Accurate computations with Lupas matrices

Delgado, J. (Universidad de Zaragoza) ; Peña, J. M. (Universidad de Zaragoza)
Accurate computations with Lupas matrices
Resumen: Lupas q-analogues of the Bernstein functions play an important role in Approximation Theory and Computer Aided Geometric Design. Their collocation matrices are called Lupas matrices. In this paper, we provide algorithms for computing the bidiagonal decomposition of these matrices and their inverses to high relative accuracy. It is also shown that these algorithms can be used to perform to high relative accuracy several algebraic calculations with these matrices, such as the calculation of their inverses, their eigenvalues or their singular values. Numerical experiments are included.
Idioma: Inglés
DOI: 10.1016/j.amc.2017.01.031
Año: 2017
Publicado en: Applied Mathematics and Computation 303 (2017), 171-177
ISSN: 0096-3003

Factor impacto JCR: 2.3 (2017)
Categ. JCR: MATHEMATICS, APPLIED rank: 21 / 252 = 0.083 (2017) - Q1 - T1
Factor impacto SCIMAGO: 1.065 - Computational Mathematics (Q1) - Applied Mathematics (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2015-65433-P
Tipo y forma: Article (PrePrint)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.

Exportado de SIDERAL (2019-07-09-11:36:18)

Este artículo se encuentra en las siguientes colecciones:

 Record created 2018-01-31, last modified 2019-07-09

Rate this document:

Rate this document:
(Not yet reviewed)