TAZ-TFG-2017-2034


Aproximación de un número por racionales. Fracciones continuas

Cabezón Manchado, Miguel
Pérez Riera, Mario (dir.)

Universidad de Zaragoza, CIEN, 2017
Matemáticas department, Análisis Matemático area

Graduado en Matemáticas

Abstract: Hemos abordado cuestiones dentro de la parte de teoría de números denominada aproximación diofántica. Desde un punto de vista general estudiamos resultados sobre la aproximación de un número real por números racionales, como los teoremas de Dirichlet, Liouville y Hurwitz. Además, vemos la teoría de fracciones continuas la cual está muy relacionada con la aproximación diofántica. Vemos una serie de propiedades que cumplen con el fin de darnos cuenta que las fracciones continuas son las que mejor aproximan a un número real. Por último trabajamos con la irracionalidad, trascendencia y fracción continua del número e.

Tipo de Trabajo Académico: Trabajo Fin de Grado

Creative Commons License

El registro pertenece a las siguientes colecciones:
Academic Works > Trabajos Académicos por Centro > facultad-de-ciencias
Academic Works > End-of-grade works



Back to search

Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)