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Abstract

This report presents an online algorithm for state estimation of timed choice-free Petri
nets. We assume that the net structure and initial marking are known, and that the set
of transitions is divided in observable and unobservable one. Given an observed word and
assuming that the time durations associated to the unobservable transitions are unknown,
the problem is to estimate the possible states in which the timed net system can be. This
work extends the notion of basis markings defined for untimed Petri nets considering now
the time information. The proposed algorithm deals with three main steps: (1) wait for a
new observation and compute the set of basis markings without considering the time; (2)
update the set of time equations that contain the time restriction for the unobservable
transitions; (3) update the set of basis markings removing the time-inconsistent markings.
The extension of the algorithm to general nets is discussed, as well.

Finally, the adaption of the proposed algorithm to distributed system is discussed. A
distributed system is composed by a set of timed PN called sites connected by buffers.
An agent is assigned for each site and it observes the firing of transitions and performs
state estimation algorithm.

Keyword: Petri nets, timed Petri nets, state estimation, observability
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Chapter 1

Introduction

Reconstructing the state of a system from available measurements is a fundamental issue
in several applications. State observation can be seen as a self-standing problem, but
also as a pre-requisite for solving problems of different nature. This problem has been
extensively investigated in time driven systems. On the contrary, despite the attention
payed by several authors in the last years, there are relatively few works addressing this

topic in discrete and hybrid systems, thus several related problems are still open.

In the case of discrete event systems modeled by Petri nets (PN), different approaches
for observability have been recently proposed. In [7] the problem was that of reconstruct-
ing the initial marking (assumed only partially known) from the observation of transition
firings. In [9] this approach was extended to the observation and control of timed nets. In
other works it was assumed that some of the transitions of the net are not observable [4]
or undistinguishable [6], thus complicating the observation problem. In [I] the author has
studied the possibility of defining the set of markings reached firing a “partially specified”
step of transitions using logical formulas, without having to enumerate this set. In [11]
the authors have discussed the problem of estimating the marking of a Petri net using a
mix of transition firings and place observations.

In this work, we study the problem of state estimation of discrete event systems
modeled by timed Petri nets. We assume that the set of transitions is split into two
subsets: observable and unobservable. The firing of the observable transitions can be
detected, while the firing of the unobservable transitions cannot and the time durations
associated to unobservable transitions are unknown. The basic idea is to extend the
notion of basis markings to timed nets. The set of basis markings is proposed in [§] to
characterize the set of consistent markings, i.e., the set of possible markings of a PN after
an observed word. Knowing the set of basic markings, the set of consistent markings is

obtained from the first one by firing the unobservable transitions.

Using some reduction rules, we show how to reduce both the structure and the state

space of the unobservable net. The reduction rules merge indistinguishable transitions,



in order to reduce the complexity of the state estimation procedure. To reconstruct the
marking of the original net it is necessary to determine the markings of the input/output
places of merged transitions. These markings can be expressed as the solution of a linear
system that expresses their dependence from the marking of the new places.

Assuming that the time durations of the unobservable transitions are not known,
we compute together with the set of basis markings a set of time equations. This set
represents the relation between the observation and time durations of unobservable firing
sequences. The set of time equations is used after to reduce the set of basic markings.
The online algorithm that we propose estimates the state of a timed PN and is based
on the following three main steps: 1) compute the set of basis markings; 2) compute the
set of time equations; 3) reduce the set of basis markings according to the set of time
equations.

In the context of state estimation of distributed systems, [I0] proposed an algorithm
for timed Petri net with the assumption that the time durations of transitions are known.
We assume that the PN model of each site is a state machine, while the global system is
a Deterministically Synchronized Sequential Processes (DSSP) system [3]. We discuss the
state estimation of timed DSSP with the assumption that all time durations of transitions
are unknown.

The following chapters are organized as follows: a background on Petri nets are given
in Chapter [ in Chapter Bl we characterize the time duration of a firing sequences and
reduction rules; and, an online algorithm for state estimation of timed PN is introduced in
Chapter . At last, the discussion of adapting the online algorithm to distributed systems
is given in Chapter [5




Chapter 2

Basic Concepts

In this section, we recall the basic definition of (timed) Petri net system (for a general
introduction, see [12]).

2.1 Timed Petri Nets

Definition 2.1. A PN system is a pair (N, mg), where N = (P, T, Pre, Post) is a net
structure with a set of places P; a set of transitions T'; the pre and post incidence matrices
Pre, Post ¢ N‘ZPOlX‘Tl; and my € NIEPO‘ is the initial marking, where |P| is the number of

places and |T| is the number of transitions.

The incidence matrix is C = Post — Pre. For every node v € P UT, the set of
its input and output nodes are denoted as *v and v°®, respectively. A directed circuit of
PN is a sequence p;itiipiotio - - - Dintin, Where p;; € Pt;; € T, pij € *tij,ti; € *pij11, and
3j # k,pij = pix or tij = t; j41. A net having no directed circuit is called acyclic.

A transition ¢ € T'is enabled at a marking m if and only if m > Pre[-,t]. If a marking
m/ is reachable from m by firing a sequence o = t;1t; - - - t;,, where t;; € T, 5 =1,2,... n:
the fundamental state equation can be written as m’ = m + C - o, where o € NIETO‘ is the
firing count vector of o; m[o) denotes that o is firable from m, while m[o)m’ means the
firing of o drives m to m/.

The set of transitions T is partitioned into two sets: T, and T, where T, is the
set of observable transitions, whose firing can be detected by an external observer, and

o

T, is the set of unobservable transitions. The firing sequence ¢ is an observable firing

sequence, if t € ¢° then t € T?; ¢% is an unobservable firing sequence, if ¢ € ", then
t € T*. An observation function A : 7% — T, where T is the Kleene closure of T,

extracts a sequence of observable transitions A(o) from o. Let 0 = o{'0{0y0cg - o, then

o

Mo) = 0%09---0°%_,. Observable transitions are represented as white rectangles, while

unobservable ones as black rectangles.
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Figure 2.1: Example of w = A(0)

Example 2.1. For the PN in Fig.[21, observable transitions are to,ts, and unobservable
transitions are £1,€3,€4. Lel 0 = eqtaseqts, then the observed word of o is w = A(o) =
tots.

Definition 2.2. A timed PN system is a triple (N, 0, myg), where (N, my) is a PN system
and 0 € RlzTO‘ is the time vector that associates to each transition t; a constant time delay,
9]‘ - H[tj]

The time duration of a transition is deterministic, i.e., if a transition ¢; is enabled at
time 7, ¢; is fired at 7+ 6[j]. The single server semantic is used, which means a transition
cannot be enabled simultaneously more than once.

We make the following assumptions:
(A1) the initial marking and net structure are known;

(A2) the unobservable induced subnet (PN, = (P,T,, Pre,, Post,))is acyclic, where

Pre, and Post, are pre and post incidence matrices constrained by T;

(A3) The time durations of observable transitions are known, while the time durations

of unobservable transitions are unknown.

The second assumption implies that there are not spurious solutions in the unobserv-
able subnet, i.e., all markings, solution of the state equation are reachable. Therefore, the
set of basis markings can be characterized using the state equation.

Even if the initial marking is known, because of the partial observation, the state of
timed PN’s cannot be determined by the observation. To characterize the possible set of
markings we use a subset of it, which is called the set of basis markings. Knowing the
set of basis markings, the consistent markings, which are the possible markings in the
net system, can be obtained by simply firing the unobservable transitions from the basis

markings.

Definition 2.3. [8/ Given a marking m and an observable transition t € T,, we define
the set of explanations of t at m as ¥(m,t) = {o € T)|m[o)ym',m' > Pre[- t]}.

The set of minimal explanations of t at m as Spm(m,t) = {0 € X(m,t)|fo’ €
Y(m,t): o' S o}, where ' S o means that for every t, o'[t] S ot] and there exists t
such that o'[t] < olt].
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2.2 Basis Marking

In the following, the set of basis markings without time is introduced. The set of basis

markings of observation w is denoted by M;(w).

Definition 2.4. The set of basis markings of observation w = vt is defined as My(w) =
{m € N‘Zpol\Vm’ € My(v) : Vo € Eppm(m/ t), m/[ot)ym}. For empty word e, My(e) =

{mo}.

p1 €2 ) € D3 b oy

Figure 2.2: Example of the set of basis markings

Example 2.2. Let us consider the PN in Fig. [2.2 with mgy = [1,1,0,0]”. The unobserv-
able transitions are €9 and e3, while the observable transition is t,. Assume t; has been
observed.

The set of basis markings before any observation is My(e) = {myg}, where € is the
empty word. When w = t; is observed, the set of explanations is X(myg, w) = {01, 02},
where o1 = e3,09 = £963. Therefore, the set of minimal explanations is ¥, (Mg, w) =
{o1}. By firing o1t1, the marking my = [1,0,0,1]7 is obtained and the new set of basis
marking is My(t1) = {m,}.

For a marking m in the set of basis markings, there exists o such that mg[o)m. The
sequence o is composed by the observable transitions and unobservable firing sequences,
which are minimal explanations. In order to represent the firing sequences that drive the
marking from mg to m, based on the set of minimal explanation, we present the set of

minimal firing sequences.

Definition 2.5. Given a marking m and an observed word w = t;1tio - - - t; pn_1tin, we de-
fine the set of firing sequences consistent with w as I'(m, w) = {o € T*|oc = o{t; 105t - -
tin—101tin, Mo[o)m}.

Based on I'(m,w), we define the set of minimal firing sequences as Iy (m, w) C
['(m,w), that of,j = 1,...,n 1s a minimal explanation of corresponding marking and

observation.

Definition 2.6. The set of basis markings at time 7 of a timed Petri net is defined as
My(w, 1) = {m € My(w)|To € Tyin(m,w), 0 = o't,\(ot) = w,t is observed at T}.

The firing sequences consistent with w defines the firing sequences whose observation

word is w and lead the system to the marking m.

State Estimation of Timed Petri Nets



Chapter 3
Time Duration of Firing Sequence

and Reduction Rules

3.1 Time Duration of Firing Sequence

In order to estimate the state of a timed PN, it is important to know the time duration
of a firing sequence. In this chapter, we define and analyze such time duration.

Let us consider a firing sequence o = tyty---t,, and 7y and 7, are the time instant
when t; and t,, are fired, respectively. The time duration of ¢ is denoted by ¢(0) and it is

defined as the time duration from the enabling of ¢; to the firing of ¢,:
o) =1, — (11 — by). (3.1)

Proposition 3.1. Let 0 = tity- - - t,, the following equation is satisfied:

max{6y,...,0,} < i(o) < i@i. (3.2)

If one and only one transition from o is enabled at each time instant, then

o) = Z 0; (3.3)

Proof. If there exists overlapping of time durations, the time duration of the firing se-
quence is less than the sum of the time durations of all transitions (3.2]). If there is no
overlapping, then (B.3]) holds. O

The previous proposition can be generalized to sequences that can be partitioned into
subsequences. For example, if 0 = 0y05---0, and at each time moment, the enabled

transitions belong to one and only one subsequence o;, then:

1) = u(oy) + (o) + -+ 1(oy). (3.4)
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Figure 3.1: Example of ¢(0) = ¢(01) + t(02) + -+ - + t(on)

Example 3.1. Let us consider the PN in Fig. [31 with my = [1,0,0,0,0,0,0,0,0]" and
0 = [1,2,3,1,2,3,1]7. Since it is a deterministic PN, the following observed word is
obtained w = titotstytstety at the following time instants 1,3,4,5,7,8,9.

Let us write w as w = 0 = 0109030405, with o1 = t1,09 = tot3, 03 = t4, 04 = t5tg, 05 =
t;. According to B1), the time durations are v(c) = 9,u(o1) = 1,1(0y) = 3,1(03) =
1,u(04) = 3,1(05) = 1. Since the condition in([B.4) is satisfied,

o) =ulor) + tlog) + t(oz) + (o) + t(os)
—1434143+1=09.

3.2 Reduction Rules

The firing of unobservable transitions cannot be distinguished by observation. In order to
reduce the state space of the unobservable subnet, reductions can be used. In this section,
based on [2], reduction rules are applied to ordinary timed Petri net systems. The rules
should be applied before the state estimation algorithm.

The first reduction rule is shown in Fig. B2(a), 1, -+ ,&,_1 are unobservable and,
;i =1 °wil = |l = |5l = lg*l = 1,1 =2,...,.n—1,5 = 1,...,n— 1. The
unobservable firing sequence £1¢5 - - - €,_1 moves a token from p; to p, and can be merged

into one transition €;,_1, such that, in the reduced net,
-1
o mpiy1] =370, mpi,
® 01 1= Z?;ll 0;.

Fig. B2(b) illustrates the second reduction rule, ey, - &, are unobservable tran-
sitions and |p;*| = 1,i = 1,...,n; |*pps1| = n and |p,41°| = 1. The unobservable firing
sequence €1€,41 (..., €4€p11) moves a token from py (..., p,) to pyie. Therefore, £; and

Ent1 (-, €n and ,41) can be merged into one transition €y ,41 (..., €,n41), such that,

® m[pini1] = mlpi] + mp,pi],

State Estimation of Timed Petri Nets
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Figure 3.2: Illustration of the reduction rules

® Oipny1=0; + 0,41

The third reduction rule is presented in Fig. B2(c), unobservable transitions 5 and
g3 cannot be distinguished in the firing sequence t1e5e3t4 or t1e3eot4. Therefore, €5 and e3
can be merged into one transition e93, such that, the time duration is 03 = max{6s,05}.

The marking of the reduced net satisfies:

e mp3;] = m[ps] + mps], m[pss] = 0.

o m[p3;] = 0, m[pss] = m[ps] + m[pg].




Chapter 4

State estimation of choice-free nets

The state estimation algorithm proposed here contains three steps: (1) the set of basis
markings is computed without considering time; (2) the set of time equations is obtained;

(3) the set of basis markings is reduced based on the time information.

4.1 Computation of basis markings

The set of basis markings at time 7 = 0 is M,(€,0) = {my}. Let us assume that the
current set of basis markings at time 7 is M,(w, 7), where w is the actual observation.
When the firing of a new transition ¢; is observed at time 7;, the following operations

should be performed in order to compute My (wt;, 7;).
1. Let Mb(U}tj,Tj> = (Z),
2. For each m € M,(w, 1),
(a) compute X,,n (M, t;),
(b) let M' = {m/|m[ot;)m/ 0 € ¥,,;n(m,1;)},
(c) let My(wt;, 1j) = My(wt;, ;) UM
For each basis marking m of the previous set, the set of minimal explanations is

computed in ¥,,;,(m, t;). Therefore, when ¢; is observed after the firing of the minimal

explanations of ¥,,;,(m, t;) from m, the new set of basic markings is obtained.

Example 4.1. Let us consider the PN’s in Fig. [{.1 with 6, = 1 and mq = [1,1,1,0,0]7.
The set of minimal firing sequences for the empty word is Ty (g, €) = 0, and the set of
basis marking at time 0 is M,(€,0) = {my}.

If w =ty is observed at time 4, M,(t1,4) is computed as follows:

1. Mb(t1,4) = @,’



h €2 P3 €3
P4 by DPs
€

D2 : 4I
Figure 4.1: PN system used in Example 1]

2. Emin(mmtl) = {837 84};
3. MI — {ml — [17 07 ]-7 07 1]T7 m2 - [17 ]‘7 07 07 1]T}J whe/re m0[€4t1>m1’ m0[53t1>m2’
4. Mb(t1,4) = {mla mQ}'

The sets of minimal firing sequences are Ty (g, w) = {e4t1}, Dppin (o, w) = {e3t; }.

4.2 Computation of the set of time equations

The set of basis markings in the previous section is computed without considering any
time consideration. Assuming that the time durations associated to the unobservable
transitions are not known, in this section we provide a procedure to obtain a set of
equations to characterize all possible time durations associated to these unobservable
transitions. It will be shown also how this set of time equations can be used to remove
those time-inconsistent markings from the set of basis markings.

Let us assume that the time instant at which ¢; was observed is 7;, while the current
set of basis markings is My (wt;, 7;). To each set of basis markings we associate a set of
time equations. These equations are obtained as the union of different equations. Let
I' = Usmert, (wt; ry) Imin(m, wt;) be the set of all minimal firing sequences of all basis
markings. The following time equation o, is obtained:

Vo e I', min{c(o)} = 7;.

Example 4.2. In Ezample[{.1], the set of basis markings at time 4 has been computed.
The set of minimal firing sequences are Iy (g, ty) = {eat1} and Uy (Mg, ty) = {3t }.

Therefore, I' = {estq,e4t1} and the time equation is
o4 : min{e(esty), t(eqty) } = 4.

This has the following intepretation: because t1 has been fired at 4 and since for its
firing, €3 or g4 should fire the firing delay of at least one of the following sequences esty
and 4t should be 4.
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If ty is observed again at time 6, the sets of minimal explanations are Y, (M, 1) =
{e3}, Zmin(ma,t1) = {e4,e0e3}, implying the set of basis markings is My(t1t1,6) =
{ms, my}, where msy = [1,0,0,0,2]7, my = [0,1,0,0,2]7, and the sets of firing sequences
consistent with w = tit; are Uyin(ms, t1) = {egtiestr} and Upn(my, t1) = {estieqty,

est1€9e3l1 }, while the corresponding time equation is
Og . min {L(E4t183t1), L(83t184t1), L<€3t18283t1)} = 6

Let us analyze og. First of all, according to the definition of the time duration of a
sequence, t(eqt1e3ty) and 1(estieqty) provides the same information. The time durations
of the two firing sequences are the same. Hence one of them can be removed from og.

Removing for example the second one, we obtain
Og - min {L<€4t1€3t1), L<€3t182€3t1)} = 0.

According to oy, 05 > 4 — 0y = 3. We will show that in og, t(e3t1963t1) > 6 hence it

15 mever the one that gives the minimum and can be removed.

t(estiegesty) > 05+ 05+ 0, =205+ 6, > 7

Therefore, estiesesty is inconsistent with the time information. It can be deleted from
06, S0 0 = t(eqtie5t1) = 6, and the corresponding basis marking should be removed, i.e.,
Mb(tltl, 6) = {mg = [1, O, 0, O, 2]T}

As it was illustrated by the previous example, some basis markings are time inconsis-
tent with the observation. On the other hand, some time equations that are obtained can
be redundant.

In order to remove an element ¢(o;) from a minimum function o, the following proce-

dure can be used: (i) let o0; = ojo? ... 07 such that (3.4 is satisfied, i.e., the time duration

of 0; is the sum of time durations of the subsequences: t(0;) = v(0) +¢(07) +. .., +(0]);

é»,l =1,...,r; according

(ii) find o ;,4 = 1,... in O such that they are subsequences of o
to B2), «(o}) > u(o},,), Vi; (iii) if Y, ¢(0},) > 75, where 7; is the time instant when o; is

computed, ¢(o;) should be removed from o;.

Proposition 4.1. Let O be the current set of time equations, where

min{t(c11),t(012), ..., (01 4)} = T,
O B min{a(ag,l), L(O’272>, ey L(O’27k2>} = T2,
min{iu(og1), t(0g2)s - (Oqr,)} = Tgs

State Estimation of Timed Petri Nets



and let o be the time equation obtained at time 7; > 1,, where 0; : min{i(c;1), t(0;2), ...,
Uojk,)} = 75, with q, kg, j € Nug.
Let 1(0;) € {u(0j1),(042), -, 1lojr,)} and decompose o; as 0 = oj07 ...07.

all o}, in O such that o}, is a subsequence of a o and V1, (o} ;) > ob. If 3. u(o}.;) > 7

then remove (o) from o;.

Proof. Obviously, If the previous conditions are satisfied, ¢(c;) > 7;. Hence it is not

timed-consistent with the observation. O

4.3 Algorithm for state estimation

In this section, we present an algorithm for state estimation of systems modeled by timed

PN’s. When a new observation is available, the four steps in Algorithm [Il are performed.

Algorithm 1 Estimate the state of timed PN’s
1: Compute the set of basis markings M,(wt;, 7;) based on the current observation ¢,

at 7.
2: Compute the time equation o;.
3: Reduce o; based on Prop. d.11
4: Reduce the set of basis markings M,(wt;, 7;) accordingly.

ts Ps & D6 tt m ts b5 g P t
Pt - p7 12
2
E7 P4 €4 p3 €3 P2 &7 yzZ €4 Pp3 €93
(a) (b)

Figure 4.2: Example of the algorithm

Example 4.3. Let us consider the PN in Fig.[{.9(a). with observable transitions t, and ts,
0, = 05 = 1, and the initial marking mq = [p1, p2, p3, pa, Ps, Ps, p7|- = [1,0,0,0,0,0,0]7.
Applying reduction rule # 1, transitions €5 and €3 are merged into €93, and places py
and py are merged into pia. Fig. [{-3(b) shows the reduced model. The initial marking is
™o = P12, P3, Pa; Ps, D6, 7] = [1,0,0,0,0,0].

The state estimation algorithm is applied on the reduced PN in Fig. [{-.9(b). Let us

assume the following observations: t, at 5,9 and t5 at 10.
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o At time 0, the set of basis markings is My(e,0) = {mo} and the set of time equations
is O = 0.

o At time 6, ty is observed (w = ti). The set of minimal explanations is X, =
(myg,t1) = {01.02}, where o1 = €9366, 09 = €93€4, meaning that oy or o9 has been fired
in order to enable ty. By firing o1ty and ostq, the set of basis markings is obtained as
My(w, 6) = {my,my}, where m; = [1,2,0,0,0,0]7, my = [1,0,1,1,0,0]7, and the sets
of minimal firing sequences are Ty (ma,w) = {o1t1} and Tpin(me, w) = {oot1}. The
time equation at time 6 is min{i(o1t1), t(oot1)} = 6, the only equation that will compose
0.

o At time 9, w = tity and the sets of minimal explanations are ., (M, t) =
{o1,e4}, Bnin(ma, t1) = {092,¢6}.

By firing o1ty and 4ty from my, we obtain mz = [1,4,0,0,0,0]7 and m, = [2,1,1,0,
0,0]%, respectively; by firing ost1 and ety from my, my and ms = [1,0,2,2,0,0]7 are
obtained. Therefore, My(w,9) = {ms, my, ms} and I, (ms, w) = {03}, Tnin(my, w) =
{o4,06} and Tppin(ms, w) = {05}, where o3 = o1t101t1}, 04 = o1t164l1, 06 = 09l186t1,
and o5 = o9t109t1 }.

From previous sets the time equation at time 9 is obtained as min{i(o3), t(04), t(os),
iota(og)} = 9.

Observe that o3 = o1(t101)t1 satisfying Prop. [{.1, and 1(o3) = t(o1) + t(t101) + ¢(t1).
Form the equations of O can be observed immediately that 1(t101) > 6 and v(o1) = t(t101)—
0, > 5. Therefore, 1(03) > 5+ 6+ 1 =12 > 11. Hence, 1(o3) should be removed. For
the same reason, 1(os) is also redundant and can be removed. The set of time equations

becomes:

min{i(o4),t(o6)} = 9.

The set of basis markings is reduced to My(w,9) = {my}.

O— { min{i(o1ty), t(oat1)} =6, }

o At time 10, t5 is observed (w = tyt1ts). The set of minimal explanations is ¥y, =
(my,ts) = {e7}. Firing eqts, the set of basis markings is obtained as My(w, 10) = {mg},
where mg = [2,1,0,1,0,0]7, and the set of minimal firing sequences as T (Mg, w) =
{07,058}, where o7 = o4e7t5 and og = ogerts. The time equation obtained at this time

moment is min{c(o;), t(os)} = 10. Hence, the set of time equations is

min{e(altl) L(UQtl)} = 6,

(06)} =9,
(0%)} = 10.

O =< min{i(oy),t
min{c(o7),t
Being an online procedure, seems that the set of time equations is growing indefinitely.

However, dealing only with time deterministic Petri nets, this is not true and there exists
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a moment from which any other time equation does not provide new information and the
set of time equations is not updated anymore.

In the following, we discuss the time in a structurally live (SL) and structurally
bounded (SB) choice-free net with a minimal T-semiflow &. We assume the upper bound
of time duration of every transition is u, and then the upper bound of a firing vector o is
u(o) =u- Z‘;ﬂl oli]. Let my, be home state, i.e., it can be reached from every reachable

marking [5]. Based on [13], m,, will be reached by a firing sequence oy, with o), < x.

Proposition 4.2. In a SLESB choice-free net with minimal T-semiflow x, if the initial

marking is live, it is not necessary to update the set of time equations after the time instant
2-u(x).

Proof. Because the net is SL&SB and the initial marking is live, then there exists a circle
in the reachability graph and a home state m,. From my, after firing ), the home state
is reached and the system behavior starts to repeat. Therefore, from this moment, it is

not necessary to update the set of time equations. ]

4.4 Extension to nets with choices

€y P2 €3

D Pe 1
é €4 P3 €5

Figure 4.3: Example of PN’s with choice

Let us consider the PN in Fig. with €5 and ¢4, immediate transitions, i.e., 0y =
0y =0,0, =1,and mg = [1,0,0,0]7. Assume ¢, is observed at time 4. Obviously, gse3 or
£4€5 has been fired to enable t;, but we don’t know exactly which one. Since ¢; has been
observed at 4, we can say that t(exe3t;) or t(ese5ty) is 4, but we cannot say nothing about
the time duration of the other. Hence, we cannot say that the minimum of ¢(e9e3t;) and
1(e4e5t7) is 4.

Therefore, to apply the algorithm to general nets, there exist two possibilities: (1) re-
duce the net using the reduction rules, to obtain a choice-free one (2) enumerate all
possible combinations of firing sequences. This approach is similar with the one of state

estimation of untimed PN’s.




Chapter 5

State estimation of distributed

systems

Let us consider distributed system, for which each site is a timed Petri net system mon-
itored by an agent. Every agent knows the structure and the initial marking of its site.
The model of each site is a state machine, while the model of global system is a Deter-

ministically Synchronized Sequential Processes (DSSP) system [3].

Definition 5.1. [3/ A PN system, S = (P,U---UPxUB, TiU---UTk, Pre, Post, m),
is a DSSP, if:

1. RNP=0,T,NTy=0, BNB=10,j¢€{l,....K}, i#j;

2. (SM;, my;) = (P, T;, Pre;, Post;, my;), Vi € {1, ..., K} is a strongly connected
and 1-bounded state machine (where Pre;, Post; and my; are the restrictions of
Pre, Post and myg to P; and T;);

3. The set B of buffers is such that Vb € B:
(a) |°b] > 1 and |b°| > 1,
(b) Jie{1,...,K} such that b* C T},
(¢c)Vpe PLU---UPg :t,t' € p* = Prelb,t] = Pre[b,t'].

Transitions belonging to the set TI = *B U B® are called interface transitions. The
remaining ones (T1 U ---UT\TI) are called internal transitions.

In this chapter, immediate transitions, whose time delays are 0, are introduced to
solve conflicts, i.e., if [p®| > 1, then V¢ € p® has its time delay 6, = 0. In order to let
representation of models to be compact, immediate transitions are not shown in models.

In Fig. 5.0l(a), immediate transitions are ¢; and t5, while they are not shown in Fig. 5.T(b),

15



Figure 5.1: Immediate transitions

which is the compact representation, and the marking of pg is m[ps] = mp:| + m[ps] +
m|ps].

In each site, the set of transitions 7} is partitioned into two sets: T, and Tj,, where Tj,
is the set of observable transitions, whose firing can be detected by an external observer,
and T;, is the set of unobservable transitions. The firing sequence ¢° is an observable

U

firing sequence, if t € ¢°, then t € T;,; " is an unobservable firing sequence, if t € o,

then t € T},. An observation function A : 7;" — T°*

107

where T7: is the Kleene closure of T,

extracts a sequence of observable transitions A(c) from 0. Let 0 = o}'o{oyog--- o, then

o

Ao) = o%09---0%_,. Observable transitions are represented as white rectangles, while

unobservable ones as black rectangles.

We make the following assumptions:
(A1) the initial marking and the net structure are known;
(A2) the unobservable induced subnet is acyclic;
(A3) the time durations of transitions are unknown;
(A4) an agent only observes the firing of transition in its site;
(A5) an agent only knows the structure and initial marking of its site.

When the firing of an observable transition ¢; is observed, the marking of SM; is m,;,
that, for k =1,... [P,

1 t:®
ml[k:]:{ 7pk€]7

0, otherwise.

Definition 5.2. Two agents A; and A; are neighbor agents, if 3b € B,*bNT; # 0,b°NT; #

0, where T; and T; are sets of transitions of sites monitored by A; and A;, respectively.

The proposed state estimation algorithm estimates the firing of transitions. An agent

observes its site and computes possible firing sequences using the algorithm. The local
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estimation is improved based on the communication between agents. Using the commu-

nicaton information, the marking of buffers are interchanged between agents.

Figure 5.2: Global model for Example [5.1]

Example 5.1. The model in Fig. [ represents a DSSP system. There are two sites
and two agents monitoring each sites. The sites Sy and Sy are connected with buffers by
and by. The only observable transition in Sy is to, while in Sy is t7. The observation
is given in Tab. [51. We assume that an agent sends information to its neighbor agents
immediately after it computes the estimation. Let us discuss the state estimation of As

according to its observation and to the information received from Aj.

Table 5.1: The observation in Example (.1
t |ty ]t | tots
rl3]6] n

o At time 3, agent Ay observes the firing of to. At this moment, the information
regarding by and by are: “from time 0 to 3, no token has been produced in by” and “from
time 0 to 3, no token has been consumed from by”, respectively. These information are
sent to A,.

o At time 6, t7 is observed by Ay. From the initial marking, the possible firing sequences

are o1 = tutstety and og = tgtotiot7. From time 0 to 6, o1 consumes 1 token from by and

State Estimation of Timed Petri Nets



produces 1 token in by, while o9 does not consume or produce any token to buffers. The
information from Ay says that no token is produced in by from time 0 to 3, but there is no
information of by from time 3 to 6. Therefore, o1 may be consistent with the observation
and with the information received from Ay. Obviously, o9 is consistent with the received
information.

o At time 11, Ay observes ty and As observes t;. The agent Ay computes the infor-
mation of by and by, which are “from time 0 to 11, one token has been produced in by”
and “from time 0 to 11, one token has been consumed from by”, respectively. The possible
firing sequences of Sy are o5 = 0101, 0¢ = 0103, 07 = 0201 and g = o904. With the
information from Ay, Ay concludes that: 1) only one token has been produced in by from
time 0 to 11, and then the firing sequences which consume more than one tokens from by
are not possible; 2) one token has been consumed from by from time O to 11, and then the
firing sequences which do not produce more than one tokens in by should be eliminated.
Because o5 consumes two tokens from by and og does not produce any token in by, so they
are eliminated from possible firing sequences. The possible firing sequences at time 11 in

Sy are og and o7.

Therefore, the agents should use the information of buffers to eliminate inconsistent
firing sequences. Inconsistent can come from the following situations: (1) if the informa-
tion says ¢ tokens are produced in a buffer, then firing sequences which consume more
than ¢ tokens are inconsistent; (2) if in the information, i tokens are consumed from a
buffer, then firing sequences which produce less than i tokens are inconsistent sequences.

When a system starts to evolve, each agent performs local estimation and computes
information of buffers. Because the information includes time information, which is “from
time 73 to 7o, i tokens are produced to (or consumed from) a buffer”, so the problem
that it should be considered whether there exists a global clock in the system or not.
In the affirmative case, the time instants are interchanged between agents, as the one
in Example 5.1l Otherwise, in the situation that each site has a local clock, the time
instants are not included in information, while when an agent receives an information,
it computes time instants for the information as following: (1) the information is “from
last commmunication until this moment, ¢ tokens are produced into (or consumed from) a
buffer”, (2) assume last and present communication are at 7, and 7, (3) the information
in the receiver agent is “from 7, (last communication) until 75 (current communication),
i tokens are produced into (or consumed from) a buffer”. All these consideration will be

considered when the state estimation will be developed for distributed systems.




Chapter 6

Conclusions and Future Work

In this work, we provide an online algorithm for state estimation of timed choice-free
PNs, and we give some ideas on how the procedure is adapted to a paticular class of
distributed systems. First, an algorithm to compute the set of consistent markings is
given, and then the time information are grouped into a set of time equations that is used
to reduce the set of consistent markings. Some reduction rules are presented that can be
used also to reduce the state space of the timed systems merging the indistinguishable
transitions. Second, we discuss the general case, i.e., nets with choices, and we show that
the procedure is similar with the standard one of untimed Petri nets. Finally, the adaption
of the approach to distributed systems is illustrated with an example. Communication is
introduced into state estimation by agents in distributed systems. As a future work, we
plan to continue working on state estimaton of distributed systems and to implement the
algorithms in MATLAB.
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