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Resumen

La naturaleza libre de Internet ha propiciado que la busqueda y seguimiento eficaces
de informacion especializada se constituya en una tarea cada vez madas compleja de

abordar, debido esencialmente a su crecimiento masivo y sostenido.

Este proyecto aborda la creaciéon de un prototipo software que facilita la suscripcion
del usuario a sitios web determinados para recibir de forma proactiva, notificaciones
sobre textos objeto de interés. El sistema se entrena a partir de un conjunto de casos
de entrenamiento y la retroalimentacion progresiva producida por la incorporacién de
las nuevas lecturas que el usuario cataloga como de interés. El idioma de los textos a

analizar y recomendar serd el castellano, debido a su riqueza lingiiistica.

La presente memoria contiene el trabajo realizado en los siguientes aspectos: Una
buisqueda de informacién relacionada con los aspectos bésicos del proyecto, en la que se
abordan aspectos lingiiisticos propios del castellano que permiten explotar informacién
invariante en el lenguaje, algoritmia para procesamiento de lenguaje natural en el con-
texto del andlisis y catalogacion de textos, aspectos relacionados con la escalabilidad
para la gestion de grandes flujos de informacion, y cuestiones de paralelismo propias de

la implementacion de sistemas de informacién.

El estudio preliminar de estas cuestiones ha permitido elaborar una propuesta de
arquitectura del sistema que organiza en bloques funcionales el tratamiento de la in-
formacion, los flujos de datos y las posibilidades de paralelizaciéon. Esto ha conducido
a una implementaciéon de un prototipo del sistema, para el que se ha realizado una
evaluacién en cuanto a escalabilidad mediante un conjunto de experimentos ejecutados
en plataformas computacionales heterogéneas. Como tltima seccién de la parte princi-
pal de la memoria se proponen las conclusiones extraidas del trabajo. Finalmente, los
anexos de la memoria recogen informacion especifica sobre la algoritmia de Aprendizaje

utilizada asi como las decisiones concretas de disefio e implementacion.
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Capitulo 1

Introduccion

Los apartados siguientes resumen las motivaciones y los objetivos del proyecto BCata-
log, que justifican la necesidad que conduce a la creacién de este prototipo y estructuran

y organizan el trabajo a realizar.

1.1. Motivacion

La evolucién de Internet a lo largo de sus escasas décadas de vida ha sido espectacular.
En sus inicios apenas podian verse algunas paginas muy simples y pobres en diseno.
Las empresas las utilizaban para ofrecer informacion sobre sus productos y servicios, a

modo de catalogo en formato digital.

En la actualidad, la red se ha convertido en un medio de virtualizacion de la activi-
dad humana. Utilizando su ordenador, el usuario puede comunicarse con sus amigos,
compartir contenidos (musica, video, texto...), comprar y vender, informarse, formarse,

o realizar gestiones bancarias y administrativas.
Para las busquedas de informacion existen diferentes posibilidades:

El usuario puede utilizar buscadores que seleccionan y filtran los resultados de su
busqueda, mostrandolos por orden de relevancia. Un inconveniente que presentan estos
buscadores es que muestran sitios web de todo tipo, tales como paginas de empresas,
tiendas online, salas de chat, periddicos, o paginas personales. Si lo que necesita es
centrarse en articulos de opinién, han de filtrarse manualmente los resultados propuestos

por el motor de busqueda.

Algunas péaginas web ofrecen al usuario un servicio de notificacién que le informa

cada vez que se publican nuevos contenidos, pero sin discriminar si son o no del interés
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del usuario.

También existen subscripciones a busquedas. Algunos buscadores envian avisos cuan-
do aparecen nuevos contenidos relacionados con la bisqueda realizada, pero incluyendo
avisos sobre sitios web de todo tipo, al igual que ocurre en la bisqueda realizada ma-

nualmente.

Estas opciones de bisqueda y notificacién no permiten selecionar a la vez los temas

y los sitios web de interés del usuario.

El crecimiento exponencial de la informacién presente en Internet se manifiesta en la
ingente cantidad de sitios web que almacenan informacion especializada y organizada en
temas que los propios usuarios incorporan a la red. En este sentido, es posible encontrar
bibliografia cientifica que estudia tanto el crecimiento como el impacto de la que se ha

dado a conocer como blogosfera ([1], [2]).

En este contexto, el proyecto propone la creacién de un entorno software que permi-
tird al usuario subscribirse a sitios web de su eleccion y recibir notificaciones cuando
aparezcan textos de su interés. Para determinarlo, el sistema seguird un proceso de
aprendizaje mediante la obtencién de casos de ejemplo, el entrenamiento y la realimen-
tacién. Realizado este proceso, determinard el grado de relevancia de los textos y, si

procede, se los recomendara al usuario.

El idioma de los textos que se van a recomendar serd el espanol, debido a su riqueza

lingiifstica, su gran cantidad de hablantes y abundancia de contenidos existentes.

En el siguiente apartado se introducen los objetivos concretos del proyecto asi como

la estructura de la memoria.

1.2. Objetivos del proyecto y estructura de la memoria

La motivacion con la que nace este proyecto se concreta en una serie de objetivos
especificos que estructuran el desarrollo del trabajo. La realizacién sucesiva de cada uno
de ellos desemboca en la creacion de un primer prototipo funcional de mi analizador y

recomendador de textos. Estos objetivos, que definen la estructura de la memoria, son:

1. Bisqueda de informacion relacionada con el proyecto: Se realiza un
estudio en profundidad centrado en aspectos lingiifsticos, técnicas para el analisis
y clasificacion de textos, y localizacion de herramientas ya existentes que faciliten

la realizacion del trabajo. Todo ello se expone en el apartado 2 de la memoria.
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2. Propuesta de la arquitectura del sistema: En el apartado 3 se concretan las
funcionalidades que ofrece el sistema, asi como las estrategias seguidas en las ta-
reas de procesamiento lingiiistico, aprendizaje, gestién de los flujos de informacion

y paralelizacion de tareas internas.

3. Prototipo del sistema: El apartado 4 explica la estructura final del prototipo

a construir, concretando las tecnologias elegidas para la fase de implementacién.

4. Implementacién del prototipo: La fase de implementacién se expone en el
apartado 5, en el que se detallan los rasgos principales de cada bloque funcional

construido.

5. Experimentos y evaluacion del prototipo: El apartado 6 contiene los expe-
rimentos realizados sobre el sistema, profundizando en la influencia de la parale-
lizacion de las distintas tareas internas del mismo. Se comentan y comparan los

resultados obtenidos.

6. Conclusiones: En el apartado 8 se exponen los principales problemas encontra-
dos a lo largo de la realizaciéon del proyecto y se extraen conclusiones sobre el

funcionamiento del prototipo y el alcance del proyecto.






Capitulo 2

Estado del arte

Este apartado contiene un resumen de la informacién encontrada sobre los aspectos
relevantes relacionados con el proyecto. Se introducen conceptos necesarios para enten-

der el funcionamiento del mismo y se comentan algunas herramientas ya existentes.

2.1. Analisis lingiiistico

El sistema debe identificar el grado de relacion del contenido del texto con los temas
de interés del usuario por lo que es necesaria la revisién de los siguientes conceptos que

se emplean en la clasificaciéon de textos:

= Campo conceptual: Conjunto de palabras asociadas a una misma idea o con-
cepto. No es necesario que las tengan un origen comun, puesto que en lo que se

centra un campo conceptual es en el significado de las palabras y no en su forma.

= Lexema: Unidad minima con significado propio. También llamado raiz, porque

sirve como base para generar palabras, anadiéndole prefijos y/o sufijos.

= Morfema: Unidad sin significado propio, que limita y concreta el significado de
un lexema. También llamado desinencia, aporta informacién de género, nimero,
tiempo, finalidad, etc... Se distingue entre prefijo y sufijo, dependiendo de si es

colocado antes o después de la raiz.

= Derivacién: Proceso en el que, a partir un lexema y un conjunto de morfemas,
se obtienen todas las palabras que se pueden formar combindndolos. Al conjunto
de palabras obtenido se le llama familia sintactica, pues todas ellas provienen de

una raiz comun.

= Lematizacion: Proceso inverso a la derivacion. Dada una palabra, se obtiene su

lexema.
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Repasados estos conceptos clave, se pasa a comentar algunas de las herramientas

para el procesamiento del lenguaje natural que se han encontrado:

2.2.

Diccionarios online: De acceso piblico, facilitan mucha informacién sobre una
palabra: significado, sinénimos, familia léxica a la que pertenece, informacién
sobre su etimologia, e incluso foros de discusiéon en los que se discute sobre su
correcto uso. Algunos ejemplos de estos diccionarios son el ofrecido por la Real
Academia Espanola [3], o WordReference [4], un sitio web en el que se pueden
encontrar diccionarios de traduccién entre multiples idiomas, y que contienen

ademas un foro para resolver dudas entre sus usuarios.

Diccionario ideolégico de Zirano: También de acceso publico y gratuito, Zi-
rano [5] ofrece la posibilidad de buscar palabras tanto para obtener su significado
como para obtener su campo conceptual. Dada una palabra, sugiere una lista de
ideas a la que puede estar asociada, y, tras elegir una de ellas, proporciona un

conjunto de palabras relacionadas.

Tecnologias para la creacion de sitios Web

Debido a la relacién del proyecto con Internet ha sido necesario de un estudio de las

distintas alternativas existentes para la creacién de sitios web.

Se definen a continuacién algunos términos relacionados con las tecnologias que se

asocian a la gestion de informacion que son objeto de interés del proyecto.

Sistema de gestién de contenidos: (CMS, del inglés Content Management
System). Proporciona una interfaz de administracién en la que el propietario del
sitio puede anadir contenidos, gestionar los ments laterales, insertar enlaces a
otras paginas, cambiar la apariencia de la web, etc. Los CMS estan creados para
ser utilizados sin necesidad de poseer conocimientos de informatica. El propietario
puede modificar el sitio web con un simple clic y anadir contenidos como si de un

procesador de textos se tratase.

Blog: Es un tipo de CMS en el que los textos publicados aparecen estructurados
uno tras otro en la pagina principal. Se utiliza frecuentemente cuando lo que se
pretende es dar continuidad en el tiempo, dar a conocer hechos que pueden estar
relacionados y mostrar esa relacién. Wordpress [6] y Blogspot [7] son algunos de

los servicios gratuitos de creacion de blogs més importantes en la actualidad.

Post: Coloquialmente se llama post a un texto que se publica en un blog. De

esta forma se deja que el término pdgina se refiera a una seccién independiente,
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mostrada en exclusividad (sin otros posts ni paginas debajo ni encima). Asi, una
misma web puede tener paginas independientes, estar estructurada como blog (un

post debajo de otro), o utilizar una estructura mixta.

cuanto a las herramientas para la creacion de sitios web, existe una gran variedad

de alternativas gratuitas. Se comentan a continuacion algunas de ellas, orientadas tanto

a usuarios sin conocimientos técnicos de informatica como a desarrolladores.

2.3.

Herramientas de usuario: Un usuario sin conocimientos técnicos informaticos
puede crear un blog registrandose en Blogspot [7] o en Wordpress [6]. Tras regis-
trarse en el servicio y obtener un nombre de usuario y contrasena, puede entrar

en su panel de administraciéon y empezar a publicar.

Herramientas para usuarios intermedios: Para un nivel mayor de perso-
nalizacién, existen CMS disponibles para descarga que pueden instalarse en el
servidor web que el usuario tenga contratado. Este tipo de instalacién propor-
ciona al usuario la posibilidad de modificar el codigo fuente, crear sus propias
extensiones, o instalar otras existentes para anadir funcionalidades que no vienen
por defecto. Algunos de estos CMS son Xoops [8], Joomla [9], PHP-Nuke [10] o

la versién instalable de Wordpress [11], todos ellos gratuitos.

Herramientas para programadores: En ocasiones un programador puede ne-
cesitar desarrollar su propio CMS. Existen frameworks gratuitos que pueden ser
utilizados como punto de partida para el desarrollo. Un ejemplo de este tipo
de software es Codelgniter [12], escrito en PHP y basado en el patrén de diseno
MVC (Model-View-Controller). Incluye, entre otras utilidades, las de criptografia,

compresién de archivos etc.

Técnicas en aprendizaje orientadas a la clasificacion

de textos

Buscando documentacién acerca de las distintas técnicas en aprendizaje orientadas

a la clasificacién de textos, se ha encontrado abundante documentacién al respecto.

Existen técnicas de Data Mining mediante las cuales se obtiene informacién no trivial

a partir del andlisis exhaustivo de muchos datos de ejemplo disponibles. El Data Mining

puede aplicarse a diferentes tipos de datos como enteros, nimeros en coma flotante,

cadenas de texto y otros objetos mas avanzados, como se explica en el libro Data

Mining: Concepts and Techniques [13].
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Entre las muchas técnicas de Data Mining, se encuentra el uso de las Maquinas de
Vectores de Soporte, (SVM, del inglés Support Vector Machine) basadas en la separa-
cion de los datos de ejemplo a través de hiperplanos calculados mediante las llamadas
funciones Kernel. Algunos de los textos de interés en los que se ha inspirado este pro-

yecto son los siguientes:

1. Learning with Kernels: Support Vector Machines, Regularization, Optimization,
and Beyond [14]: Introduce conceptos necesarios para comprender el funciona-
miento de las maquinas SVM, profundizando en los fundamentos matematicos

subyacentes y aportando demostraciones, ilustraciones y ejemplos.
2. Kernels for Structured Data [15].

3. Pairwise Classification as an Ensemble Technique [16]: En este articulo se detalla
la construccién de un clasificador SVM multiclase a partir de un conjunto de

clasificadores SVM binarios.

4. Text Classification using String Kernels [17]: Profundiza en el comportamiento
de los Kernels de comparacion de cadenas de texto e introduce optimizaciones

que pueden aplicarse para obtener mejores resultados.

5. Lambda pruning: an approrimation of the string subsequence kernel for practical
SVM classification and redundancy clustering [18]: Este articulo expone las me-
joras obtenidas al incluir en el algoritmo tradicional de andlisis de secuencias de
caracteres un sistema de poda, que disminuye el tiempo necesario para procesar

dos cadenas de texto.

Como se comenta en apartados posteriores, todos ellos han sido utilizados como

punto de partida en la implementacién de los médulos que componen el sistema.
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Propuesta de la arquitectura del

sistema

Fl sistema se estructura en tres bloques funcionales principales que permiten separar
la interfaz de usuario, el motor de recomendaciones y el sistema de gestién de la persis-
tencia, de forma que abordar cada uno de ellos separadamente facilite la construccién
del prototipo. La figura 3.1 muestra un esquema con dichos bloques funcionales, cuya

funcién se define a continuacion.

Figura 3.1: Esquema simplificado de la arquitectura del sistema.

Sisterna de gestién

Interfaz de i

usuario comendaciones g :
persistencia

El bloque de interfaz interactia con el usuario, ofreciéndole las siguientes funciona-
lidades:

= Gestion de subscripciones a blogs de interés, incluyendo alta, listado y cancelacién.

= Gestion de las categorias de los textos. Los nuevos textos serdn recomendados si

el sistema determina que pertenecen a alguna de ellas.
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= Gestion de los textos de ejemplo. Anadir uno nuevo supone asociarlo a una de las

categorias citadas.

= Entrenamiento del sistema para que sea capaz de predecir la categoria a la que

pertenece el texto nuevo.

= Visualizacién y validacién de las recomendaciones de textos ofrecidas al usuario.

El motor de recomendaciones es el bloque principal del sistema y se encarga de:

= Recoger y validar los datos procedentes de la interfaz de usuario.
= Obtener los textos para su posterior andlisis.

= Comprobar periddicamente si, en los blogs de interés del usuario, hay textos nue-

vos y recomendadrselos en caso de estar relacionados con sus temas elegidos.

= Administrar la maquina de aprendizaje que, tras ser entrenada, serd capaz de

predecir la categoria a la que pertenecen los nuevos textos encontrados.

= Interactuar con el sistema de gestién de la persistencia para el almacenamiento

de la informacién utilizada y necesaria para el sistema.

Por 1ltimo, el sistema de persistencia permite guardar:

s Los resultados de los an4lisis.

El estado de la maquina de aprendizaje.

Toda la informacién de los textos que se analicen.

Otra informacién que pueda ser interesante conservar por temas de rendimiento.

Almacena datos de configuracién necesarios para el arranque del sistema.

3.1. Procesamiento lingiiistico

La naturaleza del proyecto requiere que el sistema sea capaz de procesar textos
atendiendo a sus contenidos e identificar los temas que tratan. No resulta practico de-
terminar la similitud entre dos textos considerando niimero de caracteres que tienen en
comun. Los campos conceptuales son de utilidad en este contexto, puesto que son con-
juntos de palabras con significados relacionados que pueden ser utilizados para detectar

semejanzas en los temas tratados en los textos.
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En este primer prototipo los campos conceptuales se calculan en el momento de
creaciéon de una nueva categoria. El sistema proporcionard un campo conceptual aso-
ciado a las palabras que forman el nombre de la categoria. De esta forma, ”politica*
llevaria asociadas palabras como partido, ideologia, parlamento y otras que el usuario

podra anadir segin sus preferencias.

El proceso de obtencién del campo a partir de una determinada lista de palabras es
muy importante, ya que el conjunto obtenido se utilizard como base durante la fase de
entrenamiento. Hay que tener en cuenta que la inclusién de palabras poco relacionadas
asi como un numero reducido de ellas distorsionaran las predicciones. A continuacion se

detalla el proceso de creacion de una nueva categoria y el calculo del campo conceptual:

1. El usuario introduce las palabras clave.

2. Se obtienen los campos de cada una de ellas por separado. Para ello pueden
emplearse diccionarios online, bases de datos o cualquier otra herramienta dispo-

nible.

3. Cada una de las palabras que forman los campos obtenidos pasa por un lemati-
zador, que se encarga de eliminar los morfemas de la palabra, para quedarse con
la raiz o lexema. Asi se dispone de la esencia de cada palabra, invariante a los

mecanismos de composicion y derivacién inherentes a la Lengua Castellana.

4. Con los campos conceptuales lematizados de cada palabra se calcula el campo
resultante. Este proceso no es trivial porque si el sistema es demasiado restrictivo
se obtiene un conjunto final muy reducido, y por tanto poco relevante. Siendo
demasiado flexible, por el contrario, se obtiene un resultado con excesivas palabras
que, ademas disminuir el rendimiento durante el proceso de andlisis posterior,
introduce palabras poco relacionadas. En este prototipo el campo total se calcula
como la unién de los campos individuales, aunque cada contexto de aplicacién

puede requerir un criterio diferente para mejorar los resultados en la prediccién.

El campo conceptual constituye un caso de entrenamiento para la categoria crea-
da y serd utilizado como un ejemplo mas a la hora de realizar el aprendizaje y las
predicciones. De esta forma se parte de una base adecuada que permite el analisis de
contenidos de interés, pues se dispone de un conjunto de palabras relacionadas que

pueden encontrarse en los textos relacionados con dicha categoria.
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3.2. Algoritmia de aprendizaje

El sistema a construir requiere un método para distinguir diferentes tipos de tex-
tos atendiendo a su contenido. Este prototipo hard uso de algoritmos de aprendizaje

supervisado.

Estos algoritmos completan una serie de operaciones necesarias para poder realizar

predicciones:

1. Recepcién de datos de ejemplo: El algoritmo requiere que le sean proporcio-
nados datos de ejemplo de las diferentes clases que va a reconocer. La cantidad de
estos datos, asi como su relevancia, condicionara considerablemente la precision

de las predicciones.

2. Fase de entrenamiento: Una vez le son facilitados los datos de ejemplo, se
realiza una serie de ajustes internos, que permiten a la maquina de aprendizaje

aprender a distinguir nuevos elementos.

3. Fase de prediccién : Finalizado el entrenamiento, el algoritmo es capaz de

determinar la clase a la que mas se asemeja un nuevo dato.

Como puede verse, los algoritmos de aprendizaje supervisado son muy adecuados
para este proyecto, en el que el usuario asociard un conjunto de textos a sus respectivas
categorias, y el sistema se encargara de recomendarle nuevos textos cuando determine

que estan relacionados con los temas de su interés.

El problema abordado en este proyecto encaja perfectamente en este tipo de algorit-
mos puesto que el usuario proporciona al sistema los textos de ejemplo y las categorias a
las que pertenecen, el sistema se entrena en funcién de los datos recibidos, y a partir de
ese momento predice la categoria de los nuevos textos publicados para recomendarlos,

si procede, al usuario.

3.3. Gestion de flujos de informacion

El motor de recomendaciones se encarga de, ante la necesidad de disponer de datos
que todavia no haya manejado, obtener dicha informacién del mundo exterior (Inter-
net).
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Las comunicaciones con el mundo exterior requieren tiempo para solicitar los datos
y esperar a que sean proporcionados. Este tiempo, para nada despreciable, hace ne-
cesario almacenar toda la informacion recibida que pueda ser utilizada de nuevo si la

penalizacion para obtenerla es elevada.

También es aconsejable almacenar los resultados del cdlculo de relaciéon entre dos
textos, ya que es un dato invariante que se empleard repetidamente a lo largo del

tiempo.

Para abordar el problema, el motor de recomendaciones enviara al sistema de gestién
de la persistencia los textos, los campos conceptuales obtenidos y el resultado de los

analisis. Todo este proceso se detalla en el apartado 4.

Otra ventaja importante del almacenamiento de datos es la disponibilidad de la
informacién inmediatamente después del arranque del sistema tras un cese en su fun-
cionamiento. El sistema puede dejar de funcionar temporalmente por un fallo en la red
o en la maquina donde se ejecute. Disponer de los datos almacenados evita la necesidad

de calcularlos de nuevo.

3.4. Paralelizacion de tareas

Las tareas internas que el sistema realiza para analizar los textos y predecir el grado
de relevancia de los nuevos contenidos publicados requieren célculos intensivos y tiempo
para ejecutarlos. Por ello resulta ventajoso paralelizar estas operaciones. Después de un
estudio de la naturaleza de cada una de ellas, se han encontrado los siguientes puntos

en los que un trabajo en paralelo mejorard los tiempos de ejecucion.

= Obtencién del campo conceptual: En esta tarea la consulta de un diccionario
de gran tamano puede puede requerir mucho tiempo. También es posible que
lo que se quiera sea calcular el campo asociado a varias palabras para luego
determinar el conjunto total. Puesto que la obtenciéon de cada campo individual
es una operacién independiente, pueden ejecutarse las consultas individuales en
paralelo y luego fusionar los resultados, reduciendo asi el tiempo total de ejecucion

de la tarea.

= Entrenamiento y predicciéon en la maquina de aprendizaje: Aun siendo la
operacién de entrenamiento bastante poco frecuente, lleva consigo una gran pena-
lizacién. Con muchos casos de ejemplo y muchas clases de datos, puede requerir

varios minutos, o incluso horas. En cuanto a la prediccion, desgraciadamente es
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bastante mas utilizada que la anterior, ya que se ejecuta cada vez que haya conte-
nidos nuevos en cualquiera de los blogs en los que el usuario se haya subscrito. Este
es pues otro contexto en que existe la posibilidad de introducir mejoras en cuanto

a la paralelizacion de la algoritmia asociada al entrenamiento y a la prediccion.



Capitulo 4
Prototipo del sistema

En este apartado se presenta el prototipo del sistema, comentando en primer lugar las

decisiones previas tomadas para transformar la figura 3.1 en el modelo a implementar.

El proceso de refinamiento se lleva a cabo en varias fases. Primero se introducen
algunas consideraciones que determinan la ubicacién de los bloques del sistema, después

se elige el algorimo de aprendizaje y posteriormente las tecnologias a utilizar.

4.1. Primera aproximacion

El esquema inicial, mostrado en la figura 3.1 encaja perfectamente con el patron de
disenio MVC (del inglés, Model-View-Controller). Este serd pues el punto de partida
para el desarrollo del prototipo, ya que separa la interfaz de usuario, el control y el
sistema de gestion de la persistencia de forma que es posible su desarrollo de forma

independiente.

Debido a la potencia de calculo necesaria para llevar a cabo las tareas de entrena-
miento y predicciéon de la méquina de aprendizaje, se prevé que, aunque el desarrollo
y las pruebas basicas se lleven a cabo en un ordenador personal, la implantacién real
de un sistema de estas caracteristicas requerird de un entorno de procesamiento mucho

mas potente como, por ejemplo, una granja de servidores.

Asi, se plantea desde un primer momento la escalabilidad como requerimiento en
todos los aspectos de diseno e implementacién que se puedan considerar. En este sentido,
se prevé que en lugar de una aplicacién de escriterio, el usuario accedera a una pagina
web que se comunicard con el motor de recomendaciones. Esta estructuracién hace que
el sistema sea accesible desde cualquier lugar, requiriendo solamente un navegador web

instalado, en lugar de otro software especializado.

15
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Cabe destacar que dicha separacién deja abierta la posibilidad de implementaciones
futuras en las que un programa de escritorio o una aplicacién para un dispositivo mévil
realicen la misma funcién que la pagina web. Es una decisién de disefio muy interesante
debido a la gran expansién que estan protagonizando las nuevas tecnologias, como por

ejemplo las aplicaciones para dispositivos moviles.

Como medio de almacenamiento se utilizara un servidor de bases de datos que
podré estar alojado en la misma maquina que el motor de recomendaciones o en otra
cualquiera, al igual que el servidor web donde se aloja la pagina. Este planteamiento re-
fuerza la escalabilidad y robustez del prototipo ya que, ante un fallo en el funcionamien-
to de cualquiera de los mdédulos, el sistema puede seguir funcionando con normalidad

con s6lo mover el bloque averiado a una maquina diferente.

La figura 4.1 muestra la nueva estructura del sistema tras tener en cuenta las consi-

deraciones anteriores.

Figura 4.1: Esquema refinado de la arquitectura del sistema.

VISTA H
(Pagina web)

ONTROL H MODELO
(Motor de (Bases de datos)
comendaciones)

La vista se convierte en una pagina web que ofrecera al usuario todas las opera-
ciones disponibles. Se comunicard con el motor de recomendaciones (el control), que
validara los datos, realizard los cdlculos correspondientes, y almacenara, mediante el
sistema de gestién de la persistencia (el modelo), los datos que se precise conservar. El
motor de recomendaciones incluird un moédulo actualizador, encargado de revisar pe-
riédicamente los blogs a los que el usuario se haya subscrito y recomendarle, si procede,

la lectura de los nuevos contenidos publicados.

4.2. Eleccién de las tecnologias

De entre todos los lenguajes de programacién disponibles, Java [19] ofrece utilidades
que permiten enlazar todos los componentes que forman el sistema, como puede verse

en la imagen 4.2. A continuacién se detallan cada una de las tecnologias a utilizar.
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Figura 4.2: Estructura del sistema a construir.

€55 HTML

%o Apache
ap(q\g Tcmcat

. La pagina web: Se utiliza el servidor web Apache [20] con su extensién Tomcat
[21], que permite el trabajo con Java en el desarrollo de paginas web. La pagina se
implementa con codigo HTML (del inglés, HyperText Markup Language) [22] y
hojas de estilo en cascada (CSS, del inglés Cascade Style Sheet) [23]. Los campos
de los formularios HTML se relacionan con objetos Java Bean[24] mediante el

framework Java Server Faces (JSF) [25], para poder ser procesados por el servidor.

. El motor de recomendaciones: Se trata de un objeto RMI (del inglés, Remote
Method Invocation) [26] que implementa servidores en forma de objetos remotos,
cuyos métodos pueden ser llamados por el cliente como si de un objeto local se
tratase. Esta herramienta ofrecida por Java es muy interesante, pues ofrece co-
municacion entre ambos procesos de forma transparente, sin necesidad de disenar

un protocolo de comunicacién.

. La maquina de aprendizaje: Se utilizan méquinas SVM (del inglés, Support
Vector Machine). Para la explicacién de su funcionamiento, ver Anexo C. En
cuanto a la implementacion, se parte como punto de partida de la desarrollada
por Weka [27], que ofrece un buen nimero de clasificadores, sistemas internos de
cache, y optimizaciones necesarias para la obtenciéon de buenos resultados. Para
sSu uso en este proyecto, se requieren algunas modificaciones sobre el algoritmo

original implementado por Weka, que se detallan en el apartado 5.2.

. La gestion de la persistencia: Se implementa con bases de datos de MySQL
[28], por su comodidad de uso, eficiencia en las operaciones y por la existen-
cia en Java del driver JDBC (del inglés, Java Data Base Connection) [29], que

proporciona una interfaz para la interaccion con la base de datos.

. El actualizador: Se implementa con objetos de la clase Thread de Java [30], y

se ejecuta en paralelo al motor de recomendaciones una vez arrancado el sistema.
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Capitulo 5
Implementacion

Este apartado contiene un resumen de los componentes maés relevantes de los tres
grandes bloques funcionales del sistema: la vista, el motor de recomendaciones y la capa
de acceso a datos. Para una explicacién més extensa pueden consultarse los Anexos D,
E y F donde ademas pueden encontrarse otros componentes que no aparecen en esta

memoria por motivos de extensién.

5.1. Implementacion de la vista

La vista estd compuesta por dos bloques diferenciados, la pagina web y el médulo
Java que recoge los datos, comunica con el motor de recomendaciones y devuelve los
resultados para ser mostrados al usuario. En los siguientes subapartados se introducen
dichos bloques. Una explicacién méas extensa sobre cada uno de ellos, asi como el detalle

de otros paquetes no mencionados en esta memoria, pueden consultarse en el Anexo D.

5.1.1. La pagina web

La péagina web se implementa con cédigo HTML, hojas de estilo CSS y utilidades ofre-
cidas por JSF. Estd estructurada en carpetas segun la funcionalidad de las subpéginas,
quedando asi separadas las relacionadas con el manejo de los blogs de las relacionadas

con la gestion de la SVM.

JSF proporciona herramientas para crear plantillas que definen la estructura de la
pantalla. En el cédigo HTML de las subpaginas se insertan etiquetas de JSF para
incluir los contenidos propios de cada una. De esta forma se separa el contenido del

estilo, pudiéndose implementar de forma independiente.

19
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Figura 5.1: Estructura del bloque de vista.

VISTA CONTROL MODELO

WEB

CONTENT J5VA

BASE XML BLOG SVM BEANS SERVICIO

5.1.2. El control de pagina web

Para el manejo de los datos introducidos por el usuario existe un modulo Java es-
tructurado en capas. Los datos pasan de una capa a la otra, viajan al motor de reco-
mendaciones, y los resultados vuelven al médulo Java, atravesando las capas en sentido
contrario, para que el servidor genere a continuacion la pagina que incluye los resultados

y sea devuelta al usuario.

El paquete contenido en la capa del nivel superior, llamado Beans, contiene los ob-
jetos donde JSF almacena los datos introducidos por el usuario. Tras comprobar que
todos los datos necesarios han sido proporcionados, el paquete envia los datos al ni-
vel inferior, llamado Servicio, y espera resultados o errores devueltos por el motor de

recomendaciones.

El paquete Servicio, en el nivel inferior, contiene el objeto remoto del motor de
recomendaciones. Tras recibir los datos procedentes del usuario, que le proporciona el
paquete Beans, invoca el método remoto correspondiente y devuelve los resultados al

nivel superior.

5.2. Implementacion del control: Motor de recomendacio-

nes

Se resumen a continuacién los componentes maés relevantes del motor de recomenda-

ciones, que aparecen en la figura 5.2. Puede consultarse el Anexo F para una explicacién
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en mayor profundidad, donde ademas se aportan mas detalles sobre la implementacién

de este maddulo.

Figura 5.2: Estructura del motor de recomendaciones.

VISTA

DACIONES SVM IRANO ILIDADES

5.2.1. El recomendador

Es el componente principal del bloque de control. Implementa la interfaz del objeto
remoto RMI que contiene los métodos que se ofrecen al bloque de vista. Se ejecuta al
arrancar el sistema y, tras realizar el ajuste inicial de parametros internos, queda a la

espera de conexiones entrantes.

Cada uno de los métodos remotos implementados valida los parametros de entrada,
comprueba la existencia de los datos a manejar en la base de datos, realiza la operacién
solicitada y devuelve los resultados, o si procede, una excepciéon que sera tratada en el

bloque de vista.

5.2.2. La maquina SVM

Este paquete implementa el clasificador SVM cuyo funcionamiento se expone en el
Anexo C. Parte de la implementacién de Weka, pero introduce algunas modificaciones

para adecuarlo al problema a resolver por el sistema.

El clasificador SVM de Weka implementa el clasificador multiclase expuesto en el
articulo Pairwise Classification as an Ensemble Technique [16]. Predice a qué clase se
asemeja mas un nuevo dato desconocido, pero no determina si el dato no pertenece a
ninguna de las clases. Por tanto ante un nuevo dato que no pertenezca a ninguna de
las clases de entrenamiento, el algoritmo original determinard que pertenece a alguna

de las existentes.
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La modificacién consiste en crear un clasificador binario encargado de reconocer cada
una de las clases de entrenamiento. Hay pues tantos clasificadores binarios como clases.
Si cualquiera de estos clasificadores determina que el nuevo dato pertenece a la clase
que reconoce, el nuevo texto se recomienda al usuario. En caso contrario se descarta,

pues no es un texto de interés.

Adicionalmente se anade soporte para el trabajo en paralelo en las tareas de entre-

namiento y prediccién, que se explica en el apartado 5.4.

5.2.3. El lematizador

El lematizador extrae la raiz de una palabra, como se ha comentado en el apartado
2.1. Es una clase obtenida en SourceForge [31] que implementa el algoritmo de Porter

[32]. No se han requerido modificaciones en su algoritmo original.

5.2.4. El modulo de comunicacién con el diccionario de Zirano

Para la obtencién de los campos conceptuales se ha implementado un médulo que
interactiia con el diccionario de Zirano. Su tarea principal consiste en simular la nave-
gacién que realizaria un visitante en su pagina web para obtener una lista de todas las

palabras relacionadas con la introducida por el usuario.

El proceso simulado consta de las siguientes fases:

1. El usuario introduce la palabra de su interés.

2. La la péagina de Zirano sugiere una lista de ideas o acepciones relacionadas con

esa palabra.

3. El usuario navega por las diferentes acepciones sugeridas y, para cada una de

ellas, obtiene un conjunto de palabras relacionadas.

Este médulo realiza un recorrido por todas las ideas sugeridas, hasta extraer un

numero suficiente de palabras relacionadas.

5.3. Implementacion del modelo: Capa de acceso a datos

En este subapartado se resume la implementacién de la capa de acceso a datos.
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Figura 5.3: Estructura del modulo de acceso a datos.

VISTA

ILIDADES

Cabe resaltar la penalizacién derivada de la descarga de un texto desde internet. Esta
operacion requiere un tiempo considerable y por ese motivo los textos descargados no se
eliminan de la base de datos, sino que permanecen en el sistema, a modo de cache. Una
recomendacién o un caso de ejemplo hardn pues referencia a un texto ya guardado.
Pueden borrarse las recomendaciones pero no los textos a los que hacen alusion, de
forma que si se vuelve a anadir de nuevo una recomendacién o un caso de ejemplo no

es necesario descargarlo.

La figura 5.4 muestra las distintas tablas existentes en la base de datos, asi como las

relaciones entre ellas.
En el paquete DAO existen ocho clases encargadas de interactuar con las tablas de
la base de datos con las que estéan relacionadas. Las clases son las siguientes:
s BlogDao: Para insercion, listado y borrado de blogs de interés.
s ClaseDao: Gestiona el almacenamiento de las clases de entrenamiento.
s ClasificadorDao: Ofrece métodos para el almacenamiento en disco de la SVM.
s ConceptosDao: Para la gestion de palabras, raices y campos conceptuales.

s EntrenamientoDao: Gestiona el almacenamiento los datos de entrenamiento

del sistema.
s InfoDao: Para el manejo de la tabla de informacion del sistema.

s PostDao: Ofrece operaciones de inserciéon de nuevos textos en la base de datos
asi como de listado. Por motivos comentados al principio de este subapartado no

se ofrecen operaciones de eliminacion.
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Figura 5.4: Esquema de la base de datos.

INFO BLO S
Propiedad: string url: string
Valor: string id: string
CAMPO
PALABRA CONCEPTUAL RAIZ
id: integer id_palabra: integer id: integer
texto: string id_raiz: integer texto: string
FOST ENTRENAMIENTC
id: integer ) )
id_post: integer
titulo: string
) id_clase: integer
texto: string
url: string
RECOMENDAZION CI ASF
id_post: integer id: integer
id_clase: integer texto: string

= RecomendaciénDao: Gestiona la tabla de recomendaciones.

Para una explicaciéon més detallada, ver Anexo F.

5.4. Paralelizacion de tareas

Como se ha mencionado en el apartado 3.4, existen varios actividades en el sistema,
que pueden realizarse en paralelo para obtener mejoras en tiempo. Para este primer
prototipo se decidié centrarse en las relacionadas con la méquina de aprendizaje, mas

concretamente en las operaciones de entrenamiento y prediccién.

El trabajo en paralelo puede introducirse en cualquiera de los tres niveles del clasi-
ficador SVM implementado, tal y como ilustra la figura 5.5. Pueden hacerse célculos

simultdneos en la funcién de comparacion del Kernel SSK, en las operaciones de entre-
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namiento y prediccion de las maquinas SVM binarias, o en el clasificador final. Cada

una de estas alternativas se explica en los parrafos siguientes.

Figura 5.5: Niveles de paralelizacion de la mdquina SVM.

En la funciéon de comparacién de dos cadenas, en la clase StringKernel de Weka,
hay un punto concreto donde pueden lanzarse cdlculos en paralelo. Como se explica
en el apartado G.5 del Anexo G, para calcular el grado de semejanza normalizado,
se realizan tres llamadas a la funcion Kernel que son independientes entre ellas. Los
resultados obtenidos se multiplican y dividen entre ellos, pero nada impide realizar
los célculos en paralelo guardando los resultados en variables temporales para operar

después con ellas.

En el nivel superior al Kernel se encuentran las maquinas SVM binarias. El método
de entrenamiento realiza iteraciones, en las que se invoca repetidamente al Kernel y se
ajustan coeficientes internos antes de volver a iterar. Es imposible lanzar en paralelo
las diferentes iteraciones, pues una iteracion necesita los resultados de todas las ante-
riores. Sin embargo, en cada iteracién se realizan varias llamadas a la funcién Kernel
independientes, que si se pueden ejecutar al mismo tiempo. Lo mismo ocurre con el
método de prediccién, que realiza comparaciones (invocaciones al Kernel) entre el dato
nuevo y cada uno de los vectores de soporte, para construir un resultado. Pueden lan-
zarse dichas comparaciones en paralelo e ir acumulando los resultados en una variable

temporal, para luego realizar cdlculos con ella y generar el resultado que sera devuelto.
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Estos son los puntos paralelizables a este nivel.

Por 1ltimo, las diferentes maquinas SVM binarias pueden trabajar en paralelo ya
que cada una dispone de su copia individual del conjunto de datos de entrenamiento.
Cada una de ellas genera, tanto en el proceso de entrenamiento como en el de prediccion

resultados independientes de las demads, y por tanto pueden ejecutarse simultdneamente.

La decisién de qué puntos paralelizar y cuales no, no es trivial. Tratar los tres niveles
supone la creaciéon de un nuimero elevado de tareas. Implementar sélo los dos inferiores
proporciona mejores tiempos al aumentar el nimero de datos de ejemplo, y sélo el
superior proporciona mejores tiempos al aumentar el nimero de clases diferentes. El
grado de paralelismo utilizado en cada nivel deberia ser ajustado teniendo en cuenta la

cantidad y variedad de textos que el usuario vaya a manejar.

En este prototipo se decidié implementar los dos niveles superiores. Al entrenar y
predecir todas las maquinas SVM binarias realizan sus calculos en paralelo y crean,
segun sea necesario, nuevas tareas para ejecutar las invocaciones al Kernel SSK. Queda
pendiente para ampliaciones futuras la inclusién de trabajo en paralelo en el nivel

inferior.

Para la implementacién de estas mejoras, se han anadido objetos de la clase Execu-
torService [33], incluida en el paquete Concurrent de Java, al clasificador SVM. Estos
objetos administran conjuntos de tareas (implementaciones de la interfaz Runnable
[34]), con la ventaja de que los hilos de ejecucién creados no se destruyen al finalizar la
tarea, sino que son reutilizados segiin quedan libres. Se evita asi la creacién continua

de hilos de ejecucion, con su correspondiente penalizacion de tiempo.



Capitulo 6

Evaluacién del prototipo.

Experimentos

La naturaleza masiva del calculo asociado al entrenamiento y a la prediccién utili-
zando maquinas SVM ha planteado como requerimiento, desde un primer momento, la

necesidad de disenar el sistema con la maxima escalabilidad posible.

Asi, el estudio del comportamiento paralelo de los procesos mas intensivos en calculo
se ha materializado en un conjunto de experimentos que se han ejecutado en distintas

plataformas computacionales.

6.1. Descripcién del experimento

El almacenamiento de un texto de prueba introducido por el usuario requiere que el
sistema descargue su coédigo y lo procese para eliminar etiquetas HTML. Pero, debido
a la gran cantidad de formatos de pagina web que existen y a que los lectores pueden
escribir sus comentarios, resulta muy dificil eliminar completamente la informacién
ajena al texto de interés. Esto influye negativamente en la calidad de las predicciones

y requiere una mejora del algoritmo de filtrado.

Por ese motivo los experimentos realizados se centran en la influencia de la parale-
lizacién sobre las tareas del sistema, concretamente en las operaciones internas de la
maquina SVM. Las mejoras en tiempo observadas son independientes de la calidad de

los textos de ejemplo y por tanto pueden extraerse conclusiones de mayor interés.

6.1.1. Conjunto de datos de entrada

Se han creado 4 clases de entrenamiento, que son las categorias de las que el usuario

desea mantenerse informado. Estas son: politica, deportes, economia y tecnologia.
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Para cada una de ellas, existen 5 articulos de ejemplo relacionados extraidos de las

versiones online de los periédicos Heraldo de Aragén[35], Marca[36] y El Pais[37]

El experimento consiste en un entrenamiento y una prediccién de un articulo nuevo,
obteniendo tiempos de ejecucion secuencial y de ejecuciones paralelas con un nimero
variable de procesadores. Se pretende estudiar la mejora en tiempo obtenida al ejecutar
el cédigo en tres entornos distintos, tanto en su versién secuencial como empleando el

maximo numero de procesadores disponibles.

6.1.2. Presentacion del hardware

Para el lanzamiento del experimento se dispone de tres maquinas diferentes que se

detallan a continuacion.

En primer lugar, mi ordenador portatil, al que en adelante se llamara “Portatil”, que

tiene las siguientes caracteristicas:

= Procesador AMD Athlon 64 X2 dual-core QL-60.
= Tipo de maquina: x86.

= Sistema Operativo: Windows 7.

= Numero de CPUs: 2.

= Frecuencia de procesador: 1.9 GHz.

s Memoria total: 4GB.

En segundo lugar, se han realizado pruebas en Cluster Hermes [38] del Instituto
de Investigacién de Ingenierfa de Aragén (I3A) de la Universidad de Zaragoza. Con-
cretamente, se ha utilizado la maquina Selene2 bajo Condor[39], con las siguientes

caracteristicas:

= Nodo: selene2.hermes.cps.unizar.es

= Tipo de maquina: x86.

= Sistema Operativo: Linux.

= Version del Sistema Operativo: 2.6.18-238.5.1.¢l5.
= Nimero de CPUs: 48

= Frecuencia de procesador: 2200 MHz.
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= Memoria total: 99004784.000 KB
s Tamano de Swap total: 102399984.000 KB
Por tdltimo, Gregorio de Miguel me ofrecié la posibilidad de lanzar el experimento

en su ordenador. Esta maquina se llamard “Goyo” en adelante y tiene las siguientes

caracteristicas.

= Procesador: Intel Core i7 920

= Tipo de maquina: x86.

s Sistema Operativo: Windows 7 64 bits.

» Nimero de CPUs: 4x2 (2 hilos por CPU).

s Frecuencia de procesador: 3.95 GHz.

= Memoria total: 6GB.

Se ha preparado un script para ejecutar los experimentos en las distintas maquinas.

En primer lugar se lanza un servidor que carga los datos necesarios para su funcio-
namiento y queda a la espera de conexiones entrantes. A continuacién se lanza un

cliente que solicita el entrenamiento del sistema y una prediccién de un texto nuevo.

Finalizadas ambas tareas, cliente y servidor finalizan su ejecucion.

Para el caso del nodo Selene2, los técnicos que dan soporte a los usuarios de Hermes

han preparado un script .sub para Condor, que puede consultarse en el Anexo H.

6.2. Descripcion de los resultados

Las tablas 6.1 y 6.2 muestran los tiempos obtenidos para cada una de las operaciones
por separado. Cabe resaltar las diferencias entre las maquinas que han intervenido en

el proceso de pruebas de escalabilidad, lo que dificulta la extraccién de conclusiones.

Cuadro 6.1: Tiempo del entrenamiento ejecutado en las distintas mdquinas.

PORTATIL (2 CPUs) | GOYO (8 CPUs) | SELENE2 (48 CPUs)

SECUENCIAL 2601 909 900

MAXIMO CPUs 1470 186 109

Las figuras 6.1 y 6.2 ilustran graficamente los resultados de las tablas anteriores. En
ambas se representa, para cada maquina, los tiempos obtenidos en ejecucions secuen-

ciales y paralelas.



30 Indice general

Cuadro 6.2: Tiempo de la prediccion ejecutada en las distintas mdquinas.

PORTATIL (2 CPUs) | GOYO (8 CPUs) | SELENE2 (48 CPUs)

SECUENCIAL 164 59 145

MAXIMO CPUs 171 57 134

Figura 6.1: Resultados de operacion de entrenamiento para cada una de las mdquinas.
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En el entrenamiento, el tiempo de cédlculo va disminuyendo conforme aumenta el
numero de procesadores disponibles, especialmente en el caso de mi ordenador portatil
en el que duplicar el nimero de procesadores disminuye el tiempo de céalculo casi a la

mitad.

Por otra parte, la operacién de predicciéon obtiene peores resultados. En mi ordena-
dor portatil, trabajar con dos procesadores produce tiempos de ejecucién mayores que
trabajar secuencialmente. Las otras dos méquinas obtienen mejoras poco significativas

de tiempo.

La figura 6.3 muestra las mejora en tiempo obtenida en cada una de las tres méquinas

en las operaciones de entrenamiento y prediccion.

La mejora en tiempos obtenida es menor a lo que se esperaba durante la imple-
mentacion del paralelismo. Esto de debe a diversos factores, entre los que se pueden

encontrarse los siguientes:

1. Comparticion de unidad de punto flotante: Si un nicleo de la maquina sélo
dispone de una unidad de punto flotante que los distintos hilos de ejecucién pueden

necesitar utilizar al mismo tiempo, se producen esperas hasta que dicha unidad
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Figura 6.2: Resultados de operacion de prediccion para cada una de las mdquinas.

180
i
i

1e0 ——

140 — —

120

100 === P ORTATIL
BO == G0Y0

&0 ER | gy SELEMEZ
40

20

D T 1

SECUENCIAL PARALELO
Figura 6.3: SpeedUp obtenido en las diferentes mdquinas.
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queda libre. Este caso se da en procesadores multihilo, en los que se comparten
algunas unidades funcionales. En este proyecto, en el que el cdlculo con niimeros

reales es intenso, este hecho puede producirse frecuentemente.

2. Comparticion de memoria cache: Los hilos de ejecucién comparten algin

nivel de cache, como el L3, de manera que al haber varias tareas en paralelo
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trabajando con grandes cantidades de informacion, pueden producirse excesivos
movimientos entre memoria principal y cache, con sus correspondientes penaliza-

ciones en tiempo.

3. Excesivo tamano de los datos: Los datos manejados desde la aplicacion Java
son cadenas de caracteres muy grandes. La utilizacion de memoria RAM durante
la ejecucion ha alcanzado en algunos casos los 2Gb. Constructores de copias que
manejen cantidades demasiado grandes de memoria introducen también penali-

zaciones en tiempo.

4. El alto nivel del cédigo: La implementacién de este prototipo se sustenta en
la maquina virtual de Java y su funcionamiento interno, en la libreria Weka, en
otras estructuras de datos ofrecidas por Java y depende ademas del planificador de
tareas del sistema operativo. En el caso del nodo Selene2, el planificador Condor
también influye en los resultados. Todos estos niveles de abstraccién a los que no
he tenido acceso total, impiden conseguir los resultados 6ptimos asi como predecir

las razones exactas que causan los tiempos obtenidos.

Para un desarrollo posterior deberia hacerse un estudio maés intensivo de las causas
que influyen en los resultados. No obstante, el prototipo ofrece una visién adecuada de

como el sistema se comporta ante la variacién de los recursos disponibles.
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Organizacion del proyecto

En este apartado se expone cémo se ha organizado el desarrollo del proyecto, como

puede verse en el diagrama de Gantt de la figura 7.1.

La duracion total del trabajo realizado ha sido de 192 dias, a lo largo de los cuales

se ha ido redactando y refinando el contenido de esta memoria.

Figura 7.1: Diagrama de Gantt que muestra la organizacion del proyeecto.

11 octubrs

19/09

Bcatalog, Recomendador de Lecturas

10710

ainstorming
ncrecion del Proyecto
tado del Arte
$=—H—rlﬂsis v Disefio del Sistema
Prototipo
g v
se de Datos
dor
ista
tegracion y Pruebas
perimentos
Refinamiento de la Algoritmia
g Haboracion de la memoria

Las primeras dos semanas se dedicaron a una lluvia de ideas para delimitar el proble-

ma a resolver. A continuacion se realizé un estudio de los aspectos basicos necesarios

para abordarlo. Este estudio requirié un mes de trabajo en el que se leyé abundante

documentacion al respecto.
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Figura 7.2: Detalle de las fechas de inicio, finalizacion y duracion de las tareas a realizar.

Modo Mombre de tarea Duracion
- -

de
| b o I Beatalog, Recomendador de Lecturas 192 dias lun06/12f10 mar 30/08/11
2 2 Brainstorming 10 dias lun 06/12/10 wie 17/12/10
= Concrecion del Proyecto 5 dias lun 20/12/10 vie 24/12/10
B = Estado del Arte 31 dias lun 27/12/10 lun07/02/11
5 = Analisis y Disefio del Sistema 31 dias mar 08/02/11 mar 22/03/11
6 = = prototipo 80 dias mié 23/03/11 mar 12/07f11
= Base de Datos 10 dias mié 23/03/11 mar05/04/11
= Controladar 50 dias mie 23/03/11 mar 31/05/11
2 Wista 20 dias mi& 01/06/11 mar 28/06/11
1 b= Integracion y Pruebas 10 dias mié 29/06/11 mar12/07/11
11 2 Experimentos 10 dias mi& 13/07/11 mar 26/07/11
12 2 Refinamiento de |a Algoritmia 12 dias mié 27/07/11 jue 11/08/11
15 (=S Elaboracion delamemoria 146dias  mar08/02/11 mar 30/08/11

La fase de construccién se completé en aproximadamente 80 dias, repartidos como

puede puede verse en las figuras 7.1y 7.2.

Terminado el prototipo, se realizaron experimentos y refiné la algoritmia utilizada.
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Gestion del Proyecto y

Conclusiones

Nueve meses de trabajo han permitido la construccién de este primer prototipo. En
este apartado se comentan los principales problemas encontrados durante el proceso de

desarrollo y se extraen las conclusiones.

El médulo de vista se ha construido sin problemas destacables. Una vez obtenida y
revisada toda la documentacién necesaria para poner en marcha el desarrollo, éste se
ha completado con éxito. Se ha obtenido una pagina web sencilla, de manejo intuitivo

y que cumple perfectamente su funcién.

En el médulo de control, el motor de recomendaciones, el trabajo ha sido méas com-
plicado, fundamentalmente debido a que se ha trabajado con herramientas de terceras
partes y a que el proyecto requiere el uso de maquinas muy potentes, de las que no se

ha dispuesto.

Se ha conseguido obtener campos conceptuales amplios pero concisos, si bien con-
vendria revisar el algoritmo utilizado y adaptarlo para obtener conjuntos méas reducidos

pero con mayor relevancia.

El algoritmo de aprendizaje, la maquina SVM, funciona correctamente. Las predic-
ciones realizadas por el sistema son correctas en buen nimero de casos, aunque es
importante recalcar que la precisiéon de las mismas depende en gran medida de la cali-

dad de los textos de ejemplo.

Conseguir estos casos de ejemplo no es trivial, pues hay que filtrar el c6digo HTML

recibido por el sitio web propietario del texto para eliminar, ademas de las etiquetas
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HTML, la informaciéon que no pertenece al texto propiamente dicho. Seria recomen-
dable, de cara a préximas ampliaciones, la revisién del algoritmo de filtrado, para
conseguir eliminar mas informacién no relevante, como comentarios de los lectores. Fil-
trar correctamente todas las paginas web es complicado, pues los disenadores no siguen
ningun estandar de nombrado de los diferentes bloques que componen la pagina, lo que

dificulta el andlisis preciso del codigo.

Las pruebas de paralelizacién son, en mi opinién, un punto mejorable en el proyecto.
Realizar un buen entrenamiento para obtener recomendaciones precisas obliga a intro-
ducir un nimero de ejemplos lo suficiente grande para que el sistema sepa distinguir los
textos de las diferentes categorias. No se ha dispuesto de méaquinas con la potencia de
calculo necesaria para poder realizar pruebas reales y por tanto, ha sido imposible rea-
lizar pruebas con grandes voliimenes de datos para poder asegurar que la escalabilidad

del sistema es buena.

Respecto a la paralelizacién, tampoco ha sido posible obtener resultados tan favora-
bles como se esperaba, pues el sistema trabaja con demasiadas capas (maquina fisica,
sistema operativo, maquina virtual de Java, libreria Weka, mi propio cédigo) y no se ha
podido acceder a todas para estudiar las causas de los resultados obtenidos. Por tanto
no he podido concluir hasta qué punto mi trabajo de paralelizacién es mejorable, que
seguramente lo es, ni hasta qué punto depende de la maquina, del algoritmo de Weka,

ni de ningun otro componente utilizado.

Sin embargo, me gustaria agradecer de nuevo a Gregorio de Miguel, mi director de
proyecto, asi como al proyecto TIN2008-06582-C03-02 - “Secuencias Simbdlicas: Anali-
sis, Aprendizaje, Mineria y Evolucién”, del Ministerio de Ciencia e Innovacién, y al
Grupo de Ingenieria de Sistemas de Eventos Discretos (GISED), haberme facilitado
el acceso a maquinas de mayor potencia, gracias a las cuales he podido realizar prue-
bas mas interesantes que las que podria haber ejecutado utilizando sélo mi ordenador

portatil.

Siendo critico, veo algunos puntos mejorables en el resultado visible del proyecto,
como ya se ha comentado en los parrafos anteriores. A pesar de ello, mi valoracién
personal del trabajo realizado es buena. Pienso que el desarrollo se ha realizado de
forma ordenada después de una etapa de obtenciéon y lectura de la documentacién
disponible. Esto ha permitido que el trabajo de desarrollo sea méas fluido y con menos

imprevistos por un disenio precipitado.
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Anexo A

Manual de usuario

BCatalog es un sistema de recomendacién de blogs que notifica al usuario cuando
alguno de sus sitios favoritos publica contenidos relacionados con temas de su interés.
Para el manejo del sistema el usuario dispone de una pagina web muy intuitiva. De
esta forma no se requiere ningun software instalado en su ordenador a excepciéon de un
navegador web, pudiendo asi mantenerse informado en casa, en el trabajo o en cualquier

lugar donde se encuentre.

En los apartados siguientes se resume toda la informacién necesaria para empezar
a obtener recomendaciones y se muestran capturas de pantalla que facilitaran la com-

prensién del lector y su familiarizacién con la aplicacion.

A.1. Estructura de la pagina

La pagina web esta formada por tres zonas principales con las que el usuario puede

interactuar, tal como se ilustra en la figura A.1:

Figura A.1: Estructura de la pdgina.

Company Name

PRINCIPAL - BLOGS - ENTRENAMIENTOS |:> Menu superior

BIENVENIDO A BCATALOG

Zona de contenido
Menu lateral
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1. El menu de navegacién superior presenta las secciones de la pagina web. A través
de este ment el usuario puede visualizar las recomendaciones propuestas, gestio-
nar sus blogs favoritos y entrenar al sistema para que empiece a recomendarle

nuevos contenidos.

2. El ment izquierdo presenta las subsecciones existentes en la seccién del meni su-

perior seleccionada.

3. La zona de contenido muestra el texto y los formularios correspondientes a cada

seccidn.

A.2. Gestion de blogs

Seleccionando la opciéon Blogs del menu superior se accede a la pantalla de gestién
de las subcripciones. Todas las operaciones disponibles aparecen juntas en esta seccién,
para la comoda manipulacion de los blogs favoritos del usuario. Las acciones que pueden

realizarse aparecen reflejadas en la figura A.2, y son las siguientes:

Figura A.2: Gestion de subscripciones a blogs.

Company Name

BLOGS { ENTRENAMIENTOS

Gestion de blogs

Suscribirse a un nuevo blog

Afiadir una
subscripcién

<3 URLdsibiog | ]

Listado de blogs

Ustadods oy
subscripciones gl

Cancelar
subscripciéon

1. Anadir una subscripcién a un blog
2. Ver el listado de subscripciones en curso.

3. Cancelar una subscripciéon. BCatalog dejara de recomendar el blog seleccionado.

A.3. Entrenamiento del sistema

En la seccion Entrenamientos estan disponibles todas las acciones necesarias para

que el sistema aprenda las preferencias del usuario en cuanto a temas de interés se
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refiere. El usuario proporcionard a BCatalog un conjunto de textos de ejemplo para

cada uno de los temas de los que desee recibir notificaciones.

El proceso de entrenamiento del sistema se lleva a cabo en dos fases tras las cuales
BCatalog estara listo para empezar a analizar los blogs seleccionados en busca de nuevos
contenidos relacionados. Estas tareas son accesibles desde el menu lateral de la pagina
web, como ilustra la figura A.3. Es importante que el sistema vuelva a entrenarse a
lo largo del tiempo anadiendo nuevos textos de ejemplo que pueden ser introducidos
manualmente o bien ser recomendaciones que el usuario considere acertadas. A conti-
nuacion se enumeran las distintas fases del entrenamiento, que se describen en detalle

en los subapartados siguientes:

1. Creacién de las categorias de interés del usuario (ej: economia).
2. Introduccion de textos de ejemplo, especificando la categoria a la que pertenecen.

3. Entrenamiento del sistema.

Figura A.3: Entrenamiento del sistema.

Company Name

PRINCIPAL - BLOGS | ENTRENAMIENTOS

Gestion de entrenamiento

Para navegar por todas las opciones, utiliza el ment de |3 izquierda.

ADMINISTRAR CLASES ENTR
NUEVO CASO ENTR.
ADMINISTRAR CASOS ENTR.
GESTION SVl

|:> Fases de entrenamiento

A.3.1. Gestién de categorias de textos

La gestiéon de categorias puede realizarse desde la pantalla Administrar clases de
entrenamiento, en el menu lateral izquierdo, una vez seleccionada la opciéon Entrena-

mientos del ment superior.

Esta pantalla es muy similar a la de gestién de blogs, introducida en el apartado A.2

y ofrece las siguientes acciones a realizar, que aparecen en la figura A.4:

1. Anadir una clase de entrenamiento (categoria a la que puede pertenecer un texto).
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Figura A.4: Gestion de clases de entrenamiento.

Company Name

PRINCIPAL - BLOGS - ENTRENAMIENTOS

Gestion de clases de entrenamiento

ARadir clases de entrenamiento

Insertar nueva .
clase <:: Palabras clave: |

ADMINISTRAR CLASES ENTR.

ADMINISTRAR CASOS ENTR
GESTION SVM

Listado de clases de entrenamiento

Texto

]
pomcaf|[BorraR) o> Eliminar clase
[EORRAR]

deportes||BD

musica

Listado de clases <:|
de entrenamiento

2. Ver el listado de las clases existentes

3. Eliminar una clase de entrenamiento.

A.3.2. Gestion de textos de ejemplo

Una vez definidas las clases de textos que el sistema va a manejar, el siguiente paso es
anadir casos de ejemplo de cada una de las clases. Pueden pertenecer, o no, a los blogs
a los que el usuario se ha subscrito. Con estos textos BCtalog aprendera a identificar
las preferencias del usuario, y por lo tanto es necesario que los ejemplos introducidos

sean lo mas relevantes posible para asegurar la calidad de las recomendaciones.

Figura A.5: Insercion de un nuevo texto de ejemplo.

Company Name

PRINCIPAL - BLOGS - ENTRENAMIENTOS

Nuevo caso de entrenamiento

Unl del articule: | |

—_—— Selecciona una clase de entrenamiento

NUEVO CASO ENTR.

@ politica © deportes © musica

GESTION SVM.

Para la introduccién de los datos de ejemplo la pagina web proporciona la pantalla
Nuevo caso de entrenamiento. En ella, el usuario debera introducir la direccién URL
donde se encuentra el texto y seleccionar la categoria a la que pertenece, de entre las

ya creadas anteriormente. Este proceso se ilustra en la figura A.5.
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La pantalla Administrar casos de entrenamiento ofrece un listado de todos los ejem-
plos almacenados hasta el momento mostrados por categorias, como puede verse en la
figura A.6. Junto a cada caso de ejemplo se ofrece la opcién de borrarlo si el usuario

decide que no le interesa que esté asociado a esa cagegoria.

Figura A.6: Gestion de textos de ejemplo.

Company Name

PRINCIPAL - BLOGS - ENTRENAMIENTOS

Gestion de casos de entrenamiento

Entrenamientos para la clase: politica

ADMINISTRAR CLASES URL
hitp:ifwww.heraldo.es/noticias/nacionalllos_indignados_abarrotan_neptuno.html BORRAR)
ATRT=vay SENTR
http:ffwww heraldo.es/noticias/nacionalfizquierda_unida_permitira_gue_gobieme_extremadura.htm! BORRAR|

ADMINISTRAR CASOS
http:ffwww heraldo.es/noticias/aragonicha_celebra_villamayor_vigesimo_quinto_aniversario.html BORRAR|

TSR http:/www.heral do.es/nolicias/aragonipilar_mure_aun_muerlo_los_grapo_siguen_teniendo_secuesirado_marido.himi|[BORRAR)

hitp:/iwww.heraldo.es/noticias/uescatres_baranquistas_montanero_rescatados_huesca.html BORRAR)
http:/iwww.heraldo.es/noticias/internacional/nallan_los_cuerpos_seis_alpinistas_los_alpes_franceses.html BORRAR)

Entrenamientos para la clase: deportes

URL
http:/Avww.heraldo es/noticias/nacionalflos_indignados_abarrotan_neptuno.html |[BORRAR)
hiter thanw marea comiZ01106M afuthalfeaninnsiharcelona M ANR497689 html RORRAR

Es importante comentar que en este listado aparecen tanto los ejemplos introducidos

por el usuario como aquellas recomendaciones que el usuario haya aceptado.

A.3.3. Entrenamiento del sistema

Completadas las fases anteriores el usuario puede entrenar al sistema desde la pantalla
Gestion de SVM, mostrada en la figura A.7, que es accesible desde el ment lateral.
BCatalog iniciard el proceso de entrenamiento de su maquina de aprendizaje. Este

proceso puede requerir un tiempo para ser completado.

A partir de ese momento, BCatalog visitara periédicamente los blogs favoritos del
usuario, descargard y analizara los nuevos contenidos y recomendara, si procede, su

lectura al usuario.

Esta pantalla, ofrece adicionalmente la posibilidad de introducir la URL de un texto
cualquiera, y solicitar a BCatalog que lo analice y anada la correspondiente recomen-
dacién. Con esta utilidad el usuario puede comprobar el funcionamiento del sistema y

la calidad de las predicciones.
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Figura A.7: Entrenamiento del sistema y prediccion.

Company Name

PRINCIPAL - BLOGS - ENTRENAMIENTOS

Gestion de la SVM

Entrenamiento de la SVM

ADMINISTRAR CLASES ENTR. 2 : 3
NUEVQ CASQ ENTR. Iniciar entrenamiento con los datos existentes|

Entrenar ahara

GESTION SVM.

Iniciar nueva prediccién

Desde aqui puedes predecir un articulo concreto: Url del articulo: | [ Enviar ]

A.4. Recomendaciones

Cuando BCatalog determine que los nuevos textos estan lo suficientemente relacio-
nados con las preferencias del usuario, anadird nuevas recomendaciones que el usuario

podré ver cada vez que ingrese en la pagina y hasta que las acepte o rechace.

En la pantalla Principal, que aparece en la figura A.8 y es accesible desde el ment de
navegacion superior, aparecera un listado con las recomendaciones no pendientes de
verificacion. Cada recomendacién tiene su correspondiente botén para informar a BCa-

talog de si es o no del agrado del usuario.

Figura A.8: Ejemplo de recomendaciones propuestas por el sistema.

Company Name

PRINCIPAL - BLOGS - ENTRENAMIENTOS

BIENVENIDO A BCATALOG

Rubalcaba pide al Gobierno que amplie |2 ayuda de 400 euros a los desempleados... | Heraldo.es ( ME
GUSTAJNO ME GUSTA)
Palabras relacionadas: economia politica deportes tecnologia

Y

Recomendacion propuesta por BCatalog
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En caso de que el usuario esté satisfecho con las recomendaciones, pasaran a formar
parte de los textos de ejemplo y seran tenidas en cuenta cuando el sistema vuelva a

entrenarse. En caso contrario la recomendacion desaparecera.
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Anexo B

Relacion de clases del sistema

En este apartado se detallan las clases que el sistema maneja para realizar las tareas
de analisis y recomendacién de textos publicados en blogs de interés del usuario. Todas
ellas se incluyen en el paquete Entities, presente tanto en la vista como en el motor de

recomendaciones.
La figura B.1 ilustra las cinco clases y sus atributos. El significado de cada uno de

ellos se detalla a continuacion:

Figura B.1: Clases almacenadas por el sistema.
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Blog: Representa un blog de cuya publicacién de nuevos contenidos se notificara al

usuario. Esta formado por los siguientes atributos:

» URL: Una cadena de texto que almacena su direccién URL (del inglés, Uniform

Resource Locator).

= id: Un entero que almacena un identificador tinico del blog para uso interno.

Clase: Representa una clase de entrenamiento, que en este protipo es una categoria

a la que los textos pueden pertenecer. Sus atributos son:

= nombre: Una cadena de texto que contiene las palabras que forman el nombre de

la categoria.

= id: Un entero que almacena un identificador tinico de la clase para uso interno.

Post: Representa un texto de internet, y contiene toda su informacion relevante para

el sistema:

URL: Una cadena con su direccion URL.

id: Un entero que almacena un identificador tinico del post para uso interno.

titulo: Una cadena que almacena el titulo del texto.

texto: Una cadena que almacena el texto de interés.

Entrenamiento: Representa un caso de ejemplo que serd utilizado por la maquina

de aprendizaje. Esté formado por los siguientes atributos:
= post: Un objeto de la clase Post, que contiene toda la informacién del texto.

= clase: La clase o categoria a la que pertenece.

Recomendacion: Representa una recomendaciéon de un texto, que se ofrecerd al

usuario tras haber determinado que es de su interés. Sus atributos son:

= post: Un objeto de la clase Post con la informacién sobre el texto.

= clases: Una lista de cadenas que representan las clases con los que el post esta re-

lacionado.

El significado de los atributos resulta obvio, ya que simplemente representan la infor-
macién que el sistema necesita manipular. Cada clase ofrece inicamente métodos para

la lectura y escritura de sus atritubos.



Anexo C

La Maquina de Vectores de

Soporte

Las Méquinas de Vectores de Soporte (en adelante SVM, del inglés Support Vector
Machine) son un conjunto de algoritmos de aprendizaje supervisado, mediante los que

se puede ensenar a un sistema a diferenciar elementos de diferentes clases.

Para ello, es necesario entrenarlo proporcionandole un conjunto significativo de casos
de ejemplo. Tras el proceso de aprendizaje, el sistema serd capaz de predecir a qué clase

de las que ha aprendido a reconocer pertenece un nuevo dato desconocido.

En los siguientes apartados se revisan algunas nociones necesarias para entender c6mo
funcionan las SVM (apartado C.1) y se introducen las funciones Kernel (apartado C.2),
centrando el interés en la funcion SubString Kernel (apartado C.3) que es la utilizada

en este proyecto.

C.1. Introduccion

El funcionamiento detallado de este tipo de herramientas excede los objetivos de esta
memoria, puesto que se requieren conocimientos mateméaticos avanzados. Por tanto se
va a explicar, de forma intuitiva, en qué consisten los procesos de entrenamiento y de
prediccién. Para informacion méas detallada, puede consultarse cualquiera de los libros
en los que se basa el desarrollo del proyecto: Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond [14], Pairwise Classification as

an Ensemble Technique [16] o Kernels for Structured Data [15].

Es importante tener en cuenta que la resolucién de sistemas de ecuaciones lineales es

computacionalmente muy eficiente ya que para ello pueden usarse productos escalares
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entre vectores, idea en la que se apoyan las SVM. En cambio, la resolucion de sistemas

no lineales obliga a emplear otro tipo de métodos mas complejos y menos eficientes.

Para ilustrar los procesos de entrenamiento y prediccién, se van a utilizar objetos
con dos propiedades, y dos clases de entrenamiento a las que dichos objetos pueden

pertenecer.

Sea X el conjunto de datos de ejemplo, X y X2 las propiedades de interés de dichos

datos. Un dato x € X se representa de la forma x = (1, 22), tal que 1 € X1 y 22 € Xo.

El objetivo de la mdquina SVM cuando se entrena, es determinar un hiperplano que
separe los objetos de ambas clases, de forma que ademads la distancia entre el objeto

mas cercano al hiperplano en cada una de las clases sea méxima.

En la figura C.1 se muestra cémo se veria representado un conjunto de datos de

ejemplo conocidos, separados por el hiperplano calculado por la SVM.

Figura C.1: Representacion de objetos e hiperplanos de separacion.

A
XZ H H

Existen infinitos hiperplanos que separan las clases de entrenamiento, como pueden
ser Hy y Hy. La SVM elige Hs, pues, como se ha comentado, interesa quedarse con el
que permita un margen maximo entre ellas. Hs no separa las dos clases, y por tanto no
es un hiperplano valido. En este caso, y dada la naturaleza del ejemplo, los hiperplanos

son 1-dimensionales.
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C.2. Las funciones Kernel

En la mayoria de los casos reales, como casos con més de dos propiedades (variables
predictoras), no es posible conseguir que todos los elementos de cada clase queden se-
parados por un hiperplano, sino que se consiguen curvas de separacién. La solucién maés
eficiente en este tipo de problemas consiste en proyectar la informacién a un espacio de
dimensién superior de forma que, con esta nueva representacién, sea posible encontrar

un hiperplano y obtener un problema lineal, que puede resolverse eficientemente.

Para realizar esta proyeccién se utiliza una funcién de mapeo ® que asocia a cada
elemento del conjunto original un vector de dimensién superior, como puede verse en
la figura C.2.

Sea F' el conjunto formado por los mapeos de los datos de entrada. Formalmente,
F = {®(z),Vz € X}. Determinado dicho conjunto, la méquina SVM si va a ser capaz
de encontrar un hiperplano que separe los mapeos de los objetos de las distintas clases,

como ilustra la figura.

Figura C.2: Ejemplo de funcion de mapeo ®.

La dimensién del conjunto F' puede ser muy elevada. Puesto que internamente la
SVM trabaja calculando productos escalares de los datos representados como vectores,

almacenar vectores de tan altas dimensiones resulta poco practico en casos no triviales.

Es aqui donde cobran importancia las funciones Kernel, de las que todavia no se ha
hablado. Estas funciones reciben dos vectores y devuelven el producto escalar de sus

mapeos P.
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Ademas, las funciones Kernel cumplen la igualdad C.1, donde (...) representa el

producto escalar entre dos vectores.

K(z1,22) = (¢p(x1), p(x2)) = (x1,22), 21,22 € X (C.1)

La igualdad C.1 significa que el producto escalar de los datos de entrada coincide con
el producto escalar de sus mapeos ®. Este producto es el que calcula la funcién Kernel

y se utiliza como medida de similitud entre dos vectores.

Una caracteristica importante de este tipo de funciones es que no necesitan calcular
y almacenar los mapeos completos para realizar el producto escalar. En su lugar, van

calculando cada componente, multiplicandolas y acumulando los resultados.

En ocasiones es 1til que el resultado de la evaluacién de la funcion Kernel esté com-
prendido entre 0 y 1 o, lo que es lo mismo, que esté normalizado. La ecuaciéon C.2

muestra el cdlculo del producto escalar normalizado.

K((L‘l,(L'Q)
K(xl,xl) . K(.CUQ,.TQ)

s knorm € 10, 1] (C.2)

knorm =
\/

Existen numerosas funciones Kernel diferentes y la eleccién de la mas adecuada de-
pende del problema de clasificacién a resolver. En este proyecto se utiliza el SubString

Kernel cuyo funcionamiento se describe en el apartado C.3.

El proceso de entrenamiento de la maquina SVM consiste, como se ha mencionado,
en la obtencién de un hiperplano de separacion que ofrezca un margen de error maximo.
Los vectores de soporte son los que forman la base de dicho hiperplano, y son calculados

en este proceso.

El proceso de prediccién se realiza una vez se han obtenido los vectores de soporte.
Mediante productos escalares, calculados por la funciéon Kernel, se determina a qué lado
del hiperplano se encuentra el nuevo dato del que se quiere conocer su clase. Cada clase
queda separada a un lado del hiperplano, por lo tanto, el lado donde se determine que

el nuevo objeto se encuentra determinard la clase a la que pertenece.

C.3. El SubString Kernel

La funcién SubStringKernel (en adelante SSK) es el Kernel méas conveniente en la
tarea de andlisis de textos que es objeto del proyecto y por eso ha sido la alternativa

elegida de entre las distintas funciones Kernel. Los cédlculos realizados son complejos
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y pueden consultarse en detalle en el articulo Text Classification using String Ker-
nels[17]. En este apartado se introduce su funcionamiento intuitivamente para facilitar

la comprensién del lector.

Se puede consultar los libros Text Classification using String Kernels[17] y Lambda
pruning: an approrimation of the string subsequence kernel for practical SVM classifi-
cation and redundancy clustering[18] para una explicacién en mayor profundidad acerca

del kernel SSK y técnicas para su optimizacion.

El Kernel SSK realiza un cémputo de las subsecuencias comunes entre dos textos.
Una subsecuencia es un conjunto de caracteres consecutivos, o no, dentro de una cadena

de texto.

Algunos ejemplos de subsecuencias de la palabra trampolin son tram, tapon, trin, t o

tn.

Este Kernel asigna méas importancia a las subsecuencias de mayor longitud y penaliza
a las formadas por caracteres no consecutivos. Cuanto mas separados estén los carac-
teres de la subsecuencia, mas penalizacion sufrirdn y por tanto menos valor aportaran

al resultado de la comparacion.

A modo de ejemplo, sean t; = “Trampolin”, to = “rampa” y t3 = “Tan” tres cadenas
cortas. El Kernel SSK determinard que ¢; estd mas relacionada con to que con t3,
puesto que rampa tiene 3 caracteres comunes consecutivos con Trampolin, ademas del
caracter a, también comun. En cambio, Tan tiene sus 3 caracteres en comun pero no

son consecutivos, de modo que seran penalizados en el cémputo.

Los valores devueltos por esta funcion dependen de la longitud de las cadenas. Si se
comparan dos cadenas muy largas y poco relacionadas es frecuente obtener un resultado
mayor que si se comparan dos cortas muy similares. Una de las razones es que los
caracteres individuales son también considerados en el cémputo, con lo que aportaran

valor al resultado aun siendo poco relevantes.

Por este motivo conviene que la funciéon devuelva valores normalizados, teniendo en
cuenta la longitud de las cadenas que procesa. De esta forma se obtienen valores entre 0
y 1, con lo que se puede medir y comparar mejor el grado de semejanza entre cadenas de

longitudes muy dispares, asi como comparar los resultados en distintas comparaciones.
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Anexo D

La pagina web

La pégina web constituye la interfaz de comunicacién entre el usuario y BCatalog.

El médulo de vista estd pues formado por dicha pédgina y una serie de herramientas

que recogen los datos proporcionados, contactan con el motor de recomendaciones y

muestran al usuario la informacién devuelta por éste.

La figura D.1 ilustra la estructura interna del modulo vista, y los componentes que

forman tanto la pagina web como el bloque Java que procesa los datos.

Figura D.1: Estructura del mddulo de vista.

&) conro MODELO
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ONTENT

JAVA

1
EEEE EE
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La carpeta Web Content se estructura en subcarpetas y contiene todos los archivos
necesarios para el funcionamiento de la pagina web. El capitulo D.1 detalla cada uno

de estos elementos, entre los que se incluyen los siguientes:

1. La carpeta base, que contiene la plantilla de las pantallas que componen la web.
2. Distintos archivos XML[40] necesarios para la configuracién de la pagina.
3. La carpeta blog, que incluye las pantallas asociadas a la gestién de blogs.

4. La carpeta svm, en la que se encuentran las pantallas relacionadas con el apren-

dizaje del sistema.

El médulo Java incluye dos paquetes que forman una jerarquia por niveles, explicada

en mayor profundidad en el apartado D.2. Estos paquetes son:

1. El paquete beans, que recoge los datos procedentes de la pigina web y almacena
la informacién devuelta por motor de recomendaciones y que serd mostrada al

usuario en respuesta a sus peticiones.

2. El paquete servicio que recibe los datos del paquete beans, envia la peticion al

motor de recomendaciones y devuelve los resultados al nivel superior.

D.1. La carpeta Web Content

La carpeta Web Content contiene los archivos HTML de la pagina web, la plantilla
que define la estructura de las pantallas seran mostradas al usuario, una serie de archivos
XML que configuran el comportamiento del servidor y el archivo index.zhtml que es el

punto de entrada por defecto a la pagina.

D.1.1. La carpeta base

En el desarrollo de paginas web resulta muy ttil separar el estilo de la pagina del
contenido dindmico generado como resultado a las peticiones del usuario. Con ello se
consigue una divisién de tarea que facilita la depuracion de errores, el trabajo entre

miembros del equipo de desarrollo y las posibles ampliaciones del sistema a construir.

Esta es la razén de la existencia de la carpeta base, en la que se especifican por sepa-
rado la plantilla de la pdgina web (fichero template.zhtml), los estilos que personalizan
su apariencia (carpeta css) y las imdgenes que apareceran en la pagina a mostrar al

usuario (carpeta images).
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El fichero template.zhtml define la estructura de la pagina, las zonas de la pantalla
donde se pueden colocar contenidos dinamicamente. Es en él donde se especifica que la
pantalla estara formada por una cabecera con el logotipo de la aplicacién, un menu su-
perior de navegacién, uno lateral y una zona central principal para mostrar informacién

al usuario.

El contenido de cada una de las zonas no aparece en este archivo, sino que se in-
cluird posteriormente dependiendo de la péagina solicitada. Esta forma de trabajo es
similar a la utilizada en los lenguajes de programacién, en las que determinados fiche-

ros con codigo pueden incluirse en otros donde vayan a ser utilizados.

Los colores, el tipo y tamano de la fuente, las dimensiones de las zonas que componen
la pantalla y todas las deméds propiedades relacionadas con el estilo del sitio web se

implementan por separado en el archivo style.css, ubicado en la carpeta css.

La carpeta images contiene las imagenes mostradas en la pagina resultado, como son
el logotipo de la aplicacion, la imagen de la cabecera superior y otras que se utilizan

como fondo en las distintas zonas de la pantalla.

D.1.2. Los archivos XML

Para el correcto funcionamiento de la pagina web se requieren fundamentalmente dos
archivos que configuran el comportamiento del sitio ante la actividad del usuario. Estos

archivos se encuentran en la carpeta WEB-INF, y se comentan a continuacién:

1. faces-config.xzml: Especifica los objetos Java que manejaran la informacion inter-
cambiada entre el usuario y el sistema. Este fichero indica a JSF qué campos de
los formularios HTML ha de asociar a qué objetos Java para su manipulacion
posterior. Incluye ademads reglas de navegacion que especifican a qué pagina se
ha de redirigir al usuario cuando realice cada accién de las ofrecidas en la pagina

web.

2. web.zml: Aporta informacion al servidor web, como la pagina principal por defec-
to, la extension en que acaban las direcciones URL de cada una de las secciones

(seccion.html, seccion.jsf o cualquier otra que se decida) y otras indicaciones de
utilidad.
D.1.3. Las carpetas blog y svm

Por tdltimo, las carpetas blog y sum contienen archivos con el cédigo HI'ML propio

de cada seccién existente en la pagina web. Es importante destacar que el cédigo que
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aparece en cada uno de estos archivos define inicamente el contenido de cada una de las
zonas de la pantalla especificadas en el fichero template.zhtml. Para obtener codidigo
final, el servidor realizard una serie de operaciones que se comentan en el apartado
D.14

La carpeta blog contiene un unico archivo llamado gestion.xhtml, en el que se en-
cuentra el cédigo para generar los formularios para anadir, listar y borrar los blogs a

los que el usuario quiere subscribirse.

La carpeta svm contiene los siguientes archivos que implementan las pantallas para

gestionar el aprendizaje y entrenamiento de BCatalog:

1. index.zhtml: Es el punto de entrada a la seccién de gestion de aprendizaje del

sistema.

2. gestion_clases.xhtml: La pantalla que ofrece al usuario la creacién de una categoria

para sus textos de ejemplo.
3. nuevo_entrenamiento.zhtml: La pantalla para la insercién de textos de ejemplo.

4. gestion_entrenamiento.zhtml: La pantalla que muestra el listado de textos de

ejemplo agrupados por categorias.

5. sum.zhtml: La pantalla desde la que se puede entrenar al sistema.

D.1.4. Proceso de construcciéon de una pantalla

Como se ha mencionado repetidas veces a lo largo de este apartado, el estilo, la
estructura de la pagina web, las imégenes y el contenido se implementan por separado.
La generacién del cédigo HTML final que sera enviado de vuelta al usuario y que
el navegador web interpretara para mostrarle la pantalla pertinente, se realiza en los

siguientes pasos:

1. Cargar el codigo HTML contenido en el archivo template.xhtml.
2. Incluirle el archivo de estilos que se especifica en el.

3. Completar el contenido de cada zona de la pantalla con el cédigo que aparece en

el archivo correspondiente a la seccién solicita.

4. Una vez ensambladas las piezas que componen el cédigo final, se envia el resultado

al usuario.
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D.2. El médulo Java de gestion

El médulo Java de gestién estd formado por dos paquetes que trabajan como un
sistema por niveles que la informacién va atravesando en su recorrido de ida y vuelta

entre el ordenador del usuario y el motor de recomendaciones.

El paquete beans constituye el nivel superior. Contiene dos clases, BlogVista y Svm-
Vista. Cada una de ellas incluye objetos donde JSF almacena los datos procedentes del
usuario y los devueltos por el motor de recomendaciones. Este paquete comprueba la

existencia de los datos que recibe y los pasa al nivel inferior.

El nivel inferior lo implementa el paquete servicio, que es el encargado de interactuar
con el motor de recomendaciones. Incluye las clases BlogServicio y SvmServicio, que
ofrecen métodos que sus homélogas del nivel superior pueden invocar. Estas clases se
encargan de enviar la peticiéon al motor de recomendaciones y esperar los resultados o

una excepcion en caso de haber algin error en los parametros proporcionados.

Si se recibe una excepcion, ésta se propaga hasta el nivel superior, donde se construye

un mensaje de error que serd enviado al usuario para informarle del problema.

Por dltimo, el médulo Java de gestiéon incluye un paquete de utilidades para la va-
lidacion de datos, la interfaz del servidor remoto RMI que contiene los métodos que
ofrece el motor de recomendaciones y un paquete con las clases que maneja el sistema,

ya comentadas en el apartado B.
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Anexo E
El motor de recomendaciones

El motor de recomendaciones es el bloque principal del sistema. Se implementa como
un objeto remoto RMI, puesto que con esta herramienta de Java se construyen servi-
dores como objetos cuyos métodos pueden ser invocados por el cliente. Esta idea se ha

introducido ya en el apartado 4.2, Eleccién de las tecnologias.

Figura E.1: Estructura del motor de recomendaciones.

noo VISTA Gy . e MODELO

Para que un objeto pueda ser utilizado como un objeto remoto, es necesario que

cumpla una serie de requisitos, que son los siguientes:

1. Los métodos que ofrezca al cliente tienen que estar definidos en una interfaz, y la

clase a la que pertenece el objeto debe implementarlos todos.

2. Esta interfaz debe heredar de la clase Remote, contenida en el paquete RMI.
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3. El cliente debe disponer de una copia de la interfaz, para conocer los métodos que
puede invocar. No necesita su implementacién, ya que es informacién privada del

servidor.

4. Para que el objeto sea accesible por otras maquinas hay que darlo de alta en el
registro RMI.

Este bloque contiene ademéas mdédulos auxiliares, que se ilustran en la figura E.1.

En los siguientes apartados se profundiza en cada uno de estos médulos, los paquetes
Java que los implementan, las clases que contienen y los métodos maés relevantes de

cada una de ellas.

E.1. El paquete recomendaciones

Este apartado contiene la interfaz remota, la clase Recomendador, la excepcién propia
BCatalogEzception y la clase Actualizador, encargada de la revision de los blogs en busca

de nuevos contenidos.

E.1.1. La interfaz remota

La interfaz remota contiene solamente los prototipos de los métodos que el recomen-
dador debe implementar. El listado completo de estos métodos puede verse en el bloque
de cédigo E.1. Puesto que el cddigo fuente es de facil comprension y esta suficientemente

comentado, no son necesarias explicaciones adicionales.

Cddigo E.1: CatalogInterface.

public interface CatalogInterface extends java.rmi.Remote {

// Gestion de blogs
void nuevoBlog(String url) throws Exception;
public ArraylList<Blog> listadoBlogs () throws Exception;

public void borrarBlog(int id) throws Exception;

// Gestion de clases de entrenamiento
void nuevaClase(String urul) throws Exception;
public Arraylist<Clase> listadoClases() throws Exception;

public void borrarClase(int id) throws Exception;

// Gestion de textos de ejemplo (datos de entrenamiento)
public void nuevoEntrenamiento (String url, int clase) throws

Exception;
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public ArraylList<Entrenamiento> listadoEntrenamientos ()

throws Exception;

public void borrarEntrenamiento (int postId,

throws Exception;

// Operaciones sobre la SVM

public void entrenar () throws Exception;

public void predecir(String url) throws Exception;

// Gestion de recomendaciones

int claselId)

public void aceptarRecomendacion(int postId) throws Exception

)

public void rechazarRecomendacion(int postId) throws

Exception;

public ArraylList<Recomendacion>listadoRecomendaciones ()

throws Exception;

E.1.2. El recomendador

La clase Recomendador es el punto de entrada al programa y por tanto incluye su
propio método main. Cuando el programa inicia su ejecucion, crea el objeto del servidor
proporcionandole los pardmetros recibidos por linea de comandos. Dicho servidor queda
bloqueado a la espera de nuevas conexiones entrantes. El bloque de cédigo E.2 muestra

un resumen del método main.

Cddigo E.2: Método main del recomendador.

public static void main(String[] args) {

// Crea el servidor remoto
try {
new Catalog(args);

} catch (Exception re) {
System.out.println(re) ;

System.exit (1) ;
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// Pone el servidor a la espera
Object sync = new Object();

synchronized (sync) {



15

16

17

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

64

try { sync.wait(); } catch(Exception ie) {}

El constructor recibe los pardmetros y los procesa pasandolos al método inicializar.
También da de alta el servidor en el registro de RMI para que sea accesible desde otras
aplicaciones, locales o remotas, crea los objetos DAO para la interaccién con la base de
datos y pone en marcha el proceso actualizador para que compruebe las actualizaciones
en los blogs de interés. El cédigo E.3 es un resumen del cédigo del constructor de la

clase.

Cddigo E.3: Constructor del recomendador.

public Catalog(String[] args) throws RemoteException,
MalformedURLException {

super () ;

// Captura de parametros

inicializar (args);

// Alta del servidor en el registro de RMI

try {
java.rmi.registry.LocateRegistry.createRegistry (1099) ;
Naming.rebind("rmi://localhost/Catalog", this);

} catch (Exception e) {
System.exit (2);

// Creacion de objetos DAD
try {
blogDao = new BlogDao(servidorBD, BD, usuarioBD, passBD,
puertoBD) ;

} catch (CatalogException e) {
e.printStackTrace () ;

System.exit (2);

// Arranque del actualizador
actualizador = new Actualizador (blogDao, infoDao,

svm, recomendacionDao, conceptosDao, debug);
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actualizador.iniciar () ;

Para el procesamiento de los pardmetros se utiliza la utilidad JArgs [41],que ofrece
métodos para su facil manipulacién. A continuacién se detallan los pasos necesarios en

este proceso:

1. Se crea un objeto de la clase CmdLineParser, la utilidad que se va a utilizar.

2. Se especifican las opciones disponibles desde la linea de comandos y su tipo. Por
ejemplo, se puede especificar que se espera un parametro entero, opcional, y con

valor 0 en caso de no ser proporcionado.
3. Se ejecuta el método de analisis.

4. Se recogen los parametros, almacenandolos en las variables que interesen.

El cédigo E.4 muestra un ejemplo cémo capturar un parametro de tipo booleano y
almacenarlo en una variable llamada debug. En caso de no estar presente, el valor por

defecto sera false.

Cddigo E.4: Captura de pardmetros por linea de comandos.

public void inicializar(Stringl[] args) {

// Crea el analizador de parametros

CmdLineParser parser = new CmdLineParser ();

// Define las opciones disponibles, su tipo y su
// representacion en la linea de comandos
CmdLineParser.Option debug = parser.addBooleanOption(’v’, "

verbose") ;

// Analiza los parametros

try {

parser .parse (args) ;

}

catch ( CmdLineParser.OptionException e ) {
printUsage () ;

System.exit (2);

}
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// Comprueba los parametros e inicializa variables del programa

this.debug = (Boolean)parser.getOptionValue (debug, false);

Un ejemplo de cémo funciona la utilidad JArgs puede verse en el cédigo E.5. Los dos
primeros ejemplos provocarian que la variable debug del programa se inicializara con

valor true mientras el tercero provocaria un valor false.

Cdédigo E.5: Ejemplos de captura de pardametros.

$ bcatalog -v
$ bcatalog --verbose
$ bcatalog

La clase Recomendador incluye ademas la implementacién de los métodos definidos
en la interfaz remota. En cada uno de ellos se realizan comprobaciones de control, tales
como la validez de los parametros, la existencia en la base de datos de la informacién
a insertar o borrar y otras que sean necesarias. En caso de errores en los pardmetros,
se lanza una excepcion BCatalogException, que se explica a continuacién. Una vez
validados los datos de entrada, cada método realiza las operaciones correspondientes y

devuelve los resultados.

E.1.3. La excepcion BCatalogException

La excepcién BCatalogException es una excepcion propia que maneja la aplicacién.
Contiene una lista de cadenas donde se almacenan los errores que la han provocado, un
método para anadir uno nuevo a la lista y uno para obtenerlos. El cédigo E.6 incluye

la implementacién de la excepcién.

Cédigo E.6: CatalogEzxception.

public class CatalogException extends Exception {
private Arraylist<String>errores;

private static final long serialVersionUID =
8151911863184279687L;

public CatalogException() {
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super () ;

errores = new ArrayList<String>();

public void addError (String error) {

errores.add(error);

public ArraylList<String> getErrores () {

return errores;

E.1.4. El actualizador

La clase Actualizador implementa el componente que comprueba periddicamente la
existencia de nuevos textos en los blogs de interés del usuario. Contiene un bucle que
ejecuta una tarea y espera una hora antes de volver a ejecutarla. La tarea incluye las

siguientes operaciones:

1. Recoger la fecha de la tltima comprobacién, almacenada en la base de datos.
2. Recoger de la base de datos la lista de blogs a los que el usuario esté subscrito.

3. Para cada blog, obtener un listado de textos publicados con fecha posterior a la

de la dltima comprobacion.

4. Predecir la clase de cada uno de los textos obtenidos e insertar en la base de

datos, si procede, la nueva recomendacion pertinente.

E.2. El paquete svim

Este paquete contiene la implementacion de la Maquina de Vectores de Soporte de

Weka adaptada para su utilizacién en este proyecto.

Antes de detallar las modificaciones que se han realizado es necesario introducir el
funcionamiento del paquete original de Weka. El apartado E.2.1 muestra los segmentos

més significativos del cédigo a modificar.

En el apartado E.2.6 se explican las modificaciones llevadas a cabo para convertir la

svm de inicial en la herramienta final que este proyecto requiere.
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E.2.1. El paquete original de Weka

La maquina SVM implementada por Weka se encuentra en el paquete weka.classifiers. functions,
y recibe el nombre de clase SMO. Sus componentes mas importantes para comprender

los cambios introducidos son los siguientes:

1. Dataset: Conjunto de datos de entrenamiento.

2. Matriz de clasificadores SVM binarios: Matriz de tamano nxn de objetos de la

clase BinarySMO, donde n corresponde al niimero de clases de entrenamiento.

3. Subclase BinarySMO: Clasificador SVM binario cuyo funcionamiento y misién se

explica en el apartado E.2.3.

4. Métodos BuildClassifier y DistributionForInstance: Métodos de entrenamiento y

prediccién.

Dataset es el conjunto de datos de ejemplo de los que el clasificador dispone en
el momento de realizar las tareas de entrenamiento y prediccién. No es necesario un
apartado para su explicacién en profundidad. La utilidad del resto de componentes se

detalla en los apartados siguientes.

E.2.2. Matriz de clasificadores binarios

La clase SMO trabaja internamente con clasificadores SVM binarios. Estos clasi-
ficadores, cuyo funcionamiento se detalla en el apartado E.2.3, son entrenados para

distinguir objetos de dos clases de entrenamiento.

La matriz de clasificadores binarios se emplea pues para diferenciar, dos a dos, todas

las clases a las que los datos de ejemplo pertenecen.

E.2.3. La clase BinarySMO

La clase BinarySMO implementa los clasificadores SVM binarios. El detalle del algo-
ritmo de estas maquinas excede los objetivos de esta memoria, por lo que tinicamente

se introducen los métodos de aprendizaje y prediccién.

El método BuildClassifier es es el método que entrena el clasificador BinarySMO.
Recibe los datos de las dos clases que se encarga de reconocer. Realiza ajustes iniciales,

la obtencién de los vectores de soporte y otra serie de ajustes finales.
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El método SVMOutput es el método de predicciéon. Dada una nueva instancia,
realiza llamadas al Kernel SSK, que Weka implementa en la clase StringKernel. Realiza
comparaciones entre el nuevo dato y cada uno de los vectores de soporte, y utiliza los

resultados obtenidos para generar el resultado devuelto.

E.2.4. El método BuildClassifier

El método BuildClassifier de la clase SMO recibe los datos de ejemplo que el cla-
sificador utiliza. Tras una serie de comprobaciones iniciales crea los distintos objetos
BinarySMO, proporciona a cada uno los datos de las dos clases con las que trabaja y

los entrena. El bloque de cédigo E.7 ilustra este proceso de entrenamiento.

Cddigo E.7: Método BuildClassifier.

public void buildClassifier(Instances insts) throws Exception {
// Comprobaciones iniciales
m_classIndex = insts.classIndex();
m_classAttribute = insts.classAttribute () ;

// Genera los subconjuntos que representan

// a cada clase

Instances [] subsets = new Instances[insts.numClasses()];
for (int i = 0; i < insts.numClasses(); i++) {

subsets[i] = new Instances(insts, insts.numInstances());
}

// Crea la matriz de BinarySMO
m_classifiers =

new BinarySMO[insts.numClasses ()] [insts.numClasses()];

// Asigna a cada BinarySMO su conjunto de datos
for (int i = 0; i < insts.numClasses(); i++) {
for (int j = i + 1; j < insts.numClasses(); j++) {
m_classifiers[i][j] = new BinarySMO();
Instances data = new Instances(insts, insts.numInstances())
for (int k¥ = 0; k < subsets[i].numInstances(); k++) {

data.add (subsets[i].instance(k));
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// Entrena cada BinarySMO
m_classifiers[i][j].buildClassifier (data, i, j,
m_fitLogisticModels,

m_numFolds, m_randomSeed) ;

E.2.5. El método DistributionForInstance

El método DistributionForInstance es el encargado de predecir la clase a la que
pertenece un nuevo dato desconocido. Para ello invoca el método SVMOQOutput de cada
clasificador BinarySMO.

Cada objeto BinarySMO se encarga de predecir a cual de las clases que compara
es mas probable que pertenezca el nuevo dato. Por tanto, cada invocacién al método

SVMOutput sirve para asignar votos a cada una de las clases.

El resultado que se devuelve es el porcentaje de votos que cada una de las clases
existentes ha obtenido en la prediccién. Este proceso de asignacion de votos puede

verse en el bloque de codigo E.8.

Cédigo E.8: Método DistributionForInstance.

public double[] distributionForInstance(Instance inst) throws

Exception {

// Comprobaciones iniciales

// Crea un vector donde almacenar los votos para cada clase

double[] result = new double[inst.numClasses()];

// Para cada BinarySMO, ejecuta el metodo SVMOutput
for (int i = 0; i < inst.numClasses(); i++) {
for (int j = i + 1; j < inst.numClasses(); j++) {
if ((m_classifiers[i][j].m_alpha != null) ||
(m_classifiers[i][j].m_sparseWeights != null)) {

double output = m_classifiers[i][j].SVMOutput (-1, inst);
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// En funcion del resultado, asigna el voto
// a una u otra clase.
if (output > 0) {
result[j] += 1;
} else {

result[i] += 1;

// Normaliza el resultado para que
// el resultado quede expresado en 1%

Utils.normalize (result);

return result;

E.2.6. Modificaciones realizadas al algoritmo original

En este apartado se describen las modificaciones que se requieren para adaptar el

codigo implementado por Weka al problema tratado en este proyecto.

La implementacién original presenta un inconveniente importante. Dado un conjunto
de clases de entrenamiento, el método de predicciéon devuelve un conjunto con las
probabilidades de que el nuevo texto pertenezca a cada una de las clases, pero presupone

que pertenece a alguna de ellas.

Segin este modelo, BCatalog no puede determinar que un nuevo texto no pertenece
a ninguna de las clases y que por tanto no es del interés del usuario. A continuacién se

detallan cada una de las decisiones tomadas para la modificacién del cédigo inicial:

Primero, los objetos BinarySMO ya no comparan dos clases de entremiento. En su
lugar, cada uno de ellos se especializa en reconocer los objetos de una clase. Por este
motivo la matriz de nan clasificadores binarios se convierte en un vector de n de estos

objetos.

En cuanto al proceso de entrenamiento, los BinarySMO reconocen dos clases ficticias.
Una clase es la llamada “SI”, que contiene los elementos del conjunto de datos inicial

que pertenecen a la clase de la que se encargan. La otra clase es “NO”, que contiene
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todos los demés. Esto quiere decir que todos los clasificadores binarios manejaran todos

los datos de entrenamiento, pero cada uno de ellos los tratard de manera diferente.
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El bloque de cédigo E.9 ilustra esta nueva forma de entrenamiento.

Cddigo E.9: Método BuildClassifier adaptado.

public void buildClassifier(Instances insts) throws Exception {

// Comprobaciones iniciales

m_classIndex

insts.classIndex () ;

m_classAttribute = insts.classAttribute();

// Extrae los textos

ArraylList<String> textos = new ArraylList<String>();

for (Instance inst : insts) {

String nueva

= inst.stringValue (0);

textos.add (nueva) ;

ArraylList<Attribute> atributos = crearAttributes(textos);

// Crea los datasets para cada clasiffier

Instances []

sub

for (int i=0; i

sets = new Instances[insts.numClasses()];

<subsets.length; i++) {

ArrayList<String> clases = new ArraylList<String>();

// Recorremos el conjunto de datos inicial,

// valores de las

for (Instance inst : insts) {
if (inst.value(1)==i) clases.add("SI");
else clases.add("NO");

}

subsets [i]

// Crea los clasificadores binarios

m_classifiers =

for (int i

0;

crearDataSet (atributos, textos,

utilizando 1los

clases SI y NO como corresponda

clases);

new MiBinarySMO[insts.numClasses()];

i < subsets.length;

i++) {
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m_classifiers[i] = new MiBinarySMO();

// Entrena los clasificadores binarios
for (int i=0; i<subsets.length; i++) {
m_classifiers[i].buildClassifier (subsets[i]l, 0, 1,
m_fitLogisticModels,

m_numFolds, m_randomSeed) ;

Por su parte, el proceso de prediccion también es ligeramente distinto al original.
Cada clasificador binario determina si el nuevo objeto pertenece a su clase ficticia “SI”.
El nuevo resultado contendra tantas componentes con valor 1.0 como categorias con
las que el nuevo texto esté relacionadas. Si el texto no esta relacionado con ninguna de

las clases de entrenamiento, el vector contendra n valores 0.0.

El bloque de cddigo E.10 ilustra el nuevo método de prediccién:

Cdédigo E.10: Método DistributionForInstance adaptado.

public double[] distributionForInstance(Instance inst) throws

Exception {

// Comprobaciones iniciales

double [] result = new double[inst.numClasses ()];

for (int i = 0; i < inst.numClasses(); i++) {
if ((m_classifiers[i].m_alpha !'= null) ||
(m_classifiers[i] .m_sparseWeights != null)) {

double output = m_classifiers[i].SVMOutput(-1, inst);

// Si el texto esta relacionado, se incrementa la
componente
// correspondiente en el vector de resultados.
if (output <= 0) {
result[i] = 1;
} else {
result[i] = 0
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return result;

E.3. Clase Zirano

La clase Zirano ofrece un tnico método que, dada una palabra, obtiene una lista de
palabras relacionadas que extrae de la pagina web de Zirano. Cuando un usuario quiere
obtener esta lista de ideas a través de la pagina web, tiene que realizar una serie de

pasos para localizar las palabras que le interesan. Los pasos son los siguientes:

1. Introduce la palabra de su eleccién.
2. La web le ofrece un conjunto de ideas con las que se puede relacionar su palabra.

3. El usuario navega entre esas opciones, obteniendo para cada una un conjunto de

palabras relacionadas.

El método obtenerldea simula esta navegacién, de forma que la web de Zirano devuel-
va los resultados que devolveria a un usuario que recorriera todas las ideas relacionadas

con su palabra. Para ello, realiza las siguientes operaciones:

1. Descarga la pégina inicial de Zirano, y almacena la cookie que ésta le envia.
Dicha cookie identifica al usuario cuya navegacién se esta simulando, y por tanto

sera enviada en cada transaccion a modo de identificador.
2. Se envia a la web la palabra de la que se quiere obtener el campo conceptual.

3. La web responde con un listado de ideas a las que puede estar relacionadas. Se
analiza y procesa el cédigo HTML de la respuesta para obtener un listado de

enlaces a los que enviar las siguientes peticiones.

4. Cada uno de los enlaces obtenidos constituye una peticién a la web de un listado

de palabras relacionadas con una idea en concreto.

5. Ante una de estas peticiones, la web responde con un listado de palabras que
el método va almacenando. El cédigo HTML de estas nuevas respuestas se filtra

para quedarse unicamente con el listado de palabras.
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6. Una vez completadas las peticiones para todas las ideas, o alcanzado un ntimero
maximo de palabras almacenadas, la navegacién termina y el método devuelve

los resultados.

E.4. El paquete util

Por tdltimo se introducen algunas utilidades creadas para facilitar la implementacién

del resto de médulos.

E.4.1. Interfaz para el manejo de blogs

En este apartado se explica cémo el sistema obtiene los textos de Internet. Para
poder implementarse esta funcionalidad se precisa de alguna herramienta que permita

conocer qué textos forman la pagina y cuando fueron publicados.

Una herramienta til que existe para este cometido son los archivos XLM llamados
Sitemap.xml [42], que incluyen la informacién, como su direccién URL, su titulo, su
frecuencia de actualizaciéon o su fecha de publicacién. Un ejemplo del contenido de

dichos archivos es el que aparece en el cédigo E.11.

Cddigo E.11: Ejemplo de sitemap.xml.
<?7xml version="1.0" encoding="UTF-8"7>
<urlset
xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>http://www.example.com/</loc>
<lastmod>2005-01-01</lastmod>
<changefreq>monthly</changefreq>
<priority>0.8</priority>
</url>
</urlset>

La existencia de este archivo no es obligatoria aunque si muy recomendable, pues
facilita la accesibilidad de la pagina web y mejora el posicionamiento en los buscadores.
A pesar de la gran variedad de sitios web que el usuario puede estar interesado en
leer, este proyecto se centra en los desarrollados utilizando el CMS Wordpress, ya que
todos ellos contienen un Sitemap y se puede localizar con facilidad aunque pueda estar

guardado con otro nombre.
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Por esta razén se ha creado una interfaz Java que permite la obtencion del Sitemap
y su manipulacién, y una implementacién concreta para las paginas desarrolladas con

Wordpress. Los métodos ofrecidos por esta interfaz aparecen en el cédigo E.12.

Cddigo E.12: ManejoBlogInterface.

public interface ManejoBlogInterface {

// Devuelve true si el blog tiene un Sitemap valido

public boolean isValido () ;

// Obtiene una lista de Posts publicados despues de la fecha "
limite"

public ArrayList<Post> obtenerPosts(Date limite);

// Descarga de nuevo el archivo sitemap.xml

public void actualizarSiteMap();

E.4.2. Manejo de cédigo HTML

Para el manejo de cédigo HTML se ha creado una clase que ofrece métodos que otras

clases pueden necesitar, y que se comentan a continuacion:

La clase Zirano, que se detalla en el apartado E.3 necesita simular la navegacién
efectuada por un usuario que desea obtener un campo conceptual. En el proceso, un
navegador web intercambiaria una cookie con el servidor de Zirano. Este intercambio

se implementa con el método obtenerCookie.

La descarga del cédigo HTML de una pagina web se realiza mediante el método
obtenerHTML que recibe como pardmetros, ademas de su direccién URL, un ntimero
maximo de intentos de descarga tras los cuales se aborta la operacion y se devuelve un

error.

El método obtenerPagina devuelve un objeto de tipo Post, con el titulo, la direccién

URL y el texto filtrado de la pagina descargada.

El método filtrarHTML se utiliza para eliminar las etiquetas HTML y lineas en blanco
de la cadena que recibe como parametro. El resultado es una cadena de texto que

contiene el texto plano de la pagina, y que es utilizada por la maquina de aprendizaje.
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De ahi la importancia de la eficacia de este método, pues es necesario que el texto a

analizar contenga la minima cantidad de informacién no relacionada con él.

El bloque de cédigo E.13 contiene los prototipos de cada uno de los métodos:

Codigo E.13: Clase HTML.
public class HTML {

public static Post obtenerPagina(String url) throws

CatalogException { ... }

protected static String obtenerHTML (

String direccionUrl, String cookie, int intentos) { ... }

protected static String obtenerCookie (String direccionUrl, int

intentos) { ... }

public static String filtrarHTML(String html) { ... }

E.4.3. Utilidades de conversién

La clase Conversiones incluye los métodos para convertir datos de distintos tipos
que han sido necesarias en algunos médulos del sistema. El cédigo E.14 muestra los

prototipos de dichos métodos.

Cddigo E.14: Clase Conversiones.

public class Conversiones {

// Devuelve el double representado por la cadena s

public static double atof (String s) { ... }

// Devuelve el entero representado por la cadena s

public static int atoi(String s) { ... }

// Devuelve la representacion en forma de cadena de la fecha d
public static String datetostring (Date d) { ... }

// Devuelve la fecha representada por la cadena s
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public static Date stringtodate (String s) { ... }

E.4.4. La clase es_Stemmer

La clase Stemmer implementa el lematizador que calcula la raiz de una palabra. Se
basa en el algoritmo de Porter[32], y es utilizada por el sistema cuando se calculan los

campos conceptuales.

Es importante mencionar que la clase se descargd de un foro de internet en el que
alguien preguntaba donde podia conseguir una implementacién de un lematizador en
Java. En al codigo fuente no aparece la pigina web del autor, asi que no puedo in-
cluir su referencia. Segun se explicaba en aquel foro, se trata de una traduccion de la

implementacién escrita en PHP[43] que puede descargarse de SourceForge [31].



Anexo F

El sistema de gestion de la

persistencia

En este apartado se explica en detalle la estructura del sistema de gestién de la
persistencia, que incluye una base de datos donde se almacena la informacién necesaria
para el funcionamiento del sistema y un conjunto de clases Java que ofrecen una interfaz

de comunicacion con ella.

El apartado F.1 contiene la explicacion sobre la estructura de la base de datos y una
serie de consideraciones previas que justifican la existencia de sus tablas. En el apartado
F.2 se introducen las clases que manejan la base de datos y se concreta con qué tablas

interacciona cada una de ellas.

F.1. La base de datos

La base de datos se aloja en un servidor MySQL, y contiene 9 tablas donde se
almacenan los blogs, los textos manejados por el sistema, la informacion referente a
palabras y campos conceptuales, las clases de entrenamiento, los textos de ejemplo, las

recomendaciones y otra informacién necesaria para el funcionamiento del sistema.

Su estructura completa puede verse en la figura F.1, que muestra todas las tablas
existentes, los campos que las forman y cémo se relacionan unas tablas con otras. Para
obtener esta estructura final ha sido necesario tener en cuenta algunas consideraciones

que se comentan a continuacién.

La descarga de un texto desde internet requiere conectarse a un servidor web externo
para solicitarle el cédigo HTML de la péagina donde aparece dicho texto. El cédigo

HTML recibido hay que filtrarlo para eliminar informacién que no sea relevante y
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Figura F.1: Estructura de la base de datos.

INFO BLO S
Propiedad: string url: string
Valor: string id: string
CAMPO
PALABRA CONCEPTUAL RAIZ
id: integer id_palabra: integer id: integer
texto: string id_raiz: integer texto: string
FOST ENTRENAMIENTC
id: integer } :
id_post: integer
titulo: string
) id_clase: integer
texto: string
url: string
RECOMENDAZION CIASF
id_post: integer id: integer
id_clase: integer texto: string

almacenarlo en la base de datos. Todo este proceso lleva un tiempo de ejecucién asociado

que no puede despreciarse.

El usuario puede anadir textos de ejemplo al sistema y borrarlos si mas tarde con-
sidera que ya no son relevantes. En un momento dado puede decidir que un texto ya
no estd relacionado con una de sus categorias, sino con otra diferente. Si no se adopta

ninguna medida ese texto se descargara varias veces.

Por otra parte una recomendacion se convertird en caso de ejemplo si el usuario la
aprueba. Podra ocurrir, por tanto, que posteriormente el usuario pueda actuar como
se comenta en el parrafo anterior, cambiando la categoria con la que un texto estd re-

lacionado.
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Con el fin de evitar las repetidas descargas de un mismo texto, se ha decidido que
la tabla Post sea un almacén al que sélo puedan anadirse textos nuevos y obtener un
listado de ellos. Esta decisiéon implica que las tablas Recomendacion y Entrenamiento

contendran referencias a la tabla Post, en lugar de sus datos completos.

En cuanto al almacenamiento de los campos conceptuales, conviene tener en cuenta lo
siguiente. En primer lugar varias palabras pueden tener la misma raiz, como por ejemplo
ocurre con mesa 'y mesilla. Almacenar raices repetidas supone un gasto innecesario de

espacio.

Una palabra puede aparecer en varios campos conceptuales distintos. Este hecho se
produce muy frecuentemente debido a la gran cantidad de acepciones que las palabras
pueden tener en la lengua espanola. Cada palabra deberia ser almacenada sdlo una vez,

para evitar informacién redundante en la base de datos.

Por todo ello se dispone de tres tablas para manipular los campos conceptuales. En
la tabla Palabra se almacenan las palabras completas que el sistema haya manejado,
independientemente de que pertenezcan al nombre de una categoria o a un campo
conceptual. La tabla Raiz contiene las raices de palabras obtenidas en el proceso de
lematizacién. Por iltimo, la tabla Campo Conceptual relaciona pares de elementos de

las dos tablas anteriores.

Las tablas Post, Palabra, Raiz y Campo Conceptual sélo ofrecen operaciones para
anadir nuevos datos y obtener un listado. No ofrecen la posibilidad de eliminar datos,

ya que constituyen un almacén que conviene conservar por motivos de rendimiento.

En ampliaciones del sistema que incluyan la posibilidad de que existan diferentes
usuarios las ventajas de estas decisiones seran mas notables, pues cada uno anadird in-
formacién al sistema que estara disponible al resto de los usuarios. Cuantos més usua-
rios utilicen el sistema, a mayor velocidad aumentara la cantidad de informacién en los

almacenes y menos descargas nuevas habrd que realizar.

F.2. El paquete de acceso a datos

El paquete de acceso a datos, al que en adelante se llamard DAO (del inglés, Data
Access Object) contiene diferentes clases que se encargan de la interaccién con la base

de datos. La figura F.2 ilustra las clases que incluye dicho paquete.
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Figura F.2: Estructura del paquete DAO.

DAO
BLOG CLASE CLASIFICADOR  CONCEPTOS
DAO DAO DAO DAO
ENTRENAMIENTO INFO POST RECOMENDACION
DAO DAO DAO DAO

A continuacion se introduce la funcion las clases del paquete, especificando las tablas

a las que accede cada una.

La clase BlogDao manipula la tabla Post. Ofrece métodos para anadir, listar, com-

probar si existe y borrar blogs en la base de datos.

La clase ClaseDao manipula la tabla Clase. Gestiona las clases de entrenamiento,

que representan las categorias a las que los textos pueden pertenecer.

La ClasificadorDao no manipula ninguna tabla. Ofrece métodos para el almacena-
miento en disco de la SVM. Puesto que la informacién de la maquina de aprendizaje
ocupa demasiado espacio para introducirse en una base de datos, se opta por utilizar

el sistema de ficheros.

La clase ConceptosDao controla el acceso a las tablas Palabra, Raiz y Campo
Conceptual, permitiendo anadir palabras, almacenar sus raices y campos conceptuales.
No ofrece métodos de listado ya que los datos que maneja son de uso interno del sistema.
Tampoco ofrece operaciones de borrado, con el fin de almacenar a modo de cache todos

los datos que se inserten.



83

La clase EntrenamientoDao manipula la tabla Entrenamiento. Gestiona los datos
de entrenamiento del sistema, ofreciendo operaciones de insercién, listado, comproba-

cién de existencia y eliminacién.

La clase InfoDao manipula la tabla Info, que contiene informacién necesaria para
el funcionamiento del sistema. En este prototipo dicha informacion consiste iinicamente
en la fecha y hora a la que se realiza la tltima comprobacién de los blogs de interés en

busca de nuevos textos que recomendar al usuario.

La clase PostDao interactia con la tabla Post. Ofrece operaciones de insercién de
textos en la base de datos, asi como de listado. Por motivos comentados al principio de

este subapartado no se ofrecen operaciones de eliminacién.

La clase RecomendacionDao manipula la tabla Recomendacion. Gestiona las re-
comendaciones que seran ofrecidas al usuario, y ofrece métodos de insercién, listado,

borrado y comprobacion de existencia.
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Anexo G

La paralelizacion de tareas en
detalle

Este apartado describe las modificaciones realizadas para incorporar trabajo en pa-
ralelo en algunas tareas internas del sistema. En este prototipo las mejoras introducidas

estan relacionadas con la maquina SVM.

Un estudio del funcionamiento interno de la implementacién de Weka, tras su adap-
tacion para su utilizacién en este proyecto, ha permitido encontrar tres alternativas en
las que puede incluirse la ejecucion de tareas en paralelo, que se ilustran en la figura
G.1.

La primera de ellas se encuentra en el Kernel SSK, implementado en la clase String-
Kernel que se encuentra en el paquete weka.classifiers.functions.supportVector. Las

posibilidades de paralelizacién en esta clase se detallan en el apartado G.1.

La segunda alternativa consiste en la modificacién de los métodos de entrenamiento y
prediccién de los clasificadores binarios (clase BinarySMO), y se comenta en el apartado
G.2.

Por dltimo, es posible que todos los clasificadores binarios realicen en paralelo las

tareas de entrenamiento y prediccién, como se explica en el apartado G.3.

G.1. Paralelismo en el Kernel SSK

El método de comparacién de dos cadenas ofrecido por la clase StringKernel, que

implementa el Kernel SSK, realiza tres cdlculos consecutivos. Uno de ellos compara las
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Figura G.1: Niveles de paralelizacion de la mdquina SVM.

dos cadenas, y los otros dos se utilizan para normalizar el resultado, como ilustra la

ecuacion C.2 en el anexo C, La Mdquina de Vectores de Soporte.

El bloque de cdédigo G.1 contiene el cédigo Java que compara las dos cadenas y

normaliza el resultado obtenido para que esté comprendido entre 0 y 1.

Cddigo G.1: Cddigo paralelizable en la clase StringKernel

public double normalizedKermel (char[] s, char[] t){

// Compara cada cadena consigo misma
double k1 = unnormalizedKernel (s, s);

double k2 = unnormalizedKernel(t, t);

// Calcula el factor de normalizacion

double normTerm = Math.sqrt( ki1*xk2 );

// Compara una cadena con otra y devuelve
// el resultado normalizado

return unnormalizedKernel(s, t) / normTerm;
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Estudiando el método unnormalizedKernel en profundidad puede comprobarse que
en ningun momento modifica las cadenas que recibe como parametros. Por ello, y dado
que las tres invocaciones a este método utilizan datos que no dependen unos de otros,
pueden ejecutarse en paralelo. El bloque de cédigo G.2 muestra una ligera modificacién

del cédigo anterior, a la que ya se le puede introducir el trabajo en paralelo:

Cddigo G.2: Codigo paralelizable en la clase StringKernel
public double normalizedKernel (char[] s, char[] t){

// Compara cada cadena consigo misma
double ki1
double k2

unnormalizedKernel (s, s);

unnormalizedKernel (t, t);

// Compara una cadena con otra

double k3 = unnormalizedKernel(s,t);

// LAS TRES LLAMADAS ANTERIORES
// PUEDEN LANZARSE EN PARALELO.
// CUANDO TODAS TERMINEN PUEDE
// EJECUTARSE EL CODIGO A CONTINUACION

// Calcula el factor de normalizacion
double normTerm = Math.sqrt( k1*k2 );

// Devuelve el resultado de la comparacion
// normalizado.

return k3 / normTerm;

Tras esta modificacion menor en el c6digo original pueden crearse tres objetos de la
clase Thread de Java, asignarles a cada uno una de las llamadas al método unnorma-

lizedKernel y esperar a que todos terminen para generar el resultado a devolver.

G.2. Paralelismo en la clase BinarySMO

En este apartado se introducen las modificaciones que se pueden realizar en el c6digo
de la clase BinarySMO para implementar la paralelizacion de sus tareas de entrena-

miento y prediccién.
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Es la parte mas complicada de este proceso, pues se trata de trabajos iterativos y
no siempre puede asegurarse de que las diferentes iteraciones sean independientes entre

ellas, de forma que el orden de ejecucién no altere los resultados.

En el apartado G.2.1 se profundiza en el estudio del cédigo del método buildClassifier
realizado. Por otra parte, el estudio del método SVMOQOutput se comenta en el apartado
G.2.2.

G.2.1. El método buildClassifier

En el método buildClassifier se realiza una busqueda de los vectores de soporte que
el clasificador utilizard en la fase de prediccion. Esta busqueda se lleva a cabo de forma
incremental, utilizando en cada iteracion los vectores encontrados hasta ese momento

y utilizandolos para encontrar otros nuevos.

El bloque de cédigo G.3 muestra el bucle principal del método. Como puede verse, no
hay un ntimero fijo de iteraciones, sino que en funcién de los resultados se van asignando
valores a las variables numChanged yv examineAll. Por ese motivo las iteraciones no

pueden ejecutarse en paralelo.

Cédigo G.3: Resumen del método BuildClassifier

public synchronized void buildClassifier(Instances insts...)

throws Exception {

// Ajustes iniciales

// Bucle de busqueda
while ((numChanged > 0) || examineAll) {
numChanged = 0;

if (examineAll) {
for (int i = 0; i < m_alpha.length; i++) {
if (examineExample(i)) {

numChanged ++;

} else {



20

22

23

10

11

12

13

14

15

16

17

18

19

20

21

22

89

// Ajustes finales

Dentro de cada iteracion, el método examineExrample se ejecuta un ntmero fijo de
veces, pues el valor de m_alpha.length no se modifica ni en ese bucle ni dentro del
método. Por tanto las iteraciones de este bucle interno podrian ejecutarse en paralelo, si
no fuera porque dentro del método se utilizan variables cuyos valores se van modificando
a lo largo de las iteraciones del bucle principal. Por ese motivo se descarta esta segunda

opcién de paralelizacion.

El método examineFExrample contiene ajustes iniciales y una llamada al método ta-
keStep. El bloque de cédigo G.4 muestra las acciones mas relevantes ejecutadas por

cada uno de ellos.

Cddigo G.4: Resumen de los métodos examineFExample y TakeStep

protected boolean examineExample (int i2) throws Exception {

// Comprobaciones iniciales

return takeStep(il, i2, F2);

protected boolean takeStep(int il, int i2, double F2) throws
Exception {

// Comprobaciones iniciales

// Llamadas al Kernel que son

// paralelizables

k11 = m_kernel.eval(il, il, m_data.instance (il));
k12 = m_kernel.eval(il, i2, m_data.instance(il));

k22 = m_kernel.eval(i2, i2, m_data.instance (i2));

// Mas ajustes
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// Llamadas al metodo de prediccion

// paralelizables

f1 = SVMOutput(il, m_data.instance(il));
f2 = SVMOutput(i2, m_data.instance (i2));

// Ajuste de vectores de soporte
if (a1l > 0) {

m_supportVectors.insert (il);

// Otros ajustes
for (int j = m_IO.getNext(-1); j != -1; j = m_I0.getNext(j)) {
if ((§ '= i1) && (§ '= i2)) {
m_errors[j] +=
yl * (al - alphl) * m_kernel.eval(il, j, m_data.instance(
i1)) +
y2 * (a2 - alph2) * m_kernel.eval(i2, j, m_data.instance(
i2));

return true;

Las invocaciones al Kernel y al método SVMOQOutput pueden ser ejecutadas en paralelo
puesto que soélo reciben parametros de entrada y no hay dependencias de escritura. En
cambio, los ajustes iniciales y la actualizacion de los vectores de soporte dependen entre

iteraciones.

Del parrafo anterior se puede deducir que no pueden realizarse invocaciones paralelas
al método examineFErample, pero si es posible ejecutar al mismo tiempo algunas de sus

operaciones internas.

G.2.2. El método SVMOutput

El método SVMOutput es el método que ejecuta la tarea de prediccién en un objeto
BinarySMO. En su interior se realizan una serie de comprobaciones iniciales y, tras ellas,
se invoca al Kernel SSK para que compare el nuevo dato con cada uno de los vectores

de soporte conocidos. El resultado de cada comparacién se utiliza para ir acumulando
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el resultado devuelto. El resumen de este método puede verse en el bloque de cédigo
G.5

Cédigo G.5: Resumen del método SVMOutput

public double SVMOutput(int index, Instance inst) throws
Exception {

// Comprobaciones iniciales

double result = O0;

// Compara con cada vector de soporte

// y acumula el resultado

for (int i = m_supportVectors.getNext(-1); i != -1;
i = m_supportVectors.getNext (i)) {
result += m_class[i] * m_alpha[i] * m_kernel.eval(index, i,

inst);

// Ultimo ajuste del resultado y devolucion

result -= m_b;

return result;

Las iteraciones del bucle son independientes entre si. La variable result va acumulando
el resultado en cada iteracién y la unica precaucién necesaria es que la consulta de su
valor y la actualizacién se hagan en exclusion mutua. Teniendo en cuenta ese detalle

no hay ningun inconveniente en que las invocaciones al Kernel se hagan en paralelo.

G.3. Paralelismo en la clase SMO

La clase SMO es el clasificador SVM que BCatalog utiliza para aprender las prefe-

rencias del usuario y recomendarle lecturas de su interés.

Durante la operacién de entrenamiento del clasificador se crean tantos clasificado-
res binarios como clases de entrenamiento, proporcionando a cada uno una copia del

conjunto de datos de ejemplo debidamente etiquetados.
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Entrenar el sistema consisiste pues en entrenar cada uno de los objetos BinarySMO.
Puesto que reciben una copia propia del conjunto de datos pueden entrenarse en paralelo
sin necesidad de ningin mecanismo de control ni otras medidas para garantizar la

correccion de los entrenamientos individuales.

La fase de prediccién se realiza de la misma manera. Una vez entrenados dichos
objetos, el método distributionForInstance ofrecido por el clasificador SVM invoca al
método SVMOutput de los clasificadores binarios y opera con los resultados. Todas
estas invocaciones también pueden realizarse en paralelo para obtener mejoras en los

tiempos de ejecucion.

G.4. Consideraciones sobre las alternativas

Es importante conocer los efectos que cada una de las alternativas de paralelizacién
producirdn en el rendimiento del sistema. A continuacién se introducen los beneficios

estimados de cada una de ellas:

La paralelizacién de tareas a nivel més bajo, en el método de evaluacién del Kernel
SSK, supone mejoras tanto en operaciones de entrenamiento como de prediccién. Como
se ha comentado, con esta alternativa se realizan tres calculos en paralelo, y por tanto
el tiempo de ejecucién de una evaluacién queda en teoria acotado por el maximo de
los tiempos de estos tres calculos. Por contra, si se implementan otras alternativas se
crean demasiadas tareas en paralelo y es posible que los efectos producidos por esta

alternativa se vean reducidos al crear y destruir los hilos de ejecucién.

La segunda alternativa de paralelizacion, los métodos ofrecidos por los objetos Bi-
narySMO obtiene mejores resultados al aumentar el niimero de datos de ejemplo, puesto
que se ejecutan en paralelo buena parte de las invocaciones al Kernel SSK. Un incon-
veniente de esta alternativa es que si varios de estos objetos trabajan al mismo tiempo
el nimero hilos de ejecuciéon aumenta significativamente. Este inconveniente se agrava

si se combina con la alternativa anterior.

La tercera alternativa de paralelizacién consiste en que los objetos BinarySMO tra-
bajen en paralelo, como se ha comentado en el apartado G.3. Esta alternativa resulta
ventajosa si el nimero de clases de entrenamiento (clases de interés del usuario) aumen-
ta. Cuantas més clases, mayor nimero de entrenamientos y predicciones se ejecutan al

mismo tiempo.
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La eleccién de qué niveles de paralelismo implementar no es trivial, pues depende del
numero de clases de entrenamiento, de la cantidad de textos de ejemplo y de la potencia
de céalculo disponible en la maquina en la que se ejecuta el sistema. La solucién optima

requiere un estudio del servicio que se desea ofrecer y de las infraestructuras disponibles.

En la construccién de este prototipo se ha decidido implementar los dos niveles
superiores, dejando la paralelizacion de la funcién de evaluacién del Kernel SSK para

implementaciones futuras.

G.5. Implementacion de las mejoras

Para la implementacién de las mejoras propuestas se ha anadido un objeto CachedTh-
readPool a los objetos SMO y BinarySMO.

La clase CachedThreadPool [44] implementa un gestor de tareas concurrentes. Cuan-
do se le solicita que ejecute un trabajo en paralelo crea un hilo de ejecucion y le asigna
la tarea. Cuando éste termina se encarga de destruirlo de forma transparente al progra-
mador. Una ventaja importante que proporciona es la reutilizacién de hilos de ejecucién
una vez terminan su trabajo de forma que no sea necesario crearlos de nuevo ante una

nueva solicitud de trabajo.

Esta caracteristica ayuda a reducir la penalizacion en tiempo derivadas de la creacién
y destruccién de nuevos hilos de ejecucion puesto que sélo se crean cuando no hay
ningun hilo disponible, y se destruyen cuando pasado un tiempo un hilo no recibe

tareas a ejecutar.

Los objetos CachedThreadPool pueden recibir cualquier objeto que implemente la

interface Runnable, como por ejemplo objetos de la clase Thread, Task o Future Task[45].

La clase FutureTask ejecuta un bloque de cédigo en paralelo y proporciona un método
con el que se puede recuperar el resultado de su tarea. Es la implementacion elegida
en este prototipo puesto que el cédigo a ejecutar en paralelo consiste en métodos que

devuelven un resultado.

Introducidas las herramientas a utilizar, se pasa a describir el proceso de modificacién
del cédigo fuente. El bloque de cédigo G.6 muestra la versién secuencial inicial y, a

continuacién, el codigo que resulta de la inclusion de paralelismo.
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Cddigo G.6: Ejemplo de paralelizacion de codigo

// INVOCACION SECUENCIAL
k11 = m_kernel.eval(il, il, m_data.instance(il));
k12
k22

m_kernel.eval(il, i2, m_data.instance(il));

m_kernel .eval(i2, i2, m_data.instance(i2));

// INVOCACION EN PARALELO

// Crea FutureTasks que devuelven
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// valores de tipo double
FutureTask <Double> t11, t12,

// Asigna a cada FutureTask la tarea

// a realizar
t11 = new FutureTask<Double >(

new TareaEval (m_kermnel, i1, il,

m_data.instance(il)));
t12 = new FutureTask<Double >(

new TareaEval (m_kernel, il, i2,

m_data.instance (il)));
t22 = new FutureTask<Double>(

new TareaEval (m_kernel, i2, i2,

m_data.instance(i2)));

// Envia las tareas al gestor
executor.submit (t11);
executor.submit (t12);

executor.submit (t22);

// Recoge los resultados
k11 = ti1l.get();
k12 t12.get ();
k22 t22.get ();

En primer lugar se crean los objetos Future Task, que ejecutaran tareas que devuelven
datos de tipo Double con los resultados de la operacién. Estas tareas se envian al
gestor de tareas, llamado executor en el codigo. Por ltimo se almacenan los resultados

conforme las tareas van terminando.



Anexo H

Evaluacién del prototipo.

Experimentos

En este apartado se incluye informacién de interés relacionada con los experimentos

realizados sobre el sistema. Esta informacion incluye:

1. El seript que lanza los experimentos: Lanza el servidor y el cliente y, tras la
ejecucion de la tarea, finaliza ambos procesos. El servidor se lanza tanto en modo

secuencial como en paralelo. Ver bloque de cédigo H.1.

2. El script .sub necesario para la ejecucion bajo Condor. Ver bloque de
codigo H.2.

3. Salida producida por Condor: Las estadisticas generadas por Condor en la

ejecucion del experimento en la maquina Selene2. Ver bloque de cédigo H.3.

4. Salida producida por BCatalog: Informacién generada por BCatalog para el

trazado de ejecucion. Ver bloque de cédigo H.4.

5. Uso de memoria y CPU en Windows: Capturas de pantalla en ejecuciones

secuencial y paralela en la méquina de Gregorio de Miguel. Ver figuras H.1 y H.2.
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Codigo H.1: Script que lanza los experimentos.

Cdédigo H.2: Script para ejecucion bajo Condor.
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Cédigo H.3: Salida producida por Condor.

000 (1768988.000.000) 08/22 10:01:02
Job submitted from host: <172.16.4.100:47970>

001 (1768988.000.000) 08/22 10:01:24
Job executing on host: <172.16.6.50:46806>

005 (1768988.000.000) 08/22 10:05:35 Job terminated.

(1) Normal termination (return value 0)

Usr 0 00:36:49, Sys 0 00:00:02 - Run Remote Usage
Usr 0 00:00:00, Sys O 00:00:00 - Run Local Usage
Usr 0 00:36:49, Sys 0 00:00:02 - Total Remote Usage
Usr 0 00:00:00, Sys O 00:00:00 - Total Local Usage
706 - Run Bytes Sent By Job

801528 - Run Bytes Received By Job

1706 - Total Bytes Sent By Job

801528 - Total Bytes Received By Job

Cédigo H.4: Salida producida por BCatalog.
sk 3k 3k ok ok ok ok ok ok ok ok ok o ok ok ok ok K K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K K K K K ok ok ok K
Catalog: Creado objeto RMI
Catalog: Numero de procesadores disponibles: 48
Catalog: Cliente esperando a arranque del servidor
Catalog: Creados objetos DAO
Catalog: Creada SVM
Catalog: Arrancando predictor automatico

Predictor: Iniciando...

Catalog: Sesion iniciada

Catalog: Nuevo entrenamiento

Catalog: Obteniendo datos de entrenamiento. 4 clases
Catalog: Iniciando entrenamiento en paralelo
Catalog: Entrenamiento terminado en 109 segundos,

guardando SVM en disco

Catalog: Prediciendo URL simple
Catalog: Post cacheado http://www.heraldo.es/noticias

Catalog: Iniciando prediccion en paralelo
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25

26

27

28

29

30

31

32

33

34
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Resultados
Resultados
Resultados

Resultados

para 0 =
para 1 =
para 2 =
para 3 =

1.0329057196343712
-0.13558198210978978
0.9730040019371566
0.8660084505334502

Catalog: Prediccion terminada en 134 segundos.

Catalog: Pertenencia a clases de

http

Catalog:
Catalog:
Catalog:
Catalog:

- tecnologia: O.

- economia: 1.0
- deportes: 0.0
- politica: 0.0

://www.heraldo.

es/noticias

0

Catalog: Finalizando servidor a peticion del

usuario
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Figura H.1: Uso de memoria y CPU en ejecucion secuencial.
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Historial de uso de memoria fisica
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Identificadores 24547
Subprocesos 1122
Procesos 96
Tiempo de uso 0:00:36:28
Asignacidn (GB) 2/15

“¢ Monitor de recursos...

Memoria fisica: 33%

Figura H.2: Uso de memoria y CPU

en ejecucion paralela.
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4104
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62

Uso de CPU: 92%

Historial de uso de CPU

Historial de uso de memoria fisica

Sistema

Identificadores 24740
Subprocesos 1172
Procesos 96
Tiempo de uso 0:01:00:25
Asignacién (GB) 2/15

“¥ Monitor de recursos...

Memoria fisica: 33%
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