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Escuela de Ingenieŕıa y Arquitectura

Universidad de Zaragoza

Zaragoza, Septiembre de 2011





Resumen

La naturaleza libre de Internet ha propiciado que la búsqueda y seguimiento eficaces

de información especializada se constituya en una tarea cada vez más compleja de

abordar, debido esencialmente a su crecimiento masivo y sostenido.

Este proyecto aborda la creación de un prototipo software que facilita la suscripción

del usuario a sitios web determinados para recibir de forma proactiva, notificaciones

sobre textos objeto de interés. El sistema se entrena a partir de un conjunto de casos

de entrenamiento y la retroalimentación progresiva producida por la incorporación de

las nuevas lecturas que el usuario cataloga como de interés. El idioma de los textos a

analizar y recomendar será el castellano, debido a su riqueza lingǘıstica.

La presente memoria contiene el trabajo realizado en los siguientes aspectos: Una

búsqueda de información relacionada con los aspectos básicos del proyecto, en la que se

abordan aspectos lingǘısticos propios del castellano que permiten explotar información

invariante en el lenguaje, algoritmia para procesamiento de lenguaje natural en el con-

texto del análisis y catalogación de textos, aspectos relacionados con la escalabilidad

para la gestión de grandes flujos de información, y cuestiones de paralelismo propias de

la implementación de sistemas de información.

El estudio preliminar de estas cuestiones ha permitido elaborar una propuesta de

arquitectura del sistema que organiza en bloques funcionales el tratamiento de la in-

formación, los flujos de datos y las posibilidades de paralelización. Esto ha conducido

a una implementación de un prototipo del sistema, para el que se ha realizado una

evaluación en cuanto a escalabilidad mediante un conjunto de experimentos ejecutados

en plataformas computacionales heterogéneas. Como última sección de la parte princi-

pal de la memoria se proponen las conclusiones extráıdas del trabajo. Finalmente, los

anexos de la memoria recogen información espećıfica sobre la algoritmia de Aprendizaje

utilizada aśı como las decisiones concretas de diseño e implementación.
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E.4. El paquete útil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

E.4.1. Interfaz para el manejo de blogs . . . . . . . . . . . . . . . . . . 75

E.4.2. Manejo de código HTML . . . . . . . . . . . . . . . . . . . . . . 76

E.4.3. Utilidades de conversión . . . . . . . . . . . . . . . . . . . . . . . 77

E.4.4. La clase es Stemmer . . . . . . . . . . . . . . . . . . . . . . . . . 78

F. El sistema de gestión de la persistencia 79

F.1. La base de datos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

F.2. El paquete de acceso a datos . . . . . . . . . . . . . . . . . . . . . . . . 81

G. La paralelización de tareas en detalle 85

G.1. Paralelismo en el Kernel SSK . . . . . . . . . . . . . . . . . . . . . . . . 85

G.2. Paralelismo en la clase BinarySMO . . . . . . . . . . . . . . . . . . . . . 87

G.2.1. El método buildClassifier . . . . . . . . . . . . . . . . . . . . . . 88

G.2.2. El método SVMOutput . . . . . . . . . . . . . . . . . . . . . . . 90

G.3. Paralelismo en la clase SMO . . . . . . . . . . . . . . . . . . . . . . . . . 91

G.4. Consideraciones sobre las alternativas . . . . . . . . . . . . . . . . . . . 92

G.5. Implementación de las mejoras . . . . . . . . . . . . . . . . . . . . . . . 93

H. Evaluación del prototipo. Experimentos 95

Bibliograf́ıa 103



viii



Caṕıtulo 1

Introducción

Los apartados siguientes resumen las motivaciones y los objetivos del proyecto BCata-

log, que justifican la necesidad que conduce a la creación de este prototipo y estructuran

y organizan el trabajo a realizar.

1.1. Motivación

La evolución de Internet a lo largo de sus escasas décadas de vida ha sido espectacular.

En sus inicios apenas pod́ıan verse algunas páginas muy simples y pobres en diseño.

Las empresas las utilizaban para ofrecer información sobre sus productos y servicios, a

modo de catálogo en formato digital.

En la actualidad, la red se ha convertido en un medio de virtualización de la activi-

dad humana. Utilizando su ordenador, el usuario puede comunicarse con sus amigos,

compartir contenidos (música, v́ıdeo, texto...), comprar y vender, informarse, formarse,

o realizar gestiones bancarias y administrativas.

Para las búsquedas de información existen diferentes posibilidades:

El usuario puede utilizar buscadores que seleccionan y filtran los resultados de su

búsqueda, mostrándolos por orden de relevancia. Un inconveniente que presentan estos

buscadores es que muestran sitios web de todo tipo, tales como páginas de empresas,

tiendas online, salas de chat, periódicos, o páginas personales. Si lo que necesita es

centrarse en art́ıculos de opinión, han de filtrarse manualmente los resultados propuestos

por el motor de busqueda.

Algunas páginas web ofrecen al usuario un servicio de notificación que le informa

cada vez que se publican nuevos contenidos, pero sin discriminar si son o no del interés
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2 Índice general

del usuario.

También existen subscripciones a búsquedas. Algunos buscadores env́ıan avisos cuan-

do aparecen nuevos contenidos relacionados con la búsqueda realizada, pero incluyendo

avisos sobre sitios web de todo tipo, al igual que ocurre en la búsqueda realizada ma-

nualmente.

Estas opciones de búsqueda y notificación no permiten selecionar a la vez los temas

y los sitios web de interés del usuario.

El crecimiento exponencial de la información presente en Internet se manifiesta en la

ingente cantidad de sitios web que almacenan información especializada y organizada en

temas que los propios usuarios incorporan a la red. En este sentido, es posible encontrar

bibliograf́ıa cient́ıfica que estudia tanto el crecimiento como el impacto de la que se ha

dado a conocer como blogosfera ([1], [2]).

En este contexto, el proyecto propone la creación de un entorno software que permi-

tirá al usuario subscribirse a sitios web de su elección y recibir notificaciones cuando

aparezcan textos de su interés. Para determinarlo, el sistema seguirá un proceso de

aprendizaje mediante la obtención de casos de ejemplo, el entrenamiento y la realimen-

tación. Realizado este proceso, determinará el grado de relevancia de los textos y, si

procede, se los recomendará al usuario.

El idioma de los textos que se van a recomendar será el español, debido a su riqueza

lingǘıstica, su gran cantidad de hablantes y abundancia de contenidos existentes.

En el siguiente apartado se introducen los objetivos concretos del proyecto aśı como

la estructura de la memoria.

1.2. Objetivos del proyecto y estructura de la memoria

La motivación con la que nace este proyecto se concreta en una serie de objetivos

espećıficos que estructuran el desarrollo del trabajo. La realización sucesiva de cada uno

de ellos desemboca en la creación de un primer prototipo funcional de mi analizador y

recomendador de textos. Estos objetivos, que definen la estructura de la memoria, son:

1. Búsqueda de información relacionada con el proyecto: Se realiza un

estudio en profundidad centrado en aspectos lingǘısticos, técnicas para el análisis

y clasificación de textos, y localización de herramientas ya existentes que faciliten

la realizacion del trabajo. Todo ello se expone en el apartado 2 de la memoria.
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2. Propuesta de la arquitectura del sistema: En el apartado 3 se concretan las

funcionalidades que ofrece el sistema, aśı como las estrategias seguidas en las ta-

reas de procesamiento lingǘıstico, aprendizaje, gestión de los flujos de información

y paralelización de tareas internas.

3. Prototipo del sistema: El apartado 4 explica la estructura final del prototipo

a construir, concretando las tecnoloǵıas elegidas para la fase de implementación.

4. Implementación del prototipo: La fase de implementación se expone en el

apartado 5, en el que se detallan los rasgos principales de cada bloque funcional

construido.

5. Experimentos y evaluación del prototipo: El apartado 6 contiene los expe-

rimentos realizados sobre el sistema, profundizando en la influencia de la parale-

lización de las distintas tareas internas del mismo. Se comentan y comparan los

resultados obtenidos.

6. Conclusiones: En el apartado 8 se exponen los principales problemas encontra-

dos a lo largo de la realización del proyecto y se extraen conclusiones sobre el

funcionamiento del prototipo y el alcance del proyecto.
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Caṕıtulo 2

Estado del arte

Este apartado contiene un resumen de la información encontrada sobre los aspectos

relevantes relacionados con el proyecto. Se introducen conceptos necesarios para enten-

der el funcionamiento del mismo y se comentan algunas herramientas ya existentes.

2.1. Análisis lingǘıstico

El sistema debe identificar el grado de relación del contenido del texto con los temas

de interés del usuario por lo que es necesaria la revisión de los siguientes conceptos que

se emplean en la clasificación de textos:

Campo conceptual: Conjunto de palabras asociadas a una misma idea o con-

cepto. No es necesario que las tengan un origen común, puesto que en lo que se

centra un campo conceptual es en el significado de las palabras y no en su forma.

Lexema: Unidad mı́nima con significado propio. También llamado ráız, porque

sirve como base para generar palabras, añadiéndole prefijos y/o sufijos.

Morfema: Unidad sin significado propio, que limita y concreta el significado de

un lexema. También llamado desinencia, aporta información de género, número,

tiempo, finalidad, etc... Se distingue entre prefijo y sufijo, dependiendo de si es

colocado antes o después de la ráız.

Derivación: Proceso en el que, a partir un lexema y un conjunto de morfemas,

se obtienen todas las palabras que se pueden formar combinándolos. Al conjunto

de palabras obtenido se le llama familia sintáctica, pues todas ellas provienen de

una ráız común.

Lematización: Proceso inverso a la derivación. Dada una palabra, se obtiene su

lexema.

5



6 Índice general

Repasados estos conceptos clave, se pasa a comentar algunas de las herramientas

para el procesamiento del lenguaje natural que se han encontrado:

Diccionarios online: De acceso público, facilitan mucha información sobre una

palabra: significado, sinónimos, familia léxica a la que pertenece, información

sobre su etimoloǵıa, e incluso foros de discusión en los que se discute sobre su

correcto uso. Algunos ejemplos de estos diccionarios son el ofrecido por la Real

Academia Española [3], o WordReference [4], un sitio web en el que se pueden

encontrar diccionarios de traducción entre múltiples idiomas, y que contienen

además un foro para resolver dudas entre sus usuarios.

Diccionario ideológico de Zirano: También de acceso público y gratuito, Zi-

rano [5] ofrece la posibilidad de buscar palabras tanto para obtener su significado

como para obtener su campo conceptual. Dada una palabra, sugiere una lista de

ideas a la que puede estar asociada, y, tras elegir una de ellas, proporciona un

conjunto de palabras relacionadas.

2.2. Tecnoloǵıas para la creación de sitios Web

Debido a la relación del proyecto con Internet ha sido necesario de un estudio de las

distintas alternativas existentes para la creación de sitios web.

Se definen a continuación algunos términos relacionados con las tecnoloǵıas que se

asocian a la gestión de información que son objeto de interés del proyecto.

Sistema de gestión de contenidos: (CMS, del inglés Content Management

System). Proporciona una interfaz de administración en la que el propietario del

sitio puede añadir contenidos, gestionar los menús laterales, insertar enlaces a

otras páginas, cambiar la apariencia de la web, etc. Los CMS están creados para

ser utilizados sin necesidad de poseer conocimientos de informática. El propietario

puede modificar el sitio web con un simple clic y añadir contenidos como si de un

procesador de textos se tratase.

Blog: Es un tipo de CMS en el que los textos publicados aparecen estructurados

uno tras otro en la página principal. Se utiliza frecuentemente cuando lo que se

pretende es dar continuidad en el tiempo, dar a conocer hechos que pueden estar

relacionados y mostrar esa relación. Wordpress [6] y Blogspot [7] son algunos de

los servicios gratuitos de creación de blogs más importantes en la actualidad.

Post: Coloquialmente se llama post a un texto que se publica en un blog. De

esta forma se deja que el término página se refiera a una sección independiente,
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mostrada en exclusividad (sin otros posts ni páginas debajo ni encima). Aśı, una

misma web puede tener páginas independientes, estar estructurada como blog (un

post debajo de otro), o utilizar una estructura mixta.

En cuanto a las herramientas para la creación de sitios web, existe una gran variedad

de alternativas gratuitas. Se comentan a continuación algunas de ellas, orientadas tanto

a usuarios sin conocimientos técnicos de informática como a desarrolladores.

Herramientas de usuario: Un usuario sin conocimientos técnicos informáticos

puede crear un blog registrándose en Blogspot [7] o en Wordpress [6]. Tras regis-

trarse en el servicio y obtener un nombre de usuario y contraseña, puede entrar

en su panel de administración y empezar a publicar.

Herramientas para usuarios intermedios: Para un nivel mayor de perso-

nalización, existen CMS disponibles para descarga que pueden instalarse en el

servidor web que el usuario tenga contratado. Este tipo de instalación propor-

ciona al usuario la posibilidad de modificar el código fuente, crear sus propias

extensiones, o instalar otras existentes para añadir funcionalidades que no vienen

por defecto. Algunos de estos CMS son Xoops [8], Joomla [9], PHP-Nuke [10] o

la versión instalable de Wordpress [11], todos ellos gratuitos.

Herramientas para programadores: En ocasiones un programador puede ne-

cesitar desarrollar su propio CMS. Existen frameworks gratuitos que pueden ser

utilizados como punto de partida para el desarrollo. Un ejemplo de este tipo

de software es CodeIgniter [12], escrito en PHP y basado en el patrón de diseño

MVC (Model-View-Controller). Incluye, entre otras utilidades, las de criptograf́ıa,

compresión de archivos etc.

2.3. Técnicas en aprendizaje orientadas a la clasificación

de textos

Buscando documentación acerca de las distintas técnicas en aprendizaje orientadas

a la clasificación de textos, se ha encontrado abundante documentación al respecto.

Existen técnicas de Data Mining mediante las cuales se obtiene información no trivial

a partir del análisis exhaustivo de muchos datos de ejemplo disponibles. El Data Mining

puede aplicarse a diferentes tipos de datos como enteros, números en coma flotante,

cadenas de texto y otros objetos más avanzados, como se explica en el libro Data

Mining: Concepts and Techniques [13].



8 Índice general

Entre las muchas técnicas de Data Mining, se encuentra el uso de las Máquinas de

Vectores de Soporte, (SVM, del inglés Support Vector Machine) basadas en la separa-

ción de los datos de ejemplo a través de hiperplanos calculados mediante las llamadas

funciones Kernel. Algunos de los textos de interés en los que se ha inspirado este pro-

yecto son los siguientes:

1. Learning with Kernels: Support Vector Machines, Regularization, Optimization,

and Beyond [14]: Introduce conceptos necesarios para comprender el funciona-

miento de las máquinas SVM, profundizando en los fundamentos matemáticos

subyacentes y aportando demostraciones, ilustraciones y ejemplos.

2. Kernels for Structured Data [15].

3. Pairwise Classification as an Ensemble Technique [16]: En este art́ıculo se detalla

la construcción de un clasificador SVM multiclase a partir de un conjunto de

clasificadores SVM binarios.

4. Text Classification using String Kernels [17]: Profundiza en el comportamiento

de los Kernels de comparación de cadenas de texto e introduce optimizaciones

que pueden aplicarse para obtener mejores resultados.

5. Lambda pruning: an approximation of the string subsequence kernel for practical

SVM classification and redundancy clustering [18]: Este art́ıculo expone las me-

joras obtenidas al incluir en el algoritmo tradicional de análisis de secuencias de

caracteres un sistema de poda, que disminuye el tiempo necesario para procesar

dos cadenas de texto.

Como se comenta en apartados posteriores, todos ellos han sido utilizados como

punto de partida en la implementación de los módulos que componen el sistema.



Caṕıtulo 3

Propuesta de la arquitectura del

sistema

El sistema se estructura en tres bloques funcionales principales que permiten separar

la interfaz de usuario, el motor de recomendaciones y el sistema de gestión de la persis-

tencia, de forma que abordar cada uno de ellos separadamente facilite la construcción

del prototipo. La figura 3.1 muestra un esquema con dichos bloques funcionales, cuya

función se define a continuación.

Figura 3.1: Esquema simplificado de la arquitectura del sistema.

El bloque de interfaz interactúa con el usuario, ofreciéndole las siguientes funciona-

lidades:

Gestión de subscripciones a blogs de interés, incluyendo alta, listado y cancelación.

Gestión de las categoŕıas de los textos. Los nuevos textos serán recomendados si

el sistema determina que pertenecen a alguna de ellas.

9
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Gestión de los textos de ejemplo. Añadir uno nuevo supone asociarlo a una de las

categoŕıas citadas.

Entrenamiento del sistema para que sea capaz de predecir la categoŕıa a la que

pertenece el texto nuevo.

Visualización y validación de las recomendaciones de textos ofrecidas al usuario.

El motor de recomendaciones es el bloque principal del sistema y se encarga de:

Recoger y validar los datos procedentes de la interfaz de usuario.

Obtener los textos para su posterior análisis.

Comprobar periódicamente si, en los blogs de interés del usuario, hay textos nue-

vos y recomendárselos en caso de estar relacionados con sus temas elegidos.

Administrar la máquina de aprendizaje que, tras ser entrenada, será capaz de

predecir la categoŕıa a la que pertenecen los nuevos textos encontrados.

Interactuar con el sistema de gestión de la persistencia para el almacenamiento

de la información utilizada y necesaria para el sistema.

Por último, el sistema de persistencia permite guardar:

Los resultados de los análisis.

El estado de la máquina de aprendizaje.

Toda la información de los textos que se analicen.

Otra información que pueda ser interesante conservar por temas de rendimiento.

Almacena datos de configuración necesarios para el arranque del sistema.

3.1. Procesamiento lingǘıstico

La naturaleza del proyecto requiere que el sistema sea capaz de procesar textos

atendiendo a sus contenidos e identificar los temas que tratan. No resulta práctico de-

terminar la similitud entre dos textos considerando número de caracteres que tienen en

común. Los campos conceptuales son de utilidad en este contexto, puesto que son con-

juntos de palabras con significados relacionados que pueden ser utilizados para detectar

semejanzas en los temas tratados en los textos.
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En este primer prototipo los campos conceptuales se calculan en el momento de

creación de una nueva categoŕıa. El sistema proporcionará un campo conceptual aso-

ciado a las palabras que forman el nombre de la categoŕıa. De esta forma, ”poĺıtica“

llevaŕıa asociadas palabras como partido, ideoloǵıa, parlamento y otras que el usuario

podrá añadir según sus preferencias.

El proceso de obtención del campo a partir de una determinada lista de palabras es

muy importante, ya que el conjunto obtenido se utilizará como base durante la fase de

entrenamiento. Hay que tener en cuenta que la inclusión de palabras poco relacionadas

aśı como un número reducido de ellas distorsionarán las predicciones. A continuación se

detalla el proceso de creación de una nueva categoŕıa y el cálculo del campo conceptual:

1. El usuario introduce las palabras clave.

2. Se obtienen los campos de cada una de ellas por separado. Para ello pueden

emplearse diccionarios online, bases de datos o cualquier otra herramienta dispo-

nible.

3. Cada una de las palabras que forman los campos obtenidos pasa por un lemati-

zador, que se encarga de eliminar los morfemas de la palabra, para quedarse con

la ráız o lexema. Aśı se dispone de la esencia de cada palabra, invariante a los

mecanismos de composición y derivación inherentes a la Lengua Castellana.

4. Con los campos conceptuales lematizados de cada palabra se calcula el campo

resultante. Este proceso no es trivial porque si el sistema es demasiado restrictivo

se obtiene un conjunto final muy reducido, y por tanto poco relevante. Siendo

demasiado flexible, por el contrario, se obtiene un resultado con excesivas palabras

que, además disminuir el rendimiento durante el proceso de análisis posterior,

introduce palabras poco relacionadas. En este prototipo el campo total se calcula

como la unión de los campos individuales, aunque cada contexto de aplicación

puede requerir un criterio diferente para mejorar los resultados en la predicción.

El campo conceptual constituye un caso de entrenamiento para la categoŕıa crea-

da y será utilizado como un ejemplo más a la hora de realizar el aprendizaje y las

predicciones. De esta forma se parte de una base adecuada que permite el análisis de

contenidos de interés, pues se dispone de un conjunto de palabras relacionadas que

pueden encontrarse en los textos relacionados con dicha categoŕıa.
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3.2. Algoritmia de aprendizaje

El sistema a construir requiere un método para distinguir diferentes tipos de tex-

tos atendiendo a su contenido. Este prototipo hará uso de algoritmos de aprendizaje

supervisado.

Estos algoritmos completan una serie de operaciones necesarias para poder realizar

predicciones:

1. Recepción de datos de ejemplo: El algoritmo requiere que le sean proporcio-

nados datos de ejemplo de las diferentes clases que va a reconocer. La cantidad de

estos datos, aśı como su relevancia, condicionará considerablemente la precisión

de las predicciones.

2. Fase de entrenamiento: Una vez le son facilitados los datos de ejemplo, se

realiza una serie de ajustes internos, que permiten a la máquina de aprendizaje

aprender a distinguir nuevos elementos.

3. Fase de predicción : Finalizado el entrenamiento, el algoritmo es capaz de

determinar la clase a la que más se asemeja un nuevo dato.

Como puede verse, los algoritmos de aprendizaje supervisado son muy adecuados

para este proyecto, en el que el usuario asociará un conjunto de textos a sus respectivas

categoŕıas, y el sistema se encargará de recomendarle nuevos textos cuando determine

que están relacionados con los temas de su interés.

El problema abordado en este proyecto encaja perfectamente en este tipo de algorit-

mos puesto que el usuario proporciona al sistema los textos de ejemplo y las categoŕıas a

las que pertenecen, el sistema se entrena en función de los datos recibidos, y a partir de

ese momento predice la categoŕıa de los nuevos textos publicados para recomendarlos,

si procede, al usuario.

3.3. Gestión de flujos de información

El motor de recomendaciones se encarga de, ante la necesidad de disponer de datos

que todav́ıa no haya manejado, obtener dicha información del mundo exterior (Inter-

net).
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Las comunicaciones con el mundo exterior requieren tiempo para solicitar los datos

y esperar a que sean proporcionados. Este tiempo, para nada despreciable, hace ne-

cesario almacenar toda la información recibida que pueda ser utilizada de nuevo si la

penalización para obtenerla es elevada.

También es aconsejable almacenar los resultados del cálculo de relación entre dos

textos, ya que es un dato invariante que se empleará repetidamente a lo largo del

tiempo.

Para abordar el problema, el motor de recomendaciones enviará al sistema de gestión

de la persistencia los textos, los campos conceptuales obtenidos y el resultado de los

análisis. Todo este proceso se detalla en el apartado 4.

Otra ventaja importante del almacenamiento de datos es la disponibilidad de la

información inmediatamente después del arranque del sistema tras un cese en su fun-

cionamiento. El sistema puede dejar de funcionar temporalmente por un fallo en la red

o en la máquina donde se ejecute. Disponer de los datos almacenados evita la necesidad

de calcularlos de nuevo.

3.4. Paralelización de tareas

Las tareas internas que el sistema realiza para analizar los textos y predecir el grado

de relevancia de los nuevos contenidos publicados requieren cálculos intensivos y tiempo

para ejecutarlos. Por ello resulta ventajoso paralelizar estas operaciones. Después de un

estudio de la naturaleza de cada una de ellas, se han encontrado los siguientes puntos

en los que un trabajo en paralelo mejorará los tiempos de ejecución.

Obtención del campo conceptual: En esta tarea la consulta de un diccionario

de gran tamaño puede puede requerir mucho tiempo. También es posible que

lo que se quiera sea calcular el campo asociado a varias palabras para luego

determinar el conjunto total. Puesto que la obtención de cada campo individual

es una operación independiente, pueden ejecutarse las consultas individuales en

paralelo y luego fusionar los resultados, reduciendo aśı el tiempo total de ejecución

de la tarea.

Entrenamiento y predicción en la máquina de aprendizaje: Aun siendo la

operación de entrenamiento bastante poco frecuente, lleva consigo una gran pena-

lización. Con muchos casos de ejemplo y muchas clases de datos, puede requerir

varios minutos, o incluso horas. En cuanto a la predicción, desgraciadamente es
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bastante más utilizada que la anterior, ya que se ejecuta cada vez que haya conte-

nidos nuevos en cualquiera de los blogs en los que el usuario se haya subscrito. Éste

es pues otro contexto en que existe la posibilidad de introducir mejoras en cuanto

a la paralelización de la algoritmia asociada al entrenamiento y a la predicción.



Caṕıtulo 4

Prototipo del sistema

En este apartado se presenta el prototipo del sistema, comentando en primer lugar las

decisiones previas tomadas para transformar la figura 3.1 en el modelo a implementar.

El proceso de refinamiento se lleva a cabo en varias fases. Primero se introducen

algunas consideraciones que determinan la ubicación de los bloques del sistema, después

se elige el algorimo de aprendizaje y posteriormente las tecnoloǵıas a utilizar.

4.1. Primera aproximación

El esquema inicial, mostrado en la figura 3.1 encaja perfectamente con el patrón de

diseño MVC (del inglés, Model-View-Controller). Éste será pues el punto de partida

para el desarrollo del prototipo, ya que separa la interfaz de usuario, el control y el

sistema de gestión de la persistencia de forma que es posible su desarrollo de forma

independiente.

Debido a la potencia de cálculo necesaria para llevar a cabo las tareas de entrena-

miento y predicción de la máquina de aprendizaje, se prevé que, aunque el desarrollo

y las pruebas básicas se lleven a cabo en un ordenador personal, la implantación real

de un sistema de estas caracteŕısticas requerirá de un entorno de procesamiento mucho

más potente como, por ejemplo, una granja de servidores.

Aśı, se plantea desde un primer momento la escalabilidad como requerimiento en

todos los aspectos de diseño e implementación que se puedan considerar. En este sentido,

se prevé que en lugar de una aplicación de escriterio, el usuario accederá a una página

web que se comunicará con el motor de recomendaciones. Esta estructuración hace que

el sistema sea accesible desde cualquier lugar, requiriendo solamente un navegador web

instalado, en lugar de otro software especializado.

15
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Cabe destacar que dicha separación deja abierta la posibilidad de implementaciones

futuras en las que un programa de escritorio o una aplicación para un dispositivo móvil

realicen la misma función que la página web. Es una decisión de diseño muy interesante

debido a la gran expansión que están protagonizando las nuevas tecnoloǵıas, como por

ejemplo las aplicaciones para dispositivos móviles.

Como medio de almacenamiento se utilizará un servidor de bases de datos que

podrá estar alojado en la misma máquina que el motor de recomendaciones o en otra

cualquiera, al igual que el servidor web donde se aloja la página. Este planteamiento re-

fuerza la escalabilidad y robustez del prototipo ya que, ante un fallo en el funcionamien-

to de cualquiera de los módulos, el sistema puede seguir funcionando con normalidad

con sólo mover el bloque averiado a una máquina diferente.

La figura 4.1 muestra la nueva estructura del sistema tras tener en cuenta las consi-

deraciones anteriores.

Figura 4.1: Esquema refinado de la arquitectura del sistema.

La vista se convierte en una página web que ofrecerá al usuario todas las opera-

ciones disponibles. Se comunicará con el motor de recomendaciones (el control), que

validará los datos, realizará los cálculos correspondientes, y almacenará, mediante el

sistema de gestión de la persistencia (el modelo), los datos que se precise conservar. El

motor de recomendaciones incluirá un módulo actualizador, encargado de revisar pe-

riódicamente los blogs a los que el usuario se haya subscrito y recomendarle, si procede,

la lectura de los nuevos contenidos publicados.

4.2. Elección de las tecnoloǵıas

De entre todos los lenguajes de programación disponibles, Java [19] ofrece utilidades

que permiten enlazar todos los componentes que forman el sistema, como puede verse

en la imagen 4.2. A continuación se detallan cada una de las tecnoloǵıas a utilizar.
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Figura 4.2: Estructura del sistema a construir.

1. La página web: Se utiliza el servidor web Apache [20] con su extensión Tomcat

[21], que permite el trabajo con Java en el desarrollo de páginas web. La página se

implementa con codigo HTML (del inglés, HyperText Markup Language) [22] y

hojas de estilo en cascada (CSS, del inglés Cascade Style Sheet) [23]. Los campos

de los formularios HTML se relacionan con objetos Java Bean[24] mediante el

framework Java Server Faces (JSF) [25], para poder ser procesados por el servidor.

2. El motor de recomendaciones: Se trata de un objeto RMI (del inglés, Remote

Method Invocation) [26] que implementa servidores en forma de objetos remotos,

cuyos métodos pueden ser llamados por el cliente como si de un objeto local se

tratase. Esta herramienta ofrecida por Java es muy interesante, pues ofrece co-

municación entre ambos procesos de forma transparente, sin necesidad de diseñar

un protocolo de comunicación.

3. La máquina de aprendizaje: Se utilizan máquinas SVM (del inglés, Support

Vector Machine). Para la explicación de su funcionamiento, ver Anexo C. En

cuanto a la implementación, se parte como punto de partida de la desarrollada

por Weka [27], que ofrece un buen número de clasificadores, sistemas internos de

cache, y optimizaciones necesarias para la obtención de buenos resultados. Para

su uso en este proyecto, se requieren algunas modificaciones sobre el algoritmo

original implementado por Weka, que se detallan en el apartado 5.2.

4. La gestión de la persistencia: Se implementa con bases de datos de MySQL

[28], por su comodidad de uso, eficiencia en las operaciones y por la existen-

cia en Java del driver JDBC (del inglés, Java Data Base Connection) [29], que

proporciona una interfaz para la interaccion con la base de datos.

5. El actualizador: Se implementa con objetos de la clase Thread de Java [30], y

se ejecuta en paralelo al motor de recomendaciones una vez arrancado el sistema.
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Caṕıtulo 5

Implementación

Este apartado contiene un resumen de los componentes más relevantes de los tres

grandes bloques funcionales del sistema: la vista, el motor de recomendaciones y la capa

de acceso a datos. Para una explicación más extensa pueden consultarse los Anexos D,

E y F donde además pueden encontrarse otros componentes que no aparecen en esta

memoria por motivos de extensión.

5.1. Implementación de la vista

La vista está compuesta por dos bloques diferenciados, la página web y el módulo

Java que recoge los datos, comunica con el motor de recomendaciones y devuelve los

resultados para ser mostrados al usuario. En los siguientes subapartados se introducen

dichos bloques. Una explicación más extensa sobre cada uno de ellos, aśı como el detalle

de otros paquetes no mencionados en esta memoria, pueden consultarse en el Anexo D.

5.1.1. La página web

La página web se implementa con código HTML, hojas de estilo CSS y utilidades ofre-

cidas por JSF. Está estructurada en carpetas según la funcionalidad de las subpáginas,

quedando aśı separadas las relacionadas con el manejo de los blogs de las relacionadas

con la gestión de la SVM.

JSF proporciona herramientas para crear plantillas que definen la estructura de la

pantalla. En el código HTML de las subpáginas se insertan etiquetas de JSF para

incluir los contenidos propios de cada una. De esta forma se separa el contenido del

estilo, pudiéndose implementar de forma independiente.
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Figura 5.1: Estructura del bloque de vista.

5.1.2. El control de página web

Para el manejo de los datos introducidos por el usuario existe un módulo Java es-

tructurado en capas. Los datos pasan de una capa a la otra, viajan al motor de reco-

mendaciones, y los resultados vuelven al módulo Java, atravesando las capas en sentido

contrario, para que el servidor genere a continuación la página que incluye los resultados

y sea devuelta al usuario.

El paquete contenido en la capa del nivel superior, llamado Beans, contiene los ob-

jetos donde JSF almacena los datos introducidos por el usuario. Tras comprobar que

todos los datos necesarios han sido proporcionados, el paquete env́ıa los datos al ni-

vel inferior, llamado Servicio, y espera resultados o errores devueltos por el motor de

recomendaciones.

El paquete Servicio, en el nivel inferior, contiene el objeto remoto del motor de

recomendaciones. Tras recibir los datos procedentes del usuario, que le proporciona el

paquete Beans, invoca el método remoto correspondiente y devuelve los resultados al

nivel superior.

5.2. Implementación del control: Motor de recomendacio-

nes

Se resumen a continuación los componentes más relevantes del motor de recomenda-

ciones, que aparecen en la figura 5.2. Puede consultarse el Anexo E para una explicación
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en mayor profundidad, donde además se aportan más detalles sobre la implementación

de este módulo.

Figura 5.2: Estructura del motor de recomendaciones.

5.2.1. El recomendador

Es el componente principal del bloque de control. Implementa la interfaz del objeto

remoto RMI que contiene los métodos que se ofrecen al bloque de vista. Se ejecuta al

arrancar el sistema y, tras realizar el ajuste inicial de parámetros internos, queda a la

espera de conexiones entrantes.

Cada uno de los métodos remotos implementados valida los parámetros de entrada,

comprueba la existencia de los datos a manejar en la base de datos, realiza la operación

solicitada y devuelve los resultados, o si procede, una excepción que será tratada en el

bloque de vista.

5.2.2. La máquina SVM

Este paquete implementa el clasificador SVM cuyo funcionamiento se expone en el

Anexo C. Parte de la implementación de Weka, pero introduce algunas modificaciones

para adecuarlo al problema a resolver por el sistema.

El clasificador SVM de Weka implementa el clasificador multiclase expuesto en el

art́ıculo Pairwise Classification as an Ensemble Technique [16]. Predice a qué clase se

asemeja más un nuevo dato desconocido, pero no determina si el dato no pertenece a

ninguna de las clases. Por tanto ante un nuevo dato que no pertenezca a ninguna de

las clases de entrenamiento, el algoritmo original determinará que pertenece a alguna

de las existentes.
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La modificación consiste en crear un clasificador binario encargado de reconocer cada

una de las clases de entrenamiento. Hay pues tantos clasificadores binarios como clases.

Si cualquiera de estos clasificadores determina que el nuevo dato pertenece a la clase

que reconoce, el nuevo texto se recomienda al usuario. En caso contrario se descarta,

pues no es un texto de interés.

Adicionalmente se añade soporte para el trabajo en paralelo en las tareas de entre-

namiento y predicción, que se explica en el apartado 5.4.

5.2.3. El lematizador

El lematizador extrae la ráız de una palabra, como se ha comentado en el apartado

2.1. Es una clase obtenida en SourceForge [31] que implementa el algoritmo de Porter

[32]. No se han requerido modificaciones en su algoritmo original.

5.2.4. El módulo de comunicación con el diccionario de Zirano

Para la obtención de los campos conceptuales se ha implementado un módulo que

interactúa con el diccionario de Zirano. Su tarea principal consiste en simular la nave-

gación que realizaŕıa un visitante en su página web para obtener una lista de todas las

palabras relacionadas con la introducida por el usuario.

El proceso simulado consta de las siguientes fases:

1. El usuario introduce la palabra de su interés.

2. La la página de Zirano sugiere una lista de ideas o acepciones relacionadas con

esa palabra.

3. El usuario navega por las diferentes acepciones sugeridas y, para cada una de

ellas, obtiene un conjunto de palabras relacionadas.

Este módulo realiza un recorrido por todas las ideas sugeridas, hasta extraer un

número suficiente de palabras relacionadas.

5.3. Implementación del modelo: Capa de acceso a datos

En este subapartado se resume la implementación de la capa de acceso a datos.



Índice general 23

Figura 5.3: Estructura del módulo de acceso a datos.

Cabe resaltar la penalización derivada de la descarga de un texto desde internet. Esta

operación requiere un tiempo considerable y por ese motivo los textos descargados no se

eliminan de la base de datos, sino que permanecen en el sistema, a modo de cache. Una

recomendación o un caso de ejemplo harán pues referencia a un texto ya guardado.

Pueden borrarse las recomendaciones pero no los textos a los que hacen alusión, de

forma que si se vuelve a añadir de nuevo una recomendación o un caso de ejemplo no

es necesario descargarlo.

La figura 5.4 muestra las distintas tablas existentes en la base de datos, aśı como las

relaciones entre ellas.

En el paquete DAO existen ocho clases encargadas de interactuar con las tablas de

la base de datos con las que están relacionadas. Las clases son las siguientes:

BlogDao: Para inserción, listado y borrado de blogs de interés.

ClaseDao: Gestiona el almacenamiento de las clases de entrenamiento.

ClasificadorDao: Ofrece métodos para el almacenamiento en disco de la SVM.

ConceptosDao: Para la gestión de palabras, ráıces y campos conceptuales.

EntrenamientoDao: Gestiona el almacenamiento los datos de entrenamiento

del sistema.

InfoDao: Para el manejo de la tabla de información del sistema.

PostDao: Ofrece operaciones de inserción de nuevos textos en la base de datos

aśı como de listado. Por motivos comentados al principio de este subapartado no

se ofrecen operaciones de eliminación.
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Figura 5.4: Esquema de la base de datos.

RecomendaciónDao: Gestiona la tabla de recomendaciones.

Para una explicación más detallada, ver Anexo F.

5.4. Paralelización de tareas

Como se ha mencionado en el apartado 3.4, existen varios actividades en el sistema

que pueden realizarse en paralelo para obtener mejoras en tiempo. Para este primer

prototipo se decidió centrarse en las relacionadas con la máquina de aprendizaje, más

concretamente en las operaciones de entrenamiento y predicción.

El trabajo en paralelo puede introducirse en cualquiera de los tres niveles del clasi-

ficador SVM implementado, tal y como ilustra la figura 5.5. Pueden hacerse cálculos

simultáneos en la función de comparación del Kernel SSK, en las operaciones de entre-
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namiento y predicción de las máquinas SVM binarias, o en el clasificador final. Cada

una de estas alternativas se explica en los párrafos siguientes.

Figura 5.5: Niveles de paralelización de la máquina SVM.

En la función de comparación de dos cadenas, en la clase StringKernel de Weka,

hay un punto concreto donde pueden lanzarse cálculos en paralelo. Como se explica

en el apartado G.5 del Anexo G, para calcular el grado de semejanza normalizado,

se realizan tres llamadas a la función Kernel que son independientes entre ellas. Los

resultados obtenidos se multiplican y dividen entre ellos, pero nada impide realizar

los cálculos en paralelo guardando los resultados en variables temporales para operar

después con ellas.

En el nivel superior al Kernel se encuentran las máquinas SVM binarias. El método

de entrenamiento realiza iteraciones, en las que se invoca repetidamente al Kernel y se

ajustan coeficientes internos antes de volver a iterar. Es imposible lanzar en paralelo

las diferentes iteraciones, pues una iteración necesita los resultados de todas las ante-

riores. Sin embargo, en cada iteración se realizan varias llamadas a la función Kernel

independientes, que śı se pueden ejecutar al mismo tiempo. Lo mismo ocurre con el

método de predicción, que realiza comparaciones (invocaciones al Kernel) entre el dato

nuevo y cada uno de los vectores de soporte, para construir un resultado. Pueden lan-

zarse dichas comparaciones en paralelo e ir acumulando los resultados en una variable

temporal, para luego realizar cálculos con ella y generar el resultado que será devuelto.
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Éstos son los puntos paralelizables a este nivel.

Por último, las diferentes máquinas SVM binarias pueden trabajar en paralelo ya

que cada una dispone de su copia individual del conjunto de datos de entrenamiento.

Cada una de ellas genera, tanto en el proceso de entrenamiento como en el de predicción

resultados independientes de las demás, y por tanto pueden ejecutarse simultáneamente.

La decisión de qué puntos paralelizar y cuales no, no es trivial. Tratar los tres niveles

supone la creación de un número elevado de tareas. Implementar sólo los dos inferiores

proporciona mejores tiempos al aumentar el número de datos de ejemplo, y sólo el

superior proporciona mejores tiempos al aumentar el número de clases diferentes. El

grado de paralelismo utilizado en cada nivel debeŕıa ser ajustado teniendo en cuenta la

cantidad y variedad de textos que el usuario vaya a manejar.

En este prototipo se decidió implementar los dos niveles superiores. Al entrenar y

predecir todas las máquinas SVM binarias realizan sus cálculos en paralelo y crean,

según sea necesario, nuevas tareas para ejecutar las invocaciones al Kernel SSK. Queda

pendiente para ampliaciones futuras la inclusión de trabajo en paralelo en el nivel

inferior.

Para la implementación de estas mejoras, se han añadido objetos de la clase Execu-

torService [33], inclúıda en el paquete Concurrent de Java, al clasificador SVM. Estos

objetos administran conjuntos de tareas (implementaciones de la interfaz Runnable

[34]), con la ventaja de que los hilos de ejecución creados no se destruyen al finalizar la

tarea, sino que son reutilizados según quedan libres. Se evita aśı la creación continua

de hilos de ejecución, con su correspondiente penalización de tiempo.
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Evaluación del prototipo.

Experimentos

La naturaleza masiva del cálculo asociado al entrenamiento y a la predicción utili-

zando máquinas SVM ha planteado como requerimiento, desde un primer momento, la

necesidad de diseñar el sistema con la máxima escalabilidad posible.

Aśı, el estudio del comportamiento paralelo de los procesos más intensivos en cálculo

se ha materializado en un conjunto de experimentos que se han ejecutado en distintas

plataformas computacionales.

6.1. Descripción del experimento

El almacenamiento de un texto de prueba introducido por el usuario requiere que el

sistema descargue su código y lo procese para eliminar etiquetas HTML. Pero, debido

a la gran cantidad de formatos de página web que existen y a que los lectores pueden

escribir sus comentarios, resulta muy dif́ıcil eliminar completamente la información

ajena al texto de interés. Esto influye negativamente en la calidad de las predicciones

y requiere una mejora del algoritmo de filtrado.

Por ese motivo los experimentos realizados se centran en la influencia de la parale-

lización sobre las tareas del sistema, concretamente en las operaciones internas de la

máquina SVM. Las mejoras en tiempo observadas son independientes de la calidad de

los textos de ejemplo y por tanto pueden extraerse conclusiones de mayor interés.

6.1.1. Conjunto de datos de entrada

Se han creado 4 clases de entrenamiento, que son las categoŕıas de las que el usuario

desea mantenerse informado. Éstas son: poĺıtica, deportes, economı́a y tecnoloǵıa.
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Para cada una de ellas, existen 5 art́ıculos de ejemplo relacionados extráıdos de las

versiones online de los periódicos Heraldo de Aragón[35], Marca[36] y El Páıs[37]

El experimento consiste en un entrenamiento y una predicción de un art́ıculo nuevo,

obteniendo tiempos de ejecución secuencial y de ejecuciones paralelas con un número

variable de procesadores. Se pretende estudiar la mejora en tiempo obtenida al ejecutar

el código en tres entornos distintos, tanto en su versión secuencial como empleando el

máximo número de procesadores disponibles.

6.1.2. Presentación del hardware

Para el lanzamiento del experimento se dispone de tres máquinas diferentes que se

detallan a continuación.

En primer lugar, mi ordenador portatil, al que en adelante se llamará “Portatil”, que

tiene las siguientes caracteŕısticas:

Procesador AMD Athlon 64 X2 dual-core QL-60.

Tipo de máquina: x86.

Sistema Operativo: Windows 7.

Número de CPUs: 2.

Frecuencia de procesador: 1.9 GHz.

Memoria total: 4GB.

En segundo lugar, se han realizado pruebas en Cluster Hermes [38] del Instituto

de Investigación de Ingenieŕıa de Aragón (I3A) de la Universidad de Zaragoza. Con-

cretamente, se ha utilizado la máquina Selene2 bajo Condor[39], con las siguientes

caracteŕısticas:

Nodo: selene2.hermes.cps.unizar.es

Tipo de máquina: x86.

Sistema Operativo: Linux.

Versión del Sistema Operativo: 2.6.18-238.5.1.el5.

Número de CPUs: 48

Frecuencia de procesador: 2200 MHz.
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Memoria total: 99004784.000 KB

Tamaño de Swap total: 102399984.000 KB

Por último, Gregorio de Miguel me ofreció la posibilidad de lanzar el experimento

en su ordenador. Esta máquina se llamará “Goyo” en adelante y tiene las siguientes

caracteristicas.

Procesador: Intel Core i7 920

Tipo de máquina: x86.

Sistema Operativo: Windows 7 64 bits.

Número de CPUs: 4x2 (2 hilos por CPU).

Frecuencia de procesador: 3.95 GHz.

Memoria total: 6GB.

Se ha preparado un script para ejecutar los experimentos en las distintas máquinas.

En primer lugar se lanza un servidor que carga los datos necesarios para su funcio-

namiento y queda a la espera de conexiones entrantes. A continuación se lanza un

cliente que solicita el entrenamiento del sistema y una predicción de un texto nuevo.

Finalizadas ambas tareas, cliente y servidor finalizan su ejecución.

Para el caso del nodo Selene2, los técnicos que dan soporte a los usuarios de Hermes

han preparado un script .sub para Condor, que puede consultarse en el Anexo H.

6.2. Descripción de los resultados

Las tablas 6.1 y 6.2 muestran los tiempos obtenidos para cada una de las operaciones

por separado. Cabe resaltar las diferencias entre las máquinas que han intervenido en

el proceso de pruebas de escalabilidad, lo que dificulta la extracción de conclusiones.

Cuadro 6.1: Tiempo del entrenamiento ejecutado en las distintas máquinas.

PORTATIL (2 CPUs) GOYO (8 CPUs) SELENE2 (48 CPUs)

SECUENCIAL 2601 909 900

MAXIMO CPUs 1470 186 109

Las figuras 6.1 y 6.2 ilustran gráficamente los resultados de las tablas anteriores. En

ambas se representa, para cada máquina, los tiempos obtenidos en ejecucions secuen-

ciales y paralelas.
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Cuadro 6.2: Tiempo de la predicción ejecutada en las distintas máquinas.

PORTATIL (2 CPUs) GOYO (8 CPUs) SELENE2 (48 CPUs)

SECUENCIAL 164 59 145

MAXIMO CPUs 171 57 134

Figura 6.1: Resultados de operacion de entrenamiento para cada una de las máquinas.

En el entrenamiento, el tiempo de cálculo va disminuyendo conforme aumenta el

número de procesadores disponibles, especialmente en el caso de mi ordenador portátil

en el que duplicar el número de procesadores disminuye el tiempo de cálculo casi a la

mitad.

Por otra parte, la operación de predicción obtiene peores resultados. En mi ordena-

dor portátil, trabajar con dos procesadores produce tiempos de ejecución mayores que

trabajar secuencialmente. Las otras dos máquinas obtienen mejoras poco significativas

de tiempo.

La figura 6.3 muestra las mejora en tiempo obtenida en cada una de las tres máquinas

en las operaciones de entrenamiento y predicción.

La mejora en tiempos obtenida es menor a lo que se esperaba durante la imple-

mentación del paralelismo. Esto de debe a diversos factores, entre los que se pueden

encontrarse los siguientes:

1. Compartición de unidad de punto flotante: Si un núcleo de la máquina sólo

dispone de una unidad de punto flotante que los distintos hilos de ejecución pueden

necesitar utilizar al mismo tiempo, se producen esperas hasta que dicha unidad
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Figura 6.2: Resultados de operacion de predicción para cada una de las máquinas.

Figura 6.3: SpeedUp obtenido en las diferentes máquinas.

queda libre. Este caso se da en procesadores multihilo, en los que se comparten

algunas unidades funcionales. En este proyecto, en el que el cálculo con números

reales es intenso, este hecho puede producirse frecuentemente.

2. Compartición de memoria cache: Los hilos de ejecución comparten algún

nivel de cache, como el L3, de manera que al haber varias tareas en paralelo
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trabajando con grandes cantidades de información, pueden producirse excesivos

movimientos entre memoria principal y cache, con sus correspondientes penaliza-

ciones en tiempo.

3. Excesivo tamaño de los datos: Los datos manejados desde la aplicación Java

son cadenas de caracteres muy grandes. La utilización de memoria RAM durante

la ejecución ha alcanzado en algunos casos los 2Gb. Constructores de copias que

manejen cantidades demasiado grandes de memoria introducen también penali-

zaciones en tiempo.

4. El alto nivel del código: La implementación de este prototipo se sustenta en

la máquina virtual de Java y su funcionamiento interno, en la libreŕıa Weka, en

otras estructuras de datos ofrecidas por Java y depende además del planificador de

tareas del sistema operativo. En el caso del nodo Selene2, el planificador Condor

también influye en los resultados. Todos estos niveles de abstracción a los que no

he tenido acceso total, impiden conseguir los resultados óptimos aśı como predecir

las razones exactas que causan los tiempos obtenidos.

Para un desarrollo posterior debeŕıa hacerse un estudio más intensivo de las causas

que influyen en los resultados. No obstante, el prototipo ofrece una visión adecuada de

cómo el sistema se comporta ante la variación de los recursos disponibles.
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Organización del proyecto

En este apartado se expone cómo se ha organizado el desarrollo del proyecto, como

puede verse en el diagrama de Gantt de la figura 7.1.

La duración total del trabajo realizado ha sido de 192 d́ıas, a lo largo de los cuales

se ha ido redactando y refinando el contenido de esta memoria.

Figura 7.1: Diagrama de Gantt que muestra la organización del proyeecto.

Las primeras dos semanas se dedicaron a una lluvia de ideas para delimitar el proble-

ma a resolver. A continuación se realizó un estudio de los aspectos básicos necesarios

para abordarlo. Este estudio requirió un mes de trabajo en el que se leyó abundante

documentación al respecto.
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Figura 7.2: Detalle de las fechas de inicio, finalización y duración de las tareas a realizar.

La fase de construcción se completó en aproximadamente 80 d́ıas, repartidos como

puede puede verse en las figuras 7.1 y 7.2.

Terminado el prototipo, se realizaron experimentos y refinó la algoritmia utilizada.
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Gestión del Proyecto y

Conclusiones

Nueve meses de trabajo han permitido la construcción de este primer prototipo. En

este apartado se comentan los principales problemas encontrados durante el proceso de

desarrollo y se extraen las conclusiones.

El módulo de vista se ha construido sin problemas destacables. Una vez obtenida y

revisada toda la documentación necesaria para poner en marcha el desarrollo, éste se

ha completado con éxito. Se ha obtenido una página web sencilla, de manejo intuitivo

y que cumple perfectamente su función.

En el módulo de control, el motor de recomendaciones, el trabajo ha sido más com-

plicado, fundamentalmente debido a que se ha trabajado con herramientas de terceras

partes y a que el proyecto requiere el uso de máquinas muy potentes, de las que no se

ha dispuesto.

Se ha conseguido obtener campos conceptuales amplios pero concisos, si bien con-

vendŕıa revisar el algoritmo utilizado y adaptarlo para obtener conjuntos más reducidos

pero con mayor relevancia.

El algoritmo de aprendizaje, la máquina SVM, funciona correctamente. Las predic-

ciones realizadas por el sistema son correctas en buen número de casos, aunque es

importante recalcar que la precisión de las mismas depende en gran medida de la cali-

dad de los textos de ejemplo.

Conseguir estos casos de ejemplo no es trivial, pues hay que filtrar el código HTML

recibido por el sitio web propietario del texto para eliminar, además de las etiquetas
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HTML, la información que no pertenece al texto propiamente dicho. Seŕıa recomen-

dable, de cara a próximas ampliaciones, la revisión del algoritmo de filtrado, para

conseguir eliminar más información no relevante, como comentarios de los lectores. Fil-

trar correctamente todas las páginas web es complicado, pues los diseñadores no siguen

ningun estándar de nombrado de los diferentes bloques que componen la página, lo que

dificulta el análisis preciso del codigo.

Las pruebas de paralelización son, en mi opinión, un punto mejorable en el proyecto.

Realizar un buen entrenamiento para obtener recomendaciones precisas obliga a intro-

ducir un número de ejemplos lo suficiente grande para que el sistema sepa distinguir los

textos de las diferentes categoŕıas. No se ha dispuesto de máquinas con la potencia de

cálculo necesaria para poder realizar pruebas reales y por tanto, ha sido imposible rea-

lizar pruebas con grandes volúmenes de datos para poder asegurar que la escalabilidad

del sistema es buena.

Respecto a la paralelización, tampoco ha sido posible obtener resultados tan favora-

bles como se esperaba, pues el sistema trabaja con demasiadas capas (máquina f́ısica,

sistema operativo, máquina virtual de Java, libreŕıa Weka, mi propio código) y no se ha

podido acceder a todas para estudiar las causas de los resultados obtenidos. Por tanto

no he podido concluir hasta qué punto mi trabajo de paralelización es mejorable, que

seguramente lo es, ni hasta qué punto depende de la máquina, del algoritmo de Weka,

ni de ningun otro componente utilizado.

Sin embargo, me gustaŕıa agradecer de nuevo a Gregorio de Miguel, mi director de

proyecto, aśı como al proyecto TIN2008-06582-C03-02 - “Secuencias Simbólicas: Análi-

sis, Aprendizaje, Mineŕıa y Evolución”, del Ministerio de Ciencia e Innovación, y al

Grupo de Ingenieŕıa de Sistemas de Eventos Discretos (GISED), haberme facilitado

el acceso a máquinas de mayor potencia, gracias a las cuales he podido realizar prue-

bas más interesantes que las que podŕıa haber ejecutado utilizando sólo mi ordenador

portátil.

Siendo cŕıtico, veo algunos puntos mejorables en el resultado visible del proyecto,

como ya se ha comentado en los párrafos anteriores. A pesar de ello, mi valoración

personal del trabajo realizado es buena. Pienso que el desarrollo se ha realizado de

forma ordenada después de una etapa de obtención y lectura de la documentación

disponible. Esto ha permitido que el trabajo de desarrollo sea más fluido y con menos

imprevistos por un diseño precipitado.
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Anexo A

Manual de usuario

BCatalog es un sistema de recomendación de blogs que notifica al usuario cuando

alguno de sus sitios favoritos publica contenidos relacionados con temas de su interés.

Para el manejo del sistema el usuario dispone de una página web muy intuitiva. De

esta forma no se requiere ningún software instalado en su ordenador a excepción de un

navegador web, pudiendo aśı mantenerse informado en casa, en el trabajo o en cualquier

lugar donde se encuentre.

En los apartados siguientes se resume toda la información necesaria para empezar

a obtener recomendaciones y se muestran capturas de pantalla que facilitarán la com-

prensión del lector y su familiarización con la aplicación.

A.1. Estructura de la página

La página web está formada por tres zonas principales con las que el usuario puede

interactuar, tal como se ilustra en la figura A.1:

Figura A.1: Estructura de la página.
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1. El menú de navegación superior presenta las secciones de la página web. A través

de este menú el usuario puede visualizar las recomendaciones propuestas, gestio-

nar sus blogs favoritos y entrenar al sistema para que empiece a recomendarle

nuevos contenidos.

2. El menú izquierdo presenta las subsecciones existentes en la sección del menú su-

perior seleccionada.

3. La zona de contenido muestra el texto y los formularios correspondientes a cada

sección.

A.2. Gestión de blogs

Seleccionando la opción Blogs del menú superior se accede a la pantalla de gestión

de las subcripciones. Todas las operaciones disponibles aparecen juntas en esta sección,

para la cómoda manipulación de los blogs favoritos del usuario. Las acciones que pueden

realizarse aparecen reflejadas en la figura A.2, y son las siguientes:

Figura A.2: Gestión de subscripciones a blogs.

1. Añadir una subscripción a un blog

2. Ver el listado de subscripciones en curso.

3. Cancelar una subscripción. BCatalog dejará de recomendar el blog seleccionado.

A.3. Entrenamiento del sistema

En la sección Entrenamientos están disponibles todas las acciones necesarias para

que el sistema aprenda las preferencias del usuario en cuanto a temas de interés se
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refiere. El usuario proporcionará a BCatalog un conjunto de textos de ejemplo para

cada uno de los temas de los que desee recibir notificaciones.

El proceso de entrenamiento del sistema se lleva a cabo en dos fases tras las cuales

BCatalog estará listo para empezar a analizar los blogs seleccionados en busca de nuevos

contenidos relacionados. Estas tareas son accesibles desde el menú lateral de la página

web, como ilustra la figura A.3. Es importante que el sistema vuelva a entrenarse a

lo largo del tiempo añadiendo nuevos textos de ejemplo que pueden ser introducidos

manualmente o bien ser recomendaciones que el usuario considere acertadas. A conti-

nuación se enumeran las distintas fases del entrenamiento, que se describen en detalle

en los subapartados siguientes:

1. Creación de las categoŕıas de interés del usuario (ej: economı́a).

2. Introducción de textos de ejemplo, especificando la categoŕıa a la que pertenecen.

3. Entrenamiento del sistema.

Figura A.3: Entrenamiento del sistema.

A.3.1. Gestión de categoŕıas de textos

La gestión de categoŕıas puede realizarse desde la pantalla Administrar clases de

entrenamiento, en el menú lateral izquierdo, una vez seleccionada la opción Entrena-

mientos del menú superior.

Esta pantalla es muy similar a la de gestión de blogs, introducida en el apartado A.2

y ofrece las siguientes acciones a realizar, que aparecen en la figura A.4:

1. Añadir una clase de entrenamiento (categoŕıa a la que puede pertenecer un texto).
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Figura A.4: Gestión de clases de entrenamiento.

2. Ver el listado de las clases existentes

3. Eliminar una clase de entrenamiento.

A.3.2. Gestión de textos de ejemplo

Una vez definidas las clases de textos que el sistema va a manejar, el siguiente paso es

añadir casos de ejemplo de cada una de las clases. Pueden pertenecer, o no, a los blogs

a los que el usuario se ha subscrito. Con estos textos BCtalog aprenderá a identificar

las preferencias del usuario, y por lo tanto es necesario que los ejemplos introducidos

sean lo más relevantes posible para asegurar la calidad de las recomendaciones.

Figura A.5: Inserción de un nuevo texto de ejemplo.

Para la introducción de los datos de ejemplo la página web proporciona la pantalla

Nuevo caso de entrenamiento. En ella, el usuario deberá introducir la dirección URL

donde se encuentra el texto y seleccionar la categoŕıa a la que pertenece, de entre las

ya creadas anteriormente. Este proceso se ilustra en la figura A.5.
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La pantalla Administrar casos de entrenamiento ofrece un listado de todos los ejem-

plos almacenados hasta el momento mostrados por categoŕıas, como puede verse en la

figura A.6. Junto a cada caso de ejemplo se ofrece la opción de borrarlo si el usuario

decide que no le interesa que esté asociado a esa cagegoŕıa.

Figura A.6: Gestión de textos de ejemplo.

Es importante comentar que en este listado aparecen tanto los ejemplos introducidos

por el usuario como aquellas recomendaciones que el usuario haya aceptado.

A.3.3. Entrenamiento del sistema

Completadas las fases anteriores el usuario puede entrenar al sistema desde la pantalla

Gestión de SVM, mostrada en la figura A.7, que es accesible desde el menú lateral.

BCatalog iniciará el proceso de entrenamiento de su máquina de aprendizaje. Este

proceso puede requerir un tiempo para ser completado.

A partir de ese momento, BCatalog visitará periódicamente los blogs favoritos del

usuario, descargará y analizará los nuevos contenidos y recomendará, si procede, su

lectura al usuario.

Esta pantalla, ofrece adicionalmente la posibilidad de introducir la URL de un texto

cualquiera, y solicitar a BCatalog que lo analice y añada la correspondiente recomen-

dación. Con esta utilidad el usuario puede comprobar el funcionamiento del sistema y

la calidad de las predicciones.
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Figura A.7: Entrenamiento del sistema y predicción.

A.4. Recomendaciones

Cuando BCatalog determine que los nuevos textos están lo suficientemente relacio-

nados con las preferencias del usuario, añadirá nuevas recomendaciones que el usuario

podrá ver cada vez que ingrese en la página y hasta que las acepte o rechace.

En la pantalla Principal, que aparece en la figura A.8 y es accesible desde el menú de

navegación superior, aparecerá un listado con las recomendaciones no pendientes de

verificación. Cada recomendación tiene su correspondiente botón para informar a BCa-

talog de si es o no del agrado del usuario.

Figura A.8: Ejemplo de recomendaciones propuestas por el sistema.
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En caso de que el usuario esté satisfecho con las recomendaciones, pasarán a formar

parte de los textos de ejemplo y serán tenidas en cuenta cuando el sistema vuelva a

entrenarse. En caso contrario la recomendación desaparecerá.
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Anexo B

Relación de clases del sistema

En este apartado se detallan las clases que el sistema maneja para realizar las tareas

de análisis y recomendación de textos publicados en blogs de interés del usuario. Todas

ellas se incluyen en el paquete Entities, presente tanto en la vista como en el motor de

recomendaciones.

La figura B.1 ilustra las cinco clases y sus atributos. El significado de cada uno de

ellos se detalla a continuación:

Figura B.1: Clases almacenadas por el sistema.
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Blog: Representa un blog de cuya publicación de nuevos contenidos se notificará al

usuario. Está formado por los siguientes atributos:

URL: Una cadena de texto que almacena su dirección URL (del inglés, Uniform

Resource Locator).

id : Un entero que almacena un identificador único del blog para uso interno.

Clase: Representa una clase de entrenamiento, que en este protipo es una categoŕıa

a la que los textos pueden pertenecer. Sus atributos son:

nombre: Una cadena de texto que contiene las palabras que forman el nombre de

la categoŕıa.

id : Un entero que almacena un identificador único de la clase para uso interno.

Post: Representa un texto de internet, y contiene toda su información relevante para

el sistema:

URL: Una cadena con su dirección URL.

id : Un entero que almacena un identificador único del post para uso interno.

titulo: Una cadena que almacena el titulo del texto.

texto: Una cadena que almacena el texto de interés.

Entrenamiento: Representa un caso de ejemplo que será utilizado por la máquina

de aprendizaje. Está formado por los siguientes atributos:

post : Un objeto de la clase Post, que contiene toda la información del texto.

clase: La clase o categoŕıa a la que pertenece.

Recomendación: Representa una recomendación de un texto, que se ofrecerá al

usuario tras haber determinado que es de su interés. Sus atributos son:

post : Un objeto de la clase Post con la información sobre el texto.

clases: Una lista de cadenas que representan las clases con los que el post está re-

lacionado.

El significado de los atributos resulta obvio, ya que simplemente representan la infor-

mación que el sistema necesita manipular. Cada clase ofrece únicamente métodos para

la lectura y escritura de sus atritubos.



Anexo C

La Máquina de Vectores de

Soporte

Las Máquinas de Vectores de Soporte (en adelante SVM, del inglés Support Vector

Machine) son un conjunto de algoritmos de aprendizaje supervisado, mediante los que

se puede enseñar a un sistema a diferenciar elementos de diferentes clases.

Para ello, es necesario entrenarlo proporcionándole un conjunto significativo de casos

de ejemplo. Tras el proceso de aprendizaje, el sistema será capaz de predecir a qué clase

de las que ha aprendido a reconocer pertenece un nuevo dato desconocido.

En los siguientes apartados se revisan algunas nociones necesarias para entender cómo

funcionan las SVM (apartado C.1) y se introducen las funciones Kernel (apartado C.2),

centrando el interés en la funcion SubString Kernel (apartado C.3) que es la utilizada

en este proyecto.

C.1. Introducción

El funcionamiento detallado de este tipo de herramientas excede los objetivos de esta

memoria, puesto que se requieren conocimientos matemáticos avanzados. Por tanto se

va a explicar, de forma intuitiva, en qué consisten los procesos de entrenamiento y de

predicción. Para información más detallada, puede consultarse cualquiera de los libros

en los que se basa el desarrollo del proyecto: Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond [14], Pairwise Classification as

an Ensemble Technique [16] o Kernels for Structured Data [15].

Es importante tener en cuenta que la resolución de sistemas de ecuaciones lineales es

computacionalmente muy eficiente ya que para ello pueden usarse productos escalares
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entre vectores, idea en la que se apoyan las SVM. En cambio, la resolución de sistemas

no lineales obliga a emplear otro tipo de métodos más complejos y menos eficientes.

Para ilustrar los procesos de entrenamiento y predicción, se van a utilizar objetos

con dos propiedades, y dos clases de entrenamiento a las que dichos objetos pueden

pertenecer.

Sea X el conjunto de datos de ejemplo, X1 y X2 las propiedades de interés de dichos

datos. Un dato x ∈ X se representa de la forma x = (x1, x2), tal que x1 ∈ X1 y x2 ∈ X2.

El objetivo de la máquina SVM cuando se entrena, es determinar un hiperplano que

separe los objetos de ambas clases, de forma que además la distancia entre el objeto

más cercano al hiperplano en cada una de las clases sea máxima.

En la figura C.1 se muestra cómo se veŕıa representado un conjunto de datos de

ejemplo conocidos, separados por el hiperplano calculado por la SVM.

Figura C.1: Representación de objetos e hiperplanos de separación.

Existen infinitos hiperplanos que separan las clases de entrenamiento, como pueden

ser H1 y H2. La SVM elige H2, pues, como se ha comentado, interesa quedarse con el

que permita un margen máximo entre ellas. H3 no separa las dos clases, y por tanto no

es un hiperplano válido. En este caso, y dada la naturaleza del ejemplo, los hiperplanos

son 1-dimensionales.
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C.2. Las funciones Kernel

En la mayoŕıa de los casos reales, como casos con más de dos propiedades (variables

predictoras), no es posible conseguir que todos los elementos de cada clase queden se-

parados por un hiperplano, sino que se consiguen curvas de separación. La solución más

eficiente en este tipo de problemas consiste en proyectar la información a un espacio de

dimensión superior de forma que, con esta nueva representación, sea posible encontrar

un hiperplano y obtener un problema lineal, que puede resolverse eficientemente.

Para realizar esta proyección se utiliza una función de mapeo Φ que asocia a cada

elemento del conjunto original un vector de dimensión superior, como puede verse en

la figura C.2.

Sea F el conjunto formado por los mapeos de los datos de entrada. Formalmente,

F = {Φ(x),∀x ∈ X}. Determinado dicho conjunto, la máquina SVM śı va a ser capaz

de encontrar un hiperplano que separe los mapeos de los objetos de las distintas clases,

como ilustra la figura.

Figura C.2: Ejemplo de función de mapeo Φ.

La dimensión del conjunto F puede ser muy elevada. Puesto que internamente la

SVM trabaja calculando productos escalares de los datos representados como vectores,

almacenar vectores de tan altas dimensiones resulta poco práctico en casos no triviales.

Es aqúı donde cobran importancia las funciones Kernel, de las que todav́ıa no se ha

hablado. Estas funciones reciben dos vectores y devuelven el producto escalar de sus

mapeos Φ.
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Además, las funciones Kernel cumplen la igualdad C.1, donde 〈. . .〉 representa el

producto escalar entre dos vectores.

K(x1, x2) = 〈φ(x1), φ(x2)〉 = 〈x1, x2〉, x1, x2 ∈ X (C.1)

La igualdad C.1 significa que el producto escalar de los datos de entrada coincide con

el producto escalar de sus mapeos Φ. Este producto es el que calcula la función Kernel

y se utiliza como medida de similitud entre dos vectores.

Una caracteŕıstica importante de este tipo de funciones es que no necesitan calcular

y almacenar los mapeos completos para realizar el producto escalar. En su lugar, van

calculando cada componente, multiplicándolas y acumulando los resultados.

En ocasiones es útil que el resultado de la evaluación de la función Kernel esté com-

prendido entre 0 y 1 o, lo que es lo mismo, que esté normalizado. La ecuación C.2

muestra el cálculo del producto escalar normalizado.

knorm =
K(x1, x2)√

K(x1, x1) ·K(x2, x2)
, knorm ∈ [0, 1] (C.2)

Existen numerosas funciones Kernel diferentes y la elección de la más adecuada de-

pende del problema de clasificación a resolver. En este proyecto se utiliza el SubString

Kernel cuyo funcionamiento se describe en el apartado C.3.

El proceso de entrenamiento de la máquina SVM consiste, como se ha mencionado,

en la obtención de un hiperplano de separación que ofrezca un margen de error máximo.

Los vectores de soporte son los que forman la base de dicho hiperplano, y son calculados

en este proceso.

El proceso de predicción se realiza una vez se han obtenido los vectores de soporte.

Mediante productos escalares, calculados por la función Kernel, se determina a qué lado

del hiperplano se encuentra el nuevo dato del que se quiere conocer su clase. Cada clase

queda separada a un lado del hiperplano, por lo tanto, el lado donde se determine que

el nuevo objeto se encuentra determinará la clase a la que pertenece.

C.3. El SubString Kernel

La función SubStringKernel (en adelante SSK) es el Kernel más conveniente en la

tarea de análisis de textos que es objeto del proyecto y por eso ha sido la alternativa

elegida de entre las distintas funciones Kernel. Los cálculos realizados son complejos
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y pueden consultarse en detalle en el art́ıculo Text Classification using String Ker-

nels[17]. En este apartado se introduce su funcionamiento intuitivamente para facilitar

la comprensión del lector.

Se puede consultar los libros Text Classification using String Kernels[17] y Lambda

pruning: an approximation of the string subsequence kernel for practical SVM classifi-

cation and redundancy clustering [18] para una explicación en mayor profundidad acerca

del kernel SSK y técnicas para su optimizacion.

El Kernel SSK realiza un cómputo de las subsecuencias comunes entre dos textos.

Una subsecuencia es un conjunto de caracteres consecutivos, o no, dentro de una cadena

de texto.

Algunos ejemplos de subsecuencias de la palabra trampoĺın son tram, tapon, tŕın, t o

tn.

Este Kernel asigna más importancia a las subsecuencias de mayor longitud y penaliza

a las formadas por caracteres no consecutivos. Cuanto más separados estén los carac-

teres de la subsecuencia, más penalización sufrirán y por tanto menos valor aportarán

al resultado de la comparacion.

A modo de ejemplo, sean t1 = “Trampoĺın”, t2 =“rampa” y t3 =“Tan” tres cadenas

cortas. El Kernel SSK determinará que t1 está más relacionada con t2 que con t3,

puesto que rampa tiene 3 caracteres comunes consecutivos con Trampoĺın, además del

caracter a, también común. En cambio, Tan tiene sus 3 caracteres en común pero no

son consecutivos, de modo que serán penalizados en el cómputo.

Los valores devueltos por esta función dependen de la longitud de las cadenas. Si se

comparan dos cadenas muy largas y poco relacionadas es frecuente obtener un resultado

mayor que si se comparan dos cortas muy similares. Una de las razones es que los

caracteres individuales son también considerados en el cómputo, con lo que aportarán

valor al resultado aun siendo poco relevantes.

Por este motivo conviene que la función devuelva valores normalizados, teniendo en

cuenta la longitud de las cadenas que procesa. De esta forma se obtienen valores entre 0

y 1, con lo que se puede medir y comparar mejor el grado de semejanza entre cadenas de

longitudes muy dispares, aśı como comparar los resultados en distintas comparaciones.
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Anexo D

La página web

La página web constituye la interfaz de comunicación entre el usuario y BCatalog.

El módulo de vista está pues formado por dicha página y una serie de herramientas

que recogen los datos proporcionados, contactan con el motor de recomendaciones y

muestran al usuario la información devuelta por éste.

La figura D.1 ilustra la estructura interna del módulo vista, y los componentes que

forman tanto la página web como el bloque Java que procesa los datos.

Figura D.1: Estructura del módulo de vista.
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La carpeta Web Content se estructura en subcarpetas y contiene todos los archivos

necesarios para el funcionamiento de la página web. El caṕıtulo D.1 detalla cada uno

de estos elementos, entre los que se incluyen los siguientes:

1. La carpeta base, que contiene la plantilla de las pantallas que componen la web.

2. Distintos archivos XML[40] necesarios para la configuración de la página.

3. La carpeta blog, que incluye las pantallas asociadas a la gestión de blogs.

4. La carpeta svm, en la que se encuentran las pantallas relacionadas con el apren-

dizaje del sistema.

El módulo Java incluye dos paquetes que forman una jerarqúıa por niveles, explicada

en mayor profundidad en el apartado D.2. Estos paquetes son:

1. El paquete beans, que recoge los datos procedentes de la página web y almacena

la información devuelta por motor de recomendaciones y que será mostrada al

usuario en respuesta a sus peticiones.

2. El paquete servicio que recibe los datos del paquete beans, env́ıa la petición al

motor de recomendaciones y devuelve los resultados al nivel superior.

D.1. La carpeta Web Content

La carpeta Web Content contiene los archivos HTML de la página web, la plantilla

que define la estructura de las pantallas serán mostradas al usuario, una serie de archivos

XML que configuran el comportamiento del servidor y el archivo index.xhtml que es el

punto de entrada por defecto a la página.

D.1.1. La carpeta base

En el desarrollo de páginas web resulta muy útil separar el estilo de la página del

contenido dinámico generado como resultado a las peticiones del usuario. Con ello se

consigue una división de tarea que facilita la depuración de errores, el trabajo entre

miembros del equipo de desarrollo y las posibles ampliaciones del sistema a construir.

Ésta es la razón de la existencia de la carpeta base, en la que se especifican por sepa-

rado la plantilla de la página web (fichero template.xhtml), los estilos que personalizan

su apariencia (carpeta css) y las imágenes que aparecerán en la página a mostrar al

usuario (carpeta images).
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El fichero template.xhtml define la estructura de la página, las zonas de la pantalla

donde se pueden colocar contenidos dinámicamente. Es en él donde se especifica que la

pantalla estará formada por una cabecera con el logotipo de la aplicación, un menú su-

perior de navegación, uno lateral y una zona central principal para mostrar información

al usuario.

El contenido de cada una de las zonas no aparece en este archivo, sino que se in-

cluirá posteriormente dependiendo de la página solicitada. Esta forma de trabajo es

similar a la utilizada en los lenguajes de programación, en las que determinados fiche-

ros con código pueden incluirse en otros donde vayan a ser utilizados.

Los colores, el tipo y tamaño de la fuente, las dimensiones de las zonas que componen

la pantalla y todas las demás propiedades relacionadas con el estilo del sitio web se

implementan por separado en el archivo style.css, ubicado en la carpeta css.

La carpeta images contiene las imágenes mostradas en la página resultado, como son

el logotipo de la aplicación, la imagen de la cabecera superior y otras que se utilizan

como fondo en las distintas zonas de la pantalla.

D.1.2. Los archivos XML

Para el correcto funcionamiento de la página web se requieren fundamentalmente dos

archivos que configuran el comportamiento del sitio ante la actividad del usuario. Estos

archivos se encuentran en la carpeta WEB-INF, y se comentan a continuación:

1. faces-config.xml : Especifica los objetos Java que manejarán la información inter-

cambiada entre el usuario y el sistema. Este fichero indica a JSF qué campos de

los formularios HTML ha de asociar a qué objetos Java para su manipulación

posterior. Incluye además reglas de navegación que especifican a qué página se

ha de redirigir al usuario cuando realice cada acción de las ofrecidas en la página

web.

2. web.xml : Aporta información al servidor web, como la página principal por defec-

to, la extensión en que acaban las direcciones URL de cada una de las secciones

(seccion.html, seccion.jsf o cualquier otra que se decida) y otras indicaciones de

utilidad.

D.1.3. Las carpetas blog y svm

Por último, las carpetas blog y svm contienen archivos con el código HTML propio

de cada sección existente en la página web. Es importante destacar que el código que
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aparece en cada uno de estos archivos define únicamente el contenido de cada una de las

zonas de la pantalla especificadas en el fichero template.xhtml. Para obtener codidigo

final, el servidor realizará una serie de operaciones que se comentan en el apartado

D.1.4

La carpeta blog contiene un único archivo llamado gestion.xhtml, en el que se en-

cuentra el código para generar los formularios para añadir, listar y borrar los blogs a

los que el usuario quiere subscribirse.

La carpeta svm contiene los siguientes archivos que implementan las pantallas para

gestionar el aprendizaje y entrenamiento de BCatalog:

1. index.xhtml : Es el punto de entrada a la sección de gestión de aprendizaje del

sistema.

2. gestion clases.xhtml : La pantalla que ofrece al usuario la creación de una categoŕıa

para sus textos de ejemplo.

3. nuevo entrenamiento.xhtml : La pantalla para la inserción de textos de ejemplo.

4. gestion entrenamiento.xhtml : La pantalla que muestra el listado de textos de

ejemplo agrupados por categoŕıas.

5. svm.xhtml : La pantalla desde la que se puede entrenar al sistema.

D.1.4. Proceso de construcción de una pantalla

Como se ha mencionado repetidas veces a lo largo de este apartado, el estilo, la

estructura de la página web, las imágenes y el contenido se implementan por separado.

La generación del código HTML final que será enviado de vuelta al usuario y que

el navegador web interpretará para mostrarle la pantalla pertinente, se realiza en los

siguientes pasos:

1. Cargar el código HTML contenido en el archivo template.xhtml.

2. Incluirle el archivo de estilos que se especifica en el.

3. Completar el contenido de cada zona de la pantalla con el código que aparece en

el archivo correspondiente a la sección solicita.

4. Una vez ensambladas las piezas que componen el código final, se env́ıa el resultado

al usuario.
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D.2. El módulo Java de gestión

El módulo Java de gestión está formado por dos paquetes que trabajan como un

sistema por niveles que la información va atravesando en su recorrido de ida y vuelta

entre el ordenador del usuario y el motor de recomendaciones.

El paquete beans constituye el nivel superior. Contiene dos clases, BlogVista y Svm-

Vista. Cada una de ellas incluye objetos donde JSF almacena los datos procedentes del

usuario y los devueltos por el motor de recomendaciones. Este paquete comprueba la

existencia de los datos que recibe y los pasa al nivel inferior.

El nivel inferior lo implementa el paquete servicio, que es el encargado de interactuar

con el motor de recomendaciones. Incluye las clases BlogServicio y SvmServicio, que

ofrecen métodos que sus homólogas del nivel superior pueden invocar. Estas clases se

encargan de enviar la petición al motor de recomendaciones y esperar los resultados o

una excepción en caso de haber algún error en los parámetros proporcionados.

Si se recibe una excepción, ésta se propaga hasta el nivel superior, donde se construye

un mensaje de error que será enviado al usuario para informarle del problema.

Por último, el módulo Java de gestión incluye un paquete de utilidades para la va-

lidación de datos, la interfaz del servidor remoto RMI que contiene los métodos que

ofrece el motor de recomendaciones y un paquete con las clases que maneja el sistema,

ya comentadas en el apartado B.
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Anexo E

El motor de recomendaciones

El motor de recomendaciones es el bloque principal del sistema. Se implementa como

un objeto remoto RMI, puesto que con esta herramienta de Java se construyen servi-

dores como objetos cuyos métodos pueden ser invocados por el cliente. Esta idea se ha

introducido ya en el apartado 4.2, Elección de las tecnoloǵıas.

Figura E.1: Estructura del motor de recomendaciones.

Para que un objeto pueda ser utilizado como un objeto remoto, es necesario que

cumpla una serie de requisitos, que son los siguientes:

1. Los métodos que ofrezca al cliente tienen que estar definidos en una interfaz, y la

clase a la que pertenece el objeto debe implementarlos todos.

2. Esta interfaz debe heredar de la clase Remote, contenida en el paquete RMI.
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3. El cliente debe disponer de una copia de la interfaz, para conocer los métodos que

puede invocar. No necesita su implementación, ya que es información privada del

servidor.

4. Para que el objeto sea accesible por otras máquinas hay que darlo de alta en el

registro RMI.

Este bloque contiene además módulos auxiliares, que se ilustran en la figura E.1.

En los siguientes apartados se profundiza en cada uno de estos módulos, los paquetes

Java que los implementan, las clases que contienen y los métodos más relevantes de

cada una de ellas.

E.1. El paquete recomendaciones

Este apartado contiene la interfaz remota, la clase Recomendador, la excepción propia

BCatalogException y la clase Actualizador, encargada de la revisión de los blogs en busca

de nuevos contenidos.

E.1.1. La interfaz remota

La interfaz remota contiene solamente los prototipos de los métodos que el recomen-

dador debe implementar. El listado completo de estos métodos puede verse en el bloque

de código E.1. Puesto que el código fuente es de fácil comprensión y está suficientemente

comentado, no son necesarias explicaciones adicionales.

Código E.1: CatalogInterface.

1 public interface CatalogInterface extends java.rmi.Remote {

2

3 // Gestion de blogs

4 void nuevoBlog(String url) throws Exception;

5 public ArrayList <Blog > listadoBlogs () throws Exception;

6 public void borrarBlog(int id) throws Exception;

7

8 // Gestion de clases de entrenamiento

9 void nuevaClase(String urul) throws Exception;

10 public ArrayList <Clase > listadoClases () throws Exception;

11 public void borrarClase(int id) throws Exception;

12

13 // Gestion de textos de ejemplo (datos de entrenamiento)

14 public void nuevoEntrenamiento(String url , int clase) throws

Exception;
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15 public ArrayList <Entrenamiento > listadoEntrenamientos ()

throws Exception;

16 public void borrarEntrenamiento (int postId , int claseId)

throws Exception;

17

18 // Operaciones sobre la SVM

19 public void entrenar () throws Exception;

20 public void predecir(String url) throws Exception;

21

22 // Gestion de recomendaciones

23 public void aceptarRecomendacion(int postId) throws Exception

;

24 public void rechazarRecomendacion(int postId) throws

Exception;

25 public ArrayList <Recomendacion >listadoRecomendaciones ()

throws Exception;

26 }

E.1.2. El recomendador

La clase Recomendador es el punto de entrada al programa y por tanto incluye su

propio método main. Cuando el programa inicia su ejecución, crea el objeto del servidor

proporcionándole los parámetros recibidos por ĺınea de comandos. Dicho servidor queda

bloqueado a la espera de nuevas conexiones entrantes. El bloque de código E.2 muestra

un resumen del método main.

Código E.2: Método main del recomendador.

1 public static void main(String [] args) {

2

3 // Crea el servidor remoto

4 try {

5 new Catalog(args);

6

7 } catch (Exception re) {

8 System.out.println(re);

9 System.exit (1);

10 }

11

12 // Pone el servidor a la espera

13 Object sync = new Object ();

14 synchronized(sync) {
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15 try { sync.wait(); } catch(Exception ie) {}

16 }

17 }

El constructor recibe los parámetros y los procesa pasándolos al método inicializar.

También da de alta el servidor en el registro de RMI para que sea accesible desde otras

aplicaciones, locales o remotas, crea los objetos DAO para la interacción con la base de

datos y pone en marcha el proceso actualizador para que compruebe las actualizaciones

en los blogs de interés. El código E.3 es un resumen del código del constructor de la

clase.

Código E.3: Constructor del recomendador.

1 public Catalog(String [] args) throws RemoteException ,

MalformedURLException {

2 super();

3

4 // Captura de parametros

5 inicializar(args);

6

7 // Alta del servidor en el registro de RMI

8 try {

9 java.rmi.registry.LocateRegistry.createRegistry (1099);

10 Naming.rebind("rmi :// localhost/Catalog", this);

11 } catch (Exception e) {

12 System.exit (2);

13 }

14

15 // Creacion de objetos DAO

16 try {

17 blogDao = new BlogDao(servidorBD , BD , usuarioBD , passBD ,

puertoBD);

18 ...

19 } catch (CatalogException e) {

20 e.printStackTrace ();

21 System.exit (2);

22 }

23

24 // Arranque del actualizador

25 actualizador = new Actualizador(blogDao , infoDao ,

26 svm , recomendacionDao , conceptosDao , debug);
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27 actualizador.iniciar ();

28 }

Para el procesamiento de los parámetros se utiliza la utilidad JArgs [41],que ofrece

métodos para su fácil manipulación. A continuación se detallan los pasos necesarios en

este proceso:

1. Se crea un objeto de la clase CmdLineParser, la utilidad que se va a utilizar.

2. Se especifican las opciones disponibles desde la ĺınea de comandos y su tipo. Por

ejemplo, se puede especificar que se espera un parámetro entero, opcional, y con

valor 0 en caso de no ser proporcionado.

3. Se ejecuta el método de análisis.

4. Se recogen los parámetros, almacenándolos en las variables que interesen.

El código E.4 muestra un ejemplo cómo capturar un parámetro de tipo booleano y

almacenarlo en una variable llamada debug. En caso de no estar presente, el valor por

defecto sera false.

Código E.4: Captura de parámetros por ĺınea de comandos.

1 public void inicializar(String [] args) {

2

3 // Crea el analizador de parametros

4 CmdLineParser parser = new CmdLineParser ();

5

6 // Define las opciones disponibles , su tipo y su

7 // representacion en la linea de comandos

8 CmdLineParser.Option debug = parser.addBooleanOption(’v’, "

verbose");

9 ...

10

11 // Analiza los parametros

12 try {

13 parser.parse(args);

14 }

15 catch ( CmdLineParser.OptionException e ) {

16 printUsage ();

17 System.exit (2);

18 }
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19

20 // Comprueba los parametros e inicializa variables del programa

21 this.debug = (Boolean)parser.getOptionValue(debug , false);

22 }

Un ejemplo de cómo funciona la utilidad JArgs puede verse en el código E.5. Los dos

primeros ejemplos provocaŕıan que la variable debug del programa se inicializara con

valor true mientras el tercero provocaŕıa un valor false.

Código E.5: Ejemplos de captura de parámetros.

1 $ bcatalog -v

2 $ bcatalog --verbose

3 $ bcatalog

La clase Recomendador incluye además la implementación de los métodos definidos

en la interfaz remota. En cada uno de ellos se realizan comprobaciones de control, tales

como la validez de los parámetros, la existencia en la base de datos de la información

a insertar o borrar y otras que sean necesarias. En caso de errores en los parámetros,

se lanza una excepción BCatalogException, que se explica a continuación. Una vez

validados los datos de entrada, cada método realiza las operaciones correspondientes y

devuelve los resultados.

E.1.3. La excepción BCatalogException

La excepción BCatalogException es una excepción propia que maneja la aplicación.

Contiene una lista de cadenas donde se almacenan los errores que la han provocado, un

método para añadir uno nuevo a la lista y uno para obtenerlos. El código E.6 incluye

la implementación de la excepción.

Código E.6: CatalogException.

1 public class CatalogException extends Exception {

2

3 private ArrayList <String >errores;

4

5 private static final long serialVersionUID =

8151911863184279687L;

6

7 public CatalogException () {
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8 super ();

9 errores = new ArrayList <String >();

10 }

11

12 public void addError(String error) {

13 errores.add(error);

14 }

15

16 public ArrayList <String > getErrores () {

17 return errores;

18 }

19 }

E.1.4. El actualizador

La clase Actualizador implementa el componente que comprueba periódicamente la

existencia de nuevos textos en los blogs de interés del usuario. Contiene un bucle que

ejecuta una tarea y espera una hora antes de volver a ejecutarla. La tarea incluye las

siguientes operaciones:

1. Recoger la fecha de la última comprobación, almacenada en la base de datos.

2. Recoger de la base de datos la lista de blogs a los que el usuario está subscrito.

3. Para cada blog, obtener un listado de textos publicados con fecha posterior a la

de la última comprobación.

4. Predecir la clase de cada uno de los textos obtenidos e insertar en la base de

datos, si procede, la nueva recomendación pertinente.

E.2. El paquete svm

Este paquete contiene la implementación de la Máquina de Vectores de Soporte de

Weka adaptada para su utilización en este proyecto.

Antes de detallar las modificaciones que se han realizado es necesario introducir el

funcionamiento del paquete original de Weka. El apartado E.2.1 muestra los segmentos

más significativos del código a modificar.

En el apartado E.2.6 se explican las modificaciones llevadas a cabo para convertir la

svm de inicial en la herramienta final que este proyecto requiere.
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E.2.1. El paquete original de Weka

La máquina SVM implementada por Weka se encuentra en el paquete weka.classifiers.functions,

y recibe el nombre de clase SMO. Sus componentes más importantes para comprender

los cambios introducidos son los siguientes:

1. Dataset: Conjunto de datos de entrenamiento.

2. Matriz de clasificadores SVM binarios: Matriz de tamaño nxn de objetos de la

clase BinarySMO, donde n corresponde al número de clases de entrenamiento.

3. Subclase BinarySMO : Clasificador SVM binario cuyo funcionamiento y misión se

explica en el apartado E.2.3.

4. Métodos BuildClassifier y DistributionForInstance: Métodos de entrenamiento y

predicción.

Dataset es el conjunto de datos de ejemplo de los que el clasificador dispone en

el momento de realizar las tareas de entrenamiento y predicción. No es necesario un

apartado para su explicación en profundidad. La utilidad del resto de componentes se

detalla en los apartados siguientes.

E.2.2. Matriz de clasificadores binarios

La clase SMO trabaja internamente con clasificadores SVM binarios. Estos clasi-

ficadores, cuyo funcionamiento se detalla en el apartado E.2.3, son entrenados para

distinguir objetos de dos clases de entrenamiento.

La matriz de clasificadores binarios se emplea pues para diferenciar, dos a dos, todas

las clases a las que los datos de ejemplo pertenecen.

E.2.3. La clase BinarySMO

La clase BinarySMO implementa los clasificadores SVM binarios. El detalle del algo-

ritmo de estas máquinas excede los objetivos de esta memoria, por lo que únicamente

se introducen los métodos de aprendizaje y predicción.

El método BuildClassifier es es el método que entrena el clasificador BinarySMO.

Recibe los datos de las dos clases que se encarga de reconocer. Realiza ajustes iniciales,

la obtención de los vectores de soporte y otra serie de ajustes finales.
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El método SVMOutput es el método de predicción. Dada una nueva instancia,

realiza llamadas al Kernel SSK, que Weka implementa en la clase StringKernel. Realiza

comparaciones entre el nuevo dato y cada uno de los vectores de soporte, y utiliza los

resultados obtenidos para generar el resultado devuelto.

E.2.4. El método BuildClassifier

El método BuildClassifier de la clase SMO recibe los datos de ejemplo que el cla-

sificador utiliza. Tras una serie de comprobaciones iniciales crea los distintos objetos

BinarySMO, proporciona a cada uno los datos de las dos clases con las que trabaja y

los entrena. El bloque de código E.7 ilustra este proceso de entrenamiento.

Código E.7: Método BuildClassifier.

1 public void buildClassifier(Instances insts) throws Exception {

2

3 // Comprobaciones iniciales

4 ...

5

6 m_classIndex = insts.classIndex ();

7 m_classAttribute = insts.classAttribute ();

8

9 // Genera los subconjuntos que representan

10 // a cada clase

11 Instances [] subsets = new Instances[insts.numClasses ()];

12 for (int i = 0; i < insts.numClasses (); i++) {

13 subsets[i] = new Instances(insts , insts.numInstances ());

14 }

15 ...

16

17 // Crea la matriz de BinarySMO

18 m_classifiers =

19 new BinarySMO[insts.numClasses ()][ insts.numClasses ()];

20

21 // Asigna a cada BinarySMO su conjunto de datos

22 for (int i = 0; i < insts.numClasses (); i++) {

23 for (int j = i + 1; j < insts.numClasses (); j++) {

24 m_classifiers[i][j] = new BinarySMO ();

25 Instances data = new Instances(insts , insts.numInstances ())

;

26 for (int k = 0; k < subsets[i]. numInstances (); k++) {

27 data.add(subsets[i]. instance(k));

28 }
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29 ...

30

31 // Entrena cada BinarySMO

32 m_classifiers[i][j]. buildClassifier(data , i, j,

33 m_fitLogisticModels ,

34 m_numFolds , m_randomSeed);

35 }

36 }

37 }

E.2.5. El método DistributionForInstance

El método DistributionForInstance es el encargado de predecir la clase a la que

pertenece un nuevo dato desconocido. Para ello invoca el método SVMOutput de cada

clasificador BinarySMO.

Cada objeto BinarySMO se encarga de predecir a cuál de las clases que compara

es más probable que pertenezca el nuevo dato. Por tanto, cada invocación al método

SVMOutput sirve para asignar votos a cada una de las clases.

El resultado que se devuelve es el porcentaje de votos que cada una de las clases

existentes ha obtenido en la predicción. Este proceso de asignación de votos puede

verse en el bloque de código E.8.

Código E.8: Método DistributionForInstance.

1 public double [] distributionForInstance(Instance inst) throws

Exception {

2

3 // Comprobaciones iniciales

4 ...

5

6 // Crea un vector donde almacenar los votos para cada clase

7 double [] result = new double[inst.numClasses ()];

8

9 // Para cada BinarySMO , ejecuta el metodo SVMOutput

10 for (int i = 0; i < inst.numClasses (); i++) {

11 for (int j = i + 1; j < inst.numClasses (); j++) {

12 if (( m_classifiers[i][j]. m_alpha != null) ||

13 (m_classifiers[i][j]. m_sparseWeights != null)) {

14 double output = m_classifiers[i][j]. SVMOutput(-1, inst);
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15

16 // En funcion del resultado , asigna el voto

17 // a una u otra clase.

18 if (output > 0) {

19 result[j] += 1;

20 } else {

21 result[i] += 1;

22 }

23 }

24 }

25 }

26

27 // Normaliza el resultado para que

28 // el resultado quede expresado en %

29 Utils.normalize(result);

30

31 return result;

32 }

E.2.6. Modificaciones realizadas al algoritmo original

En este apartado se describen las modificaciones que se requieren para adaptar el

código implementado por Weka al problema tratado en este proyecto.

La implementación original presenta un inconveniente importante. Dado un conjunto

de clases de entrenamiento, el método de predicción devuelve un conjunto con las

probabilidades de que el nuevo texto pertenezca a cada una de las clases, pero presupone

que pertenece a alguna de ellas.

Según este modelo, BCatalog no puede determinar que un nuevo texto no pertenece

a ninguna de las clases y que por tanto no es del interés del usuario. A continuación se

detallan cada una de las decisiones tomadas para la modificación del código inicial:

Primero, los objetos BinarySMO ya no comparan dos clases de entremiento. En su

lugar, cada uno de ellos se especializa en reconocer los objetos de una clase. Por este

motivo la matriz de nxn clasificadores binarios se convierte en un vector de n de estos

objetos.

En cuanto al proceso de entrenamiento, los BinarySMO reconocen dos clases ficticias.

Una clase es la llamada “SI”, que contiene los elementos del conjunto de datos inicial

que pertenecen a la clase de la que se encargan. La otra clase es “NO”, que contiene
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todos los demás. Esto quiere decir que todos los clasificadores binarios manejarán todos

los datos de entrenamiento, pero cada uno de ellos los tratará de manera diferente.

El bloque de código E.9 ilustra esta nueva forma de entrenamiento.

Código E.9: Método BuildClassifier adaptado.

1 public void buildClassifier(Instances insts) throws Exception {

2

3 // Comprobaciones iniciales

4 ...

5

6 m_classIndex = insts.classIndex ();

7 m_classAttribute = insts.classAttribute ();

8

9 // Extrae los textos

10 ArrayList <String > textos = new ArrayList <String >();

11

12 for (Instance inst : insts) {

13 String nueva = inst.stringValue (0);

14 textos.add(nueva);

15 }

16

17 ArrayList <Attribute > atributos = crearAttributes(textos);

18

19 // Crea los datasets para cada clasiffier

20 Instances [] subsets = new Instances[insts.numClasses ()];

21

22 for (int i=0; i<subsets.length; i++) {

23 ArrayList <String > clases = new ArrayList <String >();

24 // Recorremos el conjunto de datos inicial , utilizando los

25 // valores de las clases SI y NO como corresponda

26 for (Instance inst : insts) {

27 if (inst.value (1)==i) clases.add("SI");

28 else clases.add("NO");

29 }

30 subsets[i] = crearDataSet(atributos , textos , clases);

31 }

32

33 // Crea los clasificadores binarios

34 m_classifiers = new MiBinarySMO[insts.numClasses ()];

35

36 for (int i = 0; i < subsets.length; i++) {
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37 m_classifiers[i] = new MiBinarySMO ();

38 }

39

40 // Entrena los clasificadores binarios

41 for (int i=0; i<subsets.length; i++) {

42 m_classifiers[i]. buildClassifier(subsets[i], 0, 1,

43 m_fitLogisticModels ,

44 m_numFolds , m_randomSeed);

45 }

46 }

Por su parte, el proceso de predicción también es ligeramente distinto al original.

Cada clasificador binario determina si el nuevo objeto pertenece a su clase ficticia “SI”.

El nuevo resultado contendrá tantas componentes con valor 1.0 como categoŕıas con

las que el nuevo texto esté relacionadas. Si el texto no está relacionado con ninguna de

las clases de entrenamiento, el vector contendrá n valores 0.0.

El bloque de código E.10 ilustra el nuevo método de predicción:

Código E.10: Método DistributionForInstance adaptado.

1 public double [] distributionForInstance(Instance inst) throws

Exception {

2

3 // Comprobaciones iniciales

4 ...

5

6 double [] result = new double[inst.numClasses ()];

7

8 for (int i = 0; i < inst.numClasses (); i++) {

9 if (( m_classifiers[i]. m_alpha != null) ||

10 (m_classifiers[i]. m_sparseWeights != null)) {

11 double output = m_classifiers[i]. SVMOutput(-1, inst);

12

13 // Si el texto esta relacionado , se incrementa la

componente

14 // correspondiente en el vector de resultados.

15 if (output <= 0) {

16 result[i] = 1;

17 } else {

18 result[i] = 0
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19 }

20 }

21 }

22

23 return result;

24 }

E.3. Clase Zirano

La clase Zirano ofrece un único método que, dada una palabra, obtiene una lista de

palabras relacionadas que extrae de la página web de Zirano. Cuando un usuario quiere

obtener esta lista de ideas a través de la página web, tiene que realizar una serie de

pasos para localizar las palabras que le interesan. Los pasos son los siguientes:

1. Introduce la palabra de su elección.

2. La web le ofrece un conjunto de ideas con las que se puede relacionar su palabra.

3. El usuario navega entre esas opciones, obteniendo para cada una un conjunto de

palabras relacionadas.

El método obtenerIdea simula esta navegación, de forma que la web de Zirano devuel-

va los resultados que devolveŕıa a un usuario que recorriera todas las ideas relacionadas

con su palabra. Para ello, realiza las siguientes operaciones:

1. Descarga la página inicial de Zirano, y almacena la cookie que ésta le envia.

Dicha cookie identifica al usuario cuya navegación se está simulando, y por tanto

será enviada en cada transacción a modo de identificador.

2. Se env́ıa a la web la palabra de la que se quiere obtener el campo conceptual.

3. La web responde con un listado de ideas a las que puede estar relacionadas. Se

analiza y procesa el código HTML de la respuesta para obtener un listado de

enlaces a los que enviar las siguientes peticiones.

4. Cada uno de los enlaces obtenidos constituye una petición a la web de un listado

de palabras relacionadas con una idea en concreto.

5. Ante una de estas peticiones, la web responde con un listado de palabras que

el método va almacenando. El código HTML de estas nuevas respuestas se filtra

para quedarse únicamente con el listado de palabras.
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6. Una vez completadas las peticiones para todas las ideas, o alcanzado un número

máximo de palabras almacenadas, la navegación termina y el método devuelve

los resultados.

E.4. El paquete útil

Por último se introducen algunas utilidades creadas para facilitar la implementación

del resto de módulos.

E.4.1. Interfaz para el manejo de blogs

En este apartado se explica cómo el sistema obtiene los textos de Internet. Para

poder implementarse esta funcionalidad se precisa de alguna herramienta que permita

conocer qué textos forman la página y cuando fueron publicados.

Una herramienta útil que existe para este cometido son los archivos XLM llamados

Sitemap.xml [42], que incluyen la información, como su dirección URL, su t́ıtulo, su

frecuencia de actualización o su fecha de publicación. Un ejemplo del contenido de

dichos archivos es el que aparece en el código E.11.

Código E.11: Ejemplo de sitemap.xml.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <urlset

3 xmlns="http: //www.sitemaps.org/schemas/sitemap /0.9">

4 <url>

5 <loc>http://www.example.com/</loc>

6 <lastmod >2005 -01 -01</lastmod >

7 <changefreq >monthly </changefreq >

8 <priority >0.8</priority >

9 </url>

10 </urlset >

La existencia de este archivo no es obligatoria aunque śı muy recomendable, pues

facilita la accesibilidad de la página web y mejora el posicionamiento en los buscadores.

A pesar de la gran variedad de sitios web que el usuario puede estar interesado en

leer, este proyecto se centra en los desarrollados utilizando el CMS Wordpress, ya que

todos ellos contienen un Sitemap y se puede localizar con facilidad aunque pueda estar

guardado con otro nombre.
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Por esta razón se ha creado una interfaz Java que permite la obtención del Sitemap

y su manipulación, y una implementación concreta para las páginas desarrolladas con

Wordpress. Los métodos ofrecidos por esta interfaz aparecen en el código E.12.

Código E.12: ManejoBlogInterface.

1 public interface ManejoBlogInterface {

2

3 // Devuelve true si el blog tiene un Sitemap valido

4 public boolean isValido ();

5

6 // Obtiene una lista de Posts publicados despues de la fecha "

limite"

7 public ArrayList <Post > obtenerPosts(Date limite);

8

9 // Descarga de nuevo el archivo sitemap.xml

10 public void actualizarSiteMap ();

11 }

E.4.2. Manejo de código HTML

Para el manejo de código HTML se ha creado una clase que ofrece métodos que otras

clases pueden necesitar, y que se comentan a continuación:

La clase Zirano, que se detalla en el apartado E.3 necesita simular la navegación

efectuada por un usuario que desea obtener un campo conceptual. En el proceso, un

navegador web intercambiaŕıa una cookie con el servidor de Zirano. Este intercambio

se implementa con el método obtenerCookie.

La descarga del código HTML de una página web se realiza mediante el método

obtenerHTML que recibe como parámetros, además de su dirección URL, un número

máximo de intentos de descarga tras los cuales se aborta la operación y se devuelve un

error.

El método obtenerPagina devuelve un objeto de tipo Post, con el t́ıtulo, la dirección

URL y el texto filtrado de la página descargada.

El método filtrarHTML se utiliza para eliminar las etiquetas HTML y ĺıneas en blanco

de la cadena que recibe como parámetro. El resultado es una cadena de texto que

contiene el texto plano de la página, y que es utilizada por la máquina de aprendizaje.
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De ah́ı la importancia de la eficacia de este método, pues es necesario que el texto a

analizar contenga la mı́nima cantidad de información no relacionada con él.

El bloque de código E.13 contiene los prototipos de cada uno de los métodos:

Código E.13: Clase HTML.

1 public class HTML {

2

3 public static Post obtenerPagina(String url) throws

CatalogException { ... }

4

5 protected static String obtenerHTML(

6 String direccionUrl , String cookie , int intentos) { ... }

7

8 protected static String obtenerCookie (String direccionUrl , int

intentos) { ... }

9

10 public static String filtrarHTML(String html) { ... }

11 }

E.4.3. Utilidades de conversión

La clase Conversiones incluye los métodos para convertir datos de distintos tipos

que han sido necesarias en algunos módulos del sistema. El código E.14 muestra los

prototipos de dichos métodos.

Código E.14: Clase Conversiones.

1 public class Conversiones {

2

3 // Devuelve el double representado por la cadena s

4 public static double atof(String s) { ... }

5

6 // Devuelve el entero representado por la cadena s

7 public static int atoi(String s) { ... }

8

9 // Devuelve la representacion en forma de cadena de la fecha d

10 public static String datetostring (Date d) { ... }

11 // Devuelve la fecha representada por la cadena s

12
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13 public static Date stringtodate (String s) { ... }

14 }

E.4.4. La clase es Stemmer

La clase Stemmer implementa el lematizador que calcula la ráız de una palabra. Se

basa en el algoritmo de Porter[32], y es utilizada por el sistema cuando se calculan los

campos conceptuales.

Es importante mencionar que la clase se descargó de un foro de internet en el que

alguien preguntaba donde pod́ıa conseguir una implementación de un lematizador en

Java. En al código fuente no aparece la página web del autor, aśı que no puedo in-

cluir su referencia. Según se explicaba en aquel foro, se trata de una traducción de la

implementación escrita en PHP[43] que puede descargarse de SourceForge [31].



Anexo F

El sistema de gestión de la

persistencia

En este apartado se explica en detalle la estructura del sistema de gestión de la

persistencia, que incluye una base de datos donde se almacena la información necesaria

para el funcionamiento del sistema y un conjunto de clases Java que ofrecen una interfaz

de comunicación con ella.

El apartado F.1 contiene la explicación sobre la estructura de la base de datos y una

serie de consideraciones previas que justifican la existencia de sus tablas. En el apartado

F.2 se introducen las clases que manejan la base de datos y se concreta con qué tablas

interacciona cada una de ellas.

F.1. La base de datos

La base de datos se aloja en un servidor MySQL, y contiene 9 tablas donde se

almacenan los blogs, los textos manejados por el sistema, la información referente a

palabras y campos conceptuales, las clases de entrenamiento, los textos de ejemplo, las

recomendaciones y otra información necesaria para el funcionamiento del sistema.

Su estructura completa puede verse en la figura F.1, que muestra todas las tablas

existentes, los campos que las forman y cómo se relacionan unas tablas con otras. Para

obtener esta estructura final ha sido necesario tener en cuenta algunas consideraciones

que se comentan a continuación.

La descarga de un texto desde internet requiere conectarse a un servidor web externo

para solicitarle el código HTML de la página donde aparece dicho texto. El código

HTML recibido hay que filtrarlo para eliminar información que no sea relevante y

79
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Figura F.1: Estructura de la base de datos.

almacenarlo en la base de datos. Todo este proceso lleva un tiempo de ejecución asociado

que no puede despreciarse.

El usuario puede añadir textos de ejemplo al sistema y borrarlos si más tarde con-

sidera que ya no son relevantes. En un momento dado puede decidir que un texto ya

no está relacionado con una de sus categoŕıas, sino con otra diferente. Si no se adopta

ninguna medida ese texto se descargará varias veces.

Por otra parte una recomendación se convertirá en caso de ejemplo si el usuario la

aprueba. Podrá ocurrir, por tanto, que posteriormente el usuario pueda actuar como

se comenta en el párrafo anterior, cambiando la categoŕıa con la que un texto está re-

lacionado.
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Con el fin de evitar las repetidas descargas de un mismo texto, se ha decidido que

la tabla Post sea un almacén al que sólo puedan añadirse textos nuevos y obtener un

listado de ellos. Esta decisión implica que las tablas Recomendación y Entrenamiento

contendrán referencias a la tabla Post, en lugar de sus datos completos.

En cuanto al almacenamiento de los campos conceptuales, conviene tener en cuenta lo

siguiente. En primer lugar varias palabras pueden tener la misma ráız, como por ejemplo

ocurre con mesa y mesilla. Almacenar ráıces repetidas supone un gasto innecesario de

espacio.

Una palabra puede aparecer en varios campos conceptuales distintos. Este hecho se

produce muy frecuentemente debido a la gran cantidad de acepciones que las palabras

pueden tener en la lengua española. Cada palabra debeŕıa ser almacenada sólo una vez,

para evitar información redundante en la base de datos.

Por todo ello se dispone de tres tablas para manipular los campos conceptuales. En

la tabla Palabra se almacenan las palabras completas que el sistema haya manejado,

independientemente de que pertenezcan al nombre de una categoŕıa o a un campo

conceptual. La tabla Ráız contiene las ráıces de palabras obtenidas en el proceso de

lematización. Por último, la tabla Campo Conceptual relaciona pares de elementos de

las dos tablas anteriores.

Las tablas Post, Palabra, Ráız y Campo Conceptual sólo ofrecen operaciones para

añadir nuevos datos y obtener un listado. No ofrecen la posibilidad de eliminar datos,

ya que constituyen un almacén que conviene conservar por motivos de rendimiento.

En ampliaciones del sistema que incluyan la posibilidad de que existan diferentes

usuarios las ventajas de estas decisiones serán más notables, pues cada uno añadirá in-

formación al sistema que estará disponible al resto de los usuarios. Cuantos más usua-

rios utilicen el sistema, a mayor velocidad aumentará la cantidad de información en los

almacenes y menos descargas nuevas habrá que realizar.

F.2. El paquete de acceso a datos

El paquete de acceso a datos, al que en adelante se llamará DAO (del inglés, Data

Access Object) contiene diferentes clases que se encargan de la interacción con la base

de datos. La figura F.2 ilustra las clases que incluye dicho paquete.
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Figura F.2: Estructura del paquete DAO.

A continuación se introduce la función las clases del paquete, especificando las tablas

a las que accede cada una.

La clase BlogDao manipula la tabla Post. Ofrece métodos para añadir, listar, com-

probar si existe y borrar blogs en la base de datos.

La clase ClaseDao manipula la tabla Clase. Gestiona las clases de entrenamiento,

que representan las categoŕıas a las que los textos pueden pertenecer.

La ClasificadorDao no manipula ninguna tabla. Ofrece métodos para el almacena-

miento en disco de la SVM. Puesto que la información de la máquina de aprendizaje

ocupa demasiado espacio para introducirse en una base de datos, se opta por utilizar

el sistema de ficheros.

La clase ConceptosDao controla el acceso a las tablas Palabra, Ráız y Campo

Conceptual, permitiendo añadir palabras, almacenar sus ráıces y campos conceptuales.

No ofrece métodos de listado ya que los datos que maneja son de uso interno del sistema.

Tampoco ofrece operaciones de borrado, con el fin de almacenar a modo de cache todos

los datos que se inserten.
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La clase EntrenamientoDao manipula la tabla Entrenamiento. Gestiona los datos

de entrenamiento del sistema, ofreciendo operaciones de inserción, listado, comproba-

ción de existencia y eliminación.

La clase InfoDao manipula la tabla Info, que contiene información necesaria para

el funcionamiento del sistema. En este prototipo dicha información consiste únicamente

en la fecha y hora a la que se realiza la última comprobación de los blogs de interés en

busca de nuevos textos que recomendar al usuario.

La clase PostDao interactúa con la tabla Post. Ofrece operaciones de inserción de

textos en la base de datos, aśı como de listado. Por motivos comentados al principio de

este subapartado no se ofrecen operaciones de eliminación.

La clase RecomendaciónDao manipula la tabla Recomendación. Gestiona las re-

comendaciones que serán ofrecidas al usuario, y ofrece métodos de inserción, listado,

borrado y comprobación de existencia.
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Anexo G

La paralelización de tareas en

detalle

Este apartado describe las modificaciones realizadas para incorporar trabajo en pa-

ralelo en algunas tareas internas del sistema. En este prototipo las mejoras introducidas

están relacionadas con la máquina SVM.

Un estudio del funcionamiento interno de la implementación de Weka, tras su adap-

tación para su utilización en este proyecto, ha permitido encontrar tres alternativas en

las que puede incluirse la ejecución de tareas en paralelo, que se ilustran en la figura

G.1.

La primera de ellas se encuentra en el Kernel SSK, implementado en la clase String-

Kernel que se encuentra en el paquete weka.classifiers.functions.supportVector. Las

posibilidades de paralelización en esta clase se detallan en el apartado G.1.

La segunda alternativa consiste en la modificación de los métodos de entrenamiento y

predicción de los clasificadores binarios (clase BinarySMO), y se comenta en el apartado

G.2.

Por último, es posible que todos los clasificadores binarios realicen en paralelo las

tareas de entrenamiento y predicción, como se explica en el apartado G.3.

G.1. Paralelismo en el Kernel SSK

El método de comparación de dos cadenas ofrecido por la clase StringKernel, que

implementa el Kernel SSK, realiza tres cálculos consecutivos. Uno de ellos compara las
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Figura G.1: Niveles de paralelización de la máquina SVM.

dos cadenas, y los otros dos se utilizan para normalizar el resultado, como ilustra la

ecuación C.2 en el anexo C, La Máquina de Vectores de Soporte.

El bloque de código G.1 contiene el código Java que compara las dos cadenas y

normaliza el resultado obtenido para que esté comprendido entre 0 y 1.

Código G.1: Código paralelizable en la clase StringKernel

1 public double normalizedKernel(char[] s, char[] t){

2

3 // Compara cada cadena consigo misma

4 double k1 = unnormalizedKernel(s, s);

5 double k2 = unnormalizedKernel(t, t);

6

7 // Calcula el factor de normalizacion

8 double normTerm = Math.sqrt( k1*k2 );

9

10 // Compara una cadena con otra y devuelve

11 // el resultado normalizado

12 return unnormalizedKernel(s, t) / normTerm;

13 }
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Estudiando el método unnormalizedKernel en profundidad puede comprobarse que

en ningún momento modifica las cadenas que recibe como parámetros. Por ello, y dado

que las tres invocaciones a este método utilizan datos que no dependen unos de otros,

pueden ejecutarse en paralelo. El bloque de código G.2 muestra una ligera modificación

del código anterior, a la que ya se le puede introducir el trabajo en paralelo:

Código G.2: Código paralelizable en la clase StringKernel

1 public double normalizedKernel(char[] s, char[] t){

2

3 // Compara cada cadena consigo misma

4 double k1 = unnormalizedKernel(s, s);

5 double k2 = unnormalizedKernel(t, t);

6

7 // Compara una cadena con otra

8 double k3 = unnormalizedKernel(s,t);

9

10 // LAS TRES LLAMADAS ANTERIORES

11 // PUEDEN LANZARSE EN PARALELO.

12 // CUANDO TODAS TERMINEN PUEDE

13 // EJECUTARSE EL CODIGO A CONTINUACION

14

15 // Calcula el factor de normalizacion

16 double normTerm = Math.sqrt( k1*k2 );

17

18 // Devuelve el resultado de la comparacion

19 // normalizado.

20 return k3 / normTerm;

21 }

Tras esta modificación menor en el código original pueden crearse tres objetos de la

clase Thread de Java, asignarles a cada uno una de las llamadas al método unnorma-

lizedKernel y esperar a que todos terminen para generar el resultado a devolver.

G.2. Paralelismo en la clase BinarySMO

En este apartado se introducen las modificaciones que se pueden realizar en el código

de la clase BinarySMO para implementar la paralelización de sus tareas de entrena-

miento y predicción.
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Es la parte más complicada de este proceso, pues se trata de trabajos iterativos y

no siempre puede asegurarse de que las diferentes iteraciones sean independientes entre

ellas, de forma que el orden de ejecución no altere los resultados.

En el apartado G.2.1 se profundiza en el estudio del código del método buildClassifier

realizado. Por otra parte, el estudio del método SVMOutput se comenta en el apartado

G.2.2.

G.2.1. El método buildClassifier

En el método buildClassifier se realiza una búsqueda de los vectores de soporte que

el clasificador utilizará en la fase de predicción. Esta búsqueda se lleva a cabo de forma

incremental, utilizando en cada iteración los vectores encontrados hasta ese momento

y utilizándolos para encontrar otros nuevos.

El bloque de código G.3 muestra el bucle principal del método. Como puede verse, no

hay un número fijo de iteraciones, sino que en función de los resultados se van asignando

valores a las variables numChanged y examineAll. Por ese motivo las iteraciones no

pueden ejecutarse en paralelo.

Código G.3: Resumen del método BuildClassifier

1 public synchronized void buildClassifier(Instances insts ...)

throws Exception {

2

3 // Ajustes iniciales

4 ...

5

6 // Bucle de busqueda

7 while (( numChanged > 0) || examineAll) {

8 numChanged = 0;

9

10 if (examineAll) {

11 for (int i = 0; i < m_alpha.length; i++) {

12 if (examineExample(i)) {

13 numChanged ++;

14 }

15 }

16 } else {

17 ...

18 }

19 }
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20

21 // Ajustes finales

22 ...

23 }

Dentro de cada iteración, el método examineExample se ejecuta un número fijo de

veces, pues el valor de m alpha.length no se modifica ni en ese bucle ni dentro del

método. Por tanto las iteraciones de este bucle interno podŕıan ejecutarse en paralelo, si

no fuera porque dentro del método se utilizan variables cuyos valores se van modificando

a lo largo de las iteraciones del bucle principal. Por ese motivo se descarta esta segunda

opción de paralelización.

El método examineExample contiene ajustes iniciales y una llamada al método ta-

keStep. El bloque de código G.4 muestra las acciones más relevantes ejecutadas por

cada uno de ellos.

Código G.4: Resumen de los métodos examineExample y TakeStep

1 protected boolean examineExample(int i2) throws Exception {

2

3 // Comprobaciones iniciales

4 ...

5

6 return takeStep(i1 , i2 , F2);

7 }

8

9

10 protected boolean takeStep(int i1, int i2, double F2) throws

Exception {

11

12 // Comprobaciones iniciales

13 ...

14

15 // Llamadas al Kernel que son

16 // paralelizables

17 k11 = m_kernel.eval(i1 , i1 , m_data.instance(i1));

18 k12 = m_kernel.eval(i1 , i2 , m_data.instance(i1));

19 k22 = m_kernel.eval(i2 , i2 , m_data.instance(i2));

20

21 // Mas ajustes

22 ...
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23

24 // Llamadas al metodo de prediccion

25 // paralelizables

26 f1 = SVMOutput(i1 , m_data.instance(i1));

27 f2 = SVMOutput(i2 , m_data.instance(i2));

28

29 // Ajuste de vectores de soporte

30 if (a1 > 0) {

31 m_supportVectors.insert(i1);

32 }

33 ...

34

35 // Otros ajustes

36 for (int j = m_I0.getNext (-1); j != -1; j = m_I0.getNext(j)) {

37 if ((j != i1) && (j != i2)) {

38 m_errors[j] +=

39 y1 * (a1 - alph1) * m_kernel.eval(i1 , j, m_data.instance(

i1)) +

40 y2 * (a2 - alph2) * m_kernel.eval(i2 , j, m_data.instance(

i2));

41 }

42 }

43

44 return true;

45 }

Las invocaciones al Kernel y al método SVMOutput pueden ser ejecutadas en paralelo

puesto que sólo reciben parámetros de entrada y no hay dependencias de escritura. En

cambio, los ajustes iniciales y la actualización de los vectores de soporte dependen entre

iteraciones.

Del párrafo anterior se puede deducir que no pueden realizarse invocaciones paralelas

al método examineExample, pero śı es posible ejecutar al mismo tiempo algunas de sus

operaciones internas.

G.2.2. El método SVMOutput

El método SVMOutput es el método que ejecuta la tarea de predicción en un objeto

BinarySMO. En su interior se realizan una serie de comprobaciones iniciales y, tras ellas,

se invoca al Kernel SSK para que compare el nuevo dato con cada uno de los vectores

de soporte conocidos. El resultado de cada comparación se utiliza para ir acumulando
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el resultado devuelto. El resumen de este método puede verse en el bloque de código

G.5

Código G.5: Resumen del método SVMOutput

1 public double SVMOutput(int index , Instance inst) throws

Exception {

2

3 // Comprobaciones iniciales

4 ...

5

6 double result = 0;

7

8 // Compara con cada vector de soporte

9 // y acumula el resultado

10

11 for (int i = m_supportVectors.getNext (-1); i != -1;

12 i = m_supportVectors.getNext(i)) {

13 result += m_class[i] * m_alpha[i] * m_kernel.eval(index , i,

inst);

14 }

15

16 // Ultimo ajuste del resultado y devolucion

17 result -= m_b;

18

19 return result;

20 }

Las iteraciones del bucle son independientes entre śı. La variable result va acumulando

el resultado en cada iteración y la unica precaución necesaria es que la consulta de su

valor y la actualización se hagan en exclusión mutua. Teniendo en cuenta ese detalle

no hay ningún inconveniente en que las invocaciones al Kernel se hagan en paralelo.

G.3. Paralelismo en la clase SMO

La clase SMO es el clasificador SVM que BCatalog utiliza para aprender las prefe-

rencias del usuario y recomendarle lecturas de su interés.

Durante la operación de entrenamiento del clasificador se crean tantos clasificado-

res binarios como clases de entrenamiento, proporcionando a cada uno una copia del

conjunto de datos de ejemplo debidamente etiquetados.
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Entrenar el sistema consisiste pues en entrenar cada uno de los objetos BinarySMO.

Puesto que reciben una copia propia del conjunto de datos pueden entrenarse en paralelo

sin necesidad de ningún mecanismo de control ni otras medidas para garantizar la

corrección de los entrenamientos individuales.

La fase de predicción se realiza de la misma manera. Una vez entrenados dichos

objetos, el método distributionForInstance ofrecido por el clasificador SVM invoca al

método SVMOutput de los clasificadores binarios y opera con los resultados. Todas

estas invocaciones también pueden realizarse en paralelo para obtener mejoras en los

tiempos de ejecución.

G.4. Consideraciones sobre las alternativas

Es importante conocer los efectos que cada una de las alternativas de paralelización

producirán en el rendimiento del sistema. A continuación se introducen los beneficios

estimados de cada una de ellas:

La paralelización de tareas a nivel más bajo, en el método de evaluación del Kernel

SSK, supone mejoras tanto en operaciones de entrenamiento como de predicción. Como

se ha comentado, con esta alternativa se realizan tres cálculos en paralelo, y por tanto

el tiempo de ejecución de una evaluación queda en teoŕıa acotado por el máximo de

los tiempos de estos tres cálculos. Por contra, si se implementan otras alternativas se

crean demasiadas tareas en paralelo y es posible que los efectos producidos por esta

alternativa se vean reducidos al crear y destruir los hilos de ejecución.

La segunda alternativa de paralelización, los métodos ofrecidos por los objetos Bi-

narySMO obtiene mejores resultados al aumentar el número de datos de ejemplo, puesto

que se ejecutan en paralelo buena parte de las invocaciones al Kernel SSK. Un incon-

veniente de esta alternativa es que si varios de estos objetos trabajan al mismo tiempo

el número hilos de ejecución aumenta significativamente. Este inconveniente se agrava

si se combina con la alternativa anterior.

La tercera alternativa de paralelización consiste en que los objetos BinarySMO tra-

bajen en paralelo, como se ha comentado en el apartado G.3. Esta alternativa resulta

ventajosa si el número de clases de entrenamiento (clases de interés del usuario) aumen-

ta. Cuantas más clases, mayor número de entrenamientos y predicciones se ejecutan al

mismo tiempo.
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La elección de qué niveles de paralelismo implementar no es trivial, pues depende del

número de clases de entrenamiento, de la cantidad de textos de ejemplo y de la potencia

de cálculo disponible en la máquina en la que se ejecuta el sistema. La solución optima

requiere un estudio del servicio que se desea ofrecer y de las infraestructuras disponibles.

En la construcción de este prototipo se ha decidido implementar los dos niveles

superiores, dejando la paralelización de la función de evaluación del Kernel SSK para

implementaciones futuras.

G.5. Implementación de las mejoras

Para la implementación de las mejoras propuestas se ha añadido un objeto CachedTh-

readPool a los objetos SMO y BinarySMO.

La clase CachedThreadPool [44] implementa un gestor de tareas concurrentes. Cuan-

do se le solicita que ejecute un trabajo en paralelo crea un hilo de ejecución y le asigna

la tarea. Cuando éste termina se encarga de destruirlo de forma transparente al progra-

mador. Una ventaja importante que proporciona es la reutilización de hilos de ejecución

una vez terminan su trabajo de forma que no sea necesario crearlos de nuevo ante una

nueva solicitud de trabajo.

Esta caracteŕıstica ayuda a reducir la penalización en tiempo derivadas de la creación

y destrucción de nuevos hilos de ejecución puesto que sólo se crean cuando no hay

ningun hilo disponible, y se destruyen cuando pasado un tiempo un hilo no recibe

tareas a ejecutar.

Los objetos CachedThreadPool pueden recibir cualquier objeto que implemente la

interface Runnable, como por ejemplo objetos de la clase Thread, Task o FutureTask [45].

La clase FutureTask ejecuta un bloque de código en paralelo y proporciona un método

con el que se puede recuperar el resultado de su tarea. Es la implementación elegida

en este prototipo puesto que el código a ejecutar en paralelo consiste en métodos que

devuelven un resultado.

Introducidas las herramientas a utilizar, se pasa a describir el proceso de modificación

del código fuente. El bloque de código G.6 muestra la versión secuencial inicial y, a

continuación, el código que resulta de la inclusión de paralelismo.
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Código G.6: Ejemplo de paralelización de código

1 // INVOCACION SECUENCIAL

2 k11 = m_kernel.eval(i1 , i1 , m_data.instance(i1));

3 k12 = m_kernel.eval(i1 , i2 , m_data.instance(i1));

4 k22 = m_kernel.eval(i2 , i2 , m_data.instance(i2));

5

6 // INVOCACION EN PARALELO

7

8 // Crea FutureTasks que devuelven

9 // valores de tipo double

10 FutureTask <Double > t11 , t12 , t22;

11

12 // Asigna a cada FutureTask la tarea

13 // a realizar

14 t11 = new FutureTask <Double >(

15 new TareaEval(m_kernel , i1 , i1 ,

16 m_data.instance(i1)));

17 t12 = new FutureTask <Double >(

18 new TareaEval(m_kernel , i1 , i2 ,

19 m_data.instance(i1)));

20 t22 = new FutureTask <Double >(

21 new TareaEval(m_kernel , i2 , i2 ,

22 m_data.instance(i2)));

23

24 // Envia las tareas al gestor

25 executor.submit(t11);

26 executor.submit(t12);

27 executor.submit(t22);

28

29 // Recoge los resultados

30 k11 = t11.get();

31 k12 = t12.get();

32 k22 = t22.get();

En primer lugar se crean los objetos FutureTask, que ejecutarán tareas que devuelven

datos de tipo Double con los resultados de la operación. Estas tareas se env́ıan al

gestor de tareas, llamado executor en el código. Por último se almacenan los resultados

conforme las tareas van terminando.



Anexo H

Evaluación del prototipo.

Experimentos

En este apartado se incluye información de interés relacionada con los experimentos

realizados sobre el sistema. Esta información incluye:

1. El script que lanza los experimentos: Lanza el servidor y el cliente y, tras la

ejecución de la tarea, finaliza ambos procesos. El servidor se lanza tanto en modo

secuencial como en paralelo. Ver bloque de código H.1.

2. El script .sub necesario para la ejecución bajo Condor. Ver bloque de

código H.2.

3. Salida producida por Condor: Las estad́ısticas generadas por Condor en la

ejecución del experimento en la máquina Selene2. Ver bloque de código H.3.

4. Salida producida por BCatalog: Información generada por BCatalog para el

trazado de ejecución. Ver bloque de código H.4.

5. Uso de memoria y CPU en Windows: Capturas de pantalla en ejecuciones

secuencial y paralela en la máquina de Gregorio de Miguel. Ver figuras H.1 y H.2.

95



96

Código H.1: Script que lanza los experimentos.

1

2 # Lanza los experimentos en modo secuencial

3 # (sin parametro -o)

4

5 $ java -jar serv.jar --server loixiyo.com

6 --user loixiyoc_catalog --db loixiyoc_catalog

7 --pwd bcatalog12345 -v --log &

8 $ java -jar cliente.jar

9

10 # Lanza de nuevo en modo paralelo

11

12 $ java -jar serv.jar --server loixiyo.com

13 --user loixiyoc_catalog --db loixiyoc_catalog

14 --pwd bcatalog12345 -v --log -o &

15 $ java -jar cliente.jar

Código H.2: Script para ejecución bajo Condor.

1 Universe = vanilla

2 Executable = /bin/bash

3

4 should_transfer_files = YES

5 when_to_transfer_output = ON_EXIT

6 # transfer_input_files = foo1.cfg ,foo2.cfg

7

8 Getenv = TRUE

9 # notify_user = pepe@unizar.es

10 # notification = Complete

11 # priority = 10

12

13 # input = test.data

14 output = experimento.out

15 error = experimento.err

16 log = experimento.log

17

18 +BigJob = true

19

20 request_cpus =48

21 request_memory =48000

22

23 arguments = /home/gised/gmiguel/Experimento/run

24 Queue
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Código H.3: Salida producida por Condor.

1

2 000 (1768988.000.000) 08/22 10:01:02

3 Job submitted from host: <172.16.4.100:47970 >

4 ...

5 001 (1768988.000.000) 08/22 10:01:24

6 Job executing on host: <172.16.6.50:46806 >

7 ...

8 005 (1768988.000.000) 08/22 10:05:35 Job terminated.

9 (1) Normal termination (return value 0)

10 Usr 0 00:36:49 , Sys 0 00:00:02 - Run Remote Usage

11 Usr 0 00:00:00 , Sys 0 00:00:00 - Run Local Usage

12 Usr 0 00:36:49 , Sys 0 00:00:02 - Total Remote Usage

13 Usr 0 00:00:00 , Sys 0 00:00:00 - Total Local Usage

14 706 - Run Bytes Sent By Job

15 801528 - Run Bytes Received By Job

16 1706 - Total Bytes Sent By Job

17 801528 - Total Bytes Received By Job

18 ...

Código H.4: Salida producida por BCatalog.

1 **********************************************

2 Catalog: Creado objeto RMI

3 Catalog: Numero de procesadores disponibles: 48

4 Catalog: Cliente esperando a arranque del servidor

5 Catalog: Creados objetos DAO

6 Catalog: Creada SVM

7 Catalog: Arrancando predictor automatico

8 Predictor: Iniciando ...

9

10 Catalog: Sesion iniciada

11 Catalog: Nuevo entrenamiento

12 Catalog: Obteniendo datos de entrenamiento. 4 clases

13 Catalog: Iniciando entrenamiento en paralelo

14 Catalog: Entrenamiento terminado en 109 segundos ,

15 guardando SVM en disco

16

17 Catalog: Prediciendo URL simple

18 Catalog: Post cacheado http://www.heraldo.es/noticias ...

19 Catalog: Iniciando prediccion en paralelo

20
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21 Resultados para 0 = 1.0329057196343712

22 Resultados para 1 = -0.13558198210978978

23 Resultados para 2 = 0.9730040019371566

24 Resultados para 3 = 0.8660084505334502

25

26 Catalog: Prediccion terminada en 134 segundos.

27 Catalog: Pertenencia a clases de

28 http://www.heraldo.es/noticias ...

29

30 Catalog: - tecnologia: 0.0

31 Catalog: - economia: 1.0

32 Catalog: - deportes: 0.0

33 Catalog: - politica: 0.0

34

35 Catalog: Finalizando servidor a peticion del usuario
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Figura H.1: Uso de memoria y CPU en ejecución secuencial.

Figura H.2: Uso de memoria y CPU en ejecución paralela.
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