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Resumen

En ese trabajo se propone obtener numéricamente la curva de polarización

de una pila de combustible PEM (proton exchange membrane) mediante

una discretización por volúmenes finitos, utilizando software de dominio

público, en concreto OpenFOAM. Se considera una geometŕıa sencilla, pero

con todos los elementos de la pila (no se resuelve todo el ”stack”, sino solo

una monocelda). Para este trabajo se realizan algunas simplificaciones como

las siguientes:

1) Geometŕıa 2D simplificada, pero se incluyen todos los componentes de la

pila.

2) Caso isotermo.

3) Caso estacionario.

4) Densidad constante.

5) Difusión de Fick.

6) PEM de alta temperatura (no hay agua ĺıquida).

7) Hidrógeno y vapor de agua en la entrada anódica y ox́ıgeno y vapor de

agua en la catódica.

8) Se consideran pérdidas por activación, masa y óhmicas en la membrana.

9) Ecuaciones de transporte completas, incluyendo medio poroso.

Este trabajo requiere primero la correcta modelización de todos los fenóme-

nos f́ısicos que tienen lugar en la pila (fluidodinámica, flujo en medios poro-

sos, incapacidad de transporte de hidrógeno y ox́ıgeno, reacciones electro-

qúımicas, transporte de cargas eléctricas) y que están fuertemente acopla-

dos.

Una vez obtenidas de la literatura las ecuaciones de transporte adecuadas

al problema, con las contribuciones personales necesarias y el modelo de

acoplo, se procederá a su discretización por volúmenes finitos en una malla

sencilla bidimensional que representa una monocelda.

Los parámetros f́ısicos que caracterizan los distintos materiales y componen-

tes de la pila se obtendrán de los valores proporcionados por los fabricantes,



y que están a disposicion del LITEC-CSIC.

Una vez obtenido un código fiable, se obtendrá la curva de polarización

de la pila mediante la variación en la demanda de corriente eléctrica a la

monocelda, que se impone como una condición de contorno al problema.
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2.1.2. Ánodo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3. Cátodo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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2.3.1. Método iterativo caso real simplificado . . . . . . . . . . . . . . . 20

2.3.2. Comentarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3. Simulación Numérica 23
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4.9. Comparativo curva de pérdidas por activación. . . . . . . . . . . . . . . 34
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ÍNDICE DE FIGURAS

viii
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Caṕıtulo 1

Introducción

La pila de combustible es un dispositivo electroqúımico capaz de convertir direc-

tamente en electricidad la enerǵıa contenida en un combustible. Esta obtención de

electricidad, en forma de corriente continua, se lleva a cabo sin la necesidad de ningún

proceso de combustión, ya que la oxidación del combustible y la reducción del com-

burente se producen en lugares f́ısicos diferentes. La conversión electroqúımica asegura

un elevado rendimiento en el proceso de transformación energética, mayor del que se

obtendŕıa de las maquinas térmicas, ya que estas presentan la limitación impuesta por

el ciclo de Carnot.

El concepto de funcionamiento de una pila de este tipo, como tal, resulta bastante

simple y viene presentado en la Figura 1.1.

Figura 1.1: Esquema de una pila de combustible de tipo PEM.

El elemento básico de una pila es una celda electroqúımica formada por dos electro-

dos (ánodo y cátodo), y un electrolito que los pone en contacto. En el ánodo se produce
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1. INTRODUCCIÓN

la reacción de oxidación del combustible, en la que se liberan electrones incapaces de

atravesar el electrolito, por lo que se ven forzados a atravesar un circuito externo. Los

iones resultantes de la oxidación se mueven a través del electrolito para llegar al cátodo,

lugar en el que se produce la reacción de reducción. La sustancia oxidante se reduce,

ganando los electrones obtenidos en el ánodo y se recombina con los cationes corres-

pondientes, formando aśı una especie neutra. Dicha especie depende del tipo de pila y

del combustible que utilice.

Aunque existen numerosos tipos de pilas de combustible, este Proyecto de Fin de

Máster se centrará en el estudio y modelado de las pilas PEM (Proton Exchange Mem-

brane) o PEMFC (Proton Exchange Membrane Fuel Cell), que traducido al español

significa “Pilas de Combustible con membrana de intercambio de protones”.

Aunque en principio cualquier par combustible-oxidante puede hacer funcionar una

pila, este tipo en concreto utiliza el hidrógeno como combustible, y el ox́ıgeno del aire

atmosférico como oxidante. Los productos obtenidos de ellas son calor, electricidad y

agua como especie neutra residual.

1.0.1. Curva Polarización

En la Figura 1.2, muestra el comportamiento de una pila PEM operando a 40oC a

presión atmosférica. Este tipo de gráficas reciben el nombre de Curvas de Polarización,

y aunque todas siguen un mismo patrón, son diferentes para cada pila. Los puntos

clave que describen este comportamiento son los siguientes: 1. A circuito abierto, la

tensión es menor que la esperada teóricamente. 2. Se produce una rápida cáıda de

tensión al comienzo de su funcionamiento. 3. Una vez estabilizada, la tensión va cayendo

lentamente y de forma lineal. 4. Cuando se demanda gran cantidad de corriente, la

tensión cae abruptamente

La curva de polarización tiene tres regiones bien diferenciadas directamente relacio-

nadas con los puntos anteriores:

Región I: la tensión a circuito abierto es menor que la ideal, y se produce además

una cáıda brusca de la tensión en cuanto empieza a suministrarse corriente. Este

comportamiento es t́ıpico de las pilas de baja temperatura PEM, siendo este

descenso mucho menos pronunciado en las pilas de alta temperatura. Los aspectos

que determinan la forma de esta región son las pérdidas por activación y un

fenómeno denominado Crossover (vea p.ej. Barbir [2005]).

Región II: la cáıda de tensión se puede considerar lineal, lo que sugiere que pre-

dominan la pérdidas resistivas u óhmicas.
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Figura 1.2: Curva de Polarización de una pila de combustible de membrana de inter-
cambio de protones.

Región III: aqúı se observa como se produce un nuevo descenso brusco de la

tensión, debido fundamentalmente a pérdidas por el transporte de masas. Por lo

tanto, queda claro que en condiciones reales intervienen factores que no se han

tenido en cuenta en el análisis inicial, y que influyen de manera notable en la

tensión de salida de la pilas de combustible.

Estos factores son básicamente pérdidas que suelen denominarse polarizaciones o

sobretensiones, y son fundamentalmente tres:

Polarización de Activación (ηact)

Polarización Óhmica o resistiva (ηohm)

Polarización de Concentración o Transporte de Masa (ηcon).

1.0.2. Consideraciones teóricas del modelado de los fenómenos de

transporte en el interior de una pila PEM

Los fenómenos de transporte que suceden en el interior de una pila de combustible

son variados y complejos, acordes con los distintos componentes que conforman una

pila de combustible. En este tema se describirán los fenómenos de transporte en una

pila polimérica, detallando qué sustancias son transportadas en cada componente de

la pila, cómo se mueven, qué tipo de ecuaciones se utilizan para modelar dichos movi-

mientos y cómo éstos se acoplan en las entrefases o superficies de separación, aśı como

qué condiciones de contorno son necesarias.

3



1. INTRODUCCIÓN

En cualquier sección de la pilas, sea la capa difusiva, las placas de canales, etc.,

el tipo de ecuación que va a caracterizar el transporte de cantidades (concentraciones,

cantidad de movimiento, densidad de corriente) en el interior de la pila va a contener

en general términos de evolución temporal, flujos (convectivos, difusivos y eléctricos de

distinto tipo) y términos fuente. En el caso del transporte de cantidad de movimiento,

aparece también la presión. La descripción detallada, con las hipótesis de modelado que

se describen a continuación, se ven en la sección 2.

Hipótesis de modelado

Al considerar el transporte de las distintas magnitudes de interés en una pila po-

limérica, se pueden hacer simplificaciones sobre la geometŕıa de la pila (aproximaciones

uni, bi o tridimensionales), sobre el funcionamiento de la misma (estado estacionario,

temperatura constante,...) o sobre la descripción de los procesos f́ısicos en su interior

y su nivel de detalle (número de cantidades transportadas que se consideran, leyes

electroqúımicas aplicadas, variaciones de la ley de Darcy, difusión de Fick en lugar de

Maxwell-Stefan, etc.).

En el presente trabajo se hacen las siguientes consideraciones:

Geométricas: geometŕıa bidimensional, capas cataĺıticas muy delgadas frente a la

membrana polimérica o capas difusoras.

Funcionamiento: estado estacionario, temperatura constante.

Procesos contemplados y nivel de detalle: transporte de electrones a través de los

electrodos, difusión multicomponente de especies gaseosas a través de las capas

difusoras anódicas y catódicas (electrodos), flujo de vapor de agua a través de las

capas difusoras anódicas y catódicas (electrodos), movimiento de los protones a

través de la membrana polimérica. Se consideran gases perfectos.

Además se especificarán en cada región de la pila ecuaciones de transporte que también

contienen impĺıcitas hipótesis de modelado que se describen más adelante.

En la pila distinguimos las siguientes regiones:

Canales: el flujo en los canales puede ser complicado y de por śı objeto propio de

investigación, como en los nuevos canales interdigitados. En la placa del ánodo

se considera una mezcla de gases perfectos formada por hidrógeno H2 y vapor de

agua H2O(g). En el cátodo se consideran ox́ıgeno O2 y vapor de agua H2O(g).
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En cualquier caso el flujo se considera incompresible. Además en los canales pue-

de existir agua liquida H2O(l), que provenga de las capas difusoras anódica y

catódica. Se supondrá que la cantidad de agua que llega a los canales es muy

pequeña, de tal modo que se evacua por gravedad y no interfiere en el flujo de los

reactantes en los canales. Evidentemente es necesario comprobar este supuesto (la

obstrucción de los canales indicaŕıa un régimen de funcionamiento poco deseable)

a posteriori.

Las ecuaciones que se van a considerar (Navier-Stokes) son

• Continuidad de la velocidad (de la mezcla de gases) (conservación de masa)

• Conservación de cantidad de movimiento

• Conservación de los componentes gaseosos (ecuaciones de convección-difusión

para los gases, incluyendo difusión de Maxwell-Stefan)

Capas difusoras: en esta zona de los dos electrodos constituida por material poroso

y conductor eléctrico (grafito), los gases se difunden en su camino hacia la zona

cataĺıtica de los electrodos. En el flujo de medios porosos, la descarga espećıfica

desempeña el papel de la velocidad. Proviene del promediado espacial de ésta. Es

la cantidad que proporciona el caudal. Se trabajan con las siguientes ecuaciones:

• Conservación de masa (Continuidad de la descarga espećıfica)

• Conservación cantidad de movimiento (Leyes de Darcy generalizadas)

• Conservación de los componentes gaseosos (ecuaciones de convección-difusión

para los gases, ley de difusión adaptada al medio poroso).

Son necesarios, en las ecuaciones anteriores, distintos parámetros que caracterizan

los medios f́ısicos por los que se realizan los transportes y su interacción con los

fluidos (permeabilidades, porosidad, coeficientes de difusión). Esto vale también

para las restantes zonas de la pila.

M embrana: en esta zona está el electrolito consistente en Nafión, con H2O(l),

por el que circulan los iones H+ del ánodo hacia el cátodo. La naturaleza del

electrolito impide el movimiento de los gases a través de él. Se consideran las

siguientes ecuaciones de transporte:

• Continuidad de la descarga espećıfica (velocidad)

5



1. INTRODUCCIÓN

• Conservación cantidad de movimiento (Leyes de Schögl generalizadas, como

las de Darcy, incluyendo el efecto del arrastre electrosmótico del H2O(l) por

los iones H+)

• Conservación iones H+ (ley de Darcy generalizada, incluyendo el término

de arrastre debido a las diferencias de potencial eléctrico en la membrana)

• Conservación de la enerǵıa (ecuación de convección-difusión para la tempe-

ratura, adaptada al medio poroso, más termino fuente óhmico debido a la

densidad de corriente eléctrica generada por los iones H+ )

• Ecuación del potencial eléctrico en la membrana

• Ecuación de la densidad de corriente en función del potencial eléctrico.

De nuevo, son necesarios, en las ecuaciones anteriores, distintos parámetros que

caracterizan los medios f́ısicos por los que se realizan los transportes y su interac-

ción con el H2O(l) y con los iones H+ (permeabilidades, porosidad, coeficientes

de difusión, permeabilidades electrocinéticas, conductividades eléctricas).

Capas cataĺıticas: en estas regiones tienen lugar las reacciones qúımicas de oxida-

ción y reducción que caracterizan la pila de combustible. Aqúı se encuentra el Pt

finamente dividido que cataliza las reacciones de oxidación y reducción. Una parte

de Nafión que forma la membrana envuelve el catalizador para permitir la llegada

de los reactantes. La zona es muy delgada en comparación con los restantes do-

minios de la pila. Las ecuaciones, en principio análogas a las anteriores, incluirán

ahora términos fuente (distintos en ánodo y cátodo) para las sustancias reactivas

(H+,H2O,O2,H2). Estos términos fuente se expresan como funciones de la den-

sidad de corriente de transferencia del ánodo (para las reacciones anódicas) y del

cátodo (para las reacciones catódicas). Las densidades de corriente de transferen-

cia se relacionan con el sobrepotencial mediante las ecuaciones de Butler-Volmer.

También se relacionan con el potencial eléctrico mediante la conductividad iónica.

Como en la membrana y en las capas difusoras, es necesario conocer los distintos

parámetros que caracterizan los materiales por los que se realizan los transportes.

Ecuaciones auxiliares: además de la ecuación de estado de los gases, son nece-

sarias ecuaciones auxiliares adicionales para evaluar algunos de los mencionados

parámetros que caracterizan los materiales, cuyos valores pueden ser función de

variables termodinámicas, como la temperatura, la presión y las concentraciones

de alguna especie. Suelen considerarse ajustes funcionales a medidas experimenta-

les. Son necesarias para evaluar, entre otras, la conductividad iónica del Nafión,
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la presión de vapor del agua o los coeficientes de difusión binarios (necesarios

también para evaluar difusiones no fickianas). Por último, también son necesarias

expresiones para evaluar permeabilidades y coeficientes de difusión y conductivi-

dades térmicas en los medios porosos.

Condiciones de contorno: es necesario en primer lugar prescribir los flujos y com-

posición de los gases a la entrada de los canales. En las paredes de las placas

bipolares que cierran los canales, se considera velocidad nula, flujo nulo de masa.

Por último, se consideran flujos nulos para las cantidades que no pueden atravesar

entrefases en dichas entrefases.

Consideraciones adicionales

A la vista de lo expuesto, se comprende la dificultad de la descripción de los fenóme-

nos de transporte en una pila de combustible polimérica. Existen en la literatura cient́ıfi-

ca diversos niveles de aproximación a esta descripción, en ocasiones con hipótesis di-

ferentes para describir los mismos fenómenos f́ısicos. Es fundamental ser equilibrado y

consistente con el nivel de detalle escogido en la simulación de todos los procesos en la

pila. En las siguientes secciones se describen en detalle una propuesta de modelado con

las correspondientes ecuaciones.

1.0.3. Entornos de simulación

Las ecuaciones que se han descrito a lo largo de este sección forman un sistema de

ecuaciones diferenciales en derivadas parciales acopladas. Como se ha mencionado, di-

chas ecuaciones contienen términos convectivos, difusivos y fuente, además de la presión

para el transporte de cantidad de movimiento. Este tipo de ecuaciones son habituales

en mecánica de fluidos y por tanto parece adecuada su simulación numérica mediante

algún código de los utilizados en esa disciplina, adaptado a las caracteŕısticas propias

de las ecuaciones que describen las pilas de combustible.

En primer lugar es menester ser consistente con el nivel de detalle escogido en la

simulación de la pila y equilibrado en dicho nivel de detalle para los distintos procesos

f́ısicos y qúımicos que tienen lugar en ella. Dado el elevado número de ecuaciones

existentes, incluso en las formulaciones más sencillas, es fundamental la comprobación

de que no hay ningún “hueco” en la descripción escogida, que no se olvida ningún

parámetro y que el sistema de ecuaciones es consistente y completo.

Para que el método de discretización escogido sobre el mallado de la pila polimérica

sea de utilidad, es preciso que se satisfagan una serie de condiciones que se describen a

7



1. INTRODUCCIÓN

continuación.

Consistencia: la discretización debe tender a ser exacta conforme el espaciado de

la malla tiende a cero.

Estabilidad: no se ampĺıan los errores que aparecen en el curso de los procesos de

solución.

Convergencia: la solución de las ecuaciones discretizadas tiende a la solución exac-

ta conforme el espaciado de malla tiende a cero.

Conservación: en ausencia de fuentes y en estado estacionario, la cantidad de una

magnitud conservada que entra en un volumen es igual a la que sale.

Acotación: las soluciones numéricas deben tener valores comprendidos entre sus

ĺımites f́ısicos.

Realizabilidad: las soluciones deben tener sentido f́ısico

Las soluciones son evidentemente aproximadas. Los errores provienen del modelado,

discretización y de los proceso iterativos. Hay que ponderar la importancia de estos

errores frente al tiempo de cálculo extra necesario para minimizarlos.

El problema de simular una pila polimérica es, desde el punto de vista numérico y

para modelos realistas, extraordinariamente complicado, debido a la enorme cantidad

de procesos que ocurren en el interior de la pila y que han de ser simulados. Hay

que ser cuidadoso a la hora de escoger el código computacional sobre el que se va a

resolver el sistema de ecuaciones resultante, atendiendo a los criterios expuestos en los

párrafos anteriores. Idealmente se debeŕıa tener acceso a todas las ĺıneas del código. Esto

sucede al utilizar códigos propios o cedidos con códigos fuente, probablemente la mejor

solución para el simulador con experiencia en métodos numéricos. El uso de programas

comerciales tiene el inconveniente de desconocer en muchos casos la naturaleza de los

errores cometidos. Además, en general se prima en exceso la estabilidad frente a la

precisión.

En este trabajo se ha escogido como código de trabajo OpenFOAM

(http://www.openfoam.com/#openfoam), codigo CFD en vólumenes finitos, de ele-

mentos poliedrales, no estructurado, que oferece una gran flexibilidad a la hora de

diseñar un solver proprio para incluir los fénomenos que ocurren dentro de una pila

PEM.
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1.0.4. Objetivos del trabajo

El resultado de la solución numérica del conjunto de ecuaciones elegido para mode-

lar la pila polimérica es un conjunto de valores que representan la distribución espacial

(y temporal en su caso) para cada una de las magnitudes simuladas. Estos resultados

han de ser validados comparándolos con medidas experimentales existentes para con-

diciones de funcionamiento similares a las supuestas en el modelado. También pueden

servir para verificar la validez de esas suposiciones. Aunque hay muchos trabajos va-

liosos que enfocan aspectos particulares del comportamiento de la pila polimérica, por

ejemplo centrándose en la capa difusiva o los electrodos, etc., el objetivo final es lógica-

mente la simulación global del funcionamiento de la pila. Existe una intensa actividad

cient́ıfica en este campo, que se beneficia de las continuas mejoras en los modelados, la

caracterización paramétrica de los materiales y métodos numéricos.

La ventaja fundamental de las simulaciones numéricas es que permiten cambiar

parámetros importantes como la permeabilidad o porosidad simplemente cambiando un

número en un archivo de datos, mientras que en un experimento esto mismo supondŕıa

el reemplazo de materiales por otros en algunos casos imposibles de adquirir. Una vez

validado un modelo numérico, se puede estudiar fácilmente el efecto de la variación de

algunos parámetros f́ısicos en la pila polimérica.

También se mostrarán los valores de algunas magnitudes importantes en la descrip-

ción del estado estacionario del funcionamiento de la pila, como las fracciones molares

de vapor de agua, hidrógeno, ox́ıgeno, etc., aśı como la distribución espacial de la den-

sidad de corriente y de los reactantes.
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Caṕıtulo 2

Modelo Matemático para un pila

de tipo PEM

Como se ha mencionado en la introducción, en todo modelo hay que llegar a un

compromiso entre el nivel de detalle y el esfuerzo requerido para obtener resultados a

partir de él. En el presente trabajo se pretenden demostrar las ventajas de una nueva

aproximación, para lo cual es conveniente la utilización de configuraciones geométricas

e hipótesis f́ısicas relativamente sencillas, como las que se muestran a continuación:

1. Geometŕıa 2D simplificada, pero se incluyen todos los componentes de la pila.

2. Caso isotermo.

3. Caso estacionario.

4. Densidad constante.

5. Difusión de Fick.

6. PEM de alta temperatura (no hay agua ĺıquida).

7. Hidrógeno y vapor de agua en la entrada anódica y ox́ıgeno y vapor de agua en

la catódica.

8. Se consideran pérdidas por activación, masa y óhmicas en la membrana.

9. Ecuaciones de transporte completas, incluyendo medio poroso.

Este caṕıtulo consta de dos partes, en la primera parte se exponen las ecuaciones

matemáticas que describen el movimiento de un fluido. En la segunda parte se exponen

11



2. MODELO MATEMÁTICO PARA UN PILA DE TIPO PEM

las ecuaciones de campo eléctrico y se explica como se acoplan estas ecuaciones en la

fronteras para poder resolver el problema multif́ısico presente en este trabajo.

La idea general es considerar las reacciones electroqúımicas que tienen lugar en

las capas cataĺıticas como flujos salientes del dominio. La pila se dividiŕıa entonces

en tres dominios, ánodo, membrana y cátodo. La información entre ellos vendrá dada

precisamente por el acoplo de los flujos en las fronteras.

2.1. Ecuaciones que describen el movimiento fluido.

El ingeniero francés Claude Navier y el matemático inglés George Stokes escribieron

las ecuaciones básicas que describen el movimiento de un fluido, a las cuales se les conoce

como ¨ecuaciones de Navier-Stokes¨. Estas ecuaciones expresan en el lenguaje del medio

continuo las tres leyes de conservación básicas de la f́ısica: ecuación de continuidad o

conservación de la masa, ecuación de conservación del movimiento y la ecuación de

conservación de la enerǵıa.

La ecuación de continuidad se basa en la ley de conservación de la masa. Aplicado

al concepto de movimiento de un fluido, la tasa de variación de la masa en un volumen

de control es equivalente a la diferencia de la masa que entra y sale a través de sus

fronteras.

La ecuación de conservación del movimiento se deriva de la aplicación del concepto

de la segunda ley de Newton a un fluido en movimiento. La ecuación de movimiento

se expresa en términos de la presión y los esfuerzos debido a la viscosidad actuando

sobre una part́ıcula fluida. La tasa de variación de movimiento en una part́ıcula fluida

es la diferencia de las fuerzas totales debido a los esfuerzos de la superficie y las fuerzas

volumétricas que actúan sobre ella.

Combinando estos principios fundamentales, el movimiento de un fluido se describe

mediante un conjunto de ecuaciones en derivadas parciales conocidas como las ecuacio-

nes de Navier-Stokes. Estas ecuaciones son una representación matemática de las leyes

de conservación de la f́ısica. En el caso de un flujo laminar, estacionario y incompresible

las ecuaciones tienen la siguiente forma:

Ecuación de continuidad.
∂ui
∂xi

= 0 (2.1)
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Ecuación de Conservación de movimiento.

ui
∂ui
∂xj

= −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(2.2)

donde p es la presión, ν la viscosidad cinemática, ρ es la densidad.

2.1.1. Ecuaciones para el medio poroso

Para un medio poroso (como en nuestro caso, por ejemplo, las capas difusoras) es

conveniente distinguir entre dos tipos de promedios Ochoa-Tapia and Whitaker [1995]:

Promedio superficial:

〈•〉 =
1

V

∫

V
• dV, (2.3)

Promedio intŕınseco:

〈•〉β =
1

Vβ

∫

Vβ

• dVβ , (2.4)

donde β indica la zona disponible para el que flujo se mueva libremente dentro

del medio poroso (la parte ”vaćıa”del medio poroso), y V indica un volumen lo sufi-

cientemente pequeño que se va a usar para calcular el promedio. De acuerdo con la

notación Vβ indica las zonas vaćıas dentro del volumen V, su fracción esta dada por la

porosidad ε, por definición. Por lo tanto los promedios superficiales e intŕınsecos están

relacionados por 〈•〉 = ε 〈•〉β.

Se puede demostrar que el promedio superficial de la velocidad es la cantidad que se

acopla a la velocidad del flujo en el medio libre (canales) y que el promedio intŕınseco

de la presión dentro del medio poroso es la cantidad que se acopla a presión del flujo

libre. Simplificando la notación, u y p van a representar estas cantidades para el medio

poroso. Para un aproximación estacionaria, las ecuaciones de conservación van a tener

la forma:

1. Continuidad dentro medio poroso

∂uj
∂xj

= 0 (2.5)

2. Cantidad de movimiento dentro medio poroso

1

ε2
uj

∂ui
∂xj

= −
1

ρ

∂p

∂xi
+

ν

ε

∂2ui
∂xj∂xj

−
ν

K
ui, (2.6)
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2. MODELO MATEMÁTICO PARA UN PILA DE TIPO PEM

donde p es la presión, ν la viscosidad cinemática, ε la porosidad y K la permeabilidad,

supuesto un medio poroso homogéneo e isótropo. El segundo término de la ecuación

2.6 se conoce como la aproximación de Brinkman, y el tercero refleja la contribución

de la ley de Darcy para el medio poroso. Se puede observar que las ecuaciones 2.1 y

2.2 son un caso particular de las ecuaciones 2.5 y 2.6 cuando la porosidad tiene el

valor ε = 1 y la permeabilidad K = ∞. Como tal, las ecuaciones 2.5 y 2.6 se pueden

usar, Ochoa-Tapia and Whitaker [1995], para todo el dominio computacional sin la

necesidad de imponer condiciones de contorno “internas” para las entrefases entre el

medio poroso y el medio libre.

2.1.2. Ánodo

Para el dominio anódico, tenemos que resolver el campo de velocidades ui, la pre-

sión p y la fracción másica de hidrógeno CH2
. La fracción másica de vapor de agua

será CH2O = 1 − CH2
. Las ecuaciones para el campo fluido utilizadas serán las de

Navier-Stokes en el canal, promediadas para medio poroso en la capa difusora, vea la

sección 2.1.1.

En cuanto a la fracción másica del hidrógeno, CH2
, su ecuación de transporte es

uj
∂CH2

∂xj
=

∂

∂xj
γef

∂CH2

∂xj
, (2.7)

donde γef es el coeficiente de difusión efectivo, que depende del medio poroso. Según

Fishman and Bazylak [2011],

γef = ε

(

ε− εp
1− εp

)α

γ (2.8)

donde γ es el coeficiente de difusión en medio libre, εp es el umbral de porosidad para

que exista filtrado y α es un parámetro de ajuste.

Las condiciones de contorno son

1. Paredes

u = 0

∂CH2p

∂xn
= 0

2. Entrada

ρuea

CH2e
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3. Salida libre
∂uas
∂xn

= 0

∂CH2s

∂xn
= 0

4. Salida capa cataĺıtica

ρuac

ρuacCH2c
− ργef

∂CH2c

∂xn
= ρuac

En la última condición se ha exigido que el flujo difusivo más el flujo convectivo de

hidrógeno sea precisamente el flujo másico (en realidad su equivalente eléctrico) que

ingresa en la membrana, fruto de la reacción electroqúımica. Se recuerda que el vapor

de agua no atraviesa la capa cataĺıtica. Para la presión podemos tomar la condición

que se ajusta a la de la velocidad, gradiente nulo en todas las fronteras. Las velocidades

expresadas en las condiciones de contorno anteriores se refieren a sus componentes

normales.

2.1.3. Cátodo

En el dominio catódico, tenemos que resolver el campo de velocidades ui, la presión

p y la fracción másica de ox́ıgeno CO2
. La fracción másica de vapor de agua será CH2O =

1−CO2
. Como en el caso del ánodo, las ecuaciones utilizadas serán las de Navier-Stokes

en el canal, promediadas para medio poroso en la capa difusora.

En cuanto a la fracción másica del ox́ıgeno, C02 , su ecuación de transporte es

uj
∂C02

∂xj
=

∂

∂xj
γ′ef

∂C02

∂xj
, (2.9)

donde γ′ef es el coeficiente de difusión efectivo, que depende del medio poroso:

γ′ef = ε

(

ε− εp
1− εp

)α

γ′ (2.10)

donde γ′ es el coeficiente de difusión del ox́ıgeno en vapor de agua en medio libre. Al

igual que en el ánodo, εp es el umbral de porosidad para que exista filtrado y α es un

parámetro de ajuste.

Las condiciones de contorno son
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2. MODELO MATEMÁTICO PARA UN PILA DE TIPO PEM

1. Paredes

u = 0

∂CO2p

∂xn
= 0

2. Entrada

ρuec

CO2e

3. Salida libre
∂ucs
∂xn

= 0

∂CO2s

∂xn
= 0

4. Salida capa cataĺıtica

−ρucc

ρuccCO2c − ργ′ef
∂CO2c

∂xn
= 4ρucc

En la última condición se ha exigido que el flujo difusivo más el flujo convectivo de

ox́ıgeno sea consistente con el flujo másico total. Puesto que por cada 2 gr/s (H2) que

entran a la membrana, salen 2 gr/s que entran en el cátodo, igual a los 10 gr/s del H2O

menos los 8 gr/s del medio mol de O2. Por tanto por cada 2 gr/s que entran en total, se

van 8 gr/s de O2, 4 veces más. Para la presión podemos tomar la condición que se ajusta

a la de la velocidad, gradiente nulo en todas las fronteras. Las velocidades expresadas

en las condiciones de contorno anteriores se suponen normales a las entradas y salidas,

como en el caso anódico.

2.2. Ecuaciones Campo Eléctrico, Membrana

En la membrana se debe resolver una ecuación de transporte, conservando la canti-

dad de movimiento de lo protones que se mueven a través de la misma. Para plantearlo

de manera lógica pero simplificada, supongamos un caso de membrana bien hidratada.

Si consideramos la situación del agua en equilibrio y no nos planteamos su evolución,

se puede proponer la siguiente ecuación de transporte para la velocidad protónica:

1

ε2
uj

∂ui
∂xj

= −
1

ρ

∂p

∂xi
+

ν

ε

∂2ui
∂xj∂xj

− λui +
ρq
ρ
Ei, (2.11)
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donde ε es la porosidad asociada a los canales de agua generados en la membrana, λ un

coeficiente tipo Darcy, que refleja el efecto de frenado del movimiento de los protones

hidratados, Ei la componente i del campo eléctrico en el interior de la membrana y ρq

la carga eléctrica protónica por unidad de volumen.

Según Steinkamp et al. [2008], el mecanismo de transporte de protones a través de

la membrana, en situaciones de hidratación perfecta, viene dominado por el gradiente

de presión más el campo eléctrico. Estas magnitudes podŕıan también reflejar el com-

portamiento de una membrana de alta temperatura. Aunque el gradiente de presión se

refiere al conjunto agua-protones hidratados, nos tomamos la libertad de suponerlos en

un estado de equilibrio de forma que aplicamos la ecuación anterior directamente a los

protones. Luego se explicará porqué es una aproximación razonable.

Podemos despreciar en la ecuación anterior 2.13 el efecto de difusión de cantidad

de movimiento frente al término de Darcy y podemos observar que el trabajo no con-

servativo (por unidad de volumen) realizado sobre los protones para un movimiento

rectiĺıneo que cruce perpendicularmente la membrana de espesor L es:

Wv = ρλunL

Ese trabajo se refleja en una pérdida de enerǵıa asociada que se ha convertido en calor.

Esa pérdida seŕıa la misma si el único mecanismo de transporte fuera un campo eléctrico

constante, en cuyo caso

jn = σEn,

donde σ es la conductividad protónica. El campo eléctrico se relaciona con el potencial,

En = − dφ
dxn

, con lo que integrando el potencial ∆φ = jnL
σ y sustituirlo en la ecuación

anterior para conductividad constante a lo largo de L, con lo que el trabajo eléctrico es

Wv = ∆φρq =
ρqjnL

σ
=

ρq
2unL

σ
.

De ah́ı que podemos relacionar λ con la conductividad protónica σ:

λ =
ρq

2

ρσ
. (2.12)

En nuestro caso sabemos que el potencial es constante a lo largo de la capa cataĺıtica

anódica y también de la capa cataĺıtica catódica, con lo que, al ser la conductividad

constante (medio homogéneo), el campo eléctrico es constante, en dirección normal,

sentido contrario al movimiento y de valor En = −∆φ
L .
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2. MODELO MATEMÁTICO PARA UN PILA DE TIPO PEM

Nos interesa ahora relacionar la densidad eléctrica protónica con la densidad másica

protónica:

ρq
ρ

=
carga protones

Unidadmasa
=

carga protones 1Kg

1Kg
= 1000FC/Kg,

donde F = 96,485 es la constante de Faraday desprovista de dimensiones (C/mol).

Por último, según el principio de electroneutralidad, el número de protones circu-

lantes es igual al número de grupos sulfonados (ambos con valencia 1), con lo que ρq

es igual a la concentración de grupos sulfonados de la membrana.

Tras estas disquisiciones, la ecuación de transporte protónica queda:

1

ε2
uj

∂ui
∂xj

= −
103 F

ρq

∂p

∂xi
+

ν

ε

∂2ui
∂xj∂xj

−
ρq10

3F

σ
ui − ρq

∆φi

L
, (2.13)

Sabemos que la cáıda de potencial (en dirección normal, prescindimos de sub́ındice

“n”) es:

∆φ = 1, 235 − ηa − ηc − φΩ, (2.14)

es decir, la diferencia de potencial entre ánodo y cátodo es el potencial teórico, 1, 235

(suponemos temperatura constante) menos los sobrepotenciales anódicos y catódicos y

la pérdida de potencial asociada a la resistencia en la membrana.

2.2.1. Condiciones de contorno

En la membrana se han de acoplar los flujos másicos a los flujos de protones. En el

lado del ánodo tendremos:

ja =
ρua2F

MH2

= jar

(

CH2

CH2r

)1/2 (

exp

(

−αaF

RT
ηa

)

+ exp

(

αaF

RT
ηa

))

, (2.15)

donde ja es la densidad de corriente (superficial) en un punto de la entrada a la mem-

brana y F es la constante de Faraday, que también representa la carga eléctrica en un

mol de electrones. La segunda igualdad corresponde a la ecuación de Butler-Volmer,

donde jar es una densidad de corriente de referencia, CH2r una fracción másica de

referencia.

En el lado del cátodo tenemos una ecuación análoga:

jc =
ρuc4F

MO2

= jcr

(

CO2

CO2r

)

exp

(

αcF

RT
ηc

)

, (2.16)
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cuyas variables son las equivalentes, pero obviamente referidas al cátodo.

Nótese por último que tenemos impĺıcitas dos condiciones más, suponemos que la

conductividad electrónica en ánodo y cátodo es lo suficientemente grande como para

que el potencial sea constante en cada una de las capas cataĺıticas. Aśı su promedio ha

de ser igual a cualquier valor local en cada una de las mismas:

〈φa〉 = φa = 0 (2.17)

〈φc〉 = φc, (2.18)

donde el potencial del electrodo del hidrógeno se toma nulo por convenio.

2.3. Acoplamiento de las ecuaciones y método numérico

A partir de estas ecuaciones se ha de obtener la curva de polarización, es decir, la

curva de intensidad frente a voltaje. Para ello se fijará una intensidad y con la ayuda de

las ecuaciones anteriores, se calcula numéricamente la cáıda de potencial entre las dos

capas cataĺıticas de la pila. Para otros valores de la intensidad se obtendrán diferentes

cáıdas de potencial, de esta manera se construirá la mencionada curva de polarización.

Vamos a observar las simplificaciones en dos casos extremos, lo que va a ayudar a

entender el comportamiento de la monocelda. Por el principio de mı́nima disipación de

Onsager para sistemas ”linealmente”fuera de equilibrio (Onsager [1931] y Horne and

Karamcheti [1988]) sabemos que los procesos de transporte en el interior de la celda

van a tender a minimizar la disipación de enerǵıa.

A continuación se describe el primer caso “extremo”, cuando la conductividad σ

muy alta. Puesto que el flujo en la membrana no disipa apenas φΩ = 0, el flujo de

protones en la misma se adaptará a las soluciones correspondientes a los flujos que

śı disipan, los correspondientes al ánodo y cátodo. En ese caso, se pueden resolver por

separado ambos flujos disipativos para cada intensidad.

El segundo caso “extremo” es el correspondiente a una situación con conductividad

σ muy baja, es decir, cuando la membrana es muy disipativa. Al mismo tiempo, el flujo

de ox́ıgeno que entra en el es abundante muy por encima del requerido por la estequio-

metŕıa. Este caso representa de hecho una situación bastante realista. El principio de

mı́nima disipación nos llevaŕıa en este caso a resolver de manera independiente el flujo

anódico y considerar en la membrana un flujo unidireccional perpendicular (mı́nima

disipación). Esto supone fijar el flujo en la capa catódica, que se resolveŕıa a posteriori.

Puesto que este caso corresponde a una situación realista, merece la pena describir un
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posible método iterativo para su solución en detalle.

2.3.1. Método iterativo caso real simplificado

Suponemos conocida la intensidad I. Para obtener un punto de la curva de po-

larización, calculamos la cáıda de potencial entre ánodo y cátodo ∆φ de la siguiente

manera:

1. Para iniciar el proceso iterativo suponemos I generada de forma uniforme en el

ánodo. Eso implica ja = I
h , donde h es la altura de la pila.

Entonces:

ja
2.15
−−−→ ρua

2.6,2.7
−−−−−→ CH2

2.15
−−−→ ηa

2.18
−−−→ 〈ηa〉

2.15
−−−→ j⋆a

I=cte
−−−→ ja,

donde en el último paso se corrige la densidad de corriente con una constante k

para conservar la intensidad, de forma que

I =

∫

h
k j∗ady.

Esto es necesario porque al promediar ηa no conservamos la intensidad total I.

El proceso iterativo queda aśı definido para el ánodo. Se obtiene para cada punto

de la capa cataĺıtica ja y el valor global ηa constante. Un valor de k próximo a 1

indicará convergencia.

2. Para la membrana, y por el mencionado principio de Onsager, suponemos movi-

miento unidireccional de forma que, para cada localización se tiene

ja = jc

con una cáıda de potencial por resistencia óhmica, que de manera simplificada se

puede estimar como φΩ = L〈ja〉
σ .

3. Para el cátodo, tenemos el valor de jc definido, de manera que podemos proceder

como para el ánodo pero sin necesidad de realizar iteraciones ulteriores. De esta

forma obtendŕıamos ηc, con lo que a partir de la ecuación 2.14 podŕıamos dibujar

el primer punto de la curva de polarización. Nótese que este valor de ηc no es uni-

forme. Bajo nuestra hipótesis de membrana muy disipativa y abundante ox́ıgeno,
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habŕıa que tomar el valor mayor de los encontrados, pues seŕıa el potencial reque-

rido para absorber el flujo de protones en el punto de mayor flujo. En el resto de

puntos habŕıa, por decirlo de manera coloquial, un “exceso” de concentración de

ox́ıgeno sobre el valor requerido para generar la corriente que no se aprovechaŕıa.

2.3.2. Comentarios

En realidad la solución anterior es un poco disipativa de más. La razón es que

las pérdidas por sobrepotencial anódico son muy pequeñas comparadas con las del

sobrepotencial catódico, lo que para situaciones alejadas del “starving” de hidrógeno

haŕıa más eficientes energéticamente y por tanto más realistas, soluciones en las que

ηa teórico no fuera igual en todo el ánodo, a cambio de que si fuera más uniforme

en el cátodo. Una posible aproximación seŕıa considerar flujo uniforme en el ánodo (y

cátodo), de tal forma que, al ser abundante el ox́ıgeno en el cátodo, el sobrepotencial

catódico seŕıa de valor muy uniforme, y por tanto habŕıa menos disipación energética.

Se deja como tema abierto, aśı como la solución en situaciones no extremas.
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Caṕıtulo 3

Simulación Numérica

3.1. Geometŕıa del Dominio

En los caṕıtulos anteriores se explicó que para este trabajo se utilizará un modelo

simpificado 2D. A continuación se puede observar la geometŕıa del dominio:

Figura 3.1: Geometŕıa del dominio.

Y en el cuadro a continuación se muestran las caracteŕısticas del domino:
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3. SIMULACIÓN NUMÉRICA

Dimensión Valor

Longitud total del domino 0, 0712m
Anchura de los canales Anodo y Cátodo 3, 18 · 10−3m

Anchura de la capa difusora (GDL) (2) y (6) 3, 10 · 10−4m
Anchura capa cataĺıtica (3) y (5) 1, 0 · 10−5m
Anchura de la membrana (4) 5, 1 · 10−5m

Cuadro 3.1: Dimensiones del dominio computacional

3.2. Malla computacional

La malla que se ha utilizado para este trabajo es una malla de elementos cuadriláte-

ros y de un tamaño aproximado de 8.600 elementos. También se observa en la figura

3.3 que la razón de aspecto de la malla decrece conforme nos movemos hacia la capa

cataĺıtica. De esta manera se garantiza que las variaciones de la magnitudes de interés

son captadas correctamente, a la vez que se ahorran nodos computacionales. En la zona

central el mallado es ya uniforme.

Figura 3.2: Malla del domino computacional.
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3.3. Simulación numérica

Según el modelo que se ha mostrado en el caṕıtulo anterior, se distinguen básica-

mente dos tipos de regiones en la monocelda: regiones donde circulan fluidos (los canales

más las capas difusoras -GDL-) y regiones donde circulan los protones (la membrana

únicamente). Las capas cataĺıticas marcan la frontera entre ambos tipo de regiones, ya

que en este trabajo se consideran infinitamente delgadas (ĺıneas en el caso 2D). En los

canales y las capas difusoras (GDL) se aplican las ecuaciones de Navier-Stokes, con la

formulación de Ochoa en medios porosos (GDL) que evita la introducción de condicio-

nes de contorno internas entre el canal y la capa difusora. En las capas cataĺıticas se

generan las reacciones electroĺıticas, que se expresan como flujos entrantes o salientes

de los reactantes. En la membrana el flujo de protones en las fronteras se adecúa a los

anteriores mediante la correspondiente ley de conservación y las ecuaciones de Butler-

Volmer. El modelo desarrollado para la membrana bajo la hipótesis de Onsager implica

para los protones un movimiento unidireccional normal a la membrana, lo que se refleja

como una simple ley de Ohm.

Las subrutinas necesarias se han escrito como módulos para OpenFOAM, un código

numérico basado en volúmenes finitos de libre distribución, OpenFOAM.

3.3.1. Parámetros de simulación

Ánodo Cátodo

Combustible Hidrógeno Ox́ıgeno

Permeabilidad K (m2) 2, 584 x 10−13 2, 584 x 10−13

Porosidad (ε) 0, 517 0, 517

Cref 0, 909657 1, 09013 *

jref (A/m2) 10000 0, 032

Constante Faraday (C/mol) 96485 96485

Temperatura (Kelvin) 353 353

Constante de gases R (J/molK) 8, 314 8, 314

Masa Molar (Kg/mol) 0, 002 0, 032

Presión kPa 101, 1 101, 1

Número de electrones involucrados α 2 1

Densidad de mezcla ρ (Kg/m3) 0, 08988 1, 2

Cuadro 3.2: Cuadro parámetros simulación

* Este valor por encima de 1 es consecuencia de tomar valores de densidad constantes
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3. SIMULACIÓN NUMÉRICA

para las mezclas de gases, lo que obviamente no es la situación real (ver caṕıtulo 2)
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Caṕıtulo 4

Resultados Numéricos

En esta sección se discuten los resultados de la simulación numérica de la pila de

combustible.

Se obtienen la curva de polarización de la pila, curva de eficiencia, y otras curvas de

importancia en el estudio del funcionamiento de una pila. En los resultados de algunas

gráficas que se presentan a continuación, se han separado los canales (ánodo y cátodo)

de forma artificial, únicamente mostrando el canal del ánodo, GDLs, capas cataĺıticas, y

canal del cátodo, ya que en la membrana no se resuelve realmente ninguna ecuación. Lo

que se hace es un “mapping” de la cantidad de movimiento (corriente) saliente del ánodo

con el modelo asociado a conductividad baja, que implica movimiento unidireccional

perpendicular a la membrana. A continuación se presentan resultados para un caso

espećıfico de corriente de 5,000A/m2

4.1. Velocidad

En la Figura 4.1 se presentan los valores del módulo de la velocidad tanto para la

región anódica como para la catódica. Para una mejor comprensión, se presenta esta

cantidad primeramente utilizando un mapa de colores adecuado a las variaciones de su

magnitud en el ánodo (Figura 4.1 (a)), y posteriormente, adecuado a las variaciones de

su magnitud en el cátodo (Figura 4.1 (b)).

27



4. RESULTADOS NUMÉRICOS

(a)

(b)

Figura 4.1: Modulo de la Velocidad en el ánodo(izquierdo) y cátodo(derecho)
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4. Resultados numéricos

En la figura 4.2 se observa el perfil de velocidad extráıdo para un corte transversal

del ándodo a media altura. Por las condiciones de contorno a la entrada y el consumo

de H2 correspondiente a la densidad de corriente demandada (5000A/m2), la magnitud

de la velocidad que atraviesa la GDL es muy pequeña comparada con la del canal en

la parte central mostrada. De aqúı que el perfil de velocidad sea aproximadamente

parabólico en el canal, con una pequeña perturbación a la entrada de la capa difusora.

Figura 4.2: Perfil de velocidad en corte transversal del ándodo a media altura.

En la figura 4.3 se observan los vectores de velocidad para las regiones del ánodo y

cátodo. En la imagen aumentada se observa un detalle para mostrar con más claridad

las direcciones de la velocidad. En la zona del ánodo la GDL se ha coloreado de morado,

la capa cataĺıtica de color amarillo, y se observa en estas zona la unidireccionalidad del

flujo y que es normal a la superficie. Obsérvese que esto está de acuerdo con el principio

de mı́nima disipación de Onsager Onsager [1931], debido al mayor carácter disipativo

de los medios porosos.

En la región del cátodo se observa el mismo comportamiento que en el ánodo. En

este caso, la zona de color azul representa la GDL y la zona en rojo es la capa cataĺıtica.

Se observa análogamente en estas zonas cómo el flujo también es unidireccional y normal

a la superficie en la frontera de la capa cataĺıtica.
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4. RESULTADOS NUMÉRICOS

Figura 4.3: Vectores de velocidad ánodo y cátodo.

En esta figura 4.4 se muestra el perfil de velocidad en salida capa cataĺıtica del

ánodo. Claramente se observa cómo en la zona de entrada del canal la velocidad es

mayor. Esto se debe básicamente a que la concentración de H2 es mayor en las zonas

cercanas a la entrada y por tanto (Butler-Volmer) mayor la corriente generada que

atraviesa la membrana. Por conservación de masa también ha de se mayor el flujo de

H2 saliente y por tanto la velocidad.

Figura 4.4: Perfil de velocidad salida capa cataĺıtica del ánodo.
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4. Resultados numéricos

4.1.1. Hidrógeno y oxigeno

En la figura 4.5 se muestran las fracciones másicas de H2 (ánodo) y O2 (cátodo).

El progresivo consumo de H2 a través de la capa cataĺıtica hace disminuir su fracción

másica conforme nos movemos hacia la salida del canal. En la región catódica este

efecto es relativamente menor al estar en exceso estequiométrico. En el canal catódico

el O2 muestra un perfil de fracción másica más abrupto transversalmente debido a su

mayor convección. Se recuerda que en el modelo aproximado, es el flujo en el ánodo

el que regula las reacciones estequiométricas. En este caso al entrar ambos gases en el

mismo sentido (co-flujo) no se producen distorsiones en el flujo del ox́ıgeno a lo largo

de la capa cataĺıtica, como se puede observar en la figura 4.6.

Figura 4.5: Fracciones másicas ánodo y cátodo

En dicha figura 4.6 se muestra la variación de las fracciones másicas de H2 y de O2

a lo largo de las capas cataĺıticas correspondientes. El valor medio de O2 es considera-

blemente menor que el del H2. Esto se debe a que su masa molecular es mucho mayor

que la del H2 (ver ecuaciones 2.15 y 2.16)
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4. RESULTADOS NUMÉRICOS

Figura 4.6: Variación de la fracción másica H2 y O2

En la figura 4.7 se presenta la variación de la densidad de corriente de las capas

catáĺıticas anódica (H2) y catódica (O2). Ambos perfiles son idénticos debido a las

suposiciones del modelo utilizado. Se aprecia cómo la corriente es mucho mayor en

las zonas cercanas a la entrada del dominio. Esto se debe a la mayor cantidad de

concentración de hidrógeno, como se ha comentado anteriormente, ya que la densidad

de corriente depende de la concentración de hidrógeno.

Figura 4.7: Variación de la densidad de corriente en las capas cataĺıticas.
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4. Resultados numéricos

En la figura 4.8 se presenta la imagen del sobrepotencial anódico ηa y catódico

ηc. Ambos perfiles son planos, lo que es coherente con la conductividad electrónica

infinita que se ha supuesto para las capas cataĺıticas. También se observa, como es bien

conocido, que el sobrepotencial catódico es bastante mayor que el anódico.

Figura 4.8: Perfiles de η ánodo y cátodo.

4.2. Curva de polarización y otras

En las figuras que se presentan a continuación se realizan comparaciones cualitati-

vas con la literatura, (Barbir [2005]). Para ilustrar el comportamiento del modelo, se

muestran resultados para distintas intensidades requeridas a la pila. Estos valores (12)

son los siguientes: 50, 100, 200, 500, 750, 1000, 2500, 5000, 7500, 10.000, 12.500, 15.000

(A/m2).
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4. RESULTADOS NUMÉRICOS

Curvas de pérdidas por activación

En la figura 4.9(b), se presentan las pérdidas por activación. La polarización por

activación ocurre tanto en el ánodo como en el cátodo, pero la reducción del ox́ıgeno

requiere mayores sobrepotenciales, debido a que esta reacción es mucho más lenta que

la oxidación del hidrógeno en el lado del ánodo. De la figura 4.9 se observa que ambas

gráficas comparan muy bien y las diferencias cuantitativas se deben básicamente a las

diferentes condiciones utilizadas en Barbir [2005] y en la presente simulación numérica.

(a) Barbir (b) Numérica

Figura 4.9: Comparativo curva de pérdidas por activación.

Curva de pérdidas óhmicas

En la figura 4.10 se presenta la curva de las pérdidas óhmicas, que en el presente

modelo están limitadas al flujo de protones a través de la membrana. Se puede obser-

var claramente cómo ambas gráficas muestran la ley de Ohm, que define una relación

directamente proporcional entre el potencial y la corriente, φΩ = L〈ja〉
σ .
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4. Resultados numéricos

(a) Barbir (b) Numérica

Figura 4.10: Comparativo curva de pérdidas óhmicas

Curva de pérdidas por concentración de masa

En la figura 4.11 se observa la gráfica de pérdidas por concentración de masa. Esta

gráfica describe el momento en el cual se alcanza el valor en el que la tasa de consumo

es mayor que la tasa de difusión del reactivo. De observa como esta gráfica de la figura

4.11 (b) compara cualitativamente bien con la gráfica (a).

(a) Barbir (b) Numérica

Figura 4.11: Comparativo curva de pérdidas por concentración de masa

35



4. RESULTADOS NUMÉRICOS

Curva de polarización

La curva de polarización, mostrada en la figura 4.12, es la gráfica que mejor ca-

racteriza el comportamiento global de una pila de combustible. En la zona inicial se

observa que la polarización por activación es dominante. A continuación la curva mues-

tra una linea cuasi-recta de pendiente negativa, zona donde las pérdidas óhmicas son

dominantes. Por último se observa la zona de las pérdidas por masa. La curva cae en

la parte final rápidamente debido a que en ese momento se empieza a consumir todo

el hidrógeno disponible. Numéricamente se manifiesta una falta de convergencia para

valores de corriente mayores de 15000 A/m2.

(a) Barbir (b) Numérica

Figura 4.12: Comparativo Curva de polarizacion

Curva de densidad de potencia frente a densidad de corriente

En esta figura 4.13 se observa la curva de densidad de potencia frente a densidad de

corriente. Esta curva representa la potencia que la pila entrega para una cierta solicitud

requerida. La potencia eléctrica por unidad de área, es el resultado del producto del

potencial y de la densidad de corriente (W = φΩj). Esta curva es de mucha utilidad ya

que permite tener conocimiento de los rangos de valores de densidad de corriente a los

cuales se puede operar la pila y a su vez que esta pueda entregar su máxima potencia

eléctrica. Hay que resaltar que no es conveniente operar la pila de combustible por

encima ciertos valores de potencia ya que el mismo valor de potencia se puede obtener

a menores valores de densidad de corriente.
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(a) Barbir (b) Numérica

Figura 4.13: Comparativo densidad potencia frente a densidad de corriente

Curva de potencial-eficiencia frente a la densidad de potencia

En la figura 4.14 se presenta el potencial-eficiencia frente a la densidad de potencia.

Se observa que al igual que la curva de potencia frente a la densidad de corriente, existe

una potencia máxima que la pila puede alcanzar, debido a que la eficiencia de la pila

es directamente proporcional al potencial. Se pueden obtener mayores eficiencias con

menores densidades de potencia, ya que el punto de operación se puede seleccionar

donde convenza o donde se necesite operar la pila. También se puede observar que las

gráficas de la figura 4.14 muestran un acuerdo cualitativo.

(a) Barbir (b) Numérica

Figura 4.14: Comparativo de curva potencial-eficiencia frente a la densidad de potencia
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Caṕıtulo 5

Conclusiones

En este trabajo se ha mostrado un nuevo tipo de modelización, basada en el principio

de mı́nima disipación de Onsager, que permite acoplar con fundamentos f́ısicos, los

distintos fenómenos de transporte que tienen lugar en una monocelda de una pila PEM.

Se ha utilizado una geometŕıa 2-D en una configuración f́ısica relativamente sencilla que

ya permite mostrar que esta aproximación es correcta. Para ello se han implementado

las necesarias subrutinas en un código numérico sobre volúmenes finitos de uso libre,

OpenFOAM.

Este acoplo distingue entre los canales más las capas difusoras (GDL), regiones

donde circulan fluidos, y la membrana, región donde circulan los protones. Las capas

cataĺıticas marcan la frontera entre ambos tipos de regiones, ya que en este trabajo

se consideran infinitamente delgadas (ĺıneas en el caso 2D). En los canales y las capas

difusoras (GDL) se aplican las ecuaciones de Navier-Stokes, con la formulación de Ochoa

en medios porosos (GDL) que evita la introducción de condiciones de contorno entre el

canal y la capa difusora. En las capas cataĺıticas se generan las reacciones electroĺıticas,

que se expresan como flujos entrantes o salientes de los reactantes. En la membrana el

flujo de protones en las fronteras se adecúa a los anteriores mediante la correspondiente

ley de conservación y las ecuaciones de Butler-Volmer. El modelo desarrollado para

la membrana bajo la hipótesis de Onsager implica para los protones un movimiento

unidireccional normal a la membrana, lo que se refleja como una simple ley de Ohm.

Los resultados numéricos para una cierta intensidad de demanda t́ıpica se calcu-

lan en primer lugar. Las distintas magnitudes, velocidad y fracciones másicas de los

reactantes (hidrógeno y ox́ıgeno), se muestran en las correspondientes secciones de la

monocelda. Los resultados son congruentes con el comportamiento t́ıpico de una mo-

nocelda. Como validación definitiva se calcula la curva de polarización y otras curvas

caracteŕısticas de la monocelda que comparan adecuadamente con los resultados mos-
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trados por Barbir.

Como trabajo futuro fundamental resta extender la formulación para situaciones

con membranas más conductoras, donde la aproximación de corrientes protónicas per-

pendiculares a la membrana se relaje. Se hace notar, sin embargo, que a d́ıa de hoy, este

continua siendo el caso para las membranas existentes para pilas PEM. En paralelo se

pueden aplicar las aproximaciones mostradas en el presente trabajo a geometŕıas 3D,

con situaciones f́ısicas más complejas, que incluyan el efecto de las distintas densidades

de las mezclas de gases o el transporte de calor en toda la monocelda o el transporte

electrónico en GDLs, incluyendo resistencias de contacto, etc.
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