000065274 001__ 65274
000065274 005__ 20190709135555.0
000065274 0247_ $$2doi$$a10.1515/cmam-2016-0046
000065274 0248_ $$2sideral$$a104080
000065274 037__ $$aART-2017-104080
000065274 041__ $$aeng
000065274 100__ $$aMatus, Piotr
000065274 245__ $$aMonotone difference schemes for weakly coupled elliptic and parabolic systems
000065274 260__ $$c2017
000065274 5060_ $$aAccess copy available to the general public$$fUnrestricted
000065274 5203_ $$aThe present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is introduced and the definition of its monotonicity is given. This definition is closely associated with the property of non-negativity of the solution. Under the fulfillment of the positivity condition of the coefficients, two-side estimates of the approximate solution of these vector-difference equations are established and the important a priori estimate in the uniform norm C is given.
000065274 536__ $$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 705402-poro sos$$9info:eu-repo/grantAgreement/EC/H2020/705402/EU/Efficient numerical methods for deformable porous media. Application to carbon dioxide storage./poro sos
000065274 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000065274 590__ $$a0.658$$b2017
000065274 591__ $$aMATHEMATICS, APPLIED$$b192 / 252 = 0.762$$c2017$$dQ4$$eT3
000065274 592__ $$a1.291$$b2017
000065274 593__ $$aApplied Mathematics$$c2017$$dQ1
000065274 593__ $$aNumerical Analysis$$c2017$$dQ1
000065274 593__ $$aComputational Mathematics$$c2017$$dQ1
000065274 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000065274 700__ $$0(orcid)0000-0002-9777-5245$$aGaspar Lorenz, Francisco José$$uUniversidad de Zaragoza
000065274 700__ $$aHieu, Le Minh
000065274 700__ $$aTuyen, Vo Thi Kim
000065274 7102_ $$12005$$2595$$aUniversidad de Zaragoza$$bDpto. Matemática Aplicada$$cÁrea Matemática Aplicada
000065274 773__ $$g17, 2 (2017), 287-298$$pComput. methods appl. math.$$tComputational Methods in Applied Mathematics$$x1609-4840
000065274 8564_ $$s310190$$uhttp://zaguan.unizar.es/record/65274/files/texto_completo.pdf$$yVersión publicada
000065274 8564_ $$s85684$$uhttp://zaguan.unizar.es/record/65274/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000065274 909CO $$ooai:zaguan.unizar.es:65274$$particulos$$pdriver
000065274 951__ $$a2019-07-09-12:14:39
000065274 980__ $$aARTICLE