000064432 001__ 64432
000064432 005__ 20190709135504.0
000064432 0247_ $$2doi$$a10.1002/chem.201702841
000064432 0248_ $$2sideral$$a101181
000064432 037__ $$aART-2017-101181
000064432 041__ $$aeng
000064432 100__ $$0(orcid)0000-0002-0769-7168$$aAlegre-Requena, Juan Vicente
000064432 245__ $$aOptimizing Accuracy and Computational Cost in Theoretical Squaramide Catalysis: the Henry Reaction
000064432 260__ $$c2017
000064432 5060_ $$aAccess copy available to the general public$$fUnrestricted
000064432 5203_ $$aThis  study  represents  the  first  example  where  the accuracy of different combinations of density functional theory (DFT) methods and basis sets has been compared in squaramide catalysis. After  an  optimization  process  of  the  precision  obtained  and  the computational time required in the computational calculations, highly precise  results  were  achieved  compared  to  the  experimental outcomes while using the least amount of time as possible. Here, we have explored computationally and experimentally the mechanism of squaramide-catalyzed Henry reaction. This is a complex reaction of about  100  atoms  and  a  great  number  of  diverse  non-covalent interactions. Moreover, this research is one of the scarce examples where  the  organocatalyst  acts  in  a  trifunctional manner  and  is  the first  investigation  in  which  a  trifunctional  squaramide  catalyst  has been employed. Functional ¿B97X-D showed the best results when used with different versions of the 6-311 basis sets, leading to highly accurate  calculations  of  the  outcomes  of  the  Henry  reaction  using nine aldehydes with different structural characteristics. Furthermore, in these relatively large systems, the use of a split-valence triple-zeta basis  set  saves  a  large  amount  of  time  compared  to  using  larger basis sets that are sometimes employed in organocatalytic studies, such as the TZV and Def2TZV basis set families.
000064432 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E104
000064432 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000064432 590__ $$a5.16$$b2017
000064432 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b37 / 171 = 0.216$$c2017$$dQ1$$eT1
000064432 592__ $$a2.265$$b2017
000064432 593__ $$aChemistry (miscellaneous)$$c2017$$dQ1
000064432 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000064432 700__ $$0(orcid)0000-0001-6832-8983$$aMarqués López, María Eugenia$$uUniversidad de Zaragoza
000064432 700__ $$0(orcid)0000-0002-5244-9569$$aPérez Herrera, Raquel$$uUniversidad de Zaragoza
000064432 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000064432 773__ $$g23, 61 (2017), 15336-15347$$pChemistry (Weinh.)$$tChemistry - A European Journal$$x0947-6539
000064432 8564_ $$s3225967$$uhttps://zaguan.unizar.es/record/64432/files/texto_completo.pdf$$yPostprint
000064432 8564_ $$s128238$$uhttps://zaguan.unizar.es/record/64432/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000064432 909CO $$ooai:zaguan.unizar.es:64432$$particulos$$pdriver
000064432 951__ $$a2019-07-09-11:48:02
000064432 980__ $$aARTICLE