
Escuela de Ingenieŕıa y Arquitectura

Trabajo Fin de Grado

Grado en Ingenieŕıa Informática
Departamento de Informática e Ingenieŕıa de Sistemas

Sistema de información para
generar mapas temáticos a partir

de textos con referencias
territoriales

Information system to generate thematic maps from texts with
territorial references

Autor

Ana Roig Jiménez

Director

David Portolés Rodŕıguez

Ponente

Raquel Trillo Lado

Septiembre 2017

Sistema de información para generar mapas temáticos a partir de
textos con referencias territoriales

Resumen

La empresa Idearium Consultores dedica gran parte de su trabajo a los campos
de Sistemas de información geográficos (Geographical Information Systems, GIS, en
inglés), datos abiertos (generalmente nombrado por su término en inglés, Open Data)
y datos enlazados (también usualmente nombrado en inglés Linked Data), habiendo
desarrollado múltiples aplicaciones en ellos. Una de ellas es Tbl2Map, la cual genera
un mapa dada una tabla (en formato CSV, XML, JSON, XLS, o GPX) con la siguiente
información: regiones a considerar en el mapa a generar, sus identificadores y los valores
para cada región. En este proyecto se aborda la ampliación de Tbl2Map para considerar
un documento de texto no estructurado como entrada en lugar de una tabla, puesto
que la mayor parte de la información generada por las administraciones públicas y
entidades empresariales se encuentra en documentos de texto en diferentes formatos
(PDF, DOC, etc.)

Para dar solución a esa necesidad, se ha realizado una aplicación web que recibe
un documento de texto como entrada y genera un mapa con las áreas identificadas
en él, dado el tipo de área (comarca o municipio). En esta aplicación, el usuario sólo
debe seleccionar los valores que desea representar en el mapa (es decir, densidad de
población, niveles de contaminación, etc.) entre las diferentes opciones disponibles.
Además, también puede configurar el formato del mapa a su gusto (gama de colores,
orientación, y formato de salida, entre otros aspectos).

En śıntesis, para desarrollar la aplicación se han manejado diferentes herramientas y
tecnoloǵıas en cada fase del proceso. En primer lugar, se ha realizado la identificación
de regiones aparecidas en el documento, mediante Apache Solr para representarlas en
el mapa. A continuación, se ha utilizado el lenguaje de consultas SPARQL para obte-
ner desde Aragopedia los valores vinculados a las regiones a representar en el mapa.
Finalmente, para integrar Text2Map con la aplicación Tbl2Map, se han programa-
do diferentes paquetes basados en tecnoloǵıas web (HTTP, servicios web, etc.) que
permiten la transmisión de información conseguida para poder crear el mapa temático

En consonancia con la aplicación brevemente descrita, otro objetivo requerido por
la empresa para este proyecto fue la automatización de la generación de los mapas sin
intervención del usuario final mediante la interfaz web, es decir, que se pudiese realizar
procesos de generación en batch. Para ello, se definieron diferentes scripts parametri-
zados que toman como entrada el tipo de área deseada y la una ruta en la que se
almacenan los documentos, y generan como salida un mapa por cada documento de la
ruta.

La finalidad de esta memoria es comentar detalladamente todas las fases y pasos
llevados a cabo para desarrollar e implantar la aplicación propuesta cumpliendo todos
y cada uno de los requisitos determinados por la empresa Idearium S.L.

Índice

1. Introducción 1

1.1. Motivación . 1

1.2. Trabajos previos . 2

1.3. Objetivos . 2

1.4. Planificación del proyecto . 4

1.5. Estructura de la memoria . 4

2. Contexto tecnológico 7

2.1. Herramientas . 8

3. Metodoloǵıa 9

3.1. Metodoloǵıa del proyecto . 9

3.2. Herramientas utilizadas en el desarrollo 10

4. Aplicación web desarrollada 13

4.1. Descripción y funcionamiento . 13

4.2. Análisis y diseño . 13

4.3. Implementación . 14

4.3.1. Identificación de referencias territoriales del documento 14

4.3.2. Obtención de información estad́ıstica 17

4.3.3. Generación de mapa temático 20

4.3.4. Script de lotes de mapas . 21

4.3.5. Script de mapa de popularidad 23

4.4. Pruebas . 24

4.5. Plan de mantenimiento . 26

5. Conclusiones y resultados 29

5.1. Cumplimiento objetivos . 29

5.2. Coste del proyecto . 30

5.3. Posibles ĺıneas de trabajo futuro . 31

5.4. Valoración personal . 32

Anexos 37

A. Proceso de indexación y consulta mediante Solr 37

B. Proceso de consulta de las variables y valores a representar en el
mapa mediante SPARQL 42

C. Transmisión de información a Tbl2Map y generación de mapa 44

D. Implantación de seguridad mediante HTTPS 45

E. Diagramas de Gantt 46

F. Diagramas y esquemas complementarios 47

G. Glosario 51

Índice de figuras

1. Arquitectura global de la aplicación desarrollada 1

2. Estad́ısticas ofrecidas por SonarQube 11

3. Mapa de navegación por parte del usuario de la primera parte del pro-
ceso de Text2Map para generar el mapa 14

4. Mapa de navegación por parte del usuario de la segunda parte del pro-
ceso de Text2Map para generar el mapa 15

5. Mapa de navegación por parte del usuario de la primera parte del pro-
ceso de Tbl2Map para generar el mapa 16

6. Mapa de navegación por parte del usuario de la segunda parte del pro-
ceso de Tbl2Map para generar el mapa 17

7. Visión global de los componentes de la aplicación desarrollada 18

8. Arquitectura interna de la aplicación web 18

9. Diagrama técnico del proceso Solr . 19

10. Proceso identificación de áreas . 19

11. Diagrama de secuencia del proceso Solr 20

12. Gráfico circular que representa el coste de cada fase 30

13. Diagrama de Gantt de los meses abril y mayo 46

14. Diagrama de Gantt de los meses junio y julio 46

15. Diagrama de Gantt del mes agosto . 46

16. Proceso de búsqueda de referencias geográficas realizado por Solr . . . 47

17. Proceso de obtención de las variables de interés 48

18. Diagrama de secuencia de la generación de un mapa a partir de un
documento . 48

19. Pantalla inicial desde un smartphone 49

20. Búsqueda información de áreas desde un smartphone 49

21. Información recibida de áreas desde un smartphone 50

22. Mapa generado desde un smartphone 50

Índice de tablas

1. Requisitos del proyecto . 3

2. Rendimiento según número de usuarios y tipo de script 26

CAPITULO 1. Introducción

1. Introducción

Este proyecto ha surgido a partir de las necesidades de ampliación de los sistemas
desarrollados por la empresa Idearium Consultores para las administraciones públicas.
En concreto, la empresa consideró que era necesario ampliar las funcionalidades ac-
tualmente ofrecidas por el sistema o aplicación Tbl2Map. En mayor detalle, se requiere
que dicho sistema, además de recibir como entrada una tabla, pueda trabajar con tex-
tos, es decir, con datos de entrada no estructurados, puesto que la mayor parte de las
administraciones públicas y empresas de hoy en d́ıa publican gran volumen de textos
en distintos formatos, como PDF o txt. Para ello, en este proyecto se ha abordado el
desarrollo de un sistema o aplicación web para crear una solución que maneje docu-
mentos con texto en lenguaje natural de los que se desea obtener información. Esta
es la tarea que se tiene como fin en este proyecto: utilizarlo a través de documentos
oficiales, normalmente del BOA [1].

A continuación, se muestra en la figura 1 la arquitectura global de la aplicación
desarrollada, para ilustrar los componentes principales. Se diferencian claramente tres
partes:

La primera se encarga de la identificación de áreas contenidas en el documento dado
un tipo de área (comarca o municipio); la segunda obtiene la información a representar
en el mapa; y la última genera el mapa de acuerdo a los valores obtenidos previamente
y a la configuración del mapa especificada.

Figura 1: Arquitectura global de la aplicación desarrollada

Otro requisito establecido por la empresa fue la automatización de procesos. Para
no requerir la intervención del usuario de forma interactiva, se han elaborado scripts
que realizan la misma tarea que la aplicación web sin la conducta de un usuario. Estos
scripts pueden recibir más de un documento para analizar y, o bien generar un mapa
por cada documento o generar un sólo mapa considerando los datos contenidos en la
colección de documentos.

1.1. Motivación

La empresa Idearium S.L. ha identificado la necesidad de visualizar la información y
datos de carácter geográfico que contiene un documento. Es decir, considera muy útil
el poder reconocer rápidamente las áreas o regiones que se referencian en un art́ıculo y,

1

1.3. Objetivos

además, ser capaz de recoger información sobre estas áreas de una manera sencilla para
plasmarla visualmente en un mapa. Por otro lado, no se han localizado aplicaciones o
sistemas con el objetivo que tiene este proyecto, por lo que se aborda el desarrollo de
una aplicación o sistema que permite realizarlo.

En concreto, la empresa ha requerido como resultado del proyecto una aplicación
independiente que puede utilizarse de forma independiente, y también como una parte
que pueda ser integrada con otras aplicaciones existentes de la propia empresa.

1.2. Trabajos previos

La aplicación desarrollada ejerce una tarea de apoyo a una aplicación ya existente
de la empresa Idearium, además de añadir una funcionalidad nueva y muy útil para
su plataforma. Esta aplicación existente es Tbl2Map, la cual recibe como entrada una
tabla con datos, entre los que se encuentran el identificador del área, el nombre del
área, y un valor asociado a ésta. La aplicación, después de verificar que los datos son
correctos, pide una configuración al usuario a través de distintas pantallas, en las cuales
se le requiere de indicar el t́ıtulo del mapa, la gama de colores, y el formato de salida
(GML, GeoJSON, SHP, PDF y JPG), entre otros aspectos. Una vez concluido este
contexto, se realiza una llamada a un servicio web que se encarga de generar el mapa
y mostrárselo al usuario, de forma que pueda tener la opción de descargarlo.

En relación con trabajos similares, cabe comentar una aplicación existente utilizada
para analizar los subt́ıtulos de la televisión para identificar regiones territoriales y
generar un mapa con ellas. No obstante, este sistema no cumple con todos los requisitos
propuestos en este proyecto, puesto que solamente realiza la tarea de señalar palabras
encontradas, pero no es capaz de recuperar información relacionada con ellas, como śı
lo hace la aplicación desarrollada.

1.3. Objetivos

Este proyecto se ha llevado a cabo considerando los requisitos que la empresa Idea-
rium S.L. ha propuesto. Sin embargo, la empresa ha dado libertad en aspectos relacio-
nados con el uso de las tecnoloǵıas web y el diseño de las interfaces. Estos aspectos han
sido tratados y desarrollados por la estudiante, resueltos utilizando sus conocimientos
e intentando integrar lo mejor posible el proyecto con el resto de aplicaciones de la
empresa.

Con los requisitos de la empresa en cuanto al proyecto y el objetivo principal que se
pretend́ıa conseguir con este trabajo se ha elaborado la tabla 1.

Objetivo principal. Desarrollar un sistema de información web para detectar
automáticamente referencias territoriales citadas en un documento y crear un
mapa que las represente según los valores de una medida.

Requisito 1. Identificación de las áreas en un documento.

2

CAPITULO 1. Introducción

Requisito 2. Hacer uso del motor de búsqueda Apache Solr [2].

Requisito 3. Obtener información estad́ıstica para poder representar el mapa.

Requisito 4. Utilizar consultas RDF [3].

Requisito 5. Hacer uso de la API de Aragopedia [4].

Requisito 6. Transmitir la información a Tbl2Map.

Requisito 7. Acceso automatizado para conseguir un lote de mapas.

Requisito 8. Acceso automatizado para conseguir un mapa de popularidad de
áreas.

Cabe decir que se incluyó un objetivo más cuando ya se hab́ıan cumplido todos los
anteriores: automatizar el acceso al servicio web de Tbl2Map para facilitar la obtención
de un mapa basado en la popularidad de las regiones en los documentos indicados,
tratado en su sección 4.3.5. Además, en las diferentes reuniones han surgido requisitos
secundarios que se han ido añadiendo dinámicamente después de analizar su dificultad
y su utilidad.

Requisito adicional a. Uso de tecnoloǵıas web para desarrollar el sistema.

Requisito adicional b. Uso del servicio web para integrar diferentes componentes
de las aplicaciones existentes.

Requisito adicional c. Utilizar petición HTTP POST.

Requisito adicional d. Acceso en formato Shell.

Requisito adicional e. Manejar el modelo Jenks para tratar los colores.

Referencia Requisito

1 Identificar referencias territoriales en un documento
2 Utilizar Apache Solr
3 Obtener información estad́ıstica para poder representar el mapa
4 Utilizar consultas RDF
5 Hacer uso de la API de Aragopedia
6 Transmitir la información a Tbl2Map
7 Acceso automatizado para conseguir un lote de mapas
8 Acceso automatizado para conseguir un mapa de popularidad de áreas
a Uso de tecnoloǵıas web para desarrollar el sistema
b Uso del servicio web para integrar diferentes componentes de las aplicaciones existentes
c Utilizar petición HTTP POST
d Acceso en formato Shell
e Manejar el modelo Jenks para tratar los colores

Tabla 1: Requisitos del proyecto

3

1.5. Estructura de la memoria

1.4. Planificación del proyecto

Para cumplir con los objetivos y requisitos indicados en la sección anterior, se dividió
el proyecto en las siguientes fases:

Análisis y diseño. En esta fase se especificaron los requisitos del sistema a
desarrollar (ver sección 4.2), y se realizó un primer diseño de la arquitectura del
sistema, como se observa en la figura 8. Una vez se realizó una primera aproxi-
mación, los resultados de esta fase fueron validados por el director y ponente del
proyecto para tener claro el trayecto a seguir. Esta fase se desarrolló de forma in-
tensa la primera semana del proyecto. No obstante, a lo largo de todo el proyecto
se revisaron y aplicaron tanto los requisitos como la arquitectura inicial.

Adquisición de conocimientos. El estudio de las tecnoloǵıas a utilizar, las
herramientas, y el análisis de la documentación de éstas supuso una ardua labor
influyente que ocupó la mayor parte de las semanas 2 y 3 del proyecto, debido a
la inexperiencia de la estudiante en el campo de Recuperación de información.

Implementación. En cuanto al desarrollo técnico se refiere (ver sección 4.3), se
identificaron tres grandes bloques que divid́ıan al proyecto:

1. Identificación, indexación y búsqueda de referencias territoriales en docu-
mentos.

2. Recuperación de información de Aragopedia para representarlas en el mapa.

3. Transmisión de toda la información generada a la aplicación Tbl2Map para
generar el mapa.

Esta fase ha sido la más costosa y de más relevancia del proyecto, y se ha trata-
do de desarrollar el código lo más reutilizable posible, dividiéndolo en diferentes
componentes que se puedan integrar y reutilizar en otras aplicaciones. Su reali-
zación ha conllevado, aproximadamente, 8 semanas.

Implantación y pruebas. Cabe comentar que el proceso de pruebas (ver sec-
ción 4.4), aunque al final del proyecto se realizó una fase completa de testing, se
fue elaborando a través de diferentes verificaciones a lo largo de todo el desarrollo
(ver diagramas de Gantt en anexo E), probando unitariamente los componentes
que se iban implementando para comprobar su correcto funcionamiento.

Documentación técnica. De la misma manera, la elaboración de la memoria
ha sido una fase que ha estado presente desde el inicio hasta el final del proyecto.
Sin embargo, ha sido en las últimas semanas del proyecto cuando más se ha
incidido en ella.

1.5. Estructura de la memoria

En este caṕıtulo se va a comentar la estructura del resto de la memoria, que es la
siguiente: En el caṕıtulo 2, se describe el contexto tecnológico en el que se desarrolla

4

CAPITULO 1. Introducción

el proyecto, se analiza la evolución de los sistemas web desde su nacimiento hasta la
actualidad, y cómo ha influido ésta en el desarrollo de aplicaciones web.

A continuación, en el caṕıtulo 3, se describen la metodoloǵıa utilizada en el desarro-
llo del proyecto, las herramientas empleadas, el proceso llevado a cabo para alcanzar
los objetivos, y las diferentes reuniones con el director y ponente del proyecto. Cons-
tituyeron el punto de partida para el desarrollo de la aplicación Text2Map.

Posteriormente, en el caṕıtulo 4, se detalla la aplicación web construida, explicando
el proceso de desarrollo. En primer lugar, se realiza un análisis y diseño. A continuación,
se describen la fases de implementación y pruebas, aśı como los resultados obtenidos.
Este apartado es el que más peso tiene del proyecto.

Finalmente, en el último caṕıtulo, se explican las conclusiones del proyecto, incidien-
do los posibles problemas encontrados, soluciones elegidas, y se realiza una valoración
personal de éste. Por último, se indican posibles ĺıneas de trabajo futuro para ampliar
la aplicación desarrollada.

5

6

CAPITULO 2. Contexto tecnológico

2. Contexto tecnológico

La evolución de los sistemas web ha tráıdo cambios considerables en los últimos años.
En general, se identifican 4 etapas o eras en la evolución de la Web desde que esta
surgió a finales de la década de los 80, en el centro europeo de investigación nuclear
(European Organization for Nuclear Research -CERN-, en inglés).

La era de la Web estática. Esta etapa se desarrolló entre los años 1989-1998 apro-
ximadamente, y teńıa como objetivo principal compartir e intercambiar documentos
para facilitar el consumo de información. Esta fase también se conoce con el nombre
de Web de sólo lectura, ya que los usuarios visualizaban páginas web, generalmente
publicadas por grandes administraciones y empresas, a través de sus navegadores.

La era de la Web dinámica. Esta etapa se caracteriza por tratar de integrar la
información procedente de los sistemas de gestión de las entidades con la publicada
en la Web. Esto produce un cambio tecnológico, pero no de filosof́ıa, pues se sigue
considerando una web de sólo lectura. Es en esta etapa cuando surgen tecnoloǵıas que
permiten ejecutar código en los servidores web, como por ejemplo JSP y PHP. En esta
etapa se produce un gran incremento de sitios web disponibles para su consulta, debido
a la popularización de la tecnoloǵıa. Aśı, por ejemplo, numerosos profesionales crean
su propia página personal. Debido al aumento del volumen de documentos y sitios
disponibles, se desarrollan tecnoloǵıas y herramientas para facilitar la localización de
las páginas de interés a los usuarios finales, como por ejemplo, los directorios y los
motores de búsqueda Yahoo! y Google.

La era de la Web social. Con esta etapa se produce un cambio de filosof́ıa, no sólo
tecnológico como hasta entonces, puesto que la mayor parte de los usuarios se convierte
en proveedores de información y datos, y no sólo en lectores/consumidores de ésta.
Por ello, esta fase también se conoce con el nombre de Web de lectura y escritura. En
esta fase surgen las plataformas sociales que actualmente están muy avanzadas, como
Youtube, Facebook, Twitter, etc.

La era de la Web de datos. Esta etapa o fase es en la que nos encontramos actual-
mente. El objetivo principal de esta fase es crear una Web en la que agentes software
consumen datos de forma automática, es decir, que la Web no sólo esté orientada a
que la lean y consuman personas, sino también procesos software de forma automáti-
ca. Esta etapa comenzó a principios de milenio y persigue que no sólo se referencien
documentos, sino también los datos disponibles dentro de dichos documentos. Para
ello, se han desarrollado numerosas tecnoloǵıas, como por ejemplo, RDF y SPARQL.

En más detalle, la gran cantidad de datos que se almacena hoy en d́ıa en la Web hace
que la búsqueda de información concreta genere resultados no deseados o que no se
están buscando. Por ello, uno de los objetivos de la Web de datos es que las máquinas
sean capaces de entender qué se le está pidiendo y ejecuten acciones para lograr lo
que se le requiere. Para ello, es necesario una semántica común entre computadores
y personas, necesitando tres tecnoloǵıas clave: los vocabularios u ontoloǵıas comunes
que constituyen un marco común, es decir, que nos permitan “hablar” en el mismo
idioma; modelos y lenguajes que nos permitan publicar datos (por ejemplo, el estándar
de RDF); y lenguajes de consulta para recuperar información de las nuevas fuentes de

7

2.1. Herramientas

datos, como por ejemplo, SPARQL para obtener fuentes RDF.

2.1. Herramientas

El proyecto basa su parte más importante en el tratamiento de documentos para
permitir localizar las áreas geográficas que aparecen en ellos, por lo que la herramienta
Apache Solr [2] tiene una importancia de enorme peso en su desarrollo. Solr se ha
encargado por completo de la indexación de documentos y búsqueda de términos que
interesan, y se ha intentado aprovechar al máximo su gran potencia. Es una herramien-
ta muy rápida que permite la localización de palabras solicitadas a través de varios
ajustes en la configuración de su esquema. La premisa fundamental de Solr es sencilla:
el usuario le da mucha información en forma de documentos, y después puede hacerle
consultas y preguntarle por partes de información que se requieren. La parte en la que
se alimenta a Solr con información es llamada indexado, y cuando se le pregunta, se
llama consulta.

Por otro lado, existe una gran consideración en cuanto a la parte relacionada con
SPARQL, el lenguaje de consulta de grados RDF, mediante la cual se ha podido llevar
a cabo la búsqueda de información referente a las áreas geográficas encontradas en
el texto. Este proceso se ha realizado apoyándose en el API proporcionado por Open
Data Aragón, una iniciativa que dispone de contenidos territorializados, ya que es una
fuente oficial de información y muy generosa/rica en cuanto al contenido ofrecido.

Las aplicaciones web emergen desde finales de la década de los 90 para no requerir
la instalación local de Sistemas web espećıficos más allá de un navegador, y están com-
puestas generalmente por dos grandes componentes: el frontend y el backend. En el
backend se encuentra el servidor web, al que se le realiza peticiones desde el frontend
para realizar operaciones, recuperar información y devolverla al frontend, para mos-
trarla al usuario. El conjunto formado por las tecnoloǵıas AngularJS y Bootstrap está
siendo muy utilizado en la mayoŕıa de sitios web por añadirle facilidad, dinamismo y
novedad al frontend, apoyado sobre un backend basado en Java mediante el frame-
work Spring, el cual también aporta comodidad para manejar operaciones realizadas
el servidor. Estas tecnoloǵıas han sido la clave de la estructura web de la aplicación
desarrollada.

8

opendata.aragon.es

CAPITULO 3. Metodoloǵıa

3. Metodoloǵıa

En este caṕıtulo, en primer lugar se describe la metodoloǵıa/enfoque aplicada en el
desarrollo del proyecto y cómo se ha llevado a cabo éste. A continuación, se describe
el conjunto de herramientas que han hecho posible el desarrollo de una manera más
ágil y confortable.

3.1. Metodoloǵıa del proyecto

El trabajo actual se ha sostenido en una metodoloǵıa ágil en la cual se ha incidido
en la adaptación de los avances del proceso más que en la predicción, además de ser
más orientada al personal que al proceso. El uso de este tipo de metodoloǵıas permite
una generación de prototipados rápidos y versiones previas a la entrega final, y es
menos arriesgado el poder realizar modificaciones en el diseño, tal y como se indica en
el art́ıculo [5].

Conviene recalcar que el proyecto ha seguido un desarrollo en espiral, en el cual se
producen múltiples iteraciones de cada ciclo de actividades, sin pasar al siguiente ciclo
hasta que no se ha finalizado correctamente el actual. Además, en cada uno de estos
ciclos se han establecido cuatro pasos esenciales que permiten adaptar las diferentes
actividades o tareas:

Determinar los objetivos. Se fijan las metas que se quieren lograr en ese ciclo,
definiendo la situación ideal.

Análisis del riesgo. Se realiza un estudio de las dificultades identificadas en
el ciclo y sus posibles soluciones y estrategias para reducirlas y evitarlas. La
bibliograf́ıa utilizada en esta fase fue muy extensa, analizando tanto páginas
oficiales de la distribución, consumidas para aprender el funcionamiento, como
foros no oficiales, empleados para resolver problemas.

Desarrollar y validar. Se ejecuta el desarrollo de las tareas o actividades pla-
nificadas en los pasos anteriores.

Comprobar o verificar. Por último, se valida si es posible continuar con el
ciclo posterior o son necesarios cambios en el ciclo actual.

El desarrollo del proyecto se dividió en tres grandes bloques (ver figura 7), y cada
uno de ellos se fragmentó en varios ciclos como los que se acaba de comentar, para
llevar a cabo satisfactoriamente cada tarea tanto por separado como en conjunto. Con
cada iteración alrededor de la espiral, se crean distintas versiones de la aplicación, cada
vez más completas, hasta que se tiene el resultado final deseado.

El modelo en espiral adoptado permite una comunicación con el cliente final constan-
te para poder adaptar las funcionalidades desde el principio hasta el final del trabajo.
Con el avance de la aplicación, se mostraba el trabajo realizado desde el punto anterior,
habiendo atendido a los aspectos considerados en reuniones precedentes. De esta ma-
nera, se recib́ıa la retroalimentación necesario para poder, tanto mejorar lo realizado,

9

3.2. Herramientas utilizadas en el desarrollo

como avanzar en fases posteriores. Normalmente, se haćıan reuniones con el ponen-
te cada semana, si hab́ıa trabajo relevante que enseñar. Estas reuniones serv́ıan para
poder avanzar más rápidamente, resolver dudas y solucionar problemas que pod́ıan
paralizar momentáneamente el progreso del proyecto.

Otro de los rasgos importantes es la planificación, puesto que es imprescindible
conocer los recursos y el tiempo que se van a necesitar, y ser capaz de añadir más
informaciones relevantes conforme progresa el proceso. Además, el estudio de los ries-
gos que se incluye en este método es fundamental para evitar problemas y conflictos
posteriores que se podŕıan haber remediado.

3.2. Herramientas utilizadas en el desarrollo

En este apartado se describen las herramientas de desarrollo que se han empleado
para la construcción y despliegue del proyecto, mientras que los frameworks, libreŕıas
y lenguajes núcleo de la solución se describen en el del caṕıtulo 2.1.

IDE: Tanto para la parte de implementación del desarrollo web como para llevar
un control de versiones del proyecto, se ha hecho uso del IDE IntelliJ IDEA [6] de
JetBrains. Este entorno hace posible de una manera cómoda el progreso de la apli-
cación web, aportando ventajas y opciones para el desarrollador, como por ejemplo
la depuración paso a paso para identificar posibles errores, o el autocompletado de
diferentes elementos muy comunes.

Control de versiones: El IDE IntelliJ IDEA también aporta la posibilidad de
realizar un control de versiones. Esta posibilidad se ha explotado para sacar el máximo
partido a una gestión organizada del código. Esta gestión se ha llevado a cabo a
través de GitHub [7], por ser la plataforma más utilizada actualmente en el ámbito de
desarrollo web y por tener conocimiento pleno de su funcionamiento. La oportunidad de
poder integrar el control de versiones dentro del IDE en el que se trabaja continuamente
hace mucho más fácil organizar el proyecto en diferentes fases y tener cada versión del
proyecto en el repositorio GitHub.

SonarQube: Para la generación de estad́ısticas del código, se ha hecho uso de la
plataforma SonarQube [8]. Esta plataforma de software libre permite identificar erro-
res, proveer sus soluciones y mejorar el código desarrollado basándose en estándares
oficiales. Más concretamente, se ha aprovechado el plugin existente SonarLint para el
IDE utilizado, el cual provee retroalimentación instantánea para encontrar adverten-
cias, errores y limpieza de código, junto a las soluciones estandarizadas para solventar
todo código no correcto. De esta manera, se obtiene un código limpio, con soluciones
de estándares de Java, en este caso. En la figura 2 se puede contemplar una muestra del
tipo de estad́ısticas ofrecidas por SonarQube, aunque se ha explotado la mayor parte
del tiempo el plugin SonarLint, por poder disfrutarlo desde el entorno de desarrollo.

10

CAPITULO 3. Metodoloǵıa

Figura 2: Estad́ısticas ofrecidas por SonarQube

Documentación: Por último, indicar que para la generación de la documentación
técnica del código desarrollado se ha empleado la herramienta Javadoc [9], una herra-
mienta de generación de documentación en formato HTML para software desarrollado
en Java. En concreto, se crea una página web por cada clase, y en ella se especifican
las caracteŕısticas de la clase y sus métodos.

11

12

CAPITULO 4. Aplicación web desarrollada

4. Aplicación web desarrollada

En este caṕıtulo, se describen las diferentes fases que componen el desarrollo del
proyecto, formado por el análisis y diseño, implementación y pruebas.

4.1. Descripción y funcionamiento

La aplicación desarrollada en este proyecto tiene como nombre Text2Map, refi-
riéndose a “de texto a mapa”, literalmente. Su funcionamiento se basa en recibir un
documento de texto con formato PDF, word, o .txt por parte del usuario, procesarlo
para encontrar en él áreas geográficas de Aragón según el tipo de área que el usuario
elige (comarca o municipio), y permitir al usuario elegir un parámetro de información
y un peŕıodo de tiempo de dicho parámetro en las áreas geográficas localizadas previa-
mente. El usuario puede decidir si descargar la información obtenida como un fichero
excel o bien reflejarlo en un mapa temático.

En resumen, el objetivo de la aplicación es poder representar de una manera rápida
las áreas aragonesas existentes en un texto, y además poder obtener una información
real y fiable de un determinado peŕıodo para cada área de una forma sencilla y eficaz.
En las figuras 3, 4, 5 y 6 se puede ver todo el proceso a seguir por parte del usuario
desde su acceso a la aplicación hasta la generación del mapa, mediante un mapa de
navegación.

4.2. Análisis y diseño

Al inicio del proyecto, se realizó un análisis global de la aplicación desarrollada, de-
terminando los puntos fuertes en los que se deb́ıa intensificar el trabajo. Se describieron
los requisitos funcionales que deb́ıa cumplir la aplicación, aśı como los no funciona-
les. Los requisitos del proyecto fueron determinados por el director del proyecto, a
su vez jefe de la empresa para la cual se realizaba este proyecto, Idearium S.L., para
que la aplicación desarrollada fuera consistente con los demás productos de la orga-
nización. No obstante, la estudiante debatió y sugirió al director nuevos requisitos y
funcionalidades.

El planteamiento inicial de la aplicación se realizó a través de diagramas para tener
una idea general de la arquitectura global del sistema. En la figura 7 se puede con-
templar este diagrama. De la misma manera, se desarrollaron tanto diagramas de la
arquitectura global como diagramas técnicos para entrar en más detalle en aspectos
relacionados con la implementación de los componentes o paquetes de la arquitectura
(ver anexos 5.4 para más detalle de los componentes). Estos diagramas ayudaron a
comprender el debido funcionamiento de la aplicación en una fase inicial del proyecto.

En la fase de diseño, se plantearon diferentes alternativas para abordar la confir-
mación e implementación de cada uno de los componentes reflejados en los diagramas
comentados anteriormente, considerando las principales ventajas e inconvenientes de
cada una de las alternativas. Finalmente, se optó por un diseño reflejado en la figura

13

4.3. Implementación

Figura 3: Mapa de navegación por parte del usuario de la primera parte del proceso
de Text2Map para generar el mapa

8 donde se puede observar la arquitectura interna planteada e implementada para el
backend y el frontend del sistema desarrollado.

4.3. Implementación

La parte más significativa del proyecto ha sido su implementación, la cual ha ocupado
la mayor parte del tiempo. Después de efectuar todo el análisis y diseño previo de la
aplicación, considerando los aspectos fundamentales, se dio paso al desarrollo técnico.
Para más detalles sobre los diagramas de secuencia que reflejan los principales procesos
del sistema, ver anexo Diagramas y esquemas complementarios.

4.3.1. Identificación de referencias territoriales del documento

La versión utilizada para este proyecto ha sido la más reciente en ese momento1,
Apache Solr [10] 6.5.1. Apache Solr es un motor de búsqueda de código abierto que está
basado en Apache Lucene [11] para recuperar información que interesa al usuario de
un texto. La caracteŕıstica de ser código abierto posibilita el acceso público y posibles
mejoras posteriores. Es muy útil para cualquier aplicación que requiera de un proceso
de indexación y búsqueda en textos, por lo tanto, es adecuado para desarrollar el

1Abril de 2017

14

CAPITULO 4. Aplicación web desarrollada

Figura 4: Mapa de navegación por parte del usuario de la segunda parte del proceso
de Text2Map para generar el mapa

primer componente de este proyecto, en el cual se introduce un fichero y se deben
buscar en él palabras ya conocidas previamente-áreas geográficas de Aragón en este
caso.

Esta plataforma tiene diferentes formas de ser utilizada, y en este proyecto se ha
hecho uso de dos de ellas:

1. A través del cliente Java Solrj

2. Mediante comandos curl

SolrJ se ha manejado desde el servidor web desarrollado en Java, proporcionando un
cliente Java que puede realizar las operaciones de añadido, indexación, y consulta de
documentos. Por otro lado, el comando curl ha sido empleado en la elaboración de los
scripts para realizar las mismas operaciones comentadas. Para Solr, cada documento
está compuesto por campos, que son piezas más espećıficas de información, y que
pueden contener diferentes tipos de dato (por ejemplo, el campo nombre puede ser un
texto, pero el campo número de pie puede ser un número). Estas clases de dato se le
especifican a través de sus tipos de dato, para indicar cómo interpretar cada campo y
cómo ser consultado.

15

4.3. Implementación

Figura 5: Mapa de navegación por parte del usuario de la primera parte del proceso
de Tbl2Map para generar el mapa

Solr permite construir un ı́ndice con éstos diferentes campos durante el indexado,
para posteriormente poder realizar las búsquedas sobre palabras rápidamente. De esta
manera, cuando se añade un documento a Solr, éste extrae la información de los campos
del documento y la añade a su ı́ndice. Cuando se le realiza una consulta, podrá buscar
directamente en el ı́ndice y devolver los documentos coincidentes con la petición. La
ventaja que proporciona Solr es que es una herramienta muy flexible, teniendo una
cantidad muy extensa de parámetros con los que trabajar para alcanzar el objetivo
final.

En el proceso de la indexación, se indica a Solr cómo y qué palabras se quiere
almacenar en su ı́ndice, puesto que puede haber una gran cantidad de palabras de
un documento que no interesa guardar. De forma análoga, en el proceso de consulta,
también se indica cómo se pretende realizar la búsqueda, ya que se pude realizar
un proceso de tratamiento de la búsqueda previo a ejecutar la consulta. Toda esta
configuración se determina en el fichero schema.xml [12].

En el caso concreto de Text2Map, se copia todo el contenido del documento añadido
en dos campos creados, uno para comarcas y otro para municipios. Al final del proceso,
en cada campo quedarán las comarcas y los municipios, respectivamente, que se han
encontrado en el documento, y cada área apuntará al documento en el que se ha
identificado. En ambos campos, en el proceso de indexación, se realiza un tratamiento
de los datos que consiste en:

16

CAPITULO 4. Aplicación web desarrollada

Figura 6: Mapa de navegación por parte del usuario de la segunda parte del proceso
de Tbl2Map para generar el mapa

1. Dividir el contenido del documento por espacios en blanco, y asociar cada palabra
a un token.

2. Combinar cada token con los siguientes n tokens para formar un nuevo token de
palabras compuestas (muchos nombres de áreas son compuestos)

3. Filtrar esas combinaciones resultantes del punto anterior con la lista de los nom-
bres de las áreas para que sólo queden áreas en el ı́ndice. Aqúı, depende del tipo
de ı́ndice que sea, se utilizará la lista de comarcas o de municipios.

Una vez se ha realizado el proceso de indexación, se pueden realizar consultas a ese
ı́ndice. El proceso de consulta consiste en determinar si cada área a tratar aparece o no
en el ı́ndice. Si el resultado devuelto por Solr indica que ese área está en el documento
a tratar, entonces este área se debe considerar en la consulta SPARQL. Esta primera
parte está reflejada visualmente en la figura 9 y en el diagrama de secuencia de la
figura 10. Para más detalles consultar el anexo A.

4.3.2. Obtención de información estad́ıstica

La información que se puede representar como medida estad́ıstica en el mapa temáti-
co viene dada por la API proporcionada por el portal Open Data del Gobierno de
Aragón [4]. Es por ello que no se almacena información en la propia aplicación en
forma de base de datos, sino que se realizan consultas online para evitar trabajar con

17

4.3. Implementación

Figura 7: Visión global de los componentes de la aplicación desarrollada

Figura 8: Arquitectura interna de la aplicación web

información obsoleta. Además, se considera que los datos proporcionados por la fuente
consultada son fiables y actuales, revisados periódicamente. Aśı mismo, de esta manera
no se tiene que hacer un control de la mantenibilidad y actualización de la información
dentro de la aplicación, simplificando su arquitectura y mantenimiento.

Aragón Open Data es una iniciativa que permite obtener datos concretos de la medi-
da que se desea mostrar, aportando, además de la medida de información a representar,
las áreas geográficas y el peŕıodo de tiempo del que se quiere encontrar la información.
Para ello, el componente de la aplicación desarrollada ejecuta un proceso compues-
to por varias peticiones con la finalidad de componer una consulta final a la API de
SPARQL que provee Aragopedia [13]. En este proceso, los resultados de las peticiones
se van mostrando al usuario para que él decida todos los elementos necesarios para
formar la consulta (excepto las áreas geográficas, puesto que éstas ya se han obtenido
previamente del documento de texto tratado).

El usuario debe indicar tanto el peŕıodo de tiempo que desea de información, como el

18

CAPITULO 4. Aplicación web desarrollada

Figura 9: Diagrama técnico del proceso Solr

Figura 10: Proceso identificación de áreas

tipo de informe deseado, y la variable de ese informe que quiere representar finalmente
en el mapa. Es posible que tenga que decidir también un valor para otras variables de
tipos enumerados de ese informe. Para más información, consultar anexo A, donde se
explican los cubos de dimensiones que se consultan.

En concreto, el proceso se compone de los siguientes pasos:

1. Realizar una primera petición a Aragopedia para recoger todos los informes
(temas de información) existentes en su base de datos, por ejemplo, “Paro regis-
trado”, “Censo demográfico” o “Parcelas existentes”.

2. Mostrar los posibles informes al usuario para que seleccione uno de ellos a través
de una búsqueda simple donde aparecen todos.

3. Una vez elegido el informe, enviar una petición para recoger los peŕıodos de
tiempo disponibles para este informe, y las variables/atributos que lo componen;
por ejemplo, para el informe “Ganadeŕıa en el censo agrario”, existen variables
como “Ganado ovino”, “Ganado bovino 2“Ganado porcino”.

19

4.3. Implementación

4. El usuario debe elegir un año, y una variable numérica de las obtenidas en el
punto 1 anterior para representarla en el mapa posteriormente.

5. Además, es necesario tener en cuenta que, si el informe contiene variables no
numéricas, el usuario debe fijar un valor para cada una de ellas.

6. Construir la consulta necesaria para obtener los valores correspondientes a cada
área, el año propuesto de la variable elegida, y enviarla al endpoint SPARQL.

7. Construir una tabla con los datos obtenidos para mostrársela al usuario

8. Definir el estilo o configuración del mapa (colores, orientación, etc.)

El diagrama de secuencia perteneciente a este proceso se muestra en la figura 11. Cabe
decir que el proceso técnico llevado a cabo en esta parte está contemplado con mayor
detalle en el anexo B.

Figura 11: Diagrama de secuencia del proceso Solr

Como se ha comentado anteriormente, esta parte depende absolutamente de la in-
formación almacenada en Aragopedia. Esto quiere decir que es posible que el usuario
seleccione un informe en el que no existen datos en ese momento, o que ninguna de las
variables devuelva resultados. Además, Aragopedia es una iniciativa que sufre cambios
habitualmente, y que deja inactivo su acceso a la información en ocasiones para produ-
cir mejoras en su servicio o actualizaciones de datos. En cualquier caso, si se dan estos
casos, se avisa mediante un mensaje de alerta al usuario para que tenga consciencia
de ello y pueda cambiar la información de búsqueda.

4.3.3. Generación de mapa temático

Tbl2Map es una aplicación web propia de la empresa Idearium Consultores que
genera mapas temáticos de Aragón a partir de los datos proporcionados en una tabla.
Por ello, esta aplicación se emplea en la construcción del tercer componente del sistema
desarrollado.

La aplicación Tbl2Map original recibe un fichero que puede ser de los siguientes
formatos estructurados: CSV, XML, XLS, GPX o JSON. Este fichero debe contener
el código indicador del área, el nombre del área y un valor asociado, que es el que se

20

CAPITULO 4. Aplicación web desarrollada

representa en el mapa. Como áreas posibles, se pueden representar comarcas, localida-
des, municipios, calles, cuadŕıculas UTM, parcelas, topónimos y coordenadas. Abarca
un gran abanico de información, pero lo más relevante en este caso es que acepta las
dos categoŕıas de áreas admitidas en la aplicación del proyecto.

Para realizar el v́ınculo entre Tbl2Map y nuestra aplicación (Text2map), fue nece-
sario realizar varias modificaciones en el código de Tbl2Map. Concretamente, se tuvo
que ampliar Tbl2Map para permitir recibir información en una petición HTTP POST
sin interactuar con un usuario final. Para ello, se creó una página JSP para obtener
desde ah́ı los parámetros emitidos desde la aplicación Txt2Map y hacer con ellos los
cambios necesarios que se comentan a continuación:

No tener que introducir un fichero estructurado con la información, sino que la
obtiene de los parámetros recibidos.

Realizar el emparejamiento de las áreas encontradas con la base de datos de la
empresa para comprobar que son correctas.

Pasar de estado/página inicial a mostrar para exponer directamente la página
de elección del formato de salida de la imagen al usuario.

Una vez terminadas estas modificaciones en Tbl2Map, se ha empaquetado la aplica-
ción y desplegado en el servidor web Tomcat para poder probar su correcto funciona-
miento. Cabe decir que también se ha dejado la opción inicial, en la cual la aplicación
Tbl2Map no recibe ningún parámetro, sino que es un proceso entero en el que se pide
introducir un documento estructurado y tratar la información contenida en él.

4.3.4. Script de lotes de mapas

Como resultado complementario al desarrollo de la aplicación, se teńıa como objetivo
proporcionar también un acceso al servicio web de Tbl2Map para poder obtener un
lote de mapas a la vez, sin intervención del usuario, dado un directorio donde hay
varios documentos; es decir, cada documento debe generar un mapa correspondiente
a las áreas encontradas en ese documento según el tipo de área indicado.

Para lograr este objetivo, se ha decidido crear un script de Bash Shell, por su sencillez
y por ser el medio preferido en la empresa para llevar a cabo esta tarea. En este script,
se ha tratado de repetir el proceso simplificado que se ha realizado en la aplicación
web; es decir, para cada documento se realiza el proceso entero, generando su mapa
correspondiente con las áreas encontradas en él, antes de pasar al siguiente documento.
A continuación se van a detallar los pasos seguidos para desarrollar este script:

1. Cargar e indexar los documentos existentes en un directorio. La ruta de éste es
especificada por el usuario como primer parámetro del script, y el tipo de área
es indicado también como segundo parámetro (en este caso, comarca o munici-
pio). Este paso se ejecuta mediante el comando curl, haciendo una petición a la
plataforma Solr en la que ya está configurado el schema para crear el ı́ndice tal

21

4.3. Implementación

y como se desea. Para obtener una información detallada de este proceso ver la
sección 4.3.1.

2. Realizar un conjunto de peticiones a través del comando wget con las diferentes
áreas existentes en Aragón del tipo indicado (es decir, todas las comarcas o todos
municipios de Aragón), para saber cuáles pertenecen al ı́ndice recién creado. Si
el resultado de la consulta incluye el documento que recién se ha subido, el
área consultada se almacena en un array, y se procede con la siguiente área,
hasta que se procesan todas las áreas. De esta manera se consigue la lista de
áreas encontradas en el documento actual. Por el contrario, si la respuesta de
la consulta no devuelve el documento, el área no se encuentra en el ı́ndice, por
lo que se elimina de la consulta SPARQL que se realizará cuando este proceso
termine.

3. Construir la consulta SPARQL. La ruta del fichero que contiene la consulta
SPARQL a realizar debe especificarse antes de comenzar este proceso de re-
conocimiento de áreas, para poder transmitirla a una variable y tratarla más
fácilmente. En esta consulta se determina la medida estad́ıstica que dará como
resultado un valor concreto para cada área. Es por ello que una vez termina
este procedimiento se consigue, por un lado, la consulta SPARQL con las áreas
reconocidas en el texto, preparada para ser enviada al endpoint SPARQL de
OpenData [13], y por otro lado, las áreas reconocidas en un array.

4. Enviar la consulta construida al endpoint indicado previamente. Al recibir la
respuesta de esta llamada, ya se tiene el valor esperado que corresponde a cada
área indicada en la consulta, entre otros datos que no tienen relevancia. Para
conseguir extraer solamente la información necesaria de la respuesta a la petición
SPARQL, se ha creado un breve programa Java en el que se utiliza el parser SAX
para obtener información concreta de documentos XML. Este parser obtiene
el nombre de las áreas y el valor asociado a éstas, y lo devuelve de vuelta al
script, obteniendo aśı la información necesaria para transmitirle al servicio web
de generación de mapa.

5. Configurar el mapa. Se desarrolla el procedimiento encargado de colocar cada
área identificada en su color correspondiente según el valor recogido de ésta a
través de la consulta l. Para ello, se ha utilizado como modelo de clasificación el
método de agrupamiento Jenks [14], por ser el más justo con las distancias entre
valores y el preferido por la empresa. Como caracteŕısticas fijas se han elegido
10 colores diferentes de la gama roja. Para lograr este proceso, primero hay que
definir los distintos intervalos de valores en los que se dividen los colores. Para
ello, se ha desarrollado un conciso programa en Python que lo resuelve.

6. Env́ıo del contenido XML al servicio web de Tbl2Map [15] para la generación
del mapa. Para llevar a cabo este cometido se ha realizado un programa de Java,
al que se le transmite una lista de colores con las áreas correspondientes a cada
color. En él, simplemente se construye el XML que necesita posteriormente el
servicio web con la lista recibida, y devuelve el contenido generado (el mapa en
formato base64) al script.

7. Conversión del mapa al formato png. El script recoge la respuesta del servicio
web de Tbl2Map a través de un programa Java y lo convierte en un fichero con

22

CAPITULO 4. Aplicación web desarrollada

extensión .png para poder visualizarlo, llamado “mapadocX”, siendo X el número
de documento procesado. En este mapa se representan las áreas encontradas en
el texto con los colores correspondientes según el valor de la medida indicada en
la query l.

Todo este proceso se repite para cada uno de los documentos que existen en el direc-
torio indicado por el usuario, generando aśı tantos mapas como documentos presentes
hay en él.

4.3.5. Script de mapa de popularidad

Además del script en el cual se genera un mapa por cada documento indicado,
anteriormente comentado, se decidió realizar otro con una misión diferente, pero con
un proceso similar. Este script se encarga de generar un solo mapa que recoge todas
las áreas de los diferentes documentos, y en lugar de utilizar una consulta SPARQL
para recoger valores que representar en el mapa como el otro script, se utilizaŕıa como
valor el número de documentos en los que aparece cada territorio. De esta manera, se
consigue ilustrar la popularidad de cada lugar en un conjunto de documentos. Por otro
lado, se crea también un pequeño informe en el que se representa cada documento con
las áreas encontradas en él.

Este script recibe como primer parámetro la ruta del directorio en el que se presentan
los distintos documentos a analizar, y como segundo parámetro el tipo de área a
considerar (comarca o municipio), y realiza los siguientes pasos:

1. En primer lugar, se cargan e indexan en Solr todos los documentos del directorio
mediante un bucle compuesto de peticiones curl. De esta forma, se crea el ı́ndice
con todas las áreas encontradas en los documentos, divididas en el campo dedi-
cado a las comarcas y el campo dedicado a los municipios. Cada área apunta al
identificador del documento/s en el/los que aparece.

2. A continuación, se extran las palabras existentes en el ı́ndice para saber los terri-
torios encontrados. En esta opción, debido a que hay varios documentos presentes
en Solr, al realizar una consulta con un área la respuesta indica los identificadores
de los documentos en los que se ha identificado dicha área, entre otros apuntes.
Por lo tanto, se ha recogido para cada lugar el número de documentos en los que
aparece, si aparece en alguno. Cuando acaba este procedimiento, se transmite a
un fichero la información obtenida con la siguiente estructura:

Doc: X

Areas: aaa bbb ccc...

3. Por último, se realiza la generación de un único mapa de forma análoga al script
anteriormente descrito. La única diferencia encontrada con el anterior script es
que, en este caso, la lista de valores que recibe el programa Python se basa en el
número de documentos en los que se encuentra cada lugar, en lugar de adoptar
estos valores de una consulta l.

23

4.4. Pruebas

Este script se ha desarrollado de una forma que sea generalizable para poder añadir/quitar
elementos de forma sencilla y permitir reutilizar código (programas Java y Python)

4.4. Pruebas

En el desarrollo de este proyecto se han realizado fundamentalmente tres tipos de
pruebas:

1. Pruebas unitarias de cada uno de los componentes.

2. Pruebas de integración de los diferentes componentes.

3. Pruebas globales del sistema desarrollado.

Las pruebas unitarias y de integración se han ido ejecutando desde el inicio de la apli-
cación cada vez que se implementaba o depuraba un nuevo componente, analizándolas
de forma exhaustiva. Por otro lado, las pruebas globales realizadas una vez se hubo
desarrollado la primera versión del proyecto tuvieron como objetivo depurar los errores
cometidos en el desarrollo que no fueron detectados previamente, analizar la experien-
cia de los usuarios, medir el rendimiento y la carga que puede soportar el sistema,
etc.

En concreto, se han realizado pruebas de funcionalidad, usabilidad, compatibilidad,
rendimiento y seguridad [16] que se describen a continuación.

Funcionalidad. Durante el proceso de desarrollo de la aplicación web, se ejecu-
taban pruebas de la identificación de áreas mediante breves documentos creados
por la estudiante, en los cuales se inclúıan referencias territoriales, entre otras in-
formaciones, para comprobar su determinación. Una vez finalizada la aplicación,
se elaboró una prueba a través de la cual se ha hecho uso de documentos oficia-
les del BOA2. En éstos, aparece una gran cantidad de áreas para poder probar
tanto la identificación correcta de todas ellas, como el rendimiento con docu-
mentos más extensos que los probados hasta el momento. Gracias a esta prueba,
se ha consiguieron depurar errores hasta entonces no detectados. También se
analizaron todos los enlaces de la aplicación para comprobar que funcionan co-
rrectamente, las conexiones correspondientes a otras APIs, y que los formularios
realizan su tarea adecuadamente, aśı como la muestra de errores con información
conveniente.

Usabilidad. La importancia de la experiencia del usuario al utilizar un proyecto
web como el que en este caso nos ocupa es tan importante como su entero desa-
rrollo, ya que está pensado para ser utilizado por todos los públicos. Considerar
el comportamiento del usuario frente a la aplicación web nos permite tener en
cuenta su opinión y mejorar el sistema.

2Bolet́ın Oficial de Aragón

24

CAPITULO 4. Aplicación web desarrollada

Por esta razón, se realizaron test de usabilidad con 3 usuarios a los que se les
solicitó que realizasen varias tareas unitarias con el fin de crear el mapa corres-
pondiente. En este test se ha pretendido medir tanto las dificultades o confusiones
que encuentran, como el tiempo de respuesta de éstos. Para obtener unas res-
puestas distintas, se ha elegido un grupo heterogéneo de usuarios, entre los que se
encuentran personas con poca experiencia tratando aplicaciones web, y personas
con bastante habilidad para ello.

La respuesta de los dos usuarios inexpertos o no acostumbrados a este tipo de
aplicaciones web ha sido similar. La aplicación les resulta sencilla en cuanto a
interfaz, con elementos limitados en las pantallas de la aplicación. Uno de los
cambios propuestos por un usuario ha sido modificar tanto los nombres que
aparecen en algunos botones como la palabra que acompaña a la entrada de
texto del informe estad́ıstico (llamada “medida”) para que se entienda mejor.

Otro de los cambios sugeridos ha sido eliminar el subrayado de las áreas identi-
ficadas en el texto y cambiarle el color azul que tiene, porque se confunde con
un hiperv́ınculo. Por último, se ha recogido la opinión de que era más razonable
acceder directamente a la búsqueda en la que aparece el desplegable de todos los
datos posibles en lugar de tener que escribir para que aparezcan referencias, ya
que no se conoce qué tipo de información está almacenada.

Por otro lado, se ha realizado el mismo test a un usuario acostumbrado a tratar
con aplicaciones web modernas, y el resultado ha sido diferente. No ha puesto
aspectos en duda, y ha alcanzado el objetivo pedido con mayor rapidez.

Estas pruebas con usuarios han sido de gran ayuda para poder realizar sus cam-
bios propuestos y contribuir a que todos los públicos puedan participar en el uso
de la aplicación.

Compatibilidad. La compatibilidad de un sitio web es un aspecto fundamental
en la fase de testeo. Hoy en d́ıa, se utiliza toda clase de dispositivos tecnológicos
para navegar por la web, y no sólo ordenadores como antiguamente. Es por ello
que se ha tratado de desarrollar una aplicación responsive en todo momento, es
decir, que se adapte al dispositivo en el que se está mostrando. Aunque es una
aplicación pensada para emplearla a través del ordenador por la necesidad de
subir ficheros (más habituales en este tipo de dispositivos), se ha comprobado
que también se adecua a smartphones. Para ver los resultados de las diferentes
pruebas en dispositivo móviles, ver figuras 19, 20, 21 y 22 en anexo F.

Tan importante como probar la aplicación en otros dispositivos (o más, en este
caso) es probarla en distintos navegadores, ya que algunas aplicaciones son muy
dependientes de los navegadores, por sus diferentes configuraciones y herramien-
tas. Esta aplicación ha sido testeada en Google Chrome, Firefox, Microsoft Edge,
Safari y Opera, que actualmente son los más utilizados en todo el mundo. El fun-
cionamiento va correctamente tanto en Chrome como en Firefox. Esta aplicación
tiene toda la interfaz del cliente basada en Bootstrap 3.3.6, y Angular 1.4.8, las
cuales son tecnoloǵıas más o menos recientes, por lo que es posible que algunas
funcionalidades no funcionen en navegadores que no las soportan.

Rendimiento. Las aplicaciones web deben soportar, en ocasiones, una gran
carga en ellas. Para testear esta tarea, muchos usuarios tienen que acceder a una

25

4.5. Plan de mantenimiento

misma página y comprobar que el sistema responde con normalidad en los picos
de carga. Para realizar este proceso, se han utilizado los scripts elaborados, y se
han lanzado varias veces simulando ser varios usuarios para comprobar tiempos
de respuesta y comprobar cuándo se produce algún error por recibir demasiada
carga. Se han realizado pruebas con 10, 20, 30 y 40 usuarios simultáneos para
los dos scripts desarrollados, cuyos resultados se muestran en la tabla 2. Con 40
usuarios simultáneos, el script de lote de mapas se precipita en la creación de los
diferentes png.

Usuarios
Script lotes Script popularidad

10 20 30 40 10 20 30 40
Tiempo(sg) 19 33 51 67(falla) 14 24 37 52

Tabla 2: Rendimiento según número de usuarios y tipo de script

Seguridad. La seguridad proporcionada por una aplicación web reside en haber
comprobado todas las entradas y salidas posibles en cada proceso existente para
evitar situaciones de riesgo que no han aparecido anteriormente. Uno de los as-
pectos más primordiales hoy en d́ıa en las aplicaciones web trata poder visualizar
ciertas páginas de la aplicación sólamente si el usuario ha iniciado sesión en la
aplicación. En este caso, no existe la posibilidad de login, por lo tanto, se elimina
gran cantidad de comprobaciones. Para testear la seguridad, se ha comprobado
en el cliente que no deje enviar los formularios si no se han introducido todos los
parámetros que requiere, pero también se comprueba en el servidor si la infor-
mación es apropiada (puede ser que se realice la petición desde otra herramienta,
sin pasar por la interfaz). Además, se han verificado que los mensajes de error
sean adecuados a cada situación para dar información al usuario de la situación.

4.5. Plan de mantenimiento

El desarrollo de una aplicación web no finaliza cuando todo funciona, sino que se
requiere realizar un mantenimiento del proyecto una vez que se haya implantado. Es
de gran relevancia realizar, mı́nimo, un mantenimiento correctivo, el cual consiste en
corregir errores que surjan, aunque también es aconsejable realizar un mantenimiento
evolutivo, encargado de progresar en la aplicación desarrollando nuevas funcionalida-
des.

Por desgracia, es habitual que la entrega de un proyecto web requiera un peŕıodo de
correcciones de bugs que pueden resultar pequeñas anomaĺıas constatadas durante la
fase de pruebas a las cuales no se le dieron importancia, o pueden ser nuevas situaciones
que no hab́ıan aparecido anteriormente. Cabe destacar que los fallos encontrados por
los usuarios deben avisarse al creador de la aplicación para tener constancia de ello y
poder dar solución al problema, además de aportar apoyo en forma de información a
los usuarios.

Asimismo, en relación al aspecto de seguridad hay que garantizar la prevención de
bugs que puedan afectar gravemente al flujo habitual de la aplicación. El problema

26

CAPITULO 4. Aplicación web desarrollada

principal en el desarrollo de aplicaciones web es la falta de seguimiento en los hilos de
los que depende cualquier aplicación: las entradas y salidas del sistema. Es imprescin-
dible considerar la exposición accidental de datos que puedan servir como ataque al
sistema. Por ejemplo, es recomendable actuar sobre los mensajes de error enviados por
el servidor, ya sea deshabilitándolos o modificándolos (por ejemplo, cuando el servidor
no encuentra algún archivo pedido en particular), ya que da información al atacante
sobre el sistema.

Cabe destacar también la importancia de la realización de backups constantes para
no perder ningún dato que tenga relevancia en el sistema. Por ello, es esencial ser
selectivo con la información a guardar, y sobre todo poder hacer el backup de forma
automática para evitar perder tiempo y cometer errores manuales.

Por último, cabe indicar que si se recogen nuevas ideas que puedan ser desarrolla-
das para implementar nuevas funcionalidades, se debeŕıan recoger los requisitos que
requieren estas tareas para realizar un análisis y saber cómo tratarlas. En definitiva,
seguir el proceso indicado en la metodoloǵıa descrita en el caṕıtulo 3.1. Además, se de-
berá comunicar al responsable de la aplicación de estas modificaciones para que tenga
constancia y pueda participar en la renovación.

27

28

CAPITULO 5. Conclusiones y resultados

5. Conclusiones y resultados

En este caṕıtulo se indican las principales conclusiones del desarrollo de este pro-
yecto, atendiendo a diferentes aspectos como el cumplimiento de los objetivos, las
competencias adquiridas y lecciones aprendidas, y posibles ĺıneas de trabajo futuro.
Además, se incluye una valoración personal de la estudiante.

5.1. Cumplimiento objetivos

Los objetivos del proyecto se definieron en la fase inicial de análisis, tanto los prin-
cipales como los secundarios, tal y como se ha comentado en su sección 1.3. Durante
el desarrollo del proyecto, se ha dado prioridad a los requisitos principales en cada una
de las tres partes o componentes en los que se ha dividido el proyecto. La estudiante se
muestra muy satisfecha con el trabajo realizado, porque considera que se han cumplido
todos los requisitos establecidos y el objetivo principal. Además, se siente complacida
con lo aprendido en el ámbito académico.

En la primera parte del proyecto, el objetivo principal era identificar las referencias
territoriales en el documento, para lo cual se ha requerido hacer uso de la plataforma
Apache Solr, y recoger el conjunto completo de comarcas y municipios. El desarrollo de
este primer componente de la solución ha costado 75 horas-persona aproximadamente,
y ha sido el corazón del proyecto.

En cuanto al segundo componente de la solución desarrollada, el objetivo principal
era conseguir la información del portal de datos abiertos de Aragón (más concretamen-
te, de Aragopedia) y mostrarla al usuario como diferentes opciones. Como requisito,
se indicó realizarlo mediante consultas SPARQL dirigidas a su endpoint SPARQL. El
desarrollo de este componente ha tenido un coste de 40 horas-persona aproximadamen-
te. La mayor parte de las horas se han invertido en mostrar al usuario la información
adecuadamente.

Por lo que se refiere a la tercera componente de la solución desarrollada, el objetivo
era claro: poder transmitir las áreas identificadas junto a sus valores correspondientes
a la aplicación Tbl2Map. No se impusieron requisitos al respecto, pero śı se aconsejó
que el paso de los parámetros se ejecutara a través del método POST. Por ello, se
tuvieron que realizar varios cambios en Tbl2Map para poder recibir estos datos. Esta
parte costó finalizarla 40 horas-persona aproximadamente.

Con respecto a los scripts desarrollados para permitir procesos batch, el objetivo
inicial propuesto era crear una manera de acceder de forma automática al servicio web
de Tbl2Map y obtener varios mapas correspondientes a sus documentos, sin tener que
hacer todo el proceso de la aplicación. Aunque en esta tarea tampoco hubo requisitos
estrictos, se optó por un desarrollo a través de un script de Shell por su comodidad
y fácil automatización. Por último, la idea del segundo script se originó al finalizar el
primer script, puesto que se consideró que seŕıa de utilidad en las tareas de la empresa.
Su objetivo principal es generar un mapa, también a través del acceso automático a
Tbl2Map, consumiendo varios documentos en lugar de solo uno, y visualizar el número

29

5.3. Posibles ĺıneas de trabajo futuro

de documentos en los que aparece cada área encontrada en ellos. El coste de realizar
ambos scripts ha sido de 50-persona horas aproximadamente.

5.2. Coste del proyecto

En este caṕıtulo se expone el coste total que ha tenido el desarrollo de este trabajo
final de grado, aśı como el coste desgranado en fases (ver figura 12), acompañado
de diagramas de Gantt (ver apéndice E donde se aprecia esta información de forma
visual).

Identificación de áreas en documentos a través de Solr. 75 horas aproxi-
madamente.

Extracción de información estad́ıstica a través de Open Data Aragón.
40 horas aproximadamente.

Transmisión de información a Tbl2Map. 40 horas aproximadamente.

Script de lotes de mapas. 30 horas aproximadamente.

Script de popularidad de áreas. 20 horas aproximadamente.

Elaboración y revisión de la memoria. 70 horas aproximadamente.

Pruebas. 20 horas aproximadamente.

Corrección de errores. 30 horas aproximadamente.

Reuniones con los superiores. 15 horas aproximadamente.

Una vez dividido por fases el coste del proyecto, se procede a realizar la suma de los
costes, y se conoce que el coste total es 340 horas.

Figura 12: Gráfico circular que representa el coste de cada fase

30

CAPITULO 5. Conclusiones y resultados

5.3. Posibles ĺıneas de trabajo futuro

El propósito de esta sección consiste en indicar posibles ĺıneas de trabajo futuro o
extensiones de este proyecto partiendo de él como base. Antes de comenzar a enume-
rar dichas ĺıneas, cabe comentar que son intenciones o planes que puede necesitar la
empresa en un determinado momento en el futuro, y que no se han abordado porque
no se indicaron como objetivos para este trabajo.

En esta aplicación se ha obtenido el número de apariciones de cada área en el texto
gracias a una de las operaciones proporcionadas por Solr, pero no se ha utilizado
para actividades posteriores, simplemente se muestra como información. Una posible
mejora del sistema consistiŕıa en mostrar en el mapa generado fragmentos del texto del
documento donde se hace referencia a dicha área geográfica, por ejemplo, destacando
de alguna forma un mayor número de apariciones de las referencias territoriales en
el documento. De esta manera, se podŕıa saber a simple vista de qué áreas se está
hablando más en el texto, es decir, las que tienen más relevancia.

Text2Map recoge todas las áreas de un tipo (comarca o municipio) que aparecen
sobre un documento de texto, pero podŕıa interesar también conseguir las áreas que no
se manifiestan en el documento. Es decir, calcular la tarea inversa a lo que se realiza
actualmente.

Actualmente, en esta aplicación se ha utilizado el sitio web de aragon.opendata.es
para obtener, con su endpoint SPARQL, toda la información referente a territorios
que se muestra al usuario como opción para representar en el mapa. Otra posibilidad
podŕıa ser dar opción a elegir otros enlaces del endpoint SPARQL, como la dbpedia,
para recoger otros tipos de información y tener datos más variados.

Otro de los posibles trabajos pendientes es la implementación de un sistema seguro
a través de HTTPS en lugar de utilizar HTTP, para tener una comunicación entre ser-
vidor web y navegador cifrada. Para más detalles, ver anexo Implantación de seguridad
mediante HTTPS.

Por último, cabe indicar que se ha realizado un desarrollo escalable, de modo que es
sencillo integrar la aplicación existente con otras aplicaciones, tal y como se ha hecho
con Tbl2Map. En un futuro, el sistema desarrollado podŕıa ser integrado con otras
aplicaciones de la empresa, incluso con un gestor de contenidos (CMS) para vincular,
por ejemplo, noticias.

31

5.4. Valoración personal

5.4. Valoración personal

Este proyecto no sólo me ha servido para poner en práctica conocimientos adquiridos
durante el grado, sino que también me ha hecho desarrollarme como ingeniera, y saber
buscar las mejores soluciones a los problemas que van surgiendo sin perder el control.
Gracias a ir cumpliendo con los objetivos propuestos y avanzar en cada fase no he
perdido la esperanza de poder terminarlo en mi fecha de meta. Aprecio much́ısimo
todo lo que he aprendido, tanto lo relativo a herramientas concretas que desconoćıa
por completo, como las mejoras que he adquirido con la base que ya teńıa en otros
aspectos.

De los distintos problemas que me han surgido, el obstáculo que más peso ha tenido
para mı́ ha sido la imposibilidad de avanzar en ocasiones por cambios realizados en
el sistema de Aragopedia. Se han producido a lo largo del proyecto, y al depender
una parte de este sistema, hubo que adoptar otras medidas para poder progresar y no
perder tiempo.

Valoro mucho la atención proporcionada por mi tutor y mi directora, los cuales han
podido y sabido solucionarme las dudas, indicarme el camino a seguir, y darme ánimos
cuando más se necesitaban. Por último, espero que las competencias adquiridas en el
desarrollo de este proyecto me sirvan en un futuro y pueda continuar desarrollándolas
en el ámbito profesional en diferentes empresas innovadoras dentro del ámbito TIC,
como Idearium.

Como he comentado anteriormente, el aprendizaje obtenido durante todo el proyecto
ha sido de enorme valor para mı́. Se agradece haber tenido que lidiar con distintos
temas, algunos tratados durante el grado y otros desconocidos totalmente hasta el
momento. Se ha mejorado la habilidad de separar las partes relevantes de lo que se
desea en una documentación extensa y nueva para el estudiante, saber hacer uso de
ella y corregir errores lo más rápido posible.

La curva de aprendizaje que más trabajo ha conllevado ha sido la fase inicial, en la
cual se trabaja con Recuperación de información, concretamente, Apache Solr. Esto
se debe a que anteriormente en la carrera no se ha trabajado prácticamente en este
ámbito, aunque al finalizar este proyecto se tienen bases suficientes de conocimiento
para proseguir en este área. El contexto de los motores de búsqueda se vuelve cada
d́ıa más importante en el mundo de la informática, por ejemplo, en el desarrollo de
aplicaciones de inteligencia artificial, entre otras. Ha sido grato llegar a conocimientos
más profundos en este campo.

En relación a la parte de consultas SPARQL, ha servido para mejorar los breves
conocimientos adquiridos durante el grado, y poder analizar más esta materia de la
web semántica, también muy importante actualmente en toda la web.

Para cumplir con el objetivo de generar los scripts, se ha tenido que hacer uso de
la documentación existente de Bash e invertir mucho tiempo en comprender la mejor
manera de desarrollar las tareas correspondientes. Es por ello que con esta fase se han
aprendido muchos conceptos, y se ha conseguido elaborar una distinta forma de pensar
la ejecución de tareas, muy útil seguramente en un futuro. Teniendo en cuenta que la

32

CAPITULO 5. Conclusiones y resultados

mayoŕıa de empresas hacen un uso habitual de scripts Shell, es satisfactorio tener una
base de conocimiento en este campo.

En definitiva, ha sido un proyecto que ha fortalecido los conocimientos que ya se
teńıan sobre algunos campos, y que ha hecho crear una fuerte base sobre otros des-
conocidos hasta el momento. De manera semejante, se ha aprendido a llevar a cabo
una organización secuencial de las tareas y saber distribuir el tiempo de manera co-
rrecta para cada fase, comunicando en cada momento la situación actual del proyecto
a director y ponente.

33

Bibliograf́ıa

[1] BOA. Bolet́ın Oficial de Aragón. http://www.boa.aragon.es/#/, 2014. [Online;
accedida 25-agosto-2017].

[2] Apache Solr. Apache Solr Official Site. http://lucene.apache.org/solr/, 2017.
[Online; accedida 3-mayo-2017].

[3] W3C. Resource Description Framework (RDF). https://www.w3.org/RDF/,
2014. [Online; accedida 25-agosto-2017].

[4] Aragón Open Data. Aragón Open Data. http://opendata.aragon.es/, 2014.
[Online; accedida 5-julio-2017].

[5] Universidad Rey Juan Carlos. Procesos ágiles para el desarrollo de aplicaciones
Web. http://www.dlsi.ua.es/~jaime/webe/articulos/s112.pdf, 2010. [On-
line; accedida 10-agosto-2017].

[6] JetBrains. IntelliJ IDEA. Capable and Ergonomic IDE for JVM. https://www.

jetbrains.com/idea/, 2000-2017. [Online; accedida 22-agosto-2017].

[7] GitHub. GitHub. http://www.github.com/, 2008. [Online; accedida 25-agosto-
2017].

[8] SonarQube. Continuos Code Quality. https://www.sonarqube.org/, 2008-
20017. [Online; accedida 16-agosto-2017].

[9] Oracle. How to Write Doc Comments for the Javadoc Tool. http://www.oracle.
com/technetwork/articles/java/index-137868.html, 2010. [Online; accedida
13-agosto-2017].

[10] Apache Solr. Apache Solr Reference Guide. https://cwiki.apache.org/

confluence/display/solr/Apache+Solr+Reference+Guide, 2017. [Online; ac-
cedida 3-mayo-2017].

[11] Apache Lucene. Apache Lucene Official. https://lucene.apache.org/, 2017.
[Online; accedida 3-mayo-2017].

[12] Apache Solr. Documents, Fields and Schema Design. https://cwiki.apache.

org/confluence/display/solr/Documents%2C+Fields%2C+and+Schema+

Design, 2016. [Online; accedida 20-junio-2017].

[13] Aragón Open Data. Herramientas SPARQL. http://opendata.aragon.es/

herramientas/sparql, 2014. [Online; accedida 18-julio-2017].

[14] Wikipedia. Jenks natural breaks optimization. https://en.wikipedia.org/

wiki/Jenks_natural_breaks_optimization, 2017. [Online; accedida 8-agosto-
2017].

[15] Idearium. Servicio Web Tbl2Map. http://idearagon.aragon.es/tab2mapWS/

tab2mapWS, 2015. [Online; accedida 28-agosto-2017].

34

http://www.boa.aragon.es/#/
http://lucene.apache.org/solr/
https://www.w3.org/RDF/
http://opendata.aragon.es/
http://www.dlsi.ua.es/~jaime/webe/articulos/s112.pdf
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
http://www.github.com/
https://www.sonarqube.org/
http://www.oracle.com/technetwork/articles/java/index-137868.html
http://www.oracle.com/technetwork/articles/java/index-137868.html
https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide
https://cwiki.apache.org/confluence/display/solr/Apache+Solr+Reference+Guide
https://lucene.apache.org/
https://cwiki.apache.org/confluence/display/solr/Documents%2C+Fields%2C+and+Schema+Design
https://cwiki.apache.org/confluence/display/solr/Documents%2C+Fields%2C+and+Schema+Design
https://cwiki.apache.org/confluence/display/solr/Documents%2C+Fields%2C+and+Schema+Design
http://opendata.aragon.es/herramientas/sparql
http://opendata.aragon.es/herramientas/sparql
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization
https://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization
http://idearagon.aragon.es/tab2mapWS/tab2mapWS
http://idearagon.aragon.es/tab2mapWS/tab2mapWS

[16] Software Testing Help. Web Testing: A complete guide about testing web appli-
cations. http://www.softwaretestinghelp.com/web-application-testing/,
2017. [Online; accedida 9-agosto-2017].

[17] Apache Tika. Apache Tika Official. https://tika.apache.org/, 2017. [Online;
accedida 4-mayo-2017].

[18] Google. Comenzar a utilizar SSL. https://support.google.com/adwords/

answer/2580401?hl=es-419, 2017. [Online; accedida 17-agosto-2017].

35

http://www.softwaretestinghelp.com/web-application-testing/
https://tika.apache.org/
https://support.google.com/adwords/answer/2580401?hl=es-419
https://support.google.com/adwords/answer/2580401?hl=es-419

36

Anexos

A. Proceso de indexación y consulta mediante Solr

La instalación inicial de un servidor de Solr se elaboró en local para hacer el desarro-
llo y pruebas durante todo el proyecto, en el puerto por defecto, 8983. Se creó un core
en el que se realizaŕıa la indexación y búsqueda de ficheros introducidos por el usuario.
Para que la indexación del fichero y consulta de las palabras necesarias se ejecutara de
la forma más rápida y adecuada posible, fue imprescindible la configuración del core
a través del esquema proporcionado por Solr. Este esquema es un fichero que viene
por defecto con la instalación de la plataforma con una configuración determinada; no
obstante, es posible modificarlo si la estructura por defecto no es la deseada. En el
esquema, se determinan los diferentes tipos de campos en los que se va a estructurar
cada fichero introducido en Solr y los campos pertenecientes a esos tipos. Además,
también se indica cómo se indexa el fichero y se consulta en el ı́ndice creado en la
indexación. Por defecto, se crean varios tipos de campos y campos predefinidos, los
cuales se indexan y consultan mediante las técnicas configuradas por defecto.

La configuración que se realizó en el núcleo creado de Solr se concentró en crear
un ı́ndice en el que sólamente se ubicaran palabras pertenecientes a áreas geográficas
del tipo de área seleccionado por el usuario que existieran en el texto dado. Es decir,
si el usuario pretende encontrar en el texto las comarcas de Aragón, el ı́ndice del
campo dedicado a comarcas se compone de sólo comarcas encontradas en el texto
proporcionado, por lo tanto buscará en ese campo. Para ello, se tuvieron que realizar
varios pasos, y comprender el funcionamiento de los Analyzers, Tokenizers y Filters
suministrados por Solr.

Inicialmente, todo el contenido del fichero se traslada a un campo denominado
“text”, el cual es de tipo “string”, y por lo tanto, no tiene una configuración más
allá de la que tiene por defecto. Este campo se encarga de abarcar ese contenido para
posteriormente trasladarlo a varios campos que se ocupan de la configuración del in-
dexado y la consulta, ya que Solr no puede trasladar en un principio el contenido de
un documento rico (PDF, Word...) a otro campo que no sea text.

Una vez se tiene el contenido en ese campo text, se crean dos campos distintos que
pertenecen a dos tipos diferentes de campo, uno por cada categoŕıa de áreas que se
pueden buscar: municipios y comarcas. Esto es, se han creado los campos “campoM 2

“campoC”, pertenecientes a los tipos creados “myTextFieldM 2“myTextFieldC”, res-
pectivamente. Obligatoriamente, cada campo debe tener un tipo asociado. Es en estos
tipos donde se especifica cómo se quieren crear los ı́ndices y cómo se quiere realizar
consultas en ellos (creando un ı́ndice por cada campo), que es la configuración más
importante de toda esta sección. A continuación, se traslada el contenido almacena-
do en el campo text, es decir, todo el fichero a los dos campos creados, a través del
recurso de Solr denominado copyField. Esta copia se realiza antes de que se realice el
análisis, lo que significa que se tienen los dos campos nuevos con el mismo contenido
original. De esta manera, se puede realizar una configuración diferente para cada tipo
de campo, en este caso, para cada categoŕıa de área, que es lo que se pretende.

37

En los dos tipos de campo creados se utiliza una configuración prácticamente idénti-
ca, excepto por una diferencia que se comentará a continuación. Solr se encarga de
crear un ı́ndice en cada uno de los campos que pertenece a dicho tipo (“campoM”,
“campoC” en este caso) a partir del contenido del texto almacenado en cada campo.
Para ello, Solr ofrece una multitud de maneras para gestionar los datos textuales, en-
globadas en tres conceptos: Analyzers, Tokenizers y Filters. Una vez que el texto pasa
por los tres recursos ordenadamente, la salida final resulta ser el ı́ndice asociado a un
campo.

Los Analyzers se utilizan tanto al indexar el documento, como a la hora de
consultar, y se encargan de examinar el texto contenido en los campos y generar
un flujo de tokens con todo el contenido del campo. Inicialmente, los estados del
ı́ndice son los tokens generados por los Analyzers.

Los Tokenizers tienen como misión recibir el flujo de texto y partirlo en tokens
para proporcionárselo al Filter. En este caso, para los dos campos manejados se
crea un tokenizer mediante la clase WhiteSpaceTokenizerFactory. El WhiteSpa-
ceTokenizer tiene como función partir el texto del campo en tokens, tratando
espacios en blanco y puntuaciones como delimitadores (excepto puntos que no
vayan seguidos de un espacio en blanco). De esta manera, se generan tokens que
pertenecen a palabras sueltas que aparecen en el texto.

Por último, los Filters se encargan de recibir el flujo de tokens que genera el
previo Tokenizer u otro Filter, y vuelven a producir un flujo de tokens. Puede
haber varios Filters asociados a un Analyzer, en cuyo caso cada Filter recibiŕıa
como entrada la salida del Filter anterior a él.

Para la configuración del proyecto, se han utilizado los Filters creados por: Pattern-
ReplaceFilterFactory, ShingleFilterFactory y KeepWordFilterFactory.
En primer lugar, el filtro PatternReplaceFilterFactory simplemente reemplaza los
caracteres que se indiquen por otros diferentes en cada token. Como parámetros, se
le tiene que indicar, obligatoriamente, la cadena de patrón que se quiere reemplazar,
y la cadena por la cual se quiere sustituir. En este caso, se ha utilizado para elimi-
nar posibles puntuaciones que se hayan quedado dentro del token, para poder dejar
únicamente el nombre del área en el ı́ndice.

El filtro creado por ShingleFilterFactory es capaz de combinar varios tokens en
un único token, considerándolo aśı como una sola palabra, y no como varias. Como
parámetros, es posible indicar el mı́nimo de tokens por palabra, el máximo de tokens
por palabra, y varios más de los que no se ha tenido la necesidad de utilizar para alcan-
zar el objetivo. Puesto que muchas de las áreas geográficas tratadas en este proyecto
son palabras compuestas (por ejemplo, Campo de Borja, Ribera Baja del Ebro, y Hoya
de Huesca/Plana de Uesca), se ha aplicado este filtro para combinar cada palabra con
las 4-5 siguientes palabras que le siguen para componer en un solo token el nombre
entero del área, y poder guardarlo como tal en el ı́ndice. Se ha comprobado que con
obtener palabras de hasta 5 tokens, se recogen todas las comarcas, y con un máximo
de 6, todos los municipios.

El filtro creado por KeepWordFilterFactory descarta todos los tokens que recibe

38

excepto aquellos que están indicados en una lista facilitada. Como parámetros, es
obligatorio indicarle la ruta del fichero que contiene la lista de palabras a considerar.
En este fichero de configuración se debe incluir una palabra por ĺınea. Además, se
puede indicar a este filtro que realice comparaciones case sensitive o no. Aqúı es donde
se encuentra la diferencia que tienen los tres tipos de campo creados, puesto que cada
uno tiene una lista de palabras diferentes que quiere mantener. De esta forma, el tipo
de campo “myTextFieldM”tiene asociado un fichero con la lista de municipios totales
que hay en Aragón y el tipo de campo “myTextFieldCüna lista de todas las comarcas
de Aragón. Con este filtro se termina el proceso de indexación, y se genera el ı́ndice
del campo con las palabras que proceden de este filtro, es decir, las áreas encontradas
según la categoŕıa seleccionada por el usuario.

Se ha comentado la importancia que tiene el esquema en la indexación de un docu-
mento al subirlo a la plataforma de Solr, en la cual se crea un ı́ndice para cada uno de
los dos nuevos campos originados que contiene áreas geográficas de Aragón encontra-
das en el texto, y que servirá para comparar las consultas realizadas a estos campos.
A continuación, se describe el proceso de consultas, también denominado query.

El proceso de consulta es más sencillo, porque una vez que se tienen las palabras que
forman los ı́ndices, basta recuperar cuáles están y cuáles no a través de consultas de
las áreas. Es decir, si realizando una consulta con el nombre de una comarca al “cam-
poC”(perteneciente a comarcas) Solr devuelve como resultado el texto introducido,
entonces esa comarca existe en el ı́ndice, y por tanto ha sido encontrada anteriormente
en el texto.

De esta manera, se realizan tantas consultas consecutivas como áreas haya de la ca-
tegoŕıa elegida. Si el usuario ha decidido buscar municipios, se realizarán 730 consultas
(tantas como municipios existen) al “campoM”, y cuando Solr devuelva resultados po-
sitivos, se indica que ese municipio ha sido encontrado en el ı́ndice del campo. La lista
de consultas a realizar se obtiene de los mismos ficheros creados anteriormente para la
indexación que contienen las áreas geográficas según su categoŕıa. Por ejemplo, si el
usuario decide buscar comarcas, antes de realizar las consultas se realiza una lectura
del fichero asociado de comarcas y se recogen todas ellas en una lista, la cual se utiliza
para elaborar tantas consultas como comarcas haya, en ese caso.

Por otro lado, para que el proceso de consulta se realice correctamente, se ha tenido
que modificar su configuración en el esquema también, de forma similar a la indexación
ya comentada anteriormente, pero el proceso es más breve. Para cada tipo de campo
creado (los dos tipos que corresponden a las dos diferentes categoŕıas de áreas) se ha
establecido un Analyzer que se encarga del proceso de indexación, en el que se han
indicado tanto el Tokenizer como los Filters. Para el proceso de consulta es necesario
otro Analyzer que se dedique exclusivamente a atender consultas en ese determinado
tipo de campo, y para el que hay que decidir qué se quiere realizar con la consulta
recibida.

En este caso, se ha decidido que la forma más rápida seŕıa realizar la consulta con
la palabra completa del área, y que Solr se dedique a obtener esa palabra completa sin
elaborar ninguna proceso de partición (no como se ha hecho en la indexación). Esto
es, como el proceso de indexación ya se ha encargado de la tarea de las palabras com-

39

puestas y ha guardado las áreas compuestas por varias palabras tal cual en el ı́ndice,
simplemente es necesario realizar la comparación de la misma manera, con la palabra
compuesta. Para lograr este objetivo, se ha utilizado el Tokenizer KeywordToke-
nizerFactory, el cual trata el texto de la consulta como un token único, pudiendo
coincidir con la misma palabra si existe en el ı́ndice del campo. No es necesario ningún
recurso más para el proceso de consulta. Todo este proceso descrito se representa en
la figura16

Ambos procesos, tanto indexación como consulta, se han realizado a través del API
que ofrece Solr para ello, pudiendo llamarlo desde el programa Java para tener la
configuración integrada mediante el componente SolrJ. SolrJ es un cliente Java que
se utiliza para añadir documentos al ı́ndice, actualizarlo, o realizar consultas en él.
Oculta muchos detalles de la conexión con Solr y permite a la aplicación interactuar
con la plataforma con métodos de alto nivel. Aśı pues, el fichero se indexa en Solr
mediante la clase ContentStreamUpdateRequest, indicando como parámetro la
url “/update/extract”, y señalando el campo al que se pretende volcar el contenido
del fichero.

Posteriormente, se realiza la ejecución de consultas consecutivas a través de la clase
SolrQuery al campo que corresponda a la categoŕıa de área elegida, recogiendo la
respuesta con la clase QueryResponse. Si se quiere buscar en municipios, la consulta
se realizará en el “campoM”. De esta manera, se van seleccionando los resultados en
los que Solr devuelve el fichero para indicar ese área como encontrada.

Los últimos Request Handlers de Solr se encargan de recibir la petición tramitada
a Solr y manejarla de acuerdo a la configuración de indexación y consulta establecida
previamente. Nativamente, soporta la indexación y búsqueda de los documentos es-
tructurados XML, CSV y JSON. Para poder importar documentos ricos como Word
y PDF, Solr utiliza Tika [17] para la extracción de texto del documento y trabaja la
de este.

Una de las pruebas que se idearon en la primera parte del desarrollo en la que se
estaba trabajando con la identificación de áreas con Solr fue la siguiente: Se pensaron
dos distintas aproximaciones en cuanto a la estructura que debeŕıa tener el proceso de
indexación en el schema.xml. Una de ellas, es la definitivamente elegidaA, en la cual se
realiza una partición en tokens mediante el WhitespaceTokenizer, después se combinan
diferentes n-grams originando muchos más nuevos tokens, y finalmente se realiza un
filtrado con el fichero de las áreas para dejar sólamente las áreas que aparecen en el
documento.

La otra aproximación reflexionada consist́ıa en dividir también en tokens mediante el
WhitespaceTokenizer, y hacer lo mismo con el fichero de texto en el cual están las áreas
(una en cada ĺınea). De esta manera, se tendŕıa tanto el documento del usuario como
la lista de áreas separados por tokens. En ese momento, se realiza un filtrado en los
tokens originados del documento a través de los tokens originados de la lista de áreas,
y del documento quedan solo palabras pertenecientes a las áreas. A continuación, se
realiza un combinado de n-grams con los tokens que han resultado del paso anterior (es
decir, con todo partes de palabras de áreas). Finalmente, se vuelve a hacer un filtrado
del resultado con el fichero de las áreas. En la figura X se puede ver visualmente.

40

Como se puede observar, la segunda aproximación es algo más larga en pasos, aunque
se elimina el tener que hacer combinación de n-grams de todo el documento, pero
existen dos filtrados en lugar de uno solo. Para comprobar el rendimiento en cada
una, se midió el tiempo que costaba del indexado y de las consultas, es decir, el
proceso de identificar las áreas del documento. Se observó que los tiempos en ficheros
pequeños era parecido en ambos casos, pero algo menor en el segundo. Sin embargo,
en ficheros más grandes, la diferencia de tiempo entre ambos casos era algo mayor,
y la primera aproximación teńıa menor coste. Además, teniendo en cuenta que van
a ser documentos extensos la mayoŕıa que se utilizan en esta aplicación, tiene mejor
rendimiento esa primera estructura.

41

B. Proceso de consulta de las variables y valores a

representar en el mapa mediante SPARQL

El proceso empieza justo cuando Solr termina su tarea encontrando las áreas geográfi-
cas que aparecen en el texto. Se env́ıa una petición HTTP GET a la plataforma que
contiene Aragopedia, en el que se almacenan todos los informes que están disponibles.
De esta manera, se recogen todos ellos y se muestran al usuario en forma de lista
desplegable autocompletable. Cabe decir que se presentan dos maneras de elegir el
informe:

1. la forma avanzada/inteligente, en la que el usuario escribe en una entrada de
texto y se van mostrando las palabras acordes a lo escrito.

2. la forma por defecto, en la que se muestran todos los informes en una gran lista,
sin necesidad de escribir.

Cuando el usuario elige uno de los informes representados, se realiza una nueva pe-
tición al recurso dsd3de Aragopedia para obtener las variables asociadas a ese informe.
Cada informe tiene un listado de caracteŕısticas de las cuales se elige una que se re-
presentará en el mapa. Una vez seleccionada dicha caracteŕıstica, también se tramita
una petición para obtener el periodo de tiempo del que se desea información, ya que la
información a lo largo del tiempo vaŕıa según el informe; es decir, para una temática
puede haber datos desde, por ejemplo, el año 2010, pero para otra puede ser que solo
existan datos más recientes (desde el año 2015).

Cuando se han especificado datos de ambos, se muestran al usuario las variables
disponibles para que este seleccione la que se represente posteriormente en el mapa.
Cabe destacar que se ha realizado un filtro en las variables mostradas al usuario para
que solamente muestre las variables numéricas, es decir, que se pueda representar en
el mapa.

Por último, si del conjunto de variables que se hab́ıan obtenido en el paso anterior
existe alguna que no es numérica, sino que es de tipo codelist (tiene un rango de
valores posible), se muestran al usuario éstas variables con su colección de valores para
que fije un valor para cada variable. Para lograr esto, se ha realizado un bucle de
peticiones HTTP GET al recurso skos4, cada una con su correspondiente variable, y
se han guardado los resultados de todos los valores posibles de cada una, para poder
mostrarlo al usuario. Este paso es necesario para fijar valores en el cubo dimensional,
y evitar filas repetidas del mismo área con diferentes valores del informe elegido.

Cuando el proceso termina, se muestra al usuario una tabla en la que se represen-
ta cada área geográfica junto a su valor correspondiente del informe elegido. En este
momento, ya se tienen todos los datos necesarios que necesita el mapa para poder
ser interpretado (la información a representar), pero es importante añadir una confi-
guración previa del formato final que va a tener el mapa. Aqúı es donde empieza la

3http://opendata.aragon.es/recurso/iaest/dsd/informe.json
4http://opendata.aragon.es/kos/iaest/codigo.json

42

siguiente y última sección del desarrollo. Todo el proceso comentado en esta sección
está representado en la figura 17.

43

C. Transmisión de información a Tbl2Map y gene-

ración de mapa

La forma en la que se ejecuta el paso de información desde el cliente de Txt2Map
ha sido resuelta a través de un formulario oculto en el que se realiza una redirección
en la cual es posible adjuntar datos en el cuerpo de la petición.

En un principio, el paso de la información se realizó con una petición GET en lugar de
una POST por sencillez del proceso y para tener una versión estable, y posteriormente
se completó con la solución comentada por ser más completa, más dif́ıcil de atacar, y
no tener restricciones de cantidad de información transmitida, además de ser oculta
en la URL para el usuario.

44

D. Implantación de seguridad mediante HTTPS

Cada vez más sitios web implementan el protocolo HTTPS para poder cifrar el
canal de comunicación por el que se env́ıa la información. Aunque es altamente re-
comendable llevarlo a cabo en sitios web en los que se emplea información personal
o financiera y en esta aplicación no se hace uso de información de ese tipo en este
momento, es recomendable implementarlo. Los pasos que se tienen que realizar son los
siguientes [18]:

Obtener un certificado SSL para el sitio web. Un certificado SSL es un
documento electrónico que verifica la identidad de la empresa y permite que el
servidor web realice una encriptación segura con el navegador web.

Instalar el certificado SSL. La forma de instalación vaŕıa según el servidor
web y el tipo de certificado obtenido.

Identificar las páginas del sitio web para asegurarlas con SSL. Lo im-
prescindible es encriptar las páginas en las que se transmiten datos personales o
financieros, como contraseñas de acceso, números de cuenta...

Editar los v́ınculos a las páginas indicadas como seguras. Las páginas
que se han decidido implementar con el protocolo HTTPS deben modificarse
en el código, y cambiar de “http” a “https” todas ellas para poder ponerlo en
práctica.

Verificar que funcionan las páginas seguras. Realizar pruebas después de
las modificaciones es el último paso fundamental para comprobar que todo sigue
funcionando con normalidad, pero con la seguridad ya implementada.

45

E. Diagramas de Gantt

Figura 13: Diagrama de Gantt de los meses abril y mayo

Figura 14: Diagrama de Gantt de los meses junio y julio

Figura 15: Diagrama de Gantt del mes agosto

46

F. Diagramas y esquemas complementarios

Figura 16: Proceso de búsqueda de referencias geográficas realizado por Solr

47

Figura 17: Proceso de obtención de las variables de interés

Figura 18: Diagrama de secuencia de la generación de un mapa a partir de un docu-
mento

48

Figura 19: Pantalla inicial desde un smartphone

Figura 20: Búsqueda información de áreas desde un smartphone

49

Figura 21: Información recibida de áreas desde un smartphone

Figura 22: Mapa generado desde un smartphone

50

G. Glosario

Analyzer: Examina el texto de los campos y genera una cadena de tokens. Son
especificados en los tipos de campo.

Case Sensitive: Representa que importa el uso de mayúsculas y minúsculas, siendo
los elementos diferentes con cada aproximación.

CSV: Comma-Separated Values, es un tipo de documento en formato sencillo para
representar datos en forma de tabla, en el que las columnas se separan por comas, y
las filas por saltos de ĺınea.

Core: Es un software que constituye una parte fundamental del sistema operativo.

ElasticSearch: Es un servidor de búsqueda basado en Lucene. Provee un motor de
búsqueda de texto completo, distribuido y con capacidad de multi-tenencia con una
interfaz web RESTful y con documentos JSON.

Filter: Reciben una entrada compuesta por diferentes tokens y producen una ca-
dena de tokens. Normalmente, tratan cada token secuencialmente y decide si pasa al
siguiente filtro o se descarta.

GeoJSON: Es un formato estándar abierto diseñado para representar elementos
geográficos sencillos, junto con sus atributos no espaciales, en JavaScript Object No-
tation.

GML: Geography Markup Language, es un sublenguaje de XML descrito para el
modelaje, transporte y almacenamiento de información geográfica

GPX: GPS eXchange Formato, es un esquema XML pensado para transferir datos
GPS entre aplicaciones. Se suele usar para describir puntos, recorridos y rutas

IDE: Integrated Development Environment, es un editor de código fuente, herra-
mientas de construcción automáticas y un depurador, que permiten desarrollar un
proyecto de forma más visual y más cómoda.

JPG: Joint Photographic Group, es un formato de almacenamiento y la transmisión
de imágenes fotográficas en la Web

JSON: JavaScript Object Notation, es un formato de texto ligero para el intercam-
bio de datos.

Parser SAX: Analiza el lenguaje XML y definir la estructura de un documento,
pudiendo obtener información deseada de una manera sencilla.

PDF: Portable Document Format, es un formato de almacenamiento para docu-
mentos digitales

Plugin: Un plug-in o complemento es una aplicación (o programa informático) que
se relaciona con otra para agregarle una función nueva y generalmente muy espećıfica.
Esta aplicación adicional es ejecutada por la aplicación principal e interactúan por

51

medio de la interfaz de programación de aplicaciones.

SHP: Shapefile es un formato estándar de facto para el intercambio de información
geográfica entre Sistemas de Información Geográfica

endpoint SPARQL: Un endpoint SPARQL permite a los usuarios consultar una
base de conocimientos a través del lenguaje SPARQL. Los resultados t́ıpicamente se
devuelven en uno o más formatos procesables por máquina.

Tokenizer: Divide la cadena de tokens que recibe en diferentes tokens según su
categoŕıa, donde cada token es una subsecuencia de caracteres.

Tomcat: Tomcat es un contenedor web con soporte de servlets y JSPs. Incluye el
compilador Jasper, que compila JSPs convirtiéndolas en servlets. El motor de servlets
de Tomcat a menudo se presenta en combinación con el servidor web Apache.

XLS: Formato de archivo usualmente utilizado como hoja de cálculo.

XML: eXtensible Markup Language, es un meta-lenguaje que permite definir len-
guajes de marcas, desarrollado por la World Wide Web Consortium, y utilizado para
almacenar datos en forma legible.

52

	Introducción
	Motivación
	Trabajos previos
	Objetivos
	Planificación del proyecto
	Estructura de la memoria

	Contexto tecnológico
	Herramientas

	Metodología
	Metodología del proyecto
	Herramientas utilizadas en el desarrollo

	Aplicación web desarrollada
	Descripción y funcionamiento
	Análisis y diseño
	Implementación
	Identificación de referencias territoriales del documento
	Obtención de información estadística
	Generación de mapa temático
	Script de lotes de mapas
	Script de mapa de popularidad

	Pruebas
	Plan de mantenimiento

	Conclusiones y resultados
	Cumplimiento objetivos
	Coste del proyecto
	Posibles líneas de trabajo futuro
	Valoración personal

	Anexos
	Proceso de indexación y consulta mediante Solr
	Proceso de consulta de las variables y valores a representar en el mapa mediante SPARQL
	Transmisión de información a Tbl2Map y generación de mapa
	Implantación de seguridad mediante HTTPS
	Diagramas de Gantt
	Diagramas y esquemas complementarios
	Glosario

