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ABSTRACT. Infrared thermographic techniques have been used for the first time to determine 

real-time gas and solid temperatures, as well as gas-solid temperature gradients in microwave 

heated structured reactors. A special reactor vessel has been developed that allows direct 

observation of the catalyst under microwave heating, and an operating procedure is presented to 

obtain gas and solid apparent emissivities as a function of temperature. These values are 

thereafter used to calculate temperatures at any point in the gas and solid phases under reaction. 

The method has been used to obtain gas and solid temperatures during the ethylene epoxidation 

reaction carried out on a silver-copper oxide catalyst. The direct heating of the monolith walls 

produced a stable, large temperature gradient between the solid and the gas phase. 
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1. INTRODUCTION 

The use of microwaves for heating dates back to the 1950s and was related to food processing 

applications1. Some of the advantages that we currently associate to microwave heating were 

already patent: fast, direct heating of the target materials compared to conventional heating 

mechanisms involving conduction, convection and radiation. Therefore, it could be rightly 

considered that the field of microwave-assisted chemical reactions dates back more than 60 

years. However, the first specific studies of microwave-driven chemistry are typically dated in 

the 1970s and 1980s for inorganic and organic syntheses, respectively2. The field of chemical 

reactions under microwave (MW) heating has since expanded rapidly, with a myriad of potential 

applications that, in many cases, can be scaled up3. Of particular interest are microwave-assisted 

heterogeneous catalytic processes, both in liquid and gas phase, where the catalyst itself is 

preferentially heated by MW4-7. In this case, heat can be supplied directly to the catalyst, with a 

huge potential regarding energy savings. Microwave heating, often in combination with micro-

reaction technology has also been heralded as a keystone of intensification in chemical 

processing8-9. 

Since the first studies of reactions under microwave irradiation a problem became apparent: 

due to the efficient energy delivery and fast heating afforded by microwaves, there was some 

uncertainty regarding the actual reaction temperature and the possibility of undetected hot spots. 

This problem has been found to be present even in liquid phase systems10, where potential hot 

spots can be minimized thanks to the high heat removal capacity of the liquid. Thus in most 

cases, the so-called microwave effects (acceleration of chemical reactions compared to 

conventional heating) have been explained as thermal effects due to inhomogeneous heating of 

the liquid11-12. The problem becomes more severe in liquid phase catalyzed reactions where the 
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catalyst acts simultaneously as a MW absorber4 ,13-14. However, even in these cases temperature 

inhomogeneity can be reduced by introducing forced convection in the form of a fast stirring of 

the liquid mass14. On the other hand, in gas-solid systems the induction of hot spots in the 

microwave-absorbing solid phase (catalyst) becomes most likely.  This is the result of several 

concurring factors: First, solid-fluid heat transfer coefficients are typically one order of 

magnitude lower when the fluid is a gas rather than a liquid. Second, the much lower density 

(and often also the lower heat capacity) of a gas implies that, to remove a certain amount of heat 

from a solid, the volume of gas needed is two to three orders of magnitude higher than in the 

case of a liquid. Finally, in most cases the solid catalyst in a microwave-heated reactor is static, 

meaning that stirring to achieve homogeneity is not an option.  

The microwave heating mechanism in solids is often complex and varies depending on the 

solid nature. Nevertheless, the heating can always be described in terms of the dielectric 

properties of the material: dielectric constant (ε'), dielectric loss (ε'') and the loss tangent (δ), 

which is the ratio of ε'' and ε' 15.  The dielectric constant (ε') represents the penetration of the 

microwave radiation inside the material while the dielectric loss (ε'') refers to the capacity of the 

material to dissipate the radiation in the form of heat. Thus, a material with high loss tangent (δ) 

is always desirable for efficient MW heating, as a too high dielectric constant (ε') implies that the 

material is nearly transparent to microwave radiation. 

From the above it is clear that in gas-solid systems a fast MW heating of the solid 

(catalyst/support) phase is likely to lead to i) the formation of hot spots in the solid and ii) 

significant gas-solid temperature gradients. Obviously, knowing the temperature of the gas and 

solid phases and ensuring sufficient homogeneity of catalyst temperature are essential 

requirements for any study of catalyst performance under microwave heating. As it has been 
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noted7, in microwave-driven gas phase catalysis, because of defective temperature measurements 

"different effects are often observed and contradictory conclusions are drawn". Indeed, hot spots 

can be responsible for apparent increments of the reaction rates, equilibrium shifts, and changes 

in product selectivities.  

Because of the difficulties involved, temperature measurements in microwave-heated reactors 

is a topic often discussed in the literature. Different overviews (see for instance Stankiewicz et 

al.16, Kappe10) discuss the challenges involved and present examples where serious errors in 

temperature measurement are possible. The main problems in temperature measurements under 

microwave heating can be summarized as follows: (i) Conventional means, such as 

thermocouples or mercury thermometers, cannot be used as they could couple with the 

electromagnetic field and create interferences or even produce sparks. Since a conventional 

thermocouple may interfere with the MW field, in some works the temperature was estimated by 

turning off the MW power and quickly introducing a thermocouple in the bed17 through a quartz 

thermocouple sheath. Then temperature readings were obtained and the bed temperature could be 

obtained by extrapolating to zero time, although with significant uncertainties related to the 

temperature measurement delay; (ii) External infrared (IR) sensors  are customarily built-in in 

commercial monomodal microwave units but can only measure the temperature at the external 

surface of the reaction vessel, a value that may deviate strongly from the internal temperature, 

even for liquid systems10. With an external infrared (thermography) camera a larger number of 

temperature measurement points are possible with good spatial resolution depending on the 

camera optics, but the problem remains the same: only temperatures at the external wall can be 

read; (iii) Fiber optic (FO) measurements on the other hand can give accurate temperature 

readings inside the reaction vessel and are immune to interference by microwaves. However, the 



  

 5

measurement is only local, and not suitable for the detection of hot spots, given the steep 

temperature profiles that often develop under MW heating.  

Stankiewicz and co-workers7 alleviated this problem by introducing the optical fiber inside a 

quartz well, allowing displacement of the measuring probe along the bed. While this procedure 

helps in the detection of higher temperature zones, it presents the disadvantage of introducing 

delays in temperature measurements and inaccuracies due to the heat transfer resistance of the 

quartz well. In summary, accurate temperature measurements in gas-solid catalytic reactors 

under microwave heating remains as an open challenge and this represents a very significant 

hurdle in the developing of microwave-heated reactors, a highly promising field. 

Recently in our group18-19, a dual-measurement system was implemented to follow the 

temperature of gas and solid in a structured reactor under microwave heating. On the one hand, a 

thermographic camera was used outside the reactor but, instead of measuring the outside wall 

temperature, a partially transparent IR window was used to monitor the temperature of a 

microwave-absorbing, catalyst-coated monolith, after appropriate calibration. In this way, the 

average solid temperature could be obtained, and the monolith was directly monitored for the 

presence of any hot spots or temperature in-homogeneities. On the other hand, an optical fiber 

was located a couple of mm downstream of the monolith to have a direct measurement of the 

average temperature of the gas exiting the monolith. In spite of its limitation (only one 

temperature measuring point for the gas was implemented) this method provided for the first 

time an experimental assessment of the gas-solid temperature gap under microwave heating, 

which was estimated at 50-60 K for the conditions used in that work19. Similar combinations of 

IR techniques with IR transparent windows have already been used in the literature to measure 
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temperatures in heterogeneous catalytic systems and to determine the enthalpy of fast exothermic 

reactions20-21.   

This work has the ambitious objective of measuring the gas temperature in the channels of a 

cordierite monolith coated with a silver-copper oxide catalyst during the ethylene epoxidation 

reaction, while simultaneously measuring the temperature of the solid surface. To this end, we 

will make use of the fact that gases that present absorption and emission in the infrared range 

(there are many examples, including water, CO2 or ethylene) can be detected with a 

thermographic camera. The procedure is well known and in fact is currently used for the 

detection of leaks in industrial pipes22-23. Matters, however, get much more complex when the 

temperature of a gas has to be determined by measuring through a partially transparent window 

and through different atmospheres, plus the interference of any surfaces in view within the 

optical path. We have designed a new experimental set up to facilitate direct real-time 

temperature observation and we have also developed a calculation algorithm that allows us to 

obtain the temperature of both the monolith surface and the gas located in the channels. The 

procedure has been demonstrated by obtaining gas and solid temperatures under microwave 

heating during the ethylene epoxidation reaction. 

 

2. EXPERIMENTAL SECTION 

2.1 Chemicals and Equipments 

Copper nitrate (Cu(NO3)2·3H2O, 99%, Aldrich), silver nitrate (AgNO3, 99 %, Aldrich), sodium 

hydroxide (NaOH,  Aldrich),  and ethanol (EtOH, 96 %, Aldrich) were all  used  as  received.  

Temperatures were registered using a thermography camera and an optical fiber. The 

thermographic camera is a NEC InfRec R300RS which operates in the range of  8 to 14 µm and 
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allows temperature measurement between -40 ºC and +500 ºC. The sensitivity of the camera is 

0.03 °C with a frequency of 60 Hz and a spatial resolution of 1.2 mrad. The fiber optic is a 

Neoptix fiber optic sensor (temperature range -270 to +250 ºC) connected to a multichannel fiber 

optic signal conditioner Neoptix™ Reflex™. The temperatures were continuously measured and 

recorded using commercial software. Scanning electron microscopy (SEM) analysis was carried 

out with a FEI-Inspect  S50 equipment. Preliminary electron microscopy observations were 

completed with a T20–FEI microscope with a LaB6 electron source fitted with a “SuperTwin®” 

objective lens allowing a point to point resolution of 2.4 Å. Aberration corrected scanning 

transmission electron microscopy images were acquired using a high angle annular dark field 

detector in a FEI XFEG TITAN electron microscope operated at 300 kV equipped with a 

CETCOR Cs-probe corrector from CEOS Company allowing forming an electron probe of 0.08 

nm. The geometric aberrations of the probe-forming system were controlled to allow a beam 

convergence of 24.7 mrad half-angle to be selected. Elemental analysis was carried out with EDS 

(EDAX) detector which allows performing EDX experiments in scanning mode. 

2.2 Monolith preparation 

The preparation of catalyst-coated monoliths was done according to our recent work19. Briefly, 

cordierite monoliths with 1 mm square channels were cut into cylinders with 12 mm diameter 

and 15 mm length. Cordierite monoliths are commonly used as catalyst supports. In this case, 

this material was also selected due to the fact that cordierite is largely microwave-transparent; 

because of this, the microwave energy is mainly absorbed by the Ag/CuO catalyst. The 

preparation of the microwave-absorbing silver-copper oxide catalyst used for ethylene 

epoxidation followed previously reported methods in our laboratory19 ,25. Catalyst loading was 

carried out by controlled immersion of the monoliths in ethanolic suspensions (1.5 g of catalyst 
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in 50 mL) inside an ultrasonic bath for 30 minutes followed by calcination (2 h) at 250 ºC. This 

process was repeated several times until the desired catalyst loading was achieved (ca. 10 wt %).  

2.3 Emissivity calibration 

Knowing the emissivity of the materials employed is critical in temperature measurements by 

IR thermography. Because of this, the emissivity of the catalyst-loaded monolith was determined 

as a function of temperature employing two different techniques. First, the monolith was 

introduced in a convection oven and the temperature was allowed to equilibrate (at 100, 150 and 

200 ºC). The temperature was then measured with the thermographic camera, adjusting the 

emissivity to obtain a reading corresponding to the known, steady state temperature of the oven. 

In a second procedure, the monolith was introduced in the monomodal microwave cavity with an 

optical fiber inserted tightly in the central channel of the monolith as a temperature reference. 

The power of the MW generator was adjusted to achieve temperatures of 100, 150 and 200 ºC in 

the fiber. Then, the temperature of the monolith walls next to the fiber (which were assumed to 

be at the same temperature) was measured with the infrared camera, adjusting the emissivity of 

the monolith to read the same temperature as the fiber. Very similar emissivity values were 

obtained by both methods. Conveniently, the values given below are those obtained in the 

microwave cavity with the optical fiber placed centrally on the monolith. The validation of the 

optical fiber reading was also checked (see Figures S1 and S2) by comparing the readings of the 

fiber with the temperature measurements of the IR camera at the closest surface locations, using 

the emissivity obtained in the previous calibration experiments. The temperature differences 

between the optical fiber and the IR camera readings were lower than 0.5ºC. 

2.4 Microwave heating and temperature measurements 



  

 9

The experimental set-up is described in Figure 1. Microwave-induced heating was addressed in 

a TE510 monomodal cavity equipped with a magnetron generator operating at 2.45 GHz 

(maximum power 300 W). The cavity was adjusted to reduce the reflected power thanks to a 

moveable short circuit. MW heated directly the Ag/CuO catalyst deposited on the cordierite 

monolith, since the cordierite is largely microwave-transparent.   

 

Figure 1. Microwave Reactor: a) Simulated electric field distribution in the monomodal MW cavity; b) Digital 

photograph of the MW cavity; c) Digital image of the custom-designed quartz reactor vessel protruding outside the 

MW cavity and detailed sketch of the different parts of the quartz vessel including the gas inlet and outlet, the filter 

windows (Ge or ZnSe), the optical fiber and the catalytic monolith.  

The monolith (Figure 1c) was placed inside a quartz vessel, introduced in the microwave 

cavity, at a nodal position where the electric field reaches a maximum. This quartz vessel was 
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purposely designed to hold the monolith and fit in the monomodal cavity while allowing 

temperature measurements under reaction conditions. It consists of two concentric frosted quartz 

tubes with a 3 cm observation window replacing the quartz top (Figure 1c). The windows 

employed were made of either ZnSe (provided by Crystaltechno Ltd) with an infrared 

transparency of 80% in the camera range (8 – 14 µm), or Ge with a specific coating (provided by 

Alkor Technologies) having an infrared transparency of 80% in the main ethylene emission 

range (10 – 11 µm, see Figure 2b). The gas feed (6% ethylene, 12% oxygen and 82% helium) 

was introduced from the outer tube flows through the monolith channels and leaves through the 

inner tube outlet (Figure 1c). As explained, the temperature was simultaneously measured with 

an optical fiber placed in the central channel of the monolith and with a thermographic camera 

through the ZnSe or Ge windows (Figure 1c). The reading of the optical fiber was always used as 

a reference and the emissivity of the camera was adjusted to obtain this value of temperature in 

the monolith surfaces close to the optical fiber. To assess any errors due to radial temperature 

gradients independent emissivity measurements were carried out in at least 5 different locations 

at the monolith surface, as close as possible to the optical fiber. The average deviation was lower 

than 5%. The monolith temperature was increased from 100 to 200 °C in steps of 50 °C, varying 

the microwave power. The flow rate was set to obtain a WHSV of 0.2 L min-1 gcat

-1. For 

conventional heating, the same quartz holder was placed inside an electrical oven. Temperature 

profiles were measured with a thermocouple located in the same position as the optical fibers and 

connected to a PID controlled electrical furnace to maintain the desired temperature.   

 

 

3. TEMPERATURE ESTIMATIONS USING INFRARED THERMOGRAPHY 
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The operational principle behind infrared cameras is based on the fact that all bodies at 

temperatures above 0 K emit electromagnetic radiation, being the intensity of this radiation 

dependent on the temperature and the wavelength considered. The infrared camera detectors 

measure the amount of radiation from an object and translate it into temperature using the 

Stefan–Boltzmann law, which gives the radiation flux emitted by a surface as a function of 

temperature:  

� = ɛ · � · ��																								(
��
����	1) 

where T is the temperature (K), σ  is the Stefan–Boltzmann constant (5.6 x 10-8 m-2 K-4) and • is  is 

the object emissivity, expressed as the ratio between the radiant energy emitted by the object and 

that of a blackbody would at that same temperature. A blackbody emits 100% of the energy it 

absorbs and has an emissivity of 1. The strong dependence of J with temperature (T4) implies 

that, in a target where there are large temperature variations, only those regions with the highest 

temperature will make a significant contribution to the radiation flux. The emissivity of a surface 

changes with temperature26, and its value must be precisely known to acquire accurate 

temperatures with a thermal camera. Incorrect emissivity values may lead to large temperature 

deviations, given the exponential dependency in the Stephan–Boltzmann’s Law.  

The medium where the infrared measurements are carried must also be considered in order to 

obtain accurate measurements. In many works the medium is considered transparent, implying 

that the gases in the optical path neither absorb nor emit radiation in the observation range (IR) 

and therefore do not affect the camera readings, but this is often not the case. Thus, gases such as 

CO, NO, CO2, SO2, H2O and many hydrocarbons present significant absorption bands in the 

infrared range, due to vibrational and rotational motions24. Each molecule has a specific 

absorption range within the infrared spectrum and IR cameras can detect the absorptive and 
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emissive characteristics of these gas molecules. When the detection range of the IR camera can 

be tuned to a narrow spectral region where the target molecules display a strong absorption, then 

the gas can be visualized22, i.e., in this case the gas influence will not be negligible, and this 

provides a basis to determine the gas temperature. For this, the emission and absorption 

characteristics of the gas cloud must be known, at the operation temperatures of interest.   

 

Figure 2. a) Schematic representation of the different factors under evaluation that can influence the readings of the 

thermographic camera. b) Left axis: IR transmittance of the employed Ge and ZnSe windows; Right axis: Infrared 

spectra of ethylene, adapted from Ref27. 

There are two well established methods to determine the emissivity of a gas: the total energy 

method28 and the absorption band model29. In the band absorption method, the total emissivity (or 
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just emissivity) is obtained by adding up the monochromatic emissivity (i.e., the emissivity at a 

certain wavelength) from all the bands that give a significant contribution to the total radiation 

emitted. The emissivity of a gas is usually lower than the emissivity of a solid object as gases 

only absorb and emit in certain wavelengths, with each absorption/emission feature in a spectrum 

corresponding to a specific excitation of the molecule. The main absorption bands of ethylene 

are in the range of 10 to 11µm and can be detected by most commercial infrared cameras that 

usually operate in the 8 to 14 µm range (see Figure 2b). However, ethylene is nearly transparent 

in the 8 to 10 and 10 to 14 µm ranges. Since the camera receives radiation from other objects in 

that wavelength range, the ethylene contribution to the total radiance received is generally low, 

and the reading loses accuracy. This problem can be alleviated by employing an optical filter 

(e.g. a Ge window) that blocks undesired wavelengths, leading to a more selective reading in the 

bands corresponding to the target gas.  

Figure 2a summarizes the factors affecting the radiance received by the camera when a semi-

transparent window is placed between the object (in our case a coated monolith immersed in an 

ethylene-rich atmosphere), a second atmosphere (ambient air) and the camera. There are six 

main contributions30:  

1. The radiance emitted by the object, which is affected by the first atmosphere, the 

transmittance of the window, and finally the second atmosphere. 

2. The radiance reflected by the object that is affected by the transmittance of the 

window and the first and second atmospheres.  

3. The radiance emitted by the first atmosphere, which is then affected by the 

transmittance of the window and the second atmosphere.  

4. The radiance emitted by the window, affected by the second atmosphere.  



  

 14

5. The radiance reflected by the window’s outer surface, affected by the second 

atmosphere. 

6. The radiance contribution of the emitting second atmosphere.  

In our case only components 1 and 3 have significant contributions. Component 2 is neglected 

against components 1 and 3 since the camera detector is placed at the same height of the object 

(the coated monolith, see Figure 1c) and aligned with the optical path, where the contributions of 

1 and 3 are highest31. The window and the outside (second) atmosphere are at room temperature. 

Given the strong temperature dependency of the Stefan-Boltzmann and Planck laws, the 

emission of both is negligible compared to the emission of the object and of the inner 

atmosphere, and therefore components 4 to 6 can be neglected. It should also be considered that 

the first atmosphere in our case is ambient air, with a relatively low concentration of absorbing 

gases (CO2, H2O) and a short optical path, therefore its transmittance is close to 100%. With the 

above assumptions we can approximate the radiance reaching the camera as that from the 

monolith (through the first atmosphere and the window) plus that from the first atmosphere 

(including the gas inside the monolith channels), through the window. The relative strength of 

each contribution depends on the gas temperature32. When the gas temperature is significantly 

lower than that of the object (as would likely be the case when the solid is directly heated by 

MWs) the contribution of component 3 can be neglected due to the dependency of the radiance 

with temperature (see below). However, a colder gas cloud is still able to absorb radiation and 

therefore leads to a decrease of the object signal. The attenuation losses of IR radiation passing 

through a gas can be obtained from Bouguer’s law:  

�(λ) = ��(λ) · �
��(�,�,�)																								(
��
����	2) 
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Where I0 is the radiance emitted by the object, I the radiance reaching the receptor and τ  is the 

optical depth of the gas, which depends on wavelength ( λ ), gas concentration (C), and length of 

the optical path through the gas (L). On the other hand, when the gas is at similar or higher 

temperature than the object, component 3 cannot be neglected. If the camera detector range is 

tuned to be sensitive to that spectral region, then the gas contribution adds to the object radiation 

regarding the total radiance received by the camera. The radiance emitted by the hot gas cloud 

will follow the Planck's law which describes the electromagnetic radiation emitted by a black 

body: 

�(ν, T) =
2 · ℎ · ν"

#$	
·

1

�
%·&
'·( − 1

																							(
��
����	3) 

Where h is the Planck constant, c is the speed of light in a vacuum, k is the Boltzmann 

constant, υ  is the frequency of the electromagnetic radiation and T is the absolute temperature of 

the body. 

Next we will show how, by selecting the appropriate materials for the observation windows 

and by studying the system under both microwave heating (where the solid monolith is 

selectively heated) and conventional heating (were both the monolith and gas in the monolith 

channels are roughly at the same temperature), we can estimate the temperature gradient between 

the gas and the Ag/CuO solid during the reaction of ethylene epoxidation under microwave 

heating. 

4. RESULTS AND DISCUSSION 

4.1 Catalytic monolith characterization  

Figure 3a shows the macroscopic appearance of the cordierite monolith after successive 

deposition and calcination steps to obtain a 10% wt. loading of the microwave-sensitive 
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(Ag/CuO) catalyst19 ,25. A closer look by SEM and TEM analysis shows a homogeneous 

distribution of the catalyst along the monolith channels (Figure 3b) and the tubular-shaped 

morphology of the nanostructured hybrid with average lengths of up to 1 micron and widths 

below 200 nm (Figures 3c-3d). A more detailed analysis by HAADF-STEM combined with EDS 

mappings (Figures 3f-3g) reveals the clear intertwining of both silver and copper oxide phases 

and the distribution of the metallic phase either as segregated nanoislands or as anisotropic inner 

structures (Figures 3e-3g)25. Prior to the reaction tests, temperature measurements were carried 

out under microwave heating with the monolith outside the reactor (in ambient air), and 

thermography images were acquired in order to evaluate the homogeneity of monolith heating.  

 

Figure 3. a) Digital photograph of a cordierite monolith after the deposition of the Ag-CuO catalyst by successive 

sonication and calcination steps for a 10% wt. loading; b) Low-magnified SEM image accounting for the 
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homogeneous distribution of the catalyst along the monolith channels; c) Magnified SEM image of the Ag-CuO 

catalyst; d) HAADF-STEM image corresponding to the Ag-CuO tubular-shaped catalyst; e)-g) STEM image and the 

corresponding EDS mapping analysis of the Cu-K and Ag-L edges, respectively. 

Figure 4 shows that the homogeneity of the heating largely depends on the distribution of the 

microwave-absorbing catalyst. Thus, a non-homogeneous load leads to pronounced temperature 

differences, while an optimized, even distribution gives a rather uniform heating (in the case of 

the figure, maximum temperature deviations of less than ± 10 ºC). It must be taken into account 

that the pictures were taken in stagnant air, with direct (i.e., no interposed window) observation 

of the monolith under MW heating. Under reaction with flow in the monolith channels, 

temperatures are expected to be even more homogeneous thanks to convection heat transfer. 

Achieving a homogenous heating in the central volume of the monolith is very important, as will 

be shown below, since the temperature measured by an optical fiber inserted in the central 

channels is taken as a reference in the algorithm developed to calculate temperatures. 
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Figure 4. Thermal images acquired for a monolith coated with the microwave-absorbing Ag/CuO catalyst (10% wt. 

loading). a) Front view of a homogeneously coated monolith; b) Side view of a homogeneously coated monolith; c) 

Front view of a monolith with uneven catalyst distribution; d) Side view of the monolith with uneven catalyst 

distribution. Emissivity adjusted to 0.8; MW power = 20 W; Thermal scale ranges between 100 and 200 ºC.  

4.2 Apparent emissivity measurements   

Figure 5 shows thermal images of a coated monolith under MW heating, placed inside the 

reaction vessel and viewed through a ZnSe window at an average temperature around 150 ºC. 

Either the reaction mixture (Figure 5a) or helium flowed through the system (Figure 5c). The 

central part of the monolith is occupied by an optical fiber that has a different emissivity than the 

monolith and thus appears to be at a different temperature. The lumen of the channels also 

appears darker, occupied by the gas, with a different emissivity. The objective in this case is to 

obtain from the thermal image of the camera a reading that corresponds to the temperature of the 
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monolith surface. To this end, as already explained, the apparent emissivity of the monolith 

material is adjusted to obtain, in the points closer to the optical fiber, a temperature reading that 

corresponds to the true temperature measured by the optical fiber. The emissivity value obtained 

is an apparent emissivity, since the monolith is not observed directly, but through i) the ZnSe 

window and ii) the optical path that runs through the 1st atmosphere, occupied by either helium 

or the reaction mixture. The apparent monolith emissivity decreases from the value close to 0.80 

that was obtained under direct observation (no window, no absorbing atmosphere) to 0.60 in 

helium (reduction due to the effect of the ZnSe window) and to 0.45 in the reaction atmosphere 

(combined effect of the ZnSe window and the absorbing gases in the vessel). The difference 

between the emissivity in Figures 5a and 5c implies that the gas in the first atmosphere (between 

the window and the monolith) absorbs infrared radiation which is mainly due to the presence of 

ethylene, see Figure 2. The lower radiance received by the camera detector when the atmosphere 

contains the reaction mixture (as a consequence of the absorption by ethylene in the range of 10 

to 11 µm) is accounted for by a decrease in the apparent emissivity. With this corrected value of 

emissivity a good approximation to temperatures in the monolith surface can be obtained. It is 

interesting to note that the maximum temperature deviations across the monolith have now been 

reduced from ± 10 ºC (in stagnant air) to ± 5 ºC due to increased heat transfer by convection 

caused by the gas flowing through the channels (Figures 5b, 5d).  
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Figure 5. Thermal images of a coated monolith under MW heating in the reaction vessel seen through a ZnSe 

window at 150 ºC (thermal scale ranges from 140 to 160 ºC): a)-c) In the presence of the reaction mixture containing 

ethylene and He, respectively; b)-d) Temperature profiles readings following the lines labeled as A and B along the 

monoliths depicted in Figures a)-c). Note that the apparent higher temperature of the optical fiber placed in the 

central channel is an artifact caused by the difference in the emissivity between the fiber optic and the cordierite 

monolith. 

Figure 6 compares thermal images of the same catalyst-coated monolith through different 

windows (ZnSe or Ge) and under different types of heating (MW and conventional). It can be 

observed than under MW heating the temperature profiles are similar for both windows (Figures 

6a, 6b), with a clear temperature difference between the monolith wall and the channel lumen. 

For the same solid temperature, under MW heating the solid is heated directly, and the gas in the 

channels is comparatively cooler19. Therefore, the influence of the gas cloud in the optical path 

between the window and the monolith is diminished and the monolith structure can still be seen 
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with either window. However, under conventional heating the temperature profiles are radically 

different (Figures 6c, 6d).  

 

 

Figure 6. Thermal images of the coated monolith inside the reaction vessel, under conventional and MW heating. 

The monolith was heated to approximately 150 ºC in the reaction mixture (temperature measured by the optical 

fiber). The thermal scale ranges from 130 to 160 ºC; a) MW-induced heating using the ZnSe window; b) MW-

induced heating using the Ge window; c) Conventional heating in the presence of the ZnSe window; d) 

Conventional heating using the Ge window. 

The boundary between the monolith and the channels becomes blurred to the point that it is not 

possible to observe the monolith channels through the Ge window (Figure 6d). The hot ethylene 

cloud now becomes a major contributor thanks to the Ge window that blocks radiation in the 

ranges of 8 to 10 µm and 10 to 14 µm (thereby increasing the relative contribution of ethylene), 
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while the ZnSe windows allows the transmission of radiation in the whole 8 to 14 µm range. The 

narrower detection range allowed by the Ge window maximizes the contribution of ethylene gas, 

and component 3 now prevails over component 1. 

The variation with temperature of the apparent emissivity of the catalyst-coated cordierite 

monolith under microwave heating is given in figure 7a, for different observation windows and 

gas compositions of the 1st atmosphere. In agreement with the previous discussion, the lowest 

values of apparent emissivity are always obtained when the monolith is observed through the 

ethylene-containing atmosphere and the Ge window. With the same system, it is possible to 

obtain the apparent emissivity of the reaction atmosphere, when observation conditions are 

chosen in such a way that the relative contribution of component 3 prevails. This is achieved in 

our case when the monolith is conventionally heated and the temperature is read through the Ge 

window (see Figure 6d). The apparent emissivity is then adjusted to make the temperature 

reading coincident with the true gas temperature, read by a thermocouple or an optical fiber 

(conventional or MW heating). The apparent emissivity values are given in Figure 7b. The 

absence of artifacts was guaranteed by the fact that the same temperature-emissivity correlation 

was obtained when the experiment was run without a monolith, by simply observing the reaction 

chamber filled with the reactor gas feed through the Ge window, even though in this case there 

was no ethylene conversion. The fact that the same emissivity values for the reaction atmosphere 

at a given temperature were obtained irrespective of the conversion (at least up to 10% 

conversion) can be explained in this case by the similar the absorptive and emissive IR 

characteristics of the reactant (ethylene) and of the main product (ethylene oxide). This is a 

particular result for the ethylene oxidation reaction system within the IR range observed. For 

other reaction systems, the variation of the apparent emissivity of the reaction atmosphere (1st 
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atmosphere) would have to be obtained not only as a function of temperature, but also for 

different gas compositions, i.e. for different reactant conversions.  

 

 

Figure 7. Variation of the apparent emissivity with temperature, depending on the measurement conditions. a) 

Emissivity of the coated monolith emissivity viewed through different windows and compositions of the 1st 

atmosphere. b) Emissivity of the reaction gas viewed through the Ge window (black bars: data obtained in the 

presence of the catalytic monolith, under conventional heating and reaction, red bars: data obtained on an empty 

reactor, filled with feed gas 6% ethylene, 12% oxygen and 82% helium, conventional heating, no catalyst, no 

reaction,). 
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4.3 Calculation of gas-solid temperature differences  

Once the variation of apparent emissivity with temperature has been obtained for both the gas 

and the solid (monolith surface) under a given set of conditions (observation temperature and 

composition of the 1st gas atmosphere), the point temperatures at any location (gas or solid 

phase) can be obtained by a simple iteration procedure. The general calculation procedure is 

presented in Scheme 1.  

 

 

Scheme 1. Algorithm to obtain gas and solid temperatures and gas-solid temperature gradients during reaction under 

microwave heating. The data gathering step allows to obtain the necessary emissivity-temperature correlations 

before actual measurements. Notes: *Can be obtained with monolith in place if component 3 prevails, otherwise 

measurements should be done with chamber filled with gas only. **Different correlations may be needed for 

different gas compositions if there is a strong dependence of e with conversion 
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The results of the calculations following Scheme 1 for a specific case are illustrated in Figure 

8, where thermal images for the monolith surface (Figure 8a) and the gas in the lumen of several 

monolith channels (Figure 8b) taken through a Ge window are shown separately, then merged in 

a single image (Figure 8c). Once the corrected emissivity values for gas and solid as a function 

of temperature are available, gas and solid temperatures throughout the reactor can be obtained 

from these images. In our case, these temperatures have been used to obtain the average solid-

gas temperature gradient under microwave heating. The results are presented in Figure 8d, where 

the average solid-gas temperature gradient has also been estimated using two other alternative 

methods: i) solid temperature measured with an optical fiber inserted in the central monolith 

channel and exit gas temperature measured by an optical fiber close (1.5 mm) to the downstream 

monolith surface; ii) gas and solid temperatures measured using the procedure in Scheme 1, but 

using ZnSe windows. This procedure is thought to be less accurate than using the Ge windows, 

since in this case some contribution from the monolith may reach the camera, even if the point of 

measurement is selected in the lumen of the channels. It can be observed that the three methods 

gave values of the gas-solid temperature gradient in a similar range, 18 to 25 ºC at 150 ºC, 29 to 

41 ºC at 150 ºC, and 47 to 58 ºC at 200 ºC. As could be expected, the gradient measured with the 

optical fibers is the largest since the temperature difference is measured between the fiber in the 

central channel (therefore the hottest location in the monolith) and the fiber 1.5 mm downstream. 

An even better agreement would be obtained by extrapolating optical fiber readings as a function 

of distance (see Figure S3), but we prefer to report the actual temperature data measured at 1.5 

mm of the surface. On the other hand, the Ge window is expected to give the most precise 

measurements compared to the ZnSe window, as it mitigates the contributions of the monolith 

radiance when measuring gas temperature.   

 



  

 26

 

Figure 8. Images of gas an solid under reaction conditions, viewed through a Ge  window. a) Close- up thermal 

image reconstruction of the monolith surface; b) Close-up thermal image reconstruction of the gas along the 

monolith channels; c) Merged thermal image reconstruction accounting for a) and b) contributions; d) Average 

temperature gradients between the surface of the catalyst and the gas determined by different methods. 

Figure 8d shows that, indeed, stable gas-solid temperature differences can be reached in 

structured catalysts under microwave heating, and that these temperature gradients are very 

significant (higher than 50 ºC for an average catalyst temperature of 200 ºC). This may help to 

explain some of the results under microwave heating found in the literature. Also, the fact that it 

is possible to operate with a significantly lower gas temperature can be exploited to achieve 

improvements in reaction selectivity, when undesired secondary reactions are enhanced in a hot 

gas environment. Work is underway in our laboratory to study some applications of this concept. 
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For these studies, a precise, simultaneous measurement of gas and solid temperatures is an 

essential requirement. 

 

CONCLUSIONS 

The method developed in this work allows real-time measurement of gas and solid 

temperatures in microwave-heated structured reactors. For this purpose, a quartz vessel with 

suitable Ge or ZnSe windows has been designed. The algorithm developed allows, for the system 

used in this work, the in-situ determination of gas and solid emissivities, with the catalytic 

monolith in place, simply by taking thermal images under different modes of heating, as shown 

in Scheme 1. Also, in the interval explored, the weak dependency of emissivity with gas 

compositions in this reacting system allows to use temperature as the only relevant operation 

variable for emissivity. For other systems it may be necessary to correct for gas composition 

before obtaining accurate temperature readings. The method presented opens up new 

opportunities in the investigation of gas phase reactions under microwave heating. The concept 

has been applied to the ethylene epoxidation reaction in the presence of a MW sensitive silver-

copper oxide hybrid catalyst deposited on a cordierite monolith. The presence of a gas-solid 

temperature gradient higher than 50 ºC has been demonstrated at a solid temperature of 200 ºC.  
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Highlights 

 

� Determination of gas-solid temperature gradients under microwave heating. 

� Custom-designed vessel for direct observation of the catalysts under reaction. 

� Preferential heating on microwave-absorbing catalyst surface is observed. 

� Infrared thermography coupled with optical fibers provides essential information for 

temperature evaluation. 
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GRAPHICAL ABSTRACT 

 

Development and optimization of a method for an accurate, real-time measurement of gas-solid 

temperature gradients in microwave-heated structured reactors using infrared thermometry 

 

 


