Cymantrenyl-nucleobases: Synthesis, anticancer, antitrypanosomal and antimicrobial activity studies
Resumen: The synthesis of four cymantrene-5-fluorouracil derivatives (1-4) and two cymantrene-adenine derivatives (5 and 6) is reported. All of the compounds were characterized by spectroscopic methods and the crystal structure of two derivatives (1 and 6), together with the previously described cymantrene-adenine compound C was determined by X-ray crystallography. While the compounds 1 and 6 crystallized in the triclinic P-1 space group, compound C crystallized in the monoclinic P21/m space group. The newly synthesized compounds 1-6 were tested together with the two previously described cymantrene derivatives B and C for their in vitro antiproliferative activity against seven cancer cell lines (MCF-7, MCF-7/DX, MDA-MB-231, SKOV-3, A549, HepG2m and U-87-MG), five bacterial strains Staphylococcus aureus (methicillin-sensitive, methicillin-resistant and vancomycin-intermediate strains), Staphylococcus epidermidis, and Escherichia coli, including clinical isolates of S. aureus and S. epidermidis, as well as against the protozoan parasite Trypanosoma brucei. The most cytotoxic compounds were derivatives 2 and C for A549 and SKOV-3 cancer cell lines, respectively, with 50% growth inhibition (IC50) values of about 7 µM. The anticancer activity of the cymantrene compounds was determined to be due to their ability to induce oxidative stress and to trigger apoptosis and autophagy in cancer cells. Three derivatives (1, 4 and 5) displayed promising antitrypanosomal activity, with GI50 values in the low micromolar range (3-4 µM). The introduction of the 5-fluorouracil moiety in 1 enhanced the trypanocidal activity when compared to the activity previously reported for the corresponding uracil derivative. The antibacterial activity of cymantrene compounds 1 and C was within the range of 8-64 µg/mL and seemed to be the result of induced cell shrinking.
Idioma: Inglés
DOI: 10.3390/molecules22122220
Año: 2017
Publicado en: Molecules 22, 12 (2017), 2220
ISSN: 1420-3049

Factor impacto JCR: 3.098 (2017)
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 68 / 171 = 0.398 (2017) - Q2 - T2
Categ. JCR: BIOCHEMISTRY & MOLECULAR BIOLOGY rank: 133 / 292 = 0.455 (2017) - Q2 - T2

Factor impacto SCIMAGO: 0.855 - Analytical Chemistry (Q1) - Pharmaceutical Science (Q1) - Chemistry (miscellaneous) (Q1) - Organic Chemistry (Q2) - Physical and Theoretical Chemistry (Q2) - Drug Discovery (Q2) - Medicine (miscellaneous) (Q2) - Molecular Medicine (Q3)

Tipo y forma: Article (Published version)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2019-07-09-12:45:48)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2018-02-15, last modified 2019-07-09


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)