del drone. El cable de comunicación RS232 era de una longitud 

considerable (entorno a 1m) y se ha enrollado entre las barras del tren de aterrizaje, de tal 

manera que no se ve ni estorba a los demás elementos. 

 

Figura 5.24 

En cuanto a la batería, ésta se ha colocado debajo del tren, centrada pero un poco movida hacia 

el lado izquierdo para compensar el peso del láser, colocado en el lado opuesto, y así equilibrar 

el peso del drone, haciendo que el centro de gravedad se encuentre lo más cerca posible del 

autopiloto. Cada vez que se realiza un cambio de batería, la ubicación de la misma se ajusta para 

que el drone esté lo más equilibrado posible. La batería se acopla al drone con dos bridas que la 

sujetan a las barras del tren de aterrizaje (Figura 5.25). 
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.  

Figura 5.25 

A la propia batería se le ha colocado en la parte baja el BEC mediante otro par de bridas. La 

batería tiene un único terminal de salida que en principio debe ir conectado al drone. Sin 

embargo el BEC también debe alimentarse directamente desde la batería, por lo que ha habido 

que añadir un elemento que bifurque la salida de la batería y así se pueda conectar a ambos 

conectores (Figura 5.26). 

 

Figura 5.26 

Los ajustes que ha habido que realizar a la base de la que se partía han sido imprescindibles para 

mejorar el vuelo del drone. Cuando el drone se voló por primera vez haciendo uso del mando 

radiocontrol se observó que “bailaba” mucho. Había que hacer muchas correcciones con el 

mando y era prácticamente imposible que se quedase más o menos estable en una posición fija. 

Para intentar solucionar estos problemas se utilizó el programa DJI NAZAM Lite Assitant 1.00 

para ver si el IMU interno del autopiloto estaba mal calibrado. El diagnóstico del programa fue 

que el IMU no necesitaba calibrarse de nuevo, lo que indicaba que la calibración era correcta. 

Sin embargo se observó que el autopiloto no estaba situado en el centro del drone, sino que 

estaba considerablemente desplazado hacia uno de los lados. Se decidió colocarlo justo en el 

centro y el vuelo del drone mejoró sustancialmente ya que de esta forma el autopiloto estaba 

colocado donde su programa interno contaba con estar colocado. 
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Otro de los problemas que se encontró tuvo que ver con el receptor de radio. En algunas 

ocasiones mientras se estaba volando, se perdía el control del drone desde el mando y el LED 

conectado al autopiloto se ponía a parpadear en rojo. Se investigó hasta descubrir que ese 

parpadeo podía indicar, entre otras cosas, algún problema con la radio. Se observó que cuando 

el drone estaba alimentado, si se tocaba con la mano los cables de los distintos canales del 

receptor de la radio, el LED se ponía a parpadear en rojo. Se conectó el autopiloto al ordenador 

y efectivamente aparecía un mensaje de que había algún tipo de problema con la radio. Además, 

desde el propio programa se puede ver el estado de los canales de la radio (Figura 5.27) y se 

observó que las señales de los canales pasaban de un canal a otro. 

 

Figura 5.27 

 

Se desmontó prácticamente todo el drone para comprobar que el cableado estaba bien hecho y 

libre de cortocircuitos. Se distribuyeron mejor los cables pero el problema seguía sucediendo de 

vez en cuando. Finalmente se ha llegado a una solución que, si bien no ha hecho que el 

problema no haya vuelto a repetirse, sí que ha conseguido que surja realmente muy pocas veces. 

Los cables del receptor de radio, al igual que el resto de cables conectados al autopiloto, son los 

típicos cables de tres conductores que llevan alimentación, masa y la señal en cuestión. Lo que 

se ha hecho ha sido enrollar entre sí los tres conductores en cada cable procedente del receptor 



Capítulo 5. Implementación 

56 

 

de la radio dejando a su vez los cables lo más separados posibles entre sí. De esta manera se han 

reducido drásticamente las interferencias entre canales. 

Por último se quiere destacar el hecho de que muy a menudo ha habido que realizar ajustes y 

reparaciones en el montaje de los distintos componentes debido a las distintas pruebas de vuelo 

que se han realizado. Desde reubicar componentes que se habían movido hasta reparar 

soldaduras. A base de las distintas pruebas de vuelo y el comportamiento observado se ha 

llegado a la distribución final de las siguientes figuras. 

 

Figura 5.28 

 

 

Figura 5.29 
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Capítulo 6  

Pruebas de la aplicación 

Las pruebas que se han realizado han seguido una gran evolución a medida que se ha ido 

consiguiendo un sistema de mejores prestaciones. En este capítulo se exponen las pruebas que 

se realizaron finalmente, que son las de mayor complejidad pero a la vez las que mejores 

resultados han dado. La parte del proceso experimental (junto con algunas gráficas relevantes 

obtenidas en algunas pruebas) que ha llevado a la superación de las pruebas finales se expone en 

el Anexo I: Proceso experimental. 

El objetivo de esta prueba ha sido conseguir que el drone vuele a una altura fija de 60cm 

haciéndolo avanzar en línea recta. Se ha colocado una rampa apoyada en el suelo que conduce a 

una plataforma. El drone debe incrementar su altura al encontrar los obstáculos y disminuirla 

una vez éstos han sido superados. En definitiva, se busca ver que el control de altura 

implementado se adapta al perfil del terreno. La Figura 6.1 muestra un esquema del montaje de 

la prueba. 

 

Figura 6.1 

La prueba se ha efectuado con el control PID con prealimentación de perturbación gravitatoria y 

saturación anti_windup. Los valores de los parámetros de control han sido:         
 

  
 

        
 

  
        

 

  
                                          

    

Al drone se le ha enviado mediante el XBee la consigna de altura. Éste ha despegado y mediante 

los controles de pitch, roll y yaw se ha controlado el drone tanto como para avanzar como para 

realizar las correcciones direccionales necesarias. Es necesario destacar que esta prueba se ha 

realizado con el drone volando de forma libre, si ningún tipo de atadura con cuerdas, lo cual ya 
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de por sí es muy significativo. Además la prueba no ha funcionado una única vez, sino que se ha 

realizado con éxito varias veces. 

Los resultados que se han obtenido son satisfactorios. El drone ha sido capaz de alcanzar la 

altura de consigna, mantenerla durante el movimiento en línea recta, subir de altura al 

encontrarse con la plataforma y volver a bajar una vez superada la plataforma. Es cierto que 

existen oscilaciones en la altura  (sobre todo cuando se producen cambios en el nivel del suelo) 

y que el régimen permanente no se alcanza con una precisión centimétrica, pero se ha 

demostrado que el drone es capaz de volar a la altura de consigna y adaptarse a la geometría del 

terreno. La Figura 6.2 contiene el muestreo de la altura realizado en la prueba. 

 

Figura 6.2 

El pico descendiente que se produce en torno a los 7.5 segundos se corresponde con la llegada 

del drone al obstáculo. La siguiente sobreoscilación se debe a la acción generada para alcanzar 

la altura de 60cm de nuevo. El pico de altura entorno a los 11 segundos corresponde a la 

superación de la plataforma y la detección de nuevo del suelo. El drone desciende 

sobreoscilando para volver finalmente a la consigna de altura. 

Las Figura 6.3 es  representativa de la prueba realizada. 
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Figura 6.3 
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Capítulo 7  

Conclusiones 

Se ha realizado el control de la altura de un drone sobre el terreno capaz de adaptarse a los 

cambios de consigna de altura y de la altura sobre un terreno irregular, no exclusivamente plano. 

Se han  ajustado los controladores para conseguir un control preciso de altura, sin o con poca 

sobreoscilación. El control final obtenido presenta algunas oscilaciones entorno a la consigna, 

que son debidas a diferentes motivos acumulados, principalmente: retardo en las medidas del 

sensor láser, errores de reflexión del láser sobre las superficies no perpendiculares a él, diseño 

de los dispositivos mecánicos realizados, control imperfecto del autopiloto de las otras 

variables, perturbaciones en el vuelo, y perturbaciones introducidas por el propio control manual 

de las otras variables. Las fuentes de error son múltiples, aunque a pesar de ello se ha 

conseguido realizar un control satisfactorio y estable de la altura del drone. Queda para trabajo 

futuro el abordar todos estos problemas en la medida de lo posible para mejorar el resultado 

final. 

La realización del control de altura ha sido posible gracias a la precisión con que se han 

diseñado todos los módulos tanto hardware (incluyendo las modificaciones realizadas en el 

drone, como el equilibrado de pesos o el cambio de posición del autopiloto) como software del 

sistema. Un drone es un aparato muy poco estable por naturaleza, por lo que ha habido que ser 

todo lo riguroso y preciso posible en todas las facetas del proyecto para no aumentar esa 

inestabilidad con errores propios. 

El diseño del driver del láser ha sido realmente complicado puesto que es un sensor que maneja 

gran cantidad de información, tiene un protocolo de comunicación potente pero complejo y se 

ha querido sacar de él todo el potencial que ofrece. El driver se ha diseñado de forma muy 

flexible y entendible para que se pueda hacer uso de él en futuros proyectos que requieran del 

uso de este sensor. 

Considero que el proyecto ha sido muy completo. No sólo ha habido que abordar la 

programación de un microcontrolador, sino que también se ha diseñado la arquitectura de  un 

sistema formado por varios dispositivos que se deben conectar y coordinar entre sí, se ha 

diseñado un dispositivo electrónico encargado de la distribución de alimentación y conexiones a 

los distintos dispositivos y además se ha realizado el diseño y montaje de un dispositivo 

mecánico para adaptar la medida del sensor láser al objetivo deseado del control de altura. 
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A nivel personal estoy muy contento con el trabajo realizado, con el cumplimiento de los 

objetivos y con todo lo aprendido. Creo que ha sido una experiencia muy enriquecedora, ya que 

ante la gran cantidad de problemas que han ido surgiendo a lo largo del proyecto he tenido que 

ir encontrando soluciones, que en el fondo es para lo que estamos los ingenieros. 
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Anexo I: Proceso experimental 

En este anexo se van a explicar las distintas pruebas que se han realizado para hallar los 

parámetros óptimos de control. Al final se va a mostrar la gráfica obtenida en una de las pruebas 

finales de vuelo estático previas a la prueba de vuelo en movimiento expuesta en el Pruebas de 

la aplicación. 

Una vez escrito el programa y realizado el montaje de todos los elementos en el drone llegó el 

momento de comenzar a realizar las pruebas de vuelo. En primer lugar se ató el drone mediante 

unas cuerdas a las patas de unas mesas de uno de los laboratorios de pruebas para impedir que el 

drone se pudiese descontrolar ante mi inexperiencia en el vuelo de drones. Inicialmente se ató el 

drone muy en corto para evitar la posibilidad de que pudiese volcar. Las primeras pruebas 

consistieron en una primera toma de contacto controlando el drone mediante el mando de 

radiocontrol. El drone era muy inestable, se movía continuamente de lado a lado y no impactaba 

con nada porque las cuerdas lo impedían. A pesar de esta inestabilidad se decidió probar el 

control de altura pero el drone ni siquiera se levantó. El motivo fue que no se había 

implementado la prealimentación de perturbación gravitatoria en el regulador, y la ganancia 

proporcional no era ni mucho menos lo suficientemente grande como para que el drone se 

elevase.  

Para obtener el valor PWM de la prealimentación gravitatoria a aplicar se hizo un programa que 

reducía en 30 el registro de comparación del módulo PWM cada 5 segundos. Se dejó correr el 

programa hasta que se observó que el drone estaba a punto de levantarse, momento en el que se 

tomó nota del valor del PWM y se abortó la ejecución. Es necesario destacar que el valor de la 

prealimentación gravitatoria depende del estado de carga de la batería, y se ha observado que 

puede tomar valores entre      y   , por lo que en las distintas pruebas, a medida que se veía 

que el drone tenía más dificultades para despegar se iba aumentando la prealimentación 

gravitatoria en este rango. 

Una vez aplicada en el control la prealimentación gravitatoria se volvió a probar el controlador 

y funcionaba realmente mal. El drone se movía mucho de lado a lado cuando teóricamente debía 

únicamente elevarse. Se descubrió que el autopiloto estaba mal situado y se colocó en el centro. 

Con esta medida que se tomó el drone era mucho más estable cuando se volaba con el mando. 

Posteriormente apareció el problema de las interferencias entre los distintos canales de la radio 

que hacían que el drone en pleno vuelo se descontrolase y se estrellase. Por este motivo el drone 

sufrió varios golpes, pero gracias a las cuerdas no sufrió daños mayores ni causó daños a otros 
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objetos o personas. Como se ha comentado en el apartado 5.2.3. Montaje del drone, este 

problema se redujo enrollando los conductores de cada cable entre sí. 

Una vez solventados estos problemas se pudieron por fin centrar los esfuerzos en el ajuste de los 

parámetros de control mediante multitud de pruebas. La consigna de altura de dichas pruebas 

osciló entre los 20cm y los 40cm. Inicialmente se empezó a trabajar con el controlador PD. El 

valor de la prealimentación gravitatoria ya se había obtenido y faltaba por determinar los valores 

de las ganancias proporcional y derivativa. Dado que en el programa las alturas se trabajan en 

unidades de mm, las ganancias en vez de tener unidades de 
 

 
 tienen unidades de 

 

  
. Por tanto, 

las ganancias iniciales propuestas en el apartado 25 se dividieron entre mil. 

En primer lugar se probó a utilizar únicamente la ganancia proporcional para ajustar el 

permanente dejando nula la ganancia derivativa. El resultado fue malo per coherente con las 

simulaciones ya que el drone no paraba de oscilar, llegando a rebotar en el suelo, sin 

equilibrarse en ningún momento. Entonces se decidió aplicar también una ganancia derivativa 

para que se opusiera a esas oscilaciones. A partir de esos parámetros iniciales se fue 

aumentando y disminuyendo el valor de esas ganancias en relación a lo que se iba observando 

en las pruebas. Si se aumentaba la ganancia proporcional el resultado eran grandes oscilaciones 

y si se reducía no se alcanzaba la altura de consigna. Si la derivativa era demasiado pequeña 

había oscilaciones, si se aumentaba disminuían y si era demasiado grande las oscilaciones 

inestabilizaban el sistema. Los mejores resultados se obtuvieron con           y    

     , aunque no eran buenos ya que las oscilaciones eran exageradas y no se alcanzaba de 

forma correcta la altura de referencia. Después de muchas pruebas con este controlador se llegó 

a dos conclusiones: era necesario saturar la acción para reducir las oscilaciones para así no tener 

que reducir la ganancia proporcional tanto como para que el drone no tuviese suficiente fuerza 

como para ascender hasta la altura de consigna y que se iba a añadir una parte integral al 

regulador para que ayudase alcanzar el régimen permanente. 

En primer lugar se trataron de ajustar los márgenes de acción tanto de ascensión como de 

descenso. Se comenzó por valores elevados, pero finalmente se comprobó que para reducir las 

oscilaciones lo suficiente había que establecer unos márgenes bajos, que finalmente fueron 

             y              . Las oscilaciones no se reducen únicamente de este 

modo, el ajuste que se ha hecho de las ganancias también es crucial. Con la saturación, los 

resultados obtenidos con el control PD mejoraron, pero se seguía teniendo mucha dificultad 

para alcanzar la referencia y las oscilaciones seguían siendo excesivas. La Figura A1.1 muestra 

una prueba de vuelo con una consigna de altura de 35cm implementando control PD con 
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prealimentación gravitatoria y saturación. Los valores de los parámetros de control en esta 

prueba fueron        
 

  
,         

 

  
,              y              . 

 

Figura A1.1 

 

Con la implementación del controlador PID con saturación anti-windup los resultados fueron 

mucho mejores. Dentro de que siguió habiendo oscilaciones, éstas eran menores y se alcanzaba 

mucho mejor la altura de consigna. Se empezó a ajustar el regulador con los valores de    y    

que mejor habían funcionado en el regulador PD y con un valor de         . Se fueron 

modificando los distintos parámetros hasta obtener los que han dado mejores resultados y que se 

han utilizado también en la prueba de avance con obstáculos del drone, que son:    

     
 

  
,         

 

  
,        

 

  
,              y              . 

Todas estas pruebas se realizaron también con el drone atado con cuerdas por las patas, pero a 

medida que iba funcionando mejor el sistema, se le fue dando más margen de cuerda al drone ya 

que las propias cuerdas cuando el drone se mueve le dan tirones y los desestabilizan.  

Se probó otro montaje, el de la Figura A1.2, en el que se pretendía atar el drone mediante una 

única cuerda a una barra saliente de la pared del laboratorio. Se colocaron unas bridas en el 

drone de tal manera que guiasen el descenso de la cuerda a medida que el drone ascendía, pero 

cuando el drone se movía un poco lateralmente, la cuerda ya no descendía por la guía que se le 

había hecho y chocaba con las hélices, por lo que rápidamente se descartó este montaje y se 

volvió el de las cuerdas atadas al tren de aterrizaje. 
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Figura A1.2 

A continuación se muestra el resultado de una prueba (Figura A1.3) que se realizó con los 

parámetros que se han indicado anteriormente. La consigna de altura que se estableció fue de 

40cm. 

 

Figura A1.3 

Se observa que aunque de vez en cuando se produce una perturbación, que pudo ser entre otros 

factores por el tirón de alguna de las cuerdas de sujeción, se alcanzó la altura de consigna tanto 

inicialmente como después de esas perturbaciones. 

Los últimos resultados conseguidos son los mostrados en el 57.
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Anexo II: Comandos de comunicación 

En el presente anexo se muestra el listado de comandos que se pueden enviar al drone desde el 

programa DIGI XCTU junto con la estructura de cada uno de ellos para que el usuario pueda 

utilizar el sistema diseñado. Todos los comandos tienen un carácter de inicio de trama (‘#’) y un 

carácter de fin de trama (‘\n’). Es imprescindible añadir dicho carácter al final de cada mensaje 

para que éste pueda ser procesado correctamente. 

 Consigna de altura: este comando fija la consigna de referencia con la altura en metros. 

Ejemplo: #SETR 0.5 

 

 Ganancia proporcional: este comando modifica la ganancia proporcional del regulador 

en unidades de 
 

  
. Ejemplo: #KP 0.015 

 

 Ganancia derivativa: este comando modifica la ganancia derivativa del regulador en 

unidades de 
 

  
. Ejemplo: #KD 0.008 

 

 Ganancia integral: este comando modifica la ganancia integral del regulador en 

unidades de 
 

  
. Ejemplo: #KI 0.00 

 

 Margen de saturación de ascensión: este comando modifica el margen de saturación 

superior de la acción de control en newtons. Ejemplo: #USAT 1 

 

 Margen de saturación de descenso: este comando modifica el margen de saturación 

inferior de la acción de control en newtons. Ejemplo: #DSAT 0 

 

 Prealimentación gravitatoria: este comando modifica el valor de la prealimentación de 

compensación de la fuerza gravitatoria en newtons. Ejemplo: #GRAV 7 
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Anexo III: Parámetros obtenidos 

En el presente anexo se concentran los parámetros que se han obtenido de forma experimental 

durante el desarrollo del proyecto de cara a facilitar la realización de futuras ampliaciones. 

 Ganancia proporcional óptima         
 

  
. 

 Ganancia derivativa óptima         
 

  
. 

 Ganancia integral óptima        
 

  
 

 Margen de saturación de ascensión óptimo           . 

 Margen de saturación de descenso óptimo            . 

 Prealimentación gravitatoria óptima                     , según carga de la batería. 

 Distancia del láser al espejo frontal          

 Distancia del espejo frontal al suelo          

 Distancia del láser al espejo 1 al          

 Distancia del espejo 1 al suelo         

 Distancia del láser al espejo 2          

 Distancia del espejo 2 al suelo          

 Distancia paralela al suelo del centro del láser al centro del drone         
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Anexo IV: Análisis de tiempo real 

En el presente anexo se analiza el cumplimiento de los requisitos de tiempo real del sistema de 

tareas implementadas. Se ha diseñado una estructura de tareas basada en el criterio Rate 

Monotonic por lo que se ha elegido para todas las tareas que el plazo de respuesta sea igual al 

periodo.  Este criterio da mayor prioridad a las tareas de menor periodo. Para gestionar el acceso 

a los recursos compartidos se utiliza el protocolo de bloqueo por herencia de prioridad. La 

Figura A4.1 muestra el listado de las distintas tareas e interrupciones hardware y software del 

programa junto con su periodo (P), plazo de respuesta (D), tiempo de cómputo (C), tiempo de 

bloqueo (Bhp) y número de bloqueos que se han calculado. El tiempo de acceso a un servidor se 

ha medido en 9.3µs y el tiempo de dos cambios de contexto es de 57µs. 

 

 

Figura A4.1 

 

Aplicando el Teorema 5 de Sha, Rajkumar y Lehoczky, el cual establece que en un sistema de n 

tareas periódicas con prioridades asignadas en orden de frecuencia, que se comunican mediante 

servidores, se cumplen todos los plazos de respuesta, para cualquier desfase inicial de las tareas, 

si: 

                
  

  

 
 
 

  
 

 

   

  
  

 
   

( 32 ) 
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Para comprobar que se cumple esta condición suficiente, se calcula el tiempo de respuesta en el 

plazo de cada tarea para el nivel de prioridad de cada tarea: 

 

Figura A4.2 

 

Con esto queda demostrado que la estructura de tareas creada cumple los plazos previstos. 
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