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Trabajo Fin de Máster
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Escuela de Ingenieŕıa y Arquitectura
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Abstract
This report presents an online algorithm for state estimation of timed choice-free Petri

nets. We assume that the net structure and initial marking are known, and that the set

of transitions is divided in observable and unobservable one. Given an observed word and

assuming that the time durations associated to the unobservable transitions are unknown,

the problem is to estimate the possible states in which the timed net system can be. This

work extends the notion of basis markings defined for untimed Petri nets considering now

the time information. The proposed algorithm deals with three main steps: (1) wait for a

new observation and compute the set of basis markings without considering the time; (2)

update the set of time equations that contain the time restriction for the unobservable

transitions; (3) update the set of basis markings removing the time-inconsistent markings.

The extension of the algorithm to general nets is discussed, as well.

Finally, the adaption of the proposed algorithm to distributed system is discussed. A

distributed system is composed by a set of timed PN called sites connected by buffers.

An agent is assigned for each site and it observes the firing of transitions and performs

state estimation algorithm.

Keyword: Petri nets, timed Petri nets, state estimation, observability
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Chapter 1

Introduction

Reconstructing the state of a system from available measurements is a fundamental issue

in several applications. State observation can be seen as a self-standing problem, but

also as a pre-requisite for solving problems of different nature. This problem has been

extensively investigated in time driven systems. On the contrary, despite the attention

payed by several authors in the last years, there are relatively few works addressing this

topic in discrete and hybrid systems, thus several related problems are still open.

In the case of discrete event systems modeled by Petri nets (PN), different approaches

for observability have been recently proposed. In [7] the problem was that of reconstruct-

ing the initial marking (assumed only partially known) from the observation of transition

firings. In [9] this approach was extended to the observation and control of timed nets. In

other works it was assumed that some of the transitions of the net are not observable [4]

or undistinguishable [6], thus complicating the observation problem. In [1] the author has

studied the possibility of defining the set of markings reached firing a “partially specified”

step of transitions using logical formulas, without having to enumerate this set. In [11]

the authors have discussed the problem of estimating the marking of a Petri net using a

mix of transition firings and place observations.

In this work, we study the problem of state estimation of discrete event systems

modeled by timed Petri nets. We assume that the set of transitions is split into two

subsets: observable and unobservable. The firing of the observable transitions can be

detected, while the firing of the unobservable transitions cannot and the time durations

associated to unobservable transitions are unknown. The basic idea is to extend the

notion of basis markings to timed nets. The set of basis markings is proposed in [8] to

characterize the set of consistent markings, i.e., the set of possible markings of a PN after

an observed word. Knowing the set of basic markings, the set of consistent markings is

obtained from the first one by firing the unobservable transitions.

Using some reduction rules, we show how to reduce both the structure and the state

space of the unobservable net. The reduction rules merge indistinguishable transitions,
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in order to reduce the complexity of the state estimation procedure. To reconstruct the

marking of the original net it is necessary to determine the markings of the input/output

places of merged transitions. These markings can be expressed as the solution of a linear

system that expresses their dependence from the marking of the new places.

Assuming that the time durations of the unobservable transitions are not known,

we compute together with the set of basis markings a set of time equations. This set

represents the relation between the observation and time durations of unobservable firing

sequences. The set of time equations is used after to reduce the set of basic markings.

The online algorithm that we propose estimates the state of a timed PN and is based

on the following three main steps: 1) compute the set of basis markings; 2) compute the

set of time equations; 3) reduce the set of basis markings according to the set of time

equations.

In the context of state estimation of distributed systems, [10] proposed an algorithm

for timed Petri net with the assumption that the time durations of transitions are known.

We assume that the PN model of each site is a state machine, while the global system is

a Deterministically Synchronized Sequential Processes (DSSP) system [3]. We discuss the

state estimation of timed DSSP with the assumption that all time durations of transitions

are unknown.

The following chapters are organized as follows: a background on Petri nets are given

in Chapter 2; in Chapter 3 we characterize the time duration of a firing sequences and

reduction rules; and, an online algorithm for state estimation of timed PN is introduced in

Chapter 4. At last, the discussion of adapting the online algorithm to distributed systems

is given in Chapter 5.



Chapter 2

Basic Concepts

In this section, we recall the basic definition of (timed) Petri net system (for a general

introduction, see [12]).

2.1 Timed Petri Nets

Definition 2.1. A PN system is a pair 〈N ,m0〉, where N = 〈P, T,Pre,Post〉 is a net

structure with a set of places P ; a set of transitions T ; the pre and post incidence matrices

Pre,Post ∈ N|P |×|T |
≥0 ; and m0 ∈ N|P |

≥0 is the initial marking, where |P | is the number of

places and |T | is the number of transitions.

The incidence matrix is C = Post − Pre. For every node v ∈ P ∪ T , the set of

its input and output nodes are denoted as •v and v•, respectively. A directed circuit of

PN is a sequence pi1ti1pi2ti2 · · · pintin, where pij ∈ P, tij ∈ T, pij ∈ •tij, tij ∈ •pi,j+1, and

∃j 6= k, pij = pik or tij = ti,j+1. A net having no directed circuit is called acyclic.

A transition t ∈ T is enabled at a markingm if and only ifm ≥ Pre[·, t]. If a marking

m
′ is reachable fromm by firing a sequence σ = ti1ti2 · · · tin, where tij ∈ T, j = 1, 2, . . . , n:

the fundamental state equation can be written as m′ = m+C ·σ, where σ ∈ N|T |
≥0 is the

firing count vector of σ; m[σ〉 denotes that σ is firable from m, while m[σ〉m′ means the

firing of σ drives m to m
′.

The set of transitions T is partitioned into two sets: To and Tu, where To is the

set of observable transitions, whose firing can be detected by an external observer, and

Tu is the set of unobservable transitions. The firing sequence σo is an observable firing

sequence, if t ∈ σo, then t ∈ T o; σu is an unobservable firing sequence, if t ∈ σu, then

t ∈ T u. An observation function λ : T ∗ → T ∗
o , where T ∗

o is the Kleene closure of To,

extracts a sequence of observable transitions λ(σ) from σ. Let σ = σu
1σ

o
1σ

u
2σ

o
2 · · ·σ

u
n, then

λ(σ) = σo
1σ

o
2 · · ·σ

o
n−1. Observable transitions are represented as white rectangles, while

unobservable ones as black rectangles.
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ε3 ε4ε1 t5t2 p2p1 p3 p4

Figure 2.1: Example of w = λ(σ)

Example 2.1. For the PN in Fig. 2.1, observable transitions are t2, t5, and unobservable

transitions are ε1, ε3, ε4. Let σ = ε1t2ε3ε4t5, then the observed word of σ is w = λ(σ) =

t2t5.

Definition 2.2. A timed PN system is a triple 〈N , θ,m0〉, where 〈N ,m0〉 is a PN system

and θ ∈ R|T |
≥0 is the time vector that associates to each transition tj a constant time delay,

θj = θ[tj ].

The time duration of a transition is deterministic, i.e., if a transition tj is enabled at

time τ , tj is fired at τ + θ[j]. The single server semantic is used, which means a transition

cannot be enabled simultaneously more than once.

We make the following assumptions:

(A1) the initial marking and net structure are known;

(A2) the unobservable induced subnet (PNu = 〈P, Tu,Preu,Postu〉)is acyclic, where

Preu and Postu are pre and post incidence matrices constrained by Tu;

(A3) The time durations of observable transitions are known, while the time durations

of unobservable transitions are unknown.

The second assumption implies that there are not spurious solutions in the unobserv-

able subnet, i.e., all markings, solution of the state equation are reachable. Therefore, the

set of basis markings can be characterized using the state equation.

Even if the initial marking is known, because of the partial observation, the state of

timed PN’s cannot be determined by the observation. To characterize the possible set of

markings we use a subset of it, which is called the set of basis markings. Knowing the

set of basis markings, the consistent markings, which are the possible markings in the

net system, can be obtained by simply firing the unobservable transitions from the basis

markings.

Definition 2.3. [8] Given a marking m and an observable transition t ∈ To, we define

the set of explanations of t at m as Σ(m, t) = {σ ∈ T ∗
u |m[σ〉m′,m′ ≥ Pre[·, t]}.

The set of minimal explanations of t at m as Σmin(m, t) = {σ ∈ Σ(m, t)|∄σ′ ∈

Σ(m, t) : σ′ � σ}, where σ
′ � σ means that for every t, σ′[t] � σ[t] and there exists t

such that σ′[t] < σ[t].
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2.2 Basis Marking

In the following, the set of basis markings without time is introduced. The set of basis

markings of observation w is denoted by Mb(w).

Definition 2.4. The set of basis markings of observation w = vt is defined as Mb(w) =

{m ∈ N|P |
≥0|∀m

′ ∈ Mb(v) : ∀σ ∈ Σmin(m
′, t),m′[σt〉m}. For empty word ǫ, Mb(ǫ) =

{m0}.

p2 p3 p4p1 ε3ε2 t1

Figure 2.2: Example of the set of basis markings

Example 2.2. Let us consider the PN in Fig. 2.2 with m0 = [1, 1, 0, 0]T . The unobserv-

able transitions are ε2 and ε3, while the observable transition is t1. Assume t1 has been

observed.

The set of basis markings before any observation is Mb(ǫ) = {m0}, where ǫ is the

empty word. When w = t1 is observed, the set of explanations is Σ(m0, w) = {σ1, σ2},

where σ1 = ε3, σ2 = ε2ε3. Therefore, the set of minimal explanations is Σmin(m0, w) =

{σ1}. By firing σ1t1, the marking m1 = [1, 0, 0, 1]T is obtained and the new set of basis

marking is Mb(t1) = {m1}.

For a marking m in the set of basis markings, there exists σ such that m0[σ〉m. The

sequence σ is composed by the observable transitions and unobservable firing sequences,

which are minimal explanations. In order to represent the firing sequences that drive the

marking from m0 to m, based on the set of minimal explanation, we present the set of

minimal firing sequences.

Definition 2.5. Given a marking m and an observed word w = ti1ti2 · · · ti,n−1tin, we de-

fine the set of firing sequences consistent with w as Γ(m, w) = {σ ∈ T ∗|σ = σu
1 ti1σ

u
2 ti2 · · ·

ti,n−1σ
u
ntin,m0[σ〉m}.

Based on Γ(m, w), we define the set of minimal firing sequences as Γmin(m, w) ⊆

Γ(m, w), that σu
j , j = 1, . . . , n is a minimal explanation of corresponding marking and

observation.

Definition 2.6. The set of basis markings at time τ of a timed Petri net is defined as

Mb(w, τ) = {m ∈ Mb(w)|∃σ ∈ Γmin(m, w), σ = σ′t, λ(σt) = w, t is observed at τ}.

The firing sequences consistent with w defines the firing sequences whose observation

word is w and lead the system to the marking m.

State Estimation of Timed Petri Nets



Chapter 3

Time Duration of Firing Sequence

and Reduction Rules

3.1 Time Duration of Firing Sequence

In order to estimate the state of a timed PN, it is important to know the time duration

of a firing sequence. In this chapter, we define and analyze such time duration.

Let us consider a firing sequence σ = t1t2 · · · tn, and τ1 and τn are the time instant

when t1 and tn are fired, respectively. The time duration of σ is denoted by ι(σ) and it is

defined as the time duration from the enabling of t1 to the firing of tn:

ι(σ) = τn − (τ1 − θ1). (3.1)

Proposition 3.1. Let σ = t1t2 · · · tn, the following equation is satisfied:

max{θ1, . . . , θn} ≤ ι(σ) ≤
n

∑

i=1

θi. (3.2)

If one and only one transition from σ is enabled at each time instant, then

ι(σ) =
n

∑

i=1

θi (3.3)

Proof. If there exists overlapping of time durations, the time duration of the firing se-

quence is less than the sum of the time durations of all transitions (3.2). If there is no

overlapping, then (3.3) holds.

The previous proposition can be generalized to sequences that can be partitioned into

subsequences. For example, if σ = σ1σ2 · · ·σn and at each time moment, the enabled

transitions belong to one and only one subsequence σi, then:

ι(σ) = ι(σ1) + ι(σ2) + · · ·+ ι(σn). (3.4)

6
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p8

p6

t6p7

p5 t5

p1

p3

t2

t1

p4t3

t4
t7

p9p2

Figure 3.1: Example of ι(σ) = ι(σ1) + ι(σ2) + · · ·+ ι(σn)

Example 3.1. Let us consider the PN in Fig. 3.1 with m0 = [1, 0, 0, 0, 0, 0, 0, 0, 0]T and

θ = [1, 2, 3, 1, 2, 3, 1]T . Since it is a deterministic PN, the following observed word is

obtained w = t1t2t3t4t5t6t7 at the following time instants 1, 3, 4, 5, 7, 8, 9.

Let us write w as w = σ = σ1σ2σ3σ4σ5, with σ1 = t1, σ2 = t2t3, σ3 = t4, σ4 = t5t6, σ5 =

t7. According to (3.1), the time durations are ι(σ) = 9, ι(σ1) = 1, ι(σ2) = 3, ι(σ3) =

1, ι(σ4) = 3, ι(σ5) = 1. Since the condition in(3.4) is satisfied,

ι(σ) = ι(σ1) + ι(σ2) + ι(σ3) + ι(σ4) + ι(σ5)

= 1 + 3 + 1 + 3 + 1 = 9.

3.2 Reduction Rules

The firing of unobservable transitions cannot be distinguished by observation. In order to

reduce the state space of the unobservable subnet, reductions can be used. In this section,

based on [2], reduction rules are applied to ordinary timed Petri net systems. The rules

should be applied before the state estimation algorithm.

The first reduction rule is shown in Fig. 3.2(a), ε1, · · · , εn−1 are unobservable and,

|p1•| = 1; |•pi| = |pi•| = |•εj | = |εj•| = 1, i = 2, . . . , n − 1, j = 1, . . . , n − 1. The

unobservable firing sequence ε1ε2 · · · εn−1 moves a token from p1 to pn and can be merged

into one transition ε1,n−1, such that, in the reduced net,

• m[p1,n−1] =
∑n−1

i=1 m[pi],

• θ1,n−1 =
∑n−1

i=1 θi.

Fig. 3.2(b) illustrates the second reduction rule, ε1, · · · , εn+1 are unobservable tran-

sitions and |pi•| = 1, i = 1, . . . , n; |•pn+1| = n and |pn+1
•| = 1. The unobservable firing

sequence ε1εn+1 (. . . , εnεn+1) moves a token from p1 (. . . , pn) to pn+2. Therefore, ε1 and

εn+1 (. . . , εn and εn+1) can be merged into one transition ε1,n+1 (. . . , εn,n+1), such that,

• m[pi,n+1] = m[pi] +m[pn+1],

State Estimation of Timed Petri Nets
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p5 p6

p1 t4t1

ε3

p3 p4ε2

p7p35 p46p1 t4t1 ε23

p2 p3

pn

p1

p1,n−1

ε2

ε1,n−1

ε1 pnpn−1 εn−1

εn+2

tn+1

εn+2

tn+1

...

...

...

...

· · ·· · ·

pn

pn+2

p1

pn,n+1

εn

tn+3

ε1

ε1,n+1pn+1

p1,n+1

εn,n+1

pn+2

εn+4

εn+1 tn+3
εn+4

· · ·

· · ·

· · ·

· · ·

· · · · · ·

· · · · · ·

(a) (b)

(c)

Figure 3.2: Illustration of the reduction rules

• θi,n+1 = θi + θn+1.

The third reduction rule is presented in Fig. 3.2(c), unobservable transitions ε2 and

ε3 cannot be distinguished in the firing sequence t1ε2ε3t4 or t1ε3ε2t4. Therefore, ε2 and ε3

can be merged into one transition ε23, such that, the time duration is θ23 = max{θ2, θ3}.

The marking of the reduced net satisfies:

• m[p35] = m[p3] +m[p5],m[p46] = 0.

• m[p35] = 0,m[p46] = m[p4] +m[p6].



Chapter 4

State estimation of choice-free nets

The state estimation algorithm proposed here contains three steps: (1) the set of basis

markings is computed without considering time; (2) the set of time equations is obtained;

(3) the set of basis markings is reduced based on the time information.

4.1 Computation of basis markings

The set of basis markings at time τ = 0 is Mb(ǫ, 0) = {m0}. Let us assume that the

current set of basis markings at time τ is Mb(w, τ), where w is the actual observation.

When the firing of a new transition tj is observed at time τj , the following operations

should be performed in order to compute Mb(wtj, τj).

1. Let Mb(wtj, τj) = ∅,

2. For each m ∈ Mb(w, τ),

(a) compute Σmin(m, tj),

(b) let M′ = {m′|m[σtj〉m′, σ ∈ Σmin(m, tj)},

(c) let Mb(wtj, τj) = Mb(wtj, τj) ∪M′.

For each basis marking m of the previous set, the set of minimal explanations is

computed in Σmin(m, tj). Therefore, when tj is observed after the firing of the minimal

explanations of Σmin(m, tj) from m, the new set of basic markings is obtained.

Example 4.1. Let us consider the PN’s in Fig. 4.1 with θ1 = 1 and m0 = [1, 1, 1, 0, 0]T .

The set of minimal firing sequences for the empty word is Γmin(m0, ǫ) = ∅, and the set of

basis marking at time 0 is Mb(ǫ, 0) = {m0}.

If w = t1 is observed at time 4, Mb(t1, 4) is computed as follows:

1. Mb(t1, 4) = ∅;

9



p3

p4 p5

p2

p1 ε3

ε4

ε2

t1

Figure 4.1: PN system used in Example 4.1

2. Σmin(m0, t1) = {ε3, ε4};

3. M′ = {m1 = [1, 0, 1, 0, 1]T ,m2 = [1, 1, 0, 0, 1]T}, where m0[ε4t1〉m1, m0[ε3t1〉m2;

4. Mb(t1, 4) = {m1, m2}.

The sets of minimal firing sequences are Γmin(m1, w) = {ε4t1},Γmin(m2, w) = {ε3t1}.

4.2 Computation of the set of time equations

The set of basis markings in the previous section is computed without considering any

time consideration. Assuming that the time durations associated to the unobservable

transitions are not known, in this section we provide a procedure to obtain a set of

equations to characterize all possible time durations associated to these unobservable

transitions. It will be shown also how this set of time equations can be used to remove

those time-inconsistent markings from the set of basis markings.

Let us assume that the time instant at which tj was observed is τj , while the current

set of basis markings is Mb(wtj , τj). To each set of basis markings we associate a set of

time equations. These equations are obtained as the union of different equations. Let

Γ =
⋃

m∈Mb(wtj ,τj)
Γmin(m, wtj) be the set of all minimal firing sequences of all basis

markings. The following time equation oτj is obtained:

∀σ ∈ Γ, min{ι(σ)} = τj .

Example 4.2. In Example 4.1, the set of basis markings at time 4 has been computed.

The set of minimal firing sequences are Γmin(m1, t1) = {ε4t1} and Γmin(m2, t1) = {ε3t1}.

Therefore, Γ = {ε3t1, ε4t1} and the time equation is

o4 : min{ι(ε3t1), ι(ε4t1)} = 4.

This has the following intepretation: because t1 has been fired at 4 and since for its

firing, ε3 or ε4 should fire the firing delay of at least one of the following sequences ε3t1

and ε4t1 should be 4.
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If t1 is observed again at time 6, the sets of minimal explanations are Σmin(m1, t1) =

{ε3}, Σmin(m2, t1) = {ε4, ε2ε3}, implying the set of basis markings is Mb(t1t1, 6) =

{m3,m4}, where m3 = [1, 0, 0, 0, 2]T ,m4 = [0, 1, 0, 0, 2]T , and the sets of firing sequences

consistent with w = t1t1 are Γmin(m3, t1) = {ε4t1ε3t1} and Γmin(m4, t1) = {ε3t1ε4t1,

ε3t1ε2ε3t1}, while the corresponding time equation is

o6 : min {ι(ε4t1ε3t1), ι(ε3t1ε4t1), ι(ε3t1ε2ε3t1)} = 6.

Let us analyze o6. First of all, according to the definition of the time duration of a

sequence, ι(ε4t1ε3t1) and ι(ε3t1ε4t1) provides the same information. The time durations

of the two firing sequences are the same. Hence one of them can be removed from o6.

Removing for example the second one, we obtain

o6 : min {ι(ε4t1ε3t1), ι(ε3t1ε2ε3t1)} = 6.

According to o4, θ3 ≥ 4 − θ1 = 3. We will show that in o6, ι(ε3t1ε2ε3t1) > 6 hence it

is never the one that gives the minimum and can be removed.

ι(ε3t1ε2ε3t1) ≥ θ3 + θ3 + θ1 = 2θ3 + θ1 ≥ 7

Therefore, ε3t1ε2ε3t1 is inconsistent with the time information. It can be deleted from

o6, so o6 = ι(ε4t1ε3t1) = 6, and the corresponding basis marking should be removed, i.e.,

Mb(t1t1, 6) = {m3 = [1, 0, 0, 0, 2]T}.

As it was illustrated by the previous example, some basis markings are time inconsis-

tent with the observation. On the other hand, some time equations that are obtained can

be redundant.

In order to remove an element ι(σj) from a minimum function oj the following proce-

dure can be used: (i) let σj = σ1
jσ

2
j . . . σ

r
j such that (3.4) is satisfied, i.e., the time duration

of σj is the sum of time durations of the subsequences: ι(σj) = ι(σ1
j )+ ι(σ2

j )+ . . . ,+ι(σr
j );

(ii) find σi
k,l, i = 1, . . . in O such that they are subsequences of σl

j , l = 1, . . . , r; according

to (3.2), ι(σl
j) ≥ ι(σi

k,l), ∀i; (iii) if
∑

i ι(σ
i
k,l) > τj, where τj is the time instant when oj is

computed, ι(σj) should be removed from oj .

Proposition 4.1. Let O be the current set of time equations, where

O =























min{ι(σ1,1), ι(σ1,2), . . . , ι(σ1,k1)} = τ1,

min{ι(σ2,1), ι(σ2,2), . . . , ι(σ2,k2)} = τ2,
...

min{ι(σq,1), ι(σq,2), . . . , ι(σq,kq)} = τq,






















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and let oj be the time equation obtained at time τj > τq, where oj : min{ι(σj,1), ι(σj,2), . . . ,

ι(σj,kj )} = τj, with q, kq, j ∈ N>0.

Let ι(σj) ∈ {ι(σj,1), ι(σj,2), . . . , ι(σj,kj)} and decompose σj as σj = σ1
jσ

2
j . . . σ

r
j . Find

all σi
k,l in O such that σi

k,l is a subsequence of a σl
j and ∀l, ι(σi

k,j) ≥ σl
j. If

∑

i ι(σ
i
k,j) > τj

then remove ι(σj) from oj.

Proof. Obviously, If the previous conditions are satisfied, ι(σj) > τj . Hence it is not

timed-consistent with the observation.

4.3 Algorithm for state estimation

In this section, we present an algorithm for state estimation of systems modeled by timed

PN’s. When a new observation is available, the four steps in Algorithm 1 are performed.

Algorithm 1 Estimate the state of timed PN’s

1: Compute the set of basis markings Mb(wtj, τj) based on the current observation tj

at τj.

2: Compute the time equation oj.

3: Reduce oj based on Prop. 4.1.

4: Reduce the set of basis markings Mb(wtj , τj) accordingly.

p3

p6

p12

ε23

t1

ε4

ε6

p7

p5t5

ε7 p4p3

p7

p2

p6p5 p1t5

ε3

t1

ε7

ε6

ε2

ε4p4
(a) (b)

Figure 4.2: Example of the algorithm

Example 4.3. Let us consider the PN in Fig. 4.2(a). with observable transitions t1 and t5,

θ1 = θ5 = 1, and the initial marking m0 = [p1, p2, p3, p4, p5, p6, p7]
T = [1, 0, 0, 0, 0, 0, 0]T .

Applying reduction rule # 1, transitions ε2 and ε3 are merged into ε23, and places p1

and p2 are merged into p12. Fig. 4.2(b) shows the reduced model. The initial marking is

m0 = [p12, p3, p4, p5, p6, p7]
T = [1, 0, 0, 0, 0, 0]T .

The state estimation algorithm is applied on the reduced PN in Fig. 4.2(b). Let us

assume the following observations: t1 at 5, 9 and t5 at 10.
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• At time 0, the set of basis markings is Mb(ǫ, 0) = {m0} and the set of time equations

is O = ∅.

• At time 6, t1 is observed (w = t1). The set of minimal explanations is Σmin =

(m0, t1) = {σ1.σ2}, where σ1 = ε23ε6, σ2 = ε23ε4, meaning that σ1 or σ2 has been fired

in order to enable t1. By firing σ1t1 and σ2t1, the set of basis markings is obtained as

Mb(w, 6) = {m1,m2}, where m1 = [1, 2, 0, 0, 0, 0]T , m2 = [1, 0, 1, 1, 0, 0]T , and the sets

of minimal firing sequences are Γmin(m1, w) = {σ1t1} and Γmin(m2, w) = {σ2t1}. The

time equation at time 6 is min{ι(σ1t1), ι(σ2t1)} = 6, the only equation that will compose

O.

• At time 9, w = t1t1 and the sets of minimal explanations are Σmin(m1, t1) =

{σ1, ε4},Σmin(m2, t1) = {σ2, ε6}.

By firing σ1t1 and ε4t1 from m1, we obtain m3 = [1, 4, 0, 0, 0, 0]T and m4 = [2, 1, 1, 0,

0, 0]T , respectively; by firing σ2t1 and ε6t1 from m2, m4 and m5 = [1, 0, 2, 2, 0, 0]T are

obtained. Therefore, Mb(w, 9) = {m3,m4,m5} and Γmin(m3, w) = {σ3}, Γmin(m4, w) =

{σ4, σ6} and Γmin(m5, w) = {σ5}, where σ3 = σ1t1σ1t1}, σ4 = σ1t1ε4t1, σ6 = σ2t1ε6t1,

and σ5 = σ2t1σ2t1}.

From previous sets the time equation at time 9 is obtained as min{ι(σ3), ι(σ4), ι(σ5),

iota(σ6)} = 9.

Observe that σ3 = σ1(t1σ1)t1 satisfying Prop. 4.1, and ι(σ3) = ι(σ1) + ι(t1σ1) + ι(t1).

Form the equations of O can be observed immediately that ι(t1σ1) ≥ 6 and ι(σ1) = ι(t1σ1)−

θ1 ≥ 5. Therefore, ι(σ3) ≥ 5 + 6 + 1 = 12 > 11. Hence, ι(σ3) should be removed. For

the same reason, ι(σ5) is also redundant and can be removed. The set of time equations

becomes:

O =

{

min{ι(σ1t1), ι(σ2t1)} = 6,

min{ι(σ4), ι(σ6)} = 9.

}

The set of basis markings is reduced to Mb(w, 9) = {m4}.

• At time 10, t5 is observed (w = t1t1t5). The set of minimal explanations is Σmin =

(m4, t5) = {ε7}. Firing ε7t5, the set of basis markings is obtained as Mb(w, 10) = {m6},

where m6 = [2, 1, 0, 1, 0, 0]T , and the set of minimal firing sequences as Γmin(m6, w) =

{σ7, σ8}, where σ7 = σ4ε7t5 and σ8 = σ6ε7t5. The time equation obtained at this time

moment is min{ι(σ7), ι(σ8)} = 10. Hence, the set of time equations is

O =











min{ι(σ1t1), ι(σ2t1)} = 6,

min{ι(σ4), ι(σ6)} = 9,

min{ι(σ7), ι(σ8)} = 10.











Being an online procedure, seems that the set of time equations is growing indefinitely.

However, dealing only with time deterministic Petri nets, this is not true and there exists

State Estimation of Timed Petri Nets



a moment from which any other time equation does not provide new information and the

set of time equations is not updated anymore.

In the following, we discuss the time in a structurally live (SL) and structurally

bounded (SB) choice-free net with a minimal T-semiflow x. We assume the upper bound

of time duration of every transition is u, and then the upper bound of a firing vector σ is

u(σ) = u ·
∑|T |

i=1 σ[i]. Let mh be home state, i.e., it can be reached from every reachable

marking [5]. Based on [13], mh will be reached by a firing sequence σh, with σh ≤ x.

Proposition 4.2. In a SL&SB choice-free net with minimal T-semiflow x, if the initial

marking is live, it is not necessary to update the set of time equations after the time instant

2 · u(x).

Proof. Because the net is SL&SB and the initial marking is live, then there exists a circle

in the reachability graph and a home state mh. From m0, after firing σh, the home state

is reached and the system behavior starts to repeat. Therefore, from this moment, it is

not necessary to update the set of time equations.

4.4 Extension to nets with choices

p2

t1
ε5ε4

ε3ε2

p3

p4p1

Figure 4.3: Example of PN’s with choice

Let us consider the PN in Fig. 4.3 with ε2 and ε4 immediate transitions, i.e., θ2 =

θ4 = 0, θ1 = 1, and m0 = [1, 0, 0, 0]T . Assume t1 is observed at time 4. Obviously, ε2ε3 or

ε4ε5 has been fired to enable t1, but we don’t know exactly which one. Since t1 has been

observed at 4, we can say that ι(ε2ε3t1) or ι(ε4ε5t1) is 4, but we cannot say nothing about

the time duration of the other. Hence, we cannot say that the minimum of ι(ε2ε3t1) and

ι(ε4ε5t1) is 4.

Therefore, to apply the algorithm to general nets, there exist two possibilities: (1) re-

duce the net using the reduction rules, to obtain a choice-free one (2) enumerate all

possible combinations of firing sequences. This approach is similar with the one of state

estimation of untimed PN’s.



Chapter 5

State estimation of distributed

systems

Let us consider distributed system, for which each site is a timed Petri net system mon-

itored by an agent. Every agent knows the structure and the initial marking of its site.

The model of each site is a state machine, while the model of global system is a Deter-

ministically Synchronized Sequential Processes (DSSP) system [3].

Definition 5.1. [3] A PN system, S = 〈P1∪· · ·∪PK∪B, T1∪· · ·∪TK ,Pre,Post,m0〉,

is a DSSP, if:

1. Pi ∩ Pj = ∅, Ti ∩ Tj = ∅, Pi ∩B = ∅, ∀i, j ∈ {1, . . . , K}, i 6= j;

2. 〈SMi,m0i〉 = 〈Pi, Ti,Prei,Posti,m0i〉, ∀i ∈ {1, . . . , K} is a strongly connected

and 1-bounded state machine (where Prei, Posti and m0i are the restrictions of

Pre, Post and m0 to Pi and Ti);

3. The set B of buffers is such that ∀b ∈ B:

(a) |•b| ≥ 1 and |b•| ≥ 1,

(b) ∃i ∈ {1, . . . , K} such that b• ⊂ Ti,

(c) ∀p ∈ P1 ∪ · · · ∪ PK : t, t′ ∈ p• ⇒ Pre[b, t] = Pre[b, t′].

Transitions belonging to the set TI = •B ∪ B• are called interface transitions. The

remaining ones (T1 ∪ · · · ∪ TK\TI) are called internal transitions.

In this chapter, immediate transitions, whose time delays are 0, are introduced to

solve conflicts, i.e., if |p•| > 1, then ∀t ∈ p• has its time delay θt = 0. In order to let

representation of models to be compact, immediate transitions are not shown in models.

In Fig. 5.1(a), immediate transitions are t1 and t2, while they are not shown in Fig. 5.1(b),

15
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t3

t4

t3

t4

p4

p5

(a) (b)

Figure 5.1: Immediate transitions

which is the compact representation, and the marking of p6 is m[p6] = m[p1] +m[p2] +

m[p3].

In each site, the set of transitions Ti is partitioned into two sets: Tio and Tiu, where Tio

is the set of observable transitions, whose firing can be detected by an external observer,

and Tiu is the set of unobservable transitions. The firing sequence σo is an observable

firing sequence, if t ∈ σo, then t ∈ Tio; σ
u is an unobservable firing sequence, if t ∈ σu,

then t ∈ Tiu. An observation function λ : T ∗
i → T ∗

io, where T
∗
io is the Kleene closure of Tio,

extracts a sequence of observable transitions λ(σ) from σ. Let σ = σu
1σ

o
1σ

u
2σ

o
2 · · ·σ

u
n, then

λ(σ) = σo
1σ

o
2 · · ·σ

o
n−1. Observable transitions are represented as white rectangles, while

unobservable ones as black rectangles.

We make the following assumptions:

(A1) the initial marking and the net structure are known;

(A2) the unobservable induced subnet is acyclic;

(A3) the time durations of transitions are unknown;

(A4) an agent only observes the firing of transition in its site;

(A5) an agent only knows the structure and initial marking of its site.

When the firing of an observable transition tj is observed, the marking of SMi is mi,

that, for k = 1, . . . , |Pi|,

mi[k] =

{

1, pk ∈ tj
•,

0, otherwise.

Definition 5.2. Two agents Ai and Aj are neighbor agents, if ∃b ∈ B, •b∩Ti 6= ∅, b•∩Tj 6=

∅, where Ti and Tj are sets of transitions of sites monitored by Ai and Aj, respectively.

The proposed state estimation algorithm estimates the firing of transitions. An agent

observes its site and computes possible firing sequences using the algorithm. The local
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estimation is improved based on the communication between agents. Using the commu-

nicaton information, the marking of buffers are interchanged between agents.

t4

t5

t6

t7

t8

t9

t10

b1

b2

p4

p5

p6

p7

p8

p9

Agent A1

t1

t2

t3

p1

p3

p2

Site S1 Site S2

Agent A2

Figure 5.2: Global model for Example 5.1

Example 5.1. The model in Fig. 5.2 represents a DSSP system. There are two sites

and two agents monitoring each sites. The sites S1 and S2 are connected with buffers b1

and b2. The only observable transition in S1 is t2, while in S2 is t7. The observation

is given in Tab. 5.1. We assume that an agent sends information to its neighbor agents

immediately after it computes the estimation. Let us discuss the state estimation of A2

according to its observation and to the information received from A1.

Table 5.1: The observation in Example 5.1

t t2 t7 t2, t7

τ 3 6 11

• At time 3, agent A1 observes the firing of t2. At this moment, the information

regarding b1 and b2 are: “from time 0 to 3, no token has been produced in b1” and “from

time 0 to 3, no token has been consumed from b2”, respectively. These information are

sent to A2.

• At time 6, t7 is observed by A2. From the initial marking, the possible firing sequences

are σ1 = t4t5t6t7 and σ2 = t8t9t10t7. From time 0 to 6, σ1 consumes 1 token from b1 and

State Estimation of Timed Petri Nets



produces 1 token in b2, while σ2 does not consume or produce any token to buffers. The

information from A1 says that no token is produced in b1 from time 0 to 3, but there is no

information of b1 from time 3 to 6. Therefore, σ1 may be consistent with the observation

and with the information received from A1. Obviously, σ2 is consistent with the received

information.

• At time 11, A1 observes t2 and A2 observes t7. The agent A1 computes the infor-

mation of b1 and b2, which are “from time 0 to 11, one token has been produced in b1”

and “from time 0 to 11, one token has been consumed from b2”, respectively. The possible

firing sequences of S2 are σ5 = σ1σ1, σ6 = σ1σ2, σ7 = σ2σ1 and σ8 = σ2σ2. With the

information from A1, A2 concludes that: 1) only one token has been produced in b1 from

time 0 to 11, and then the firing sequences which consume more than one tokens from b1

are not possible; 2) one token has been consumed from b2 from time 0 to 11, and then the

firing sequences which do not produce more than one tokens in b2 should be eliminated.

Because σ5 consumes two tokens from b1 and σ8 does not produce any token in b2, so they

are eliminated from possible firing sequences. The possible firing sequences at time 11 in

S2 are σ6 and σ7.

Therefore, the agents should use the information of buffers to eliminate inconsistent

firing sequences. Inconsistent can come from the following situations: (1) if the informa-

tion says i tokens are produced in a buffer, then firing sequences which consume more

than i tokens are inconsistent; (2) if in the information, i tokens are consumed from a

buffer, then firing sequences which produce less than i tokens are inconsistent sequences.

When a system starts to evolve, each agent performs local estimation and computes

information of buffers. Because the information includes time information, which is “from

time τ1 to τ2, i tokens are produced to (or consumed from) a buffer”, so the problem

that it should be considered whether there exists a global clock in the system or not.

In the affirmative case, the time instants are interchanged between agents, as the one

in Example 5.1. Otherwise, in the situation that each site has a local clock, the time

instants are not included in information, while when an agent receives an information,

it computes time instants for the information as following: (1) the information is “from

last commmunication until this moment, i tokens are produced into (or consumed from) a

buffer”, (2) assume last and present communication are at τ1 and τ2, (3) the information

in the receiver agent is “from τ1 (last communication) until τ2 (current communication),

i tokens are produced into (or consumed from) a buffer”. All these consideration will be

considered when the state estimation will be developed for distributed systems.



Chapter 6

Conclusions and Future Work

In this work, we provide an online algorithm for state estimation of timed choice-free

PNs, and we give some ideas on how the procedure is adapted to a paticular class of

distributed systems. First, an algorithm to compute the set of consistent markings is

given, and then the time information are grouped into a set of time equations that is used

to reduce the set of consistent markings. Some reduction rules are presented that can be

used also to reduce the state space of the timed systems merging the indistinguishable

transitions. Second, we discuss the general case, i.e., nets with choices, and we show that

the procedure is similar with the standard one of untimed Petri nets. Finally, the adaption

of the approach to distributed systems is illustrated with an example. Communication is

introduced into state estimation by agents in distributed systems. As a future work, we

plan to continue working on state estimaton of distributed systems and to implement the

algorithms in MATLAB.
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