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Redes de Petrithridas adaptativas: alcanzabilidad y
ausencia de bloqueos
RESUMEN

Las redes de Petri (RdP) [3] constituyen un paradigma foamaliamente aceptado para el modelado
de sistemas de eventos discretos. No obstante, con patdadale gran tamafio, padecen del problema
de la explosion de estados (crecimiento exponencial defia del conjunto de estados alcanzables
con respecto a la poblacion inicial del sistema). Una nwaxer paliar este problema consiste en
relajar la restriccion de integralidad del formalismo yisiolerar redes de Petri continugs[[b, 8]. Las
redes de Petri continuas permiten abordar de manera eficémistudio de los sistemas mediante
técnicas lineales de analisis.

Sin embargo, siendo las redes continuas una relajaciGasdidcretas, no siempre preservan sus
propiedades, como por ejemplo la ausencia de bloglios fi9dsté Trabajo se introduce, formaliza
y estudia un formalismo nuevo, denominado redes de Pétidas adaptativas (HAPN), basado en
una relajacion alternativa de la integralidad.

En una red de Petri discreta, continua o hibrida, las ttaors@s son definidas a priori como disc-
retas o como continuas, lo que determina su modo de comgertren todo instante de tiempo
[L1]. Esta definicion estatica no permite adaptar el catapaiento del modelo a la carga, que varia
dinamicamente. En cambio, el comportamiento de las vam&s de la red adaptativa es variable:
una transicidbn se comporta cornontinuasi su carga de trabajo supera un umbral establecido ini-
cialmente, en caso contrario se comporta calisoreta Dado que las inconsistencias entre las redes
discretas y las continuas suelen darse cuando las poldacgmm pequefas, se ha intentado que las
redes adaptativas no presenten estos problemas, ya que easesel comportamiento es discreto.
Ademas, cuando las poblaciones son elevadas el comperte@s continuo, por lo que las técnicas
lineales son aplicables, evitando el problema de la exptode estados.

En primer lugar, se ha definido formalmente el formalismoeaties de Petri adaptativas. En el
ambito de este Proyecto Fin de Master, el formalismo naidena ninguna interpretacion temporal.
Tras estudiar diversas alternativas para determinar ebadamiento de las transiciones en funcion
de su carga, la opcibn elegida consiste en establecer uralpdra la carga de trabajo de cada
transicion. Paratoda carga inferior al umbral, el congrarénto de la transicion es discreto, mientras
que el comportamiento es continuo para cargas superiores.

A partir de la definicion de las HAPNSs, se ha caracterizadmejunto de sus marcados alcanz-
ables de las redes de Petri adaptativas. El conjunto glelrabdcados alcanzables no sera, en general,
convexo como lo es el de las redes continuas, pero es c@abtercomo una union de conjuntos
CONVexos.

Por Gltimo, se estudia la ausencia de bloqueos, una pwrgibésica y necesaria para que las
acciones de un sistema tengan un comportamiento adecuadnteSta no tanto determinar si una
red puede bloquearse, sino si la red adaptativa preseruadacia de bloqueos de la red discreta con
misma estructura y marcado inicial.

En conclusion, se ha definido el formalismo de las HAPN, ecual cada transicibn combina
comportamientos discretos y continuos en funcion de lgacde trabajo, con el objetivo de realizar
una fluidificacion parcial de las RdP discretas que presaiginas propiedades que las RdP com-
pletamente continuas no siempre preservan. Este fornmlistiuye a las redes de Petri discretas,
continuas e hibridas. Ademas, se han estudiado las pexee de alcanzabilidad y ausencia de
bloqueos del formalismo en relacion a las Redes de Petriedés.
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Chapter 1
Introduction

This “Trabajo Fin de Master” (TFM) introduces and studidgbrid Adaptive Petri Nets (HAPNS)
[d], a formalism in the paradigm of Petri nets (PN) [3].

HAPNs combine discrete and continuous behaviours fromidweate and continuous Petri nets,
and attempt to partially fluidify discrete PN models maritagrtheir relevant properties.

The results obtained in this work have been published in toegedings of an international
conferencel]d].

1.1 Context

Discrete event systems appear in many fields, for instang®imufacturing, logistics, computer net-
works, traffic systems, etc. Having suitable modeling fdisnas and formal techniques for its design,
development and implementation is essential to achievecoand eficient systems behaviour.

Petri nets are a formal paradigm widely used for the modeadihdiscrete event systems, due
to its powerful analysis and synthesis techniques and iectgraphical representation. However,
as in most formalisms for discrete event systems, the setasfhable states grows exponentially
with respect to the initial population of the system. Thugnsnanalysis techniques based on the
exploration of the state space are inefficient for the amalyshigh populated systems: this is the
well knownstate explosion problentt is a crucial drawback in the analysis of discrete evestays.

An interesting technique to overcome this difficulty is téarethe original discrete model and deal
with a continuous approximation. Such a relaxation aimsatputationally more efficient analysis
methods, at the price of losing some precision.

Unfortunately, the transformation to a continuous modef ma always preserve important prop-
erties of the original discrete model. In the context of Retts (PNs), the transformation from dis-
crete to continuous [6,] 5] 8] does not preserve, in generapauties as deadlock-freeness, liveness,
reversibility, etcl[¥].

1.2 Motivation

This TFM focuses on hybrid adaptive Petri nets [2], a Petrbased formalism in which the firing of
transitions is partially relaxed. Transitions of HAPN caghhve in two different modegontinuous
anddiscrete The continuous mode will be chosen when the transition learkis higher than a
given threshold. It makes sense because, in general, therttige workload the better the continuous
approximation. Consequently, it also makes sense to swatehdiscrete mode when the workload
becomes low.

This way, a HAPN is able tadaptits behaviour to the net workload; it offers the possibility
to represent more faithfully the discrete system and sfieplianalysis techniques by behaving as
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continuous when the load is high. In contrast[ib [2], HAPN4 & defined and studied in the

untimed framework. Notice that the introduction of time irgi@en PN system would produce a
particular system trajectory that is also achievable inuhémed one. Thus, the results for some
properties as deadlock-freness in the untimed framewarlbeaalmost straightforwardly applied on

timed systems, in the form of necessary or sufficient coorti

pl
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Figure 1.1: A Petri net system that deadlocks as continuatig is deadlock-free as hybrid adaptive
with appropriate thresholds.

Let us consider the PN system in Figlirel 11 [7] to introdu@ekteéhaviour of HAPNSs. Let the
initial marking of the system ben, = (5,0). If considered as a discrete system, it is deadlock-
free: from the initial markingn, only t, can fire, reachingn, = (3,1). Fromm,, bothm, and
m, = (1,2) can be reached by firing andt, respectively. None of the reachable markings deadlocks
the system, hence it is deadlock-free. This behaviour isesgmted in the reachability graph and
reachability space in FiguEeZl.2. The arrows ofrbechability graphon the right hand of the Figures
2,13 andT]3 are solid for the continuous firings and ddtiethe discrete ones.
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Figure 1.2: Reachability space of the Petri net in Figurbwh&n considered discrete.

Consider now that the system is continuous [10], i.e., eeatsition can be fired in any non-
negative real amount less than or equal to its enabling dedye it will be explained in sectidn 2.3,
the enabling degree @f at the markingm, is 2.5. Thereforet, can fire in any real amount in the
interval [0, 2.5]. Figure[ILB shows the reachability space of the continudusTRe firing oft, in an
amount lower thar2.5 produces positive markings in both places and both transitare enabled.
However, the firing ofty in 2.5 from m, leads to(0, 2.5) where no transition is enabled and the
system deadlocks. Consequently, deadlock-freeness @esdrved by the continuous PN.

Let us finally assume that the net system is hybrid adaptiwetiese systems, a transitioncan
have two different firing mode<ontinuousanddiscrete It behaves as continuous when its enabling




mlpa]

4

3

0,2.5)

2

1 ; '
5,0 2 4

\ u
(5,0),7(0+2¢,2.5-) (0,2.5

% 2 5 4 5 L > A )

m[Pl] O<e<2.5

Figure 1.3: Reachability space of the Petri net in Figurbwih&n considered continuous.

degree is higher than a given threshpld Otherwise{; behaves as discrete.
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Figure 1.4: Reachability space of the Petri net in Figurbah&n considered hybrid adaptive.

When a discrete system is considered as hybrid adaptivepgipte thresholds have to be defined.
Let us defingu; = 1 for t; andus = 1.5 for t, for the system of FigurEZll.1. At the initial marking
m, = (5,0), t; is not enabled, antl, behaves as continuous, and it can fire in real amounts while it
remains continuous. t; is fired in an amount of, m, = (3, 1) is reached. Ain,, botht; andt, are
enabled as discrete. The firingQf¢2) from m, leads tom,(m, = (1,2)). At m, both transitions
are discrete but only is enabled, whose firing leads#a,. Hence, although the adaptive system still
keeps some continuous behaviour, it preserves the deafiimkess property of the discrete system.
Figure[T# shows the reachability space of the HAPN.

In summary, deadlock-freeness property of a discrete rsystght not be preserved by the con-
tinuous aproximation; nevertheless, it could be presebyeithehybrid adaptiveapproximation.

1.3 Objectives and scope

The aim of this TFM is the definition and study of a new formalighe Hybrid Adaptive Petri net
(HAPN). In this formalism, each transition combinates di$e and continuous behaviours, depend-
ing on theworkload what results in a partial fluidification of the PN. The mairagof HAPN is
to reserve some properties of the discrete nets that mayenptdserved by the usual continuous
aproximation, while avoiding the state explosion problem.

The first objective is the mathematical definition of the HARKMNalism. The second is to study
its reachability space. And the third is to study the condsi needed by the HAPNs to preserve the




deadlock-freeness property of the equivalent discrete PNs

1.4 Document organization

The rest of the document is organised as follows: First, spregious concepts are presented in
Chaptel 2. In Chaptdd 3, HAPNs are formally defined. Chdftstiudies the reachability space of
HAPNSs and relates it to those of the discrete and continotrsriggs. Chaptdrl5 presents some results
about deadlock-freeness in HAPNs. Finally, conclusiorgsfature work are presented in Chagier 6.




Chapter 2
Preliminary Concepts

2.1 Petrinets

Petri nets (PN)[[3] are a mathematical formalism to modetrdi® event systems. They allow to
easily model concurrency, sincronization, mutual exdusind conflicts.

PNs have a graphical representation given by a bipartitaphgrwhere nodes can be places,
represented with circles; or transitions, representeddsyg br boxes. The arcs between nodes can
be directed from a place to a transition or from a transitma place. Each place can have a certain
number of tokens. Usually, places describe states of thersysvhile transitions represent events
that modify the system state.

In discrete Petri nets, the tokens of a place are a naturabauand the firing of the transitions
is discrete. The fluidification of discrete Petri nets giues ¢ontinuous PN formalism, where firings
of transitions are continuous and the tokens contained Ia@ an have positive real values. Both
Petri net formalisms are presented formally in the nextiGest

The PN considered here are autonomous, i.e., they do nothave interpretation.

2.2 Discrete Petri nets

The discrete Petri netSl[d, 7] are Petri nets whose transifiioe discrete tokens. They can be defined
as follows:

Definition 1 A discrete PN is a tupl&/p = (P, T, Pre, Post) where:

o P ={p1,p2,...,pn}andT = {t1,tq,...,t,, } are disjoint and finite sets of places and transi-
tions.

e Pre andPost are |P| x |T| sized, natural valued, incidence matrices.

Post[p,t] = w means that there is aarc from ¢ to p with weight (or multiciplity) w. While
Post[p,t] = 0 indicates noarc from ¢ to p. In the same wayPre[p,t] indicates if there is an
arc from p to t and itsweight Given a place (or transition) € P (or T)), its preset ®v, is defined
as the set of its input transitions (or places), angdstsetv® as the set of its output transitions (or
places).

A marking m of a discrete Petri net is defined ag/ sized, natural valued, vectorn <
(N>)!l. Given a Petri net and a marking, the Petri net system canfbeede

Definition 2 A discrete Petri net system is a tupl&/p, m,), wherem, € (Nxo)!*'l is the initial
marking.



Atransitiont; € T is enabled at a marking if and only if (iff) for everyp € °t;, m[p] > Pre|p, t;].
The enabling degree is calculated as follows:

enab(t;, m) = minpecey, L%J
An enabled transitior; can be fired any natural amount less than or equal to the egadhtigree.
The firing of a transitiont in a certain amountr < enab(, m) leads to a new markingn’, and it is
denoted asn-“Lm’. It holdsm’ = m + « - C[P,t], whereC = Post — Pre is the token flow
matrix (incidence matrix if\ is self-loop free). Hence, as in discrete systems= m,+ C - o, the
state (or fundamental) equation summarizes the way theingaekolves, wherer is the firing count
vector of the fired sequence. Right and left natural anrsilbérthe token flow matrix are called T-
and P-semiflows, respectively. As in discrete systems, whe@ = 0, y > 0 the net is said to be
conservativeand whenC' - x = 0, x > 0 the net is said to beonsistent

The set of all the reachable markings for a given systdimm,) is denoted as R3{, my):

Definition 3 RS (V, mo) = { m| a finite fireable sequence o = outs, ...agty, exists such
altn,l O{Qth akt%
that mg — my — mg--- — my =m wheret, €T}

The set of reachable markings is used to define liveness autlod&-freeness properties.
Let (N, mg) be a discrete system:

e (N,mg) deadlocks iff a markingn € RS (\V,m) exists such thatt € T is not enabled.

e (N, my) is live iff for every transitiont and for any markingn € RS (\,m,) there existsn’ €
RSV, m) such that is enabled.

e N is structurally live (deadlock-free) iffrng such that ', my) is live (deadlock-free).

As it will be shown in the next Chapter, a discrete Petri netdgivalent to an hybrid adaptive
Petri net wher&/i, u; = oo, or u; is high enough.

2.3 Continuous Petri nets

The continuous Petri netsl[g, 5] are the fluidification of dise Petri nets: the firing of the transitions
can be inR+(, not only inN. Similarly to discrete PN, continuos Petri nets can be ddfine

Definition 4 A Continuous PN is a tupl&/ = (P, T, Pre, Post) where:

o P ={p1,p2,....,pn} andT = {t1,tq,...,t,, } are disjoint and finite sets of places and transi-
tions.

e Preand Post are |P| x |T| sized, natural valued, incidence matrices.

As in continuous PNPost[p, t| = w means that there is anc from ¢ to p with weight(or multiciplity)

w. While Post[p,t] = 0 indicates narc from ¢ to p. In the same wayPre|p, t] indicates if there is
anarc from p to t and itsweight Given a place (or transition) € P (or T), its presef ®v, is defined
as the set of its input transitions (or places), angdstsetv® as the set of its output transitions (or
places).

A markingm in a continuous Petri net is defined a4 sized, real valued, vectorn € (Rxq)!”!
Continuous Petri net systems can be defined as follows:




Definition 5 A continuous Petri net system is a tuglé, m,), wherem, € (Rx)!*'l is the initial
marking.

Unlike discrete nets, a transitian € 7' in a continuous net is enabled at a markingff for every
p €° t;, m[p] > 0. The enabling degree is calculated as follows:

mlp]

enab(ti, m) = Minyc .ti{i}

Pre[p, t;]

A transitiont; can be fired in a certain amount:
0 < o < enab(t;) with @ € R

The firing oft; in the amounty leads to a new markingy’, and it is denoted a® By

The set of all the reachable markings for a given systdinm,) is denoted as R, my):

Definition 6 RS (V, mo) = { m| a finite fireable sequence 0 = ity ...ayty, exists such
a1ty 2ty Ul +
that mog — mi; — ma--- — my =m wheret, € T and a; € R}

Definition 7 Let (N, m,) be a continuous system. A markimge (R +U{0})/"l is lim-reachable,
iff a sequence of reachable markinfs; };>1 exists such that

o1 o2 [ef)
mo —— M1 —— Mmo... M1 —— My ...

andlim;_.., m; = m. The lim-reachable set is the set of lim-reachable markiagsl it will be
denoted lim-R3('C,m,) [B].

As it will be shown in the next Chapter, a continuous Petriisetquivalent to a hybrid adaptive
Petri net wher&/i, u; = 0.

2.4 Hybrid Petri nets

The hybrid Petri nets]5] are partially fluidified Petri netsathich each of the transitions is defined as
continuous or as discrete, such that each transition whilabe always discrete or always continuous,

but not both. Hybrid PNs are defined as follows:

Definition 8 A hybrid PN is a tupleNV = (P, T, Pre, Post) where:

o P ={p1,p2,....,pn}andT = {t1,to,...,t,, } are disjoint and finite sets of places and transi-

tions.
e Pre andPost are |P| x |T| sized, natural valued, incidence matrices.

e The set of transitiong” is partitioned in two sets7T and 7¢ , whereT* contains the set of
continuous transitions an@? the set of discrete ones.

In contrast to[[6ITI1], the set of plac&scan be partitioned in two sets, here no explicit partition

is considered, being the marking of a place a natural or neaber depending on the firings of its
intput and output transition. Aarkingm in a hybrid Petri net is defined ag B| sized, real valued,
vector:m € (Rxq)!"’l. The hybrid Petri net system can be also defined as follows.
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Definition 9 A hybrid Petri net system is a tuplg\y, m,), wherem, € (Rsq)/l is the initial
marking.

In the same way that HAPN include discrete and continuous Rt also hybrid adaptive Petri
nets are included in the HAPN formalism. To define an hybrittilet, an infinite threshold should
be associated to each discrete transitigh,c T7¢, ;; = oo and a threshold equal to O to each
continuous transitiony;j € 7¢, p; = 0.

2.5

Some net subclasses

Typically, Petri net subclasses are defined by imposing swmstraints on the structure of the net.
The following ones are among the most usual net subclasses:

Definition 10 (Some Petri net subclasses).

Ordinary Petri nets are those nets whose arc weights are.lp.€ P Vt € T, Pre[p,t] €
{0,1} and Post[p,t] € {0,1}.

Choice free Petri nets are PN where each place has at mostitme ansition, i.eYp |p®| < 1.

State machines (SM) are ordinary Petri nets where eaclitteanisas one input and one output
place, i.e.Vt, |*t| = |t*| = 1.

Marked graphs (MG) are ordinary Petri nets where each plaseohe input and one output
transition, i.e.¥p|*p| = |p°*| = 1.

Join free (JF) nets are Petri nets in which each transitianatanost one input place, i.e.,
VteT,|°t <1).

Choice free (CF) nets are Petri nets in which each place hassttone output transition, i.e.,
forallp,|p®| < 1.

Free choice (FC) nets are ordinary Petri nets in which cdaféce always equal, i.evt, t', if
*tNn*t' =, then®t = *t'.

Equal Conflict (EQ) nets are Petri nets in which conflicts &nags




Chapter 3

Hybrid adaptive Petri nets

This Chapter introduces the formalism of hybrid adaptiveiPets, which consists on a partial flu-
idification of the firing of transitions.

3.1 Formal definition

Hybrid adaptive PNs are a relaxation of discrete PNs, suahalthreshold is associated to each
transition, which determines the behaviour mode.

The following example illustrates the behaviour of an ai@ptransition, explaining the be-
haviour of a PN with just one place and one transition.

Example 11 Figure[3 (b) explains the behaviour of the Petri net in Fef@.d (a), from the initial
markingmo = (7). Firstly, the possible markings reachable from the PN whe® & discrete Petri
net are shown in blue color. The net starts with the initialrkirdg m[p] = 7, and it decreases with
the discrete firings of until it reachesm|[p] = 0.

Secondly, the red line of the Figure represents the possegialehable markings of the net when it
is a continuous PN. The marking of plgeean decrease in any amount by the firing of the continuous
transition¢. As explained in the secti@n®.3, the markingp] = 0 will be reached just in the limit.

mlp)

. M0g, ™o mo mo ™o
p 6 - °
5 ]
4 °
3 °
t 2 ° °
o
:U“ 1 e o ®
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0 ° ® -
Discrete Continuous Hyb Adap Hyb Adap Hyb Adap
Petri Net Petri Net Petri Net Petri Net Petri Net
w=2 w=3 w=2.5
(@) (b)

Figure 3.1: Example of a Petri net system and the possibl&inga of the place.

Finally, the net is considered as HAPN. Different valuesefthreshold: are considered, and the
reachable markings for eagh are sketched in green color in the Figirel3.1. Notice thahsidon ¢
has an associated threshgld When the marking of, is bigger thary, the firings oft are continuous.

11
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Otherwise, the firings are discrete. For example, when thestiold isy = 2.5 , the firings are
continuous fromm[p] = 7 to m[p] = 2.5, and it is discrete forn[p] < 2.5. In this example, half
token will remain inp.

The formal definition of the HAPNs is inspired in the definitiof discrete Petri nets, adding the
thresholds that are asociated to each transitions. Thédgtiaptive Petri nets are defined mathemat-
ically below.

Definition 12 A HAPN is a tuple\V'4 = (P, T, Pre, Post, u) where:

o P ={p1,p2,....,pn} @andT = {ty,ts,..., 1, } are disjoint and finite sets of places and transi-
tions.

e Pre andPost are |P| x |T| sized, natural valued, incidence matrices.

e 1 € (Rso U oo)lis the vector of thresholds.

Given a place (transition) € P(T), its preset *v, is defined as the set of its input transitions
(places), and itpostset® as the set of its output transitions (places).

Definition 13 A HAPN system is a tuplgVa, m,), wherem, € (R>()”l is the initial marking.

A thresholdy is associated with each transitionWhen the marking of¢ is above the threshold,
t behaves in continuous mod€), and otherwise it behaves in discrete mofg (
As in continuous PNs, the enabling degree;aitm is defined as:

enab(t;, m) = minpecey, {#[[5]”} (3.1)

The thresholdu; of a transitiont; determines the values of the enabling degree for which the
transition behaves in continuous) or in discrete D) mode:

C if enab(t;,m) > p;

mode(t;, m) :{ D otherwise

(3.2)

If a transitiont; is in continuousmode therenab(t;, m) > u; what implies that; is enabled as
continuous. On the other hand,tifis in discretemode then it is enabled iffnab(t;,m) > 1. This
two conditions together imply thdt is enabled (either as discrete or continuous) iff the foilayv
expression is true:

(mode(t;,m) = C)V (mode(t;,m) = D A enab(t;,m) > 1)

This expression is equivalent to:

(enab(t;,m) > ;) V (enab(ti,m) < p; A enab(t;,m) > 1)

what simplifies to:

enab(ti,m) > p; V enab(t;, m) > 1, with 4 € R<

A transition¢; that is enabled can fire. The admissible firing amounts depenits mode. If
mode(t;,m) = C, t; can fire in any real amount € R>( that does not make the enabling degree
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cross the threshold;, i.e.,0 < a < enab(t;,m) — p;. If mode(t;,m) = D, t; can fire as a usual
discrete transition in any natural amount N such thal) < o < enab(t;, m).

As in discrete or continuous PN, the firing of a transitidin a certain amount: < enab(, m)
leads to a new markingr/, and it is denoted ag1-*L.m/’.

Itholdsm' = m+a«-C|P,t], whereC = Post— Preis the token flow matrix (incidence matrix
if \V is self-loop free). Hence, as in discrete systems= m, + C - o, the state (or fundamental)
equation summarizes the way the marking evolves, wheig the firing count vector of the fired
sequence.

Right and left natural annullers of the token flow matrix aafledd T- and P-semiflows, respec-
tively. As in discrete systems, when- C = 0, y > 0 the net is said to beonservativeand when
C -x = 0, x > 0the net is said to beonsistent

The following example illustrates which is the behaviourdeof each transition of a given HAPN

m(pz] tl t2 t3
| tzl ty A | D|C|D
t B D| C|C
C c|c|c
o | N ANk
o F C|{D|C
D1 MlCI c3 Dz mp1] G C{D|D
@) (b) (©

Figure 3.2: An hybrid adaptive Petri net (a) and the behavidits transitions (b) and (c).

Example 14 Figure[32 (b) illustrates the behaviour of the transitioosthe HAPN in Figurd—3]2
(@), with anyu = (u1, pe, ps). Notice that the three arrows( ¢o, t3) of Figure[32 (b) indicate
the “direction” in which the marking “moves” whern, t, or t3 are fired. The Figure shows the
regions in whichtq, t5 andts behave as discrete (regiori3;, Ds, D3) or continuous (4, Cs, Cs).
For examplets behaves as continuou€’{) below the dotted line corresponding g and discrete
above the line D3). In the triangular grey region of the center of Figure13.,(the PN behaves as
continuous, and in the other regions, it has a partially die behaviour (some transitions behave
as discrete and some as continuous).

Figure [32 (c) summarizes the behaviour of each one of thesitians in the different areas
identified in the Figur¢=3]2 (b). For example, in the ardat; andts behave as discrete whilg
behaves as continuous.

Finally, notice that ifu = 0, all transitions will behave as continuous, ang it oo all transition
will behave as discrete. Hence, the HAPN formalism includeth the continuous and discrete PN
formalisms.
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3.2 Reachability and liveness definitions

The set of all the reachable markings of a given HAPN systamm,) is denoted as reachability
space, RS/, m,), and it is defined as follows.

.
Definition 15 RSV, mo) = {m |30 = aity, ... at,, suchthat m, aty m, 2t my - it/
my, = mwhere o; € RY if mode(t,,,m;—1) = C, and o; € NT if mode(t,,,m;—1) = D}

Liveness and deadlock-freeness properties are definedimilarsway to those of discrete sys-
tems.

Definition 16 Let (N, m,) be a HAPN system.
e (N, m,) deadlocks iff a markingn € RS (V, m,) exists such thatt € T, ¢ is not enabled.

e (N, m,) is live iff for every transitiort and for any markingn € RS (V, m,) there existan’
€ RS(V, m) such thatt is enabled ain’.

e N is structurally live (deadlock-free) iff m, such that(\/, m,) is live (deadlock-free).

The example below illustrates the concepts defined in thagp@.

*(2)

m(p2]

25

15 ]

(1,1,2,0) (5,1,0,0

1 (o) D 110
(3,1,1,0

05

0.02.1) (2,0,1,1) (4,0,0,1)
RIS REETEE S TR B T SRR T )

(a) (b)
Figure 3.3: Example of a live hybrid adaptive Petri net (aj ds reachability space (b).

Example 17 The Petri net of FigurE=313 can be defined mathematically ksAis.

Ny = (P, T, Pre, Post, u), where

P = {p1,p2,p3,p4}
T= {t17t27t3}
2

Pre =

o O
SO ==
— = O O
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0 0 3
0 0 1
Post = 1 0 0
0 1 0

®= {,U,l = 1'57M2 = 17”3 = 1}

And the HAPN system is the tugle’, mo = (5, 1,0, 0)).

In the initial markingmy = (5, 1,0,0), the transitiont; is enabled as continuous (modg(n)
= C), and enab(;, mg) = 2.5 . The transition can be fired any real amounsuch thatd < a <
enab(;, mg) - 1. Itis0 < a < 1, wherea € R.

Moreover, transitionts is enabled as discrete (modgng) = D), and enab{s, mg) = 1. Since
it is in discrete mode, it can be fired any natural amounsuch that) < « < enab({s, myg). Itis
0 < a<1,wherea € N.

The reachability space ofN4, mg = (5,1,0,0)) is defined as: R3(4, m,) = {m| I o =

hth a1ty a2ty ozk,t—Yk . h R"" i d
aity, ... agty, suchthatm, — m; — m, ... — m=muwhereq; € if mo e(t%,

m;—1) = C, and a; € NT i f mode(t,,,m;i—1) = D}

From my, transition¢; can be fired, and the reachable markings are all the possitdekimgs
between (5,1,0,0) (the initial marking) and (3,1,1,0) égivby the maximal firing). The set of all
these markings form a straight line in tfie”’l space. From all the markings of this “straight line”,
transitiont, can be fired frommy, resulting another straight line in the Reachability Spatte line
from (4,0,0,1) to (2,0,1,1). Finally, (1,1,2,0) and (0,@)are reachable from (3,1,1,0) and (2,1,1,1)
respectively whery is fired as discrete an amount of 1.

It can be observed that[ps] and m[p4] are linearly dependent ifn[p;] and m[ps]: m[ps] =
4 —m[p1] +mlpe] andm[ps] = 1 —m[ps]. Because of that, the reachablity space can be represented
just with the axesn[p;| andm/[ps], as it can be observed in FigureB.3(b).

Regarding to the deadlock-freeness property, the HAPMNysif this example is deadlockfree
becasuse none of the reachable markings is a deadlock. Is@slizen because from any of the
reachable markings, there exists a reachable marking frdnichvany transition can also be fired. If
the marking (0,1,2.5,0) would be reachable then the systenfdvie not live (and not deadlock-free).







Chapter 4

Reachability Space of HAPNs

In this Chapter, the reachability space (RS) of HAPN systenssudied and compared to the RS of
discrete and continuous systems. In the first section, R&ofede, continuous and hybrid adaptive
PN are compared. In the second one, a method to calculatedbbability space of HAPN is pre-
sented.

The following definitions will be used in the rest of the doamh N, denotes a discrete Petri
net with a given structuréP, T', Pre, Post), NV denotes the continuous net with the same structure,
and N4 denotes the hybrid adaptive Petri net with the same stmietnd an arbitrary:. In order to
compare the reachability spaces, the same initial markiggs N!”’! is considered for all three types
of Petri nets (discrete, continuous or adaptive).

For simplicity, it was decided to start the study the RS int#dPN by considerig ordinary PNs;
the subclass of Petri nets in which all the arc weights arealetgul. Notice that although ordinary
PNs are a subclass of general PNs, any non-ordinary Petrandde converted to an ordinary AN [3].
It will be proved that, under rather general conditions,R8of a HAPNN 4 contains the RS ol/p,
and that the RS ol contains the RS ol/4. This is a straightforward consequence of the fact that,
in contrast to continuous nets, HAPNSs are a partial relaratf discrete nets.

4.1 Reachability space of discrete and hybrid adaptive PN

Theorem 18 RSV, my,) € RS(V.4, my) for any ordinary HAPNV 4 with i1 € NI71,

Lty Lty

Proof Let m € RS(Vp, m,). Then, there exists, = ¢, ...t,, such thatm, — m, —

1t~ . . .
m, - —5% m, =min (Np, my,). We will prove that there exists a sequemge= (it ... it

Bt Bat Bty .
such thatm, — m; —% m,--- —% my = m in (N, my).

Let us start witht,,, and let us check if; = 1 can be chosen. Two cases must be considered.

a) enab(t,,,mo) < ., . From the definition of HAPNt,, behaves as discrete, i. @pde(t.,,
mo) — D.

Given thatt,, is enabled iNNp, m), it holds thatenab(t., , mo) = minpesr, {mop]} > 1.
Hence, it is also enabled iV 4, m,) in the same amount.

Therefore,3; = 1 can be chosen, and the samg of the discrete system is reached.

b) enab(t,,, mo) > p, . From the definition of HAPN¢,, behaves as continuous, i. e.,
mode(t,,mo) = C.

17
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Sincey;,, € Nandenab(t,, mo) > p, , it holds thatenab(t,, , mo) — py, > 1. Therefore,
B =1 <enab(ty,) - pt,, can be chosen ana, is reached.

The same reasoning can be applied to the rest of the trarsitiche sequendg, ...t,. n

However, if non ordinary PNs or non natural thresholds aresiciered, RSY/p, m,) is in general
not contained in R4, m,). Let us show both cases through examples.

e When non natural thresholdg, ¢ NITI, are considered, R&(p, m,) is in general not con-
tained in RS\ 4, m,) for ordinary HAPN. Let us show it with the following exampl€on-
sider the net of the Figufe3.1 as discretg;, with the initial markingm, = (3,4). Botht; and
to can be fired until the placg, is empty (when enabling degree is 0). Its reachability space
RS(Vp, m,) is represented in Figuie3.2 (a). Let us consider now theasetdaptive, with
p = (1.5,1.5) Thus,t; can fire as continuous while[p;] > 1.5. And ¢, can fire as contin-
uous whilem[p;] > 1.5 andm|ps] > 1.5. Whenm/[p;| = 1.5, t; changes from continuos
to discrete, and it can fire a discrete amount. Analogouslghanges to discrete and can fire
as discrete whem/[p;] = 1.5. Its reachability space is shown in Figlirel4.2 (c). Noticat th
RS(\p, m,) contains some markings that are not reachableMn, m,). For example, the
markingm, = (1, 4) € RS(\Vp, m,), butm, € RSV 4, m,).

p1 @pz

A4

\tl [ \t2

Figure 4.1: A net whose reachability space as discrete isomtiined in the reachability space as
adaptive with withy = (1.5,1.5), see Figur€4l2.

e If non-ordinary PN are considered, R&) is in general no contained in R8{), with u €
NITI. This can be shown through an example. The reachabilityespiithe HAPN in Figure

72[172] m[ps] m[pa]

i ° ° ° 4 ' 4

3 . ° 3 3 '

2 ° 2 2

I 1 1

T =3 3 4 5 |% 1 2 3 4 5 |% 3 7 3 4 >

m[p1] m(p1] mpi]

() (b) (©)

Figure 4.2: Reachability space of the Petri Net of Fidurébehaving as Discrete (a), HAPN with
©=(2,2) (b) or HAPN with . = (1.5,1.5) (c).
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I withp = (1,1) is shown in Figur€4]3. Transitian is enabled as continuous from marking
(5,0) to (2, 1.5), where it changes to discrete.tlf is fired as discrete (fron®, 1.5)), (0, 2.5)
is reached. 10,2.5) none of the transitions are enabled (and the net deadlokahsition
t1 is enabled as continuous frof®, 1.5) to (3, 1), where it is enabled as discrete. Whegnis
fired as discrete from3, 1), (5,0) is reached and; becomes not enabled.

The markingm = (1,2) is reachable in the discrete Petri net, but not in the adajptite with
Vu, = 1. Therefore, RS{p, mo) is not, in general, included in R8{, m,) with p € NI7|
for non ordinary HAPNS.

On the other hand, it is straightforward to prove that, gitreat HAPNs allow real-valued mark-

ings, the RS of A4, m,) is not, in general, included in R&{p, m,). Nonetheless, ij+ = oo, the
HAPN always behaves as discrete and its RS is trivially idahto that of the discrete PN.

4.2 Reachability space of continuous and hybrid adaptive PN

Let us now compare the RS of the HAPN to the RS of its assoc@iatinuous PN.

Theorem 19 RS{V4, mo) € RS(Ve, m,) with i1 € Rgo‘

. t
Proof Let m € RS(V4,m,). Therefore, there exists, = [ity, ... Okt such thatm, ﬁl—”i
t try,.
m, 62—73 m, --- 63—7’? m, = m where §; € RY if mode (t,,,m;i—1) = C and 5; €

N*if mode(ty,,mi—1) = D
For any of theg; of o, if mode(t.,, m.,) = C, thent., will be also enabled ifN¢, m,,) and
the samed; € T can be chosen. thode(t,,, m;—1) = D, thent.,, will be also enabled itN¢, m.4, )

and also the samg < NT can be chosen becausec R. Consequently, the same firing sequence

o, of the HAPN system can be chosen in the continuous systenhargaime markingn is obtained.
[ |

The following Corollary is straightforwardly obtained froTheorem§&~118 arld19.

Corollary 20 RS(\Vp, m,) € RSNV 4, mo) € RSNV, my) for ordinary nets withy € NIT1,

m[p2)5
4

3 ty ta ty
02.5) 6.0}, *3.1, 1215 to2s)

2,1.5)

5,0)

0 1 2 3 4 5mlp1]

Figure 4.3: Reachability space and reachability graph efRatri Net of the Figure_ll.1 behaving as

HAPN with & = (1, 1).

Furthermore, let us show through an example that the RS afah&nuous system is, in general,
not contained in the RS of the HAPN system, i.e., R8(mo) € RS(V4, mo) with . € RIT. In the
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PN system of FigurEZl.1 (witp = (1.5, 1.5)), the markingn = (0.5, 2) is included in R, m,),
but cannot be reached by the HAPN, i.e., it is not included 8{\R4, m,). Both spaces are trivially
equal if all the transitions of the HAPN always behave asiooous, i.e., whep = 0.

4.3 An algorithm to obtain the reachability space of HAPN

After some general considerations, this section providesgorithm to compute the set of reachable
markings of a HAPN.

As known, the reachability space (RS) of a discrete Petrsystiem is the union of all the mark-
ings which are reachable from the initial marking, which peints in theN!”’ space. On the other
hand, the RS of a continuous PN system is a convex set’ih[i0].

Considering a general HAPN, its reachability space costs@me convex sets due to the contin-
uous firing of transitions. However, the RS is not a uniqueverrset because of the discrete firings,
which induce a “leap” in the RS, and some intermediate mgekare not reachable, leading to sev-
eral reachable sets. For example, the RS in Fifiude 4.3 iditdad by two convex sets: a convex
set (from (5,0) to (2,1.5)) due to the possible continuourd® frommg, and another set (the point
(0,2.5)) due to the discrete firing of a transition (the firafg, from (2,1.5)). In conclusion, the RS of
a HAPN can represented as the union of one or several contgexT$e maximum number of convex
sets will be bounded by the values of the thresholds of the AP

In this section, an algorithm to compute those convex setisdbnstitute the RS of a HAPN is
proposed. The algorithm consists on a recursive procetiatediven a marking or a set of markings
(denominatedegion), it calculates the markings which are reachable from ihsatering both dis-
crete and continuous firings of transitions. This recurgiracedure is nameexplore and its input
will be aregion where aregionis defined as a set of markings such that it is a convex set,rand i
which all the transitions remain in the same behaviour medel{ transition is D or C in thegion
but not both).

Each execution of thexploreprocedure calculates the possible different markingsateteach-
able from the regiorR: the markings reachable just with continuous firings of thagitions whose
mode inR is C, and the markings reachable with the discrete firing ohex the transitions whose
mode inR is D. When a new region is obtained, the algorithm checkswfas already included in
the RS, and if it was not included before, it is also exploréith & recursive invocation to thexplore
procedure.

The explore procedure starts calculating set of possible markingsirddafrom R due to con-
tinuous firings. Due to the modes of the transitions, any amhet) € R* can be fired from any
markinge R if mode(,R) = C. The mathematical formula is presented below.

continuousReachMarkinga\{, R) = {m| m = my,+ Co
A o(t) = 0if mode¢,R) =D
A o(t) > 0if modef,R) = C
Amy € R
A Vt, modeg,m) = mode(,R) }

Notice that there exist some markings that are reachableasittinuous firings fronR, but are
exactly the ones that makes the mode change (from C to D ovegisa) . Those markings do not be-
long to the continuousReachMarkings region becauseetiienis defined as a set of markings where
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the mode of the transitions do not change. Those markingguaret the border of a continuous
region (they are reachable from continuous firings but itslens discrete), and they are considerated
in a special region in this procedure: tfrentier. As it will be later explained in the Examplel21,
given a frontier the continous firings from the frontier shibbe also considered to calculate all the
reachable markings. THeontier reachable markings and the continuous reachable markiogs f
the frontier are obtained as follows:

frontierReachMarkings\(, R, tf) = {m| m = m, + Co
A o(t) =0if mode¢,R) =D
A o(t) > 0if mode¢,R)=C
A enably, m) = pif
AVt # ty, mode¢, m) = mode(, R) }

contReachMarkingsFromFrontieN( R, t¢) = {m|m = m,+ Co
No(t)>0if t=t;
No(t) =0if t # tyA mode¢,R) =D
No(t)Rxg if t # tyA mode(,R) =C
Amy € R
A mode(y,m)=C
A Vt, mode(,m) = mode(,R) }

When exploring a region, also discrete firings are cons@leBving a certairregion each of the
transitions which are enabled in discrete mode can be firedreounts = 1, obtaning a new set of
values of the reachability space. This function is definedefch one of the transitions which are in
discrete mode.

discreteReachMarkings\(, R, t;) = {m| m = my,+ Co
AN O’(tf) =1
No(t)=0if t #ts
Am, € R}

However, each of the sets obtained by the “discreteReadtiMm’ method may not be strictly
regionswhere each transition has a unique behaviour mode. In tisat tae function partitiorl ¢)
partitions a region in sub-regions, such tilat:b Reg, Vt, mode(,subReg) is homogeneous (or C or
D, but not both).

The a possible execution of the algorithm to obtain the rabitity space of a HAPN system is
explained in the following example.

Example 21 This example shows the RS of the Petri net system of Higliveh&A discrete, continu-
ous and hybrid adaptive. And it illustrate the executionhef proposed algorithm.

Firstly, let consider the reachability space of the systemenvit is discrete or continuous. Figure
HE3 shows the RS of the PN system in Fiduré 4.4 when it is tésche this example, it is enough
to representn[p;| and m[ps] axes because:[ps] is linearly dependent om[p;] and m[ps]; more
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Figure 4.5: Reachability space of the net of [Eig] 4.4 wheardis

preciselym/[ps] = 2 m[p1] — m[p2]. If the PN system is considered continous, its RS is the k@@te
represented in Figure41.6.

Considering the Petri net system to be HAPN, with (1,1), its Reachability space is represented
in Figure[41. And it has been calculated as follows.

The initial markingm, = (5,0,0) is considered as the initial region, which is a poin RI7!.
Given this region, we “explore” it in a recursive way. Fromy, the continuousReachMarkings()
are calculated, and the regioR1 is obtained (see Figure4.7). This region contains the nmayki
which are reachable fromn, whent; is fired as continuous (mode; ( mg) = C), while ¢ remains
discrete (modet(, mg) = D). We can observe that the regidgl is a convex set.

The regionR1 contains the reachable markings in whighs continuous and, remains discrete;
however it does not contains the markifg = (4,1, 1), because modg(, F7) = D. As explained,
it is a point just at the border: when enab] is exactlyu». This region is considered a frontier,
represented ag'l on the Figure. From the frontier a new regioRy{) is obtained considering all the
posible continuous firings from'l (continuousReachMarkingsFromFrontierR2, is a new region,

0 05 1 15 2 25 3 35 4 45 s5mlp]

Figure 4.6: Reachability space of the net of gl 4.4 wherticoous
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Figure 4.7: Reachability space of the net of ig] 4.4 when NAP

which is also explored, with an invocation to explore. Nogiole discrete firings are fireable from
mp Or Ry because none transition is enabled in discrete mode.

When exploringR,, two new frontiers are obtained:; and F3, which are also explored. rom the
discrete firing oft; from F, (discreteReachMarkings(, £y, t1)), region R, is obtained. WhileRs
is obtained by the discrete firing of transitiop from F3 (discreteReachMarkinga(, F3, t2)). Each
new region obtained is explored recursivelly until all tregions have been calculated.

The resulting reachability space is the mathematical uriball the obtained convex sets.

The algorithm which has been proposed and explained in ¢istsos is described below.

Algorithm 1 Reach Space
Require: HAPN (&V), initial marking @mn,)
Ensure: Reachability space-éachSpace)
1: initial Region :={ m, }
2: reachSpace =
3: reachSpace := explore (\V, reachSpace, initial Region)
4: return reachSpace

Whereexpl or e is the recursive function which explores the reachabilfgace of A/ from a
certainregion, and it is showed below.
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Algorithm 2 explore

Require: HAPN (V), set of markingSetR.S), markingSet Reg)
Ensure: set of markingSetR.S)
1: if Reg ¢ RS then

2. RS:=RSUReg
3:  cont = continuousReachMarkings\{, Reg)
4: RS :=RS Ucont
5. forall ¢ € T such that mode( Reg) = C do
6: f :=frontierReachMarkingsN\(, cont, t)
7 RS := RS U explore(f))
8. end for
9: forall ¢; € T such that{m € Reg enab(;, Reg) = u;) do
10: ¢ = continuousReachMarkingsFromFrontid (Reg, t;)
11: RS := RS U explore¢)
12:  end for
13:  for all ¢ € T such that mode( Reg) = D A ¢ is enableddo
14: d := discreteReachMarkings\(, Reg, t)
15: for all subReg € partition (d, t) do
16: RS := RS U explore cubReg)
17: end for
18: end for
19: end if

20: return RS




Chapter 5
Deadlock-freeness in HAPNs

This Chapter studies the deadlock-freeness property ofMEARNd relates it to deadlock-freeness
of the equivalent discrete PNs. Although for arbitrarydeadlock-freeness of the discrete PN is, in
general, not preserved by the HAPN, it is shown that the gua® selection of. can preserve the
property for a large class of nets.

5.1 Preliminary results

Let us first show, by considering the net in Figlrd 1.1, that:
(Np,my) is deadlock-frees (N4, m,) is deadlock-free.
The system in FigurE8.1 witlm, = (5, 0) is deadlock-free if considered as discrete. However,
if considered as HAPN witly = (1, 1) it deadlocks after firing, as continuous in an amount bb,
and agairt, as discrete.

o

Figure 5.1: A Petri net system that deadlocks as continuaui is deadlock-free as hybrid adaptive
with appropriate thresholds.

Furthermore, in general, deadlock-freeness of a HAPN systees not guarantee deadlock-
freeness of the equivalent discrete system:
(N4, my) is deadlock-frees (Np, m,) is deadlock-free.
The system in the Figufe®.1 with, = (4,0) deadlocks as discrete. If considered as HAPN, it is
deadlock-free withm, = (4,0) andp = (1.5, 1.5) because, commutes from continuous to discrete
whenm|p;] = 3, andm/[p;| never empties.

5.2 Deadlock-freeness in ordinary, deadlock-free nets

Although the deadlock-freness property of discrete systesmot preserved in general by HAPNs
with arbitrary y, it will be proved that for choice free nets wijia € N7 deadlock-freness of the

25
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HAPN system is necessary and sufficient for deadlock-freenéthe discrete system. As previously
defined in Sectiof 215, choice free nets are a subnet of PI,that each place of a choice free PN
has at most one output transitioryp [p*| < 1.

Let us first prove that it is a sufficient condition.

Theorem 22 Let (N4, m,) be an ordinary deadlock-free HAPN system withe NI”I. Then, the
discrete systeri\p, my,) is deadlock-free.

Proof Let us assume that the discret®’p, m,) deadlocks at a markingn. According to Theo-
rem[I8, markingn can be reached by\/4, m,). Given that the net is ordinary, for every transition
t, there existg € *t such thaim[p] = 0, i.e.,m is a deadlock fokN 4, m,). g

For the necessary condition, two technical lemmas aredotred before stating the final result.
The first one states that if a sequencis fireable in the adaptive system, @sil sequencéo | is also
fireable in the discrete one.

Definition 23 Leto = ait., ast., ... axts, be afiring sequence of a given HARN 4, m,). The
ceil sequencefo] of o is defined asfo| = a)t,, ast,, ... ajt,, where

S DR D DR
o = Q a;

1<) <ilto; =t 1<) <ilta; =ty

For example, for the sequeneg = 0.1 ¢ 0.8 t5 0.1 t1 0.2 ¢1 0.8 t5 in the HAPN of Figurd_312
(@), the ceil sequender; | is defined agoi | =1t 1t 0¢1 0y 1 to.

Lemma 24 Let (N4, m,) be an ordinary choice-free HAPN system wiite NI71. If o is a fireable
sequence N4, m,) then[o] is fireable in(NVp, my).

Proof Let us assume without loss of generality that= aqt, ... ot and0 < a; < 1 for every
j € {1,...,k}. Induction on the length of: |o| = k.

e Base case|| = 1). Leto = aqt,,, thenVp € °t,, , mo[p] > oy and given thain,[p] € N, it
holds thatm,[p] > [a1]. Thus[o] = [aq]t,, can be fired iINNp, my).

¢ Inductive step. Assume that the Lemma holds|édr= k. Let us consider thg + 1 firing, i.e.,
ty,., firesinag, 1. Two cases can occur:

a)aj,,, = 0. In this case, the Lemma trivially holds.

b) aj,,, = 1. Letm,; ando; (m] anda;) be the marking and firing count vector obtained just
after the firing oft,, in an amounty; (o). If ¢, fires in the HAPN system, it means that
m,[p] > 0 for everyp € *t. Notice that, by definition of ceil sequence, after & firing the
following inequalities are satisfiedr [t] > o [t] ando [t?] > o [t?] for everyt? € *(°t).
Given that the net is choice-free, for every placiée holds that|*p| = 0 or |*p| > [p®| = 1. If
for p € °t, it holds that|*p| > |p°®| = 1, then the previous inequalities ensurg[p] > 1. If p
has no input transitions, then it must hold tegt, | [t] < m[p]. Thereforet can fire from
m, an amount ofl.

Ve+1

The second lemma states that if a certain sequendeadlocks a HAPN, then its firing count
vector is in the naturals.
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Lemma 25 Let (N4, m,) be an ordinary choice-free HAPN system withe N7\, If o is a fireable
sequencen, -» m, such that{\'4, m) deadlocks ain, theno € (N U {0})/7], whereo is the
firing count vector of.

Proof Let us first prove that iftn is a deadlock marking then for every transitibtinere exist® € °t
such thatm[p] = 0. Notice that just after the last firing ofin the sequence, which is necessarily
discrete firing given that € NI”|, at least one place € *t becomes empty. Assume that after such
afiring, a transitiont’ € *p fires. If the firing oft’ is discrete them would become enabled again; if it
is continuous ther' is sufficiently enabled to fire also as discrete what wouldb&nia Hence, after
the last firing oft, no transitiont’ € *p can fire ang remains empty.

Assume thatr[t] > 0 is not a natural number and that[p] = 0 for a givenp € *¢. Then, there
existst’ € *p such thar[t'] is not a natural number anelt’] < o[t] — my[p]. Notice that there also
existsp’ € *t’' such thatm[p’] = 0, hencet” € *p’ exists such that[t”] is not a natural number and
o[t"] < o[t'] — my[p'] < ot] — m[p] — m,[p']. This reasoning can be repeated until a transition
is found such that it deadlocked witht*] < 1. Contradiction since natural thresholds do not allow
o[t*] to be less than. g

Therefore, because of Lemmniad 24 25, if a deadlock markirig reachable i N4, m)
wheno is fired, the same deadlock marking' is reachable ifNp, m,), when[co] is fired. Thus, if
(Np,my) is deadlock-free, thefiV4, m,) is deadlock-free too.

Theorem 26 Let (N, m,) be an ordinary choice-free and deadlock-free discreteesystThen, the
HAPN systen{\ 4, m,) is deadlock-free for any € NI71.

The following Corollary is straightforwardly obtained froTheorem§22 arldP6.

Corollary 27 Let N be an ordinary choice-free net{Np,m,) is deadlock-free iffN 4, m,) is
deadlock-free withy € NIT1.







Chapter 6
Conclusions and future work

This Chapter puts forward some conclusions obtained irfTébajo Fin de Master”, and it proposes
some future work.

6.1 Conclusions

As most formalisms for discrete event systems, Petri ndtsrsinom the state explosion problem.
Such a problem renders enumerative analysis techniquessibfe for large systems. The hybrid
adaptive Petri nets considered here aim at alleviatingtttie explosion problem by partially relaxing
the firing of transitions. More precisely, a transition cae fn real amounts when its load hggher
than a given threshold, and it is forced to fire in discrete @am® when itdoad is lower than that
threshold. This partial relaxation offers a chance of prdsg important properties of discrete event
systems, as deadlock-freeness, that are not always rtayrielly continuous approximations.

This work focused on the reachability space and the deadieekiess property of hybrid adaptive
nets. A general algorithm was proposed for the charact@izaf the reachablity space of any
HAPN. Furthermore, an inclusion relationship was proveadtie reachability spaces of the discrete,
hybrid adaptive and continuous nets; for a rather genesaalsobf nets,. With respect to deadlock-
freeness, although this property is not preserved in gefararbitrary real thresholds, it was shown
that it is necessary and sufficient for deadlock-freenesshofce-free nets with arbitrary natural
thresholds.

It has been shown that the HAPN is a general formalism thdmides the used and known PN
formalisms of discrete, continuous and discrete PN. Dudstdigh generality, HAPN has a very
powerful modeling capability. However, developing an@ytechniques for such a general formalism
can be costly. Hybrid Adaptive analysis techniques inva@utiscrete, continuous and hybrid PN
technigues, maintaining or increasing its complexity.

6.2 Future Work

In this TFM, the formalism of HAPN has been defined and somknpirear results about the Reacha-

bility Space, the relations among the Reachability Spathksglwrid adaptive, discrete and continuous
PN, and the conditions to preserve the liveness propertgrasented. However, the liveness property
and the reachability space comparison have been done imjosiasses of PN, the ordinary PN and

the choice-free PN. The future work will be to study the prtips of more general classes of HAPN,

and the time interpretation of HAPN:

e Preserving properties: Given a certain property, for edxamdpadlock-freeness, it would be
very useful to obtain a general method to calculate an adedegeshold vecton such that it

29
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the discrete PN was deadlock-free, the HAPN is also deadleek In this case, any discrete
PN would be aproximated by a partially fluidified hybrid adepPN.

Relations among the Reachability Spaces of the HAPN, disceentinuous and hybrid Petri
nets of more general subclases of Petri nets can be studiedrendepth.

Time interpretation: After defining and studying in deptle #tuutonomous HAPN, a certain
firing semantics can be defined. The time interpretationmallthe study of certain properties
such as performance and the simulation of the nets. Wheritaimy Petri nets, the inconsis-
tencies between continuous and discrete PN are bigger veendrkload is low. Therefore,
the simulation of HAPN instead of continuous PN could appmate better the behaviour of
the discrete one.

Modeling of a real system using the HAPN. Through a real cas#ysthe characteristics and
potential of HAPN would be pointed out.
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