Apéndice A

Codigo R

##ANALISIS INICIAL

#Definimos los valores de la variable ’nivelT’ como un objeto de R de tipo serie de
tiempo para R. La serie empieza el dia 332 del 2004 y finaliza el dia 99 de 2012.
La serie tiene una frecuencia de 365 ya que se recogen datos diarios desde 2004 a
20012

nivel<-ts(NivelTudela$nivelT, start=c(2004,322),end=c(2012,99),frequency=365)

nivel

# comprobacién de que los datos coinciden y se ha definido bien la serie de tiempo
nivel [1]
nivel[2698]

#Dibujamos la serie
plot(nivel, xlab="Aflos", ylab="Nivel en m del rio", main="Nivel de rio Ebro en
Tudela")

#Separamos en afios
abline(v=c(2004:2005) ,1ty=3,col=4)
abline(v=c(2005:2006) ,1ty=3,col=4)
abline(v=c(2006:2007) ,1ty=3,col=4)
abline(v=c(2007:2008) ,1ty=3,col=4)
abline(v=c(2008:2009) ,1ty=3,col=4)
abline(v=c(2009:2010),1ty=3,col=4)
abline(v=c(2010:2011),1ty=3,col=4)
abline(v=c(2011:2012),1ty=3,col=4)

##CONVERSION DE LA SERIE A ESTACIONARIA

#Buscamos el mejor método para estabilizar la varianza

library(car)

help("boxCox")

boxCox(1lm(nivel™1),lambda = seq(-3, -1,0.1)) #lambda=-2

#Transformacién para estabilizar la varianza

lnivel<-1/(nivel) "2

plot(lnivel, xlab="Afios", ylab="Nivel en m del rio", main="Serie transformada")

#Diferenciacién de la serie para eliminar la estacionalidad

niveldif<-diff (lnivel,lag=365)
plot(niveldif)
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#Contraste de hipétesis serie estacionaria
library(tseries)

library(forecast)

kpss.test(niveldif) #p-value=0.01 no pasa el test

#Diferenciamos una vez para eliminar la tendencia
niveldifdif<-diff (niveldif)
plot(niveldifdif)

#Contraste de hipétesis serie estacionaria
kpss.test(niveldifdif) #p-value=0.1 no se rechaza que la serie sea estacionaria

#Renombramos nuestra serie estacionaria
serie<-niveldifdif
plot(serie)

## SELECCION PRELIMINAR DEL MODELO
#Seleccién de los rangos de p y q

pacf (serie,na.action=na.pass) #14
acf(serie,na.action=na.pass) #6

#Modelo ARMA

for (i in c(0:14))

{

for (j in c(0:6))

{

serieARMA<-Arima(serie, order=c(i,0,j))

cat (’AIC del modelo: ’,i,j,serieARMA$aic,fill=TRUE)
}

}

#Menor AIC ARMA(6,5)
ARMA65<-Arima(serie, order=c(6,0,5))
ARMAG65

ARMA65$coef

ARMA65$sigma2

ARMA65$var. coef

ARMA65$1loglik

ARMA65%aic

##VALIDACION DEL MODELO

#Calculo de los residuos
residuos<-ARMA65$resid[is.na(ARMA65%resid)==F]
var (residuos)

# No tiemnen varianza 1, los transformamos para que sea asi

resstan<-residuos/(sum(residuos**2)/length(residuos))**0.5
var(resstan) #varianza de los residuos estandarizados; sale muy préxima a 1

# Ver si los residuos son de media nula y varianza constante



29

plot(as.ts(resstan)) #no hay indicio claro de que la serie no sea estacionaria
abline(h=0, col=’green’,lty=1)
abline(h=2, col=’blue’,lty=2)
abline(h=-2, col=’blue’,lty=2)

# Ver si los residuos son incorrelados

#ACF de la serie esiduos
acf (resstan)

#Test de Ljung-Box
Box.test(resstan,type=’Ljung’)

#Estas pruebas se aplica a veces a los residuos de un ARMA(p,q),en cuyo caso
# las referencias sugieren fitdf = p+q,por supuesto siempre que lag > fitdf.

for (i in c(1:12))

{

a<-Box.test(resstan,type=’Ljung’,lag=i) #valor sin ajustar los grados de libertad
print(a$p.value)

a<-Box.test(resstan,type=’Ljung’,lag=i,fitdf=4)

print (a$p.value)

cat(£fill=T)
}
tsdiag (ARMAG5)

##PREDICCION
# Predicciones de la serie estacionaria

predARMA65<-predict (ARMA65,30)
predARMAG5
plot(forecast (ARMA65,30))

#Prediccién con estimacién componente estacional por arménicos

predic2<- Arima(nivel, order=c(6,1,5), xreg=fourier(nivel, K=1), lambda=-2)
pre<-forecast(predic2, h=30, xreg=fourierf(nivel, K=1, h=30))

pre

plot(forecast(predic2, h=30, xreg=fourierf(nivel, K=1, h=30)))
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