
Apéndice A

Código R

##ANÁLISIS INICIAL

#Definimos los valores de la variable ’nivelT’ como un objeto de R de tipo serie de

tiempo para R. La serie empieza el dı́a 332 del 2004 y finaliza el dia 99 de 2012.

La serie tiene una frecuencia de 365 ya que se recogen datos diarios desde 2004 a

20012

nivel<-ts(NivelTudela$nivelT, start=c(2004,322),end=c(2012,99),frequency=365)

nivel

# comprobación de que los datos coinciden y se ha definido bien la serie de tiempo

nivel [1]

nivel[2698]

#Dibujamos la serie

plot(nivel, xlab="A~nos", ylab="Nivel en m del rio", main="Nivel de rı́o Ebro en

Tudela")

#Separamos en a~nos

abline(v=c(2004:2005),lty=3,col=4)

abline(v=c(2005:2006),lty=3,col=4)

abline(v=c(2006:2007),lty=3,col=4)

abline(v=c(2007:2008),lty=3,col=4)

abline(v=c(2008:2009),lty=3,col=4)

abline(v=c(2009:2010),lty=3,col=4)

abline(v=c(2010:2011),lty=3,col=4)

abline(v=c(2011:2012),lty=3,col=4)

##CONVERSIÓN DE LA SERIE A ESTACIONARIA

#Buscamos el mejor método para estabilizar la varianza

library(car)

help("boxCox")

boxCox(lm(nivel~1),lambda = seq(-3, -1,0.1)) #lambda=-2

#Transformación para estabilizar la varianza

lnivel<-1/(nivel)^2

plot(lnivel, xlab="A~nos", ylab="Nivel en m del rio", main="Serie transformada")

#Diferenciación de la serie para eliminar la estacionalidad

niveldif<-diff(lnivel,lag=365)

plot(niveldif)
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#Contraste de hipótesis serie estacionaria

library(tseries)

library(forecast)

kpss.test(niveldif) #p-value=0.01 no pasa el test

#Diferenciamos una vez para eliminar la tendencia

niveldifdif<-diff(niveldif)

plot(niveldifdif)

#Contraste de hipótesis serie estacionaria

kpss.test(niveldifdif) #p-value=0.1 no se rechaza que la serie sea estacionaria

#Renombramos nuestra serie estacionaria

serie<-niveldifdif

plot(serie)

## SELECCION PRELIMINAR DEL MODELO

#Selección de los rangos de p y q

pacf(serie,na.action=na.pass) #14

acf(serie,na.action=na.pass) #6

#Modelo ARMA

for (i in c(0:14))

{

for (j in c(0:6))

{

serieARMA<-Arima(serie, order=c(i,0,j))

cat(’AIC del modelo: ’,i,j,serieARMA$aic,fill=TRUE)

}

}

#Menor AIC ARMA(6,5)

ARMA65<-Arima(serie, order=c(6,0,5))

ARMA65

ARMA65$coef

ARMA65$sigma2

ARMA65$var.coef

ARMA65$loglik

ARMA65$aic

##VALIDACIÓN DEL MODELO

#Cálculo de los residuos

residuos<-ARMA65$resid[is.na(ARMA65$resid)==F]

var(residuos)

# No tienen varianza 1, los transformamos para que sea ası́

resstan<-residuos/(sum(residuos**2)/length(residuos))**0.5

var(resstan) #varianza de los residuos estandarizados; sale muy próxima a 1

# Ver si los residuos son de media nula y varianza constante
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plot(as.ts(resstan)) #no hay indicio claro de que la serie no sea estacionaria

abline(h=0, col=’green’,lty=1)

abline(h=2, col=’blue’,lty=2)

abline(h=-2, col=’blue’,lty=2)

# Ver si los residuos son incorrelados

#ACF de la serie esiduos

acf(resstan)

#Test de Ljung-Box

Box.test(resstan,type=’Ljung’)

#Estas pruebas se aplica a veces a los residuos de un ARMA(p,q),en cuyo caso

# las referencias sugieren fitdf = p+q,por supuesto siempre que lag > fitdf.

for (i in c(1:12))

{

a<-Box.test(resstan,type=’Ljung’,lag=i) #valor sin ajustar los grados de libertad

print(a$p.value)

a<-Box.test(resstan,type=’Ljung’,lag=i,fitdf=4)

print(a$p.value)

cat(fill=T)

}

tsdiag(ARMA65)

##PREDICCIÓN

# Predicciones de la serie estacionaria

predARMA65<-predict(ARMA65,30)

predARMA65

plot(forecast(ARMA65,30))

#Predicción con estimación componente estacional por armónicos

predic2<- Arima(nivel, order=c(6,1,5), xreg=fourier(nivel, K=1), lambda=-2)

pre<-forecast(predic2, h=30, xreg=fourierf(nivel, K=1, h=30))

pre

plot(forecast(predic2, h=30, xreg=fourierf(nivel, K=1, h=30)))
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