Some functional relations derived from the Lindelöf-Wirtinger expansion of the Lerch transcendent function
Resumen: The Lindelöf-Wirtinger expansion of the Lerch transcendent function implies, as a limiting case, Hurwitz’s formula for the eponymous zeta function. A generalized form of M ¨obius inversion applies to the Lindelöf-Wirtinger expansion and also implies an inversion formula for the Hurwitz zeta function as a limiting case. The inverted formulas involve the dynamical system of rotations of the circle and yield an arithmetical functional equation.
Idioma: Inglés
DOI: 10.1090/S0025-5718-2014-02864-0
Año: 2015
Publicado en: MATHEMATICS OF COMPUTATION 84, 292 (2015), 803-813
ISSN: 0025-5718

Factor impacto JCR: 1.464 (2015)
Categ. JCR: MATHEMATICS, APPLIED rank: 39 / 254 = 0.154 (2015) - Q1 - T1
Factor impacto SCIMAGO:

Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2012-36732-C03-02
Tipo y forma: Article (PostPrint)
Área (Departamento): Análisis Matemático (Departamento de Matemáticas)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2018-04-10-13:26:47)

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Análisis Matemático



 Record created 2017-12-22, last modified 2018-04-10


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)