Universidad de Zaragoza Custodiado por la Biblioteca de la Universidad de Zaragoza Premis-plugin for CDSInvenio, developed by Miguel Martín Miguel Martín González
oai:zaguan.unizar.es:6507 2015-03-25
spa Cerrada Baena, Ana Isabel Mínguez Zafra, Javier Análisis de estimulación eléctrica funcional en señales de EEG http://zaguan.unizar.es/record/6507/files/TAZ-TFM-2011-082.pdf En los sistemas gobernados por interfaces cerebro-ordenador (Brain Computer Interfaces o BCI) se requiere un alto nivel de procesamiento de señal para extraer la información que resulta de interés, por lo que es muy importante el filtrado de artefactos, es decir, de todas aquellas señales que se registran junto con las señales electroencefalográficas (EEG o electroencefalograma), pero que no resultan de interés para el investigador. En este trabajo se estudia un artefacto muy concreto, la estimulación electrica funcional (Functional Electrical Stimulation o FES), ya que actualmente la Universidad de Zaragoza coordina un proyecto de investigación CYCIT en el que se intenta controlar una órtesis robotizada con una BCI haciendo uso de la electroestimulación. El objetivo de este proyecto es, por tanto, conocer cómo afecta una señal de FES a las señales cerebrales y conseguir eliminarla de la señal EEG. Este proyecto consta fundamentalmente de cuatro fases además de la parte práctica. La primera de ellas consistió en la búsqueda de bibliografía relacionada con las señales de EEG ([1]) y artefactos ([2]), fundamentos de las BCI y técnicas de separación ciega de fuentes, como son los análisis de componentes principales (Principal Components Analysis o PCA) y de componentes independientes (Independent Component Analysis o ICA). Posteriormente se procedió a un estudio frecuencial de las señales de EEG contaminadas con FES que fueron proporcionadas por la empresa Fatronik. Posteriormente se aplicaron a esas señales las dos técnicas de separación de fuentes estudiadas para tratar de extraer la señal de artefacto FES del EEG. Ni PCA ni la técnica estudiada inicialmente de ICA consiguieron resultados satisfactorios, por lo que se volvió a la fase de documentación. En la tercera parte del proyecto se aplicaron nuevos algoritmos de ICA, recurriendo finalmente a la utilización de tranformadas wavelets y algoritmos de ICA mejorados con esta transformada para tratar de conseguir el objetivo. Todas las técnicas y algoritmos estudiados se han aplicado a tres conjuntos de datos adquiridos bajo condiciones diferentes en distintos individuos, obteniendo la misma falta de resultados positivos en todos ellos. Por último, y ante la imposibilidad de encontrar un algoritmo que extrayese el artefacto FES de forma eficiente, no se aplicaron de forma práctica los algoritmos utilizados. La parte práctica de este proyecto se ha realizado en la spin-off Bit&Brain Technologies, donde se ha contribuido de forma activa en experimentos de BCI. Se ha participado en la preparación del equipo y material necesario para proceder a la adquisición de señales de EEG, procediendo a la colocación de los electrodos y visualización de las señales de EEG en un ordenador personal. Así mismo, he participado como sujeto en un experimento de BCI siguiendo un protolo cuya finalidad es extraer características de la señal EEG que permita el reconocimiento de las emociones de un individuo. 2014-11-28
6507 20150325135902.0 TAZ-TFM-2011-082 spa Cerrada Baena, Ana Isabel Análisis de estimulación eléctrica funcional en señales de EEG Zaragoza Universidad de Zaragoza 2011 by-nc-sa Creative Commons 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/ En los sistemas gobernados por interfaces cerebro-ordenador (Brain Computer Interfaces o BCI) se requiere un alto nivel de procesamiento de señal para extraer la información que resulta de interés, por lo que es muy importante el filtrado de artefactos, es decir, de todas aquellas señales que se registran junto con las señales electroencefalográficas (EEG o electroencefalograma), pero que no resultan de interés para el investigador. En este trabajo se estudia un artefacto muy concreto, la estimulación electrica funcional (Functional Electrical Stimulation o FES), ya que actualmente la Universidad de Zaragoza coordina un proyecto de investigación CYCIT en el que se intenta controlar una órtesis robotizada con una BCI haciendo uso de la electroestimulación. El objetivo de este proyecto es, por tanto, conocer cómo afecta una señal de FES a las señales cerebrales y conseguir eliminarla de la señal EEG. Este proyecto consta fundamentalmente de cuatro fases además de la parte práctica. La primera de ellas consistió en la búsqueda de bibliografía relacionada con las señales de EEG ([1]) y artefactos ([2]), fundamentos de las BCI y técnicas de separación ciega de fuentes, como son los análisis de componentes principales (Principal Components Analysis o PCA) y de componentes independientes (Independent Component Analysis o ICA). Posteriormente se procedió a un estudio frecuencial de las señales de EEG contaminadas con FES que fueron proporcionadas por la empresa Fatronik. Posteriormente se aplicaron a esas señales las dos técnicas de separación de fuentes estudiadas para tratar de extraer la señal de artefacto FES del EEG. Ni PCA ni la técnica estudiada inicialmente de ICA consiguieron resultados satisfactorios, por lo que se volvió a la fase de documentación. En la tercera parte del proyecto se aplicaron nuevos algoritmos de ICA, recurriendo finalmente a la utilización de tranformadas wavelets y algoritmos de ICA mejorados con esta transformada para tratar de conseguir el objetivo. Todas las técnicas y algoritmos estudiados se han aplicado a tres conjuntos de datos adquiridos bajo condiciones diferentes en distintos individuos, obteniendo la misma falta de resultados positivos en todos ellos. Por último, y ante la imposibilidad de encontrar un algoritmo que extrayese el artefacto FES de forma eficiente, no se aplicaron de forma práctica los algoritmos utilizados. La parte práctica de este proyecto se ha realizado en la spin-off Bit&Brain Technologies, donde se ha contribuido de forma activa en experimentos de BCI. Se ha participado en la preparación del equipo y material necesario para proceder a la adquisición de señales de EEG, procediendo a la colocación de los electrodos y visualización de las señales de EEG en un ordenador personal. Así mismo, he participado como sujeto en un experimento de BCI siguiendo un protolo cuya finalidad es extraer características de la señal EEG que permita el reconocimiento de las emociones de un individuo. Máster en Ingeniería Biomédica Derechos regulados por licencia Creative Commons eeg bci ica algoritmos Mínguez Zafra, Javier dir. Universidad de Zaragoza Informática e Ingeniería de Sistemas Ingeniería de Sistemas y Automática 408149@celes.unizar.es 917604 http://zaguan.unizar.es/record/6507/files/TAZ-TFM-2011-082.pdf Memoria (spa) oai:zaguan.unizar.es:6507 trabajos-fin-master driver TAZ TFM CPS URI http://zaguan.unizar.es/record/6507 SUPPORTED 0 MD5 http://zaguan.unizar.es/record/6507/files/TAZ-TFM-2011-082.md5 0 image/x.djvu 6 http://djvu.sourceforge.net/abstract.html DJVU/6 Profile information Lizardtech Document Express Enterprise 5.1 0 URI http://zaguan.unizar.es/record/6507/files/TAZ-TFM-2011-082.pdf disk Minimum View Print Visualization of DJVU requires specific software, like DjVu Browser Plugin URI http://creativecommons.org/licenses/by-nc/3.0 URI http://creativecommons.org/licenses/by-nc/3.0 license URI http://creativecommons.org/licenses/by-nc/3.0 You are free to adapt, copy, transmite or distribute the work under the following conditions: (1) You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). (2) You may not use this work for commercial purposes (3) For any reuse or distribution, you must make clear to others the license terms of this work (4) Any of the above conditions can be waived if you get permission from the copyright holder (5) Nothing in this license impairs or restricts the author's moral rights This object is licensed under Creative Common Attribution-NonCommercial 3.0 (further details: http://creativecommons.org/licenses/by-nc/3.0/). Universidad de Zaragoza Automatizacion de Bibliotecas Edif. Matematicas, Pedro Cerbuna 12, 50009 Zaragoza auto.buz@unizar.es